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Multidimensional memory topography
in the medial parietal cortex identified
from neuroimaging of thousands of daily
memory videos

Wilma A. Bainbridge 1,2 & Chris I. Baker 3

Ourmemories form a tapestry of events, people, and places, woven across the
decades of our lives. However, research has often been limited in assessing the
nature of episodicmemory by using artificial stimuli and short time scales. The
explosion of social media enables new ways to examine the neural repre-
sentations of naturalistic episodic memories, for features like the memory’s
age, location, memory strength, and emotions. We recruited 23 users of a
video diary app (“1 s Everyday”), who had recorded 9266 daily memory videos
spanningup to 7 years. During a 3 T fMRI scan, participants viewed 300of their
memory videos intermixed with 300 from another individual. We find that
memory features are tightly interrelated, highlighting the need to test them in
conjunction, and discover a multidimensional topography in medial parietal
cortex, with subregions sensitive to a memory’s age, strength, and the famil-
iarity of the people and places involved.

Our episodic memories are dynamic and complex, filled with move-
ment, emotions, meta-cognitive states, and multisensory information
for the people, places, and events across the decades of our lives.
However, memory research conducted in laboratories often cannot
capture the richness of these real-worldmemories, instead prioritizing
well-controlled stimuli at a short time scale. Other studies using
autobiographicmemories examine longer time scales, but usually with
a constricted set of memories dichotomized along a single dimension
such as time. How can we capture the rich complexity of real-world
memories in an experimental setting, through the lens of the thou-
sands of memories people naturally record in their daily lives?

For a majority of autobiographic memory studies, participants
verbally self-report memories, bring in photographs of important
events from an album or freely recall a memory based on a vague cue
like “beach” (see1 for a review of methods). However, such methods
assume an accurate report from the participant and often focus on a
handful of particularly salient events that may trigger unique proces-
sing and representations in the brain, given their high vividness2. To

capture more naturalistic, daily events, some studies have employed
wearable cameras that capturephotographs at regular time intervals3,4,
but these studies often suffer from an opposing issue, where many
photos are unmemorable to participants, and these studies can only
measure the brief time span a participant is willing to wear a camera
(less than a month). Due to these constrained methodologies, auto-
biographical memory studies have largely been limited to relatively
small numbers of stimuli, defined by coarse condition contrasts such
as autobiographic versus laboratory stimuli, face versus scene mem-
ories, or remote versus recent memories.

However, with the explosive growth of socialmedia, high-quality
mobile cameras, and expansive cloud storage, people are recording
their experiences more often than ever. One popular mobile appli-
cation for capturing and sharingmemories is “1 s Everyday” (1SE)—an
app developed in 2013 in which users record a 1-second video every
day of their lives as a video diary. While one second is brief, these
videos are information-dense, with dynamic visual content that
serves as highly salient cues to specific memories. A single second
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allows one to easily capture and store thousands of these memory
cues— a decade of memories lasts about one hour, and a lifetime
about 8–9 h. Because these memory cues are recorded every day,
they capture the naturalistic events of one’s life—not just the key
events that would be recalled from a photo albumor cuedmemories.
With over 1.5 million users, there is also a large body of individuals
who have been using this app to capture their lives for years. We
leverage this rich pool of participants with thousands of recorded
videos to examine the neural representations of memories across
their multifaceted components.

Prior research has identified several key neural substrates related
to autobiographical memory representations: in particular, the hip-
pocampus and the parietal cortex. The hippocampus is actively
engaged in the encoding and retrieval of autobiographical memories
and shows the increased signal for recall of memories that are more
vivid5,6 and more recent3,7. This recency effect has received close
examination, to adjudicate between competing theories of memory
consolidation, which posit that the hippocampus is either involved in
the retrieval of recent memories (standard trace theory8), or in epi-
sodic memory retrieval regardless of memory age (multiple trace
theory9). These accounts aredifficult to testbecauseof the interrelated
nature of the properties that form memory—for example, memory
strength and recall vividness can often be confounded with recency10,
and thus must be taken into consideration11. In addition to the hip-
pocampus, attention in the field has also focused around both lateral
and medial parietal regions12–14. Previously thought to be primarily
engaged inworkingmemoryor the direction of attention tomemory12,
recent accounts have revealed signatures for long-term memory of
familiar people and places in the medial parietal cortex15–18. Rare
patients with lateral parietal lesions19,20 and medial parietal lesions21

also show a marked loss in the retrieval of autobiographical memory
details, and such deficits can be triggered in healthy individuals by
transcranial magnetic stimulation to the lateral parietal cortex7. Thus,
while the hippocampus may be sensitive to the age or strength of
memory, it appears that the parietal cortex is sensitive to the content
of a memory.

Now, armedwith a rich, varied set of daily documentedmemories
spanning a wide but finely sampled temporal range, we can examine
key questions about neural representations ofmemory. Doweobserve
differences in hippocampal engagement between recent and remote
memories, and how do such patterns relate to perceived memory
strength? What fine-grained memory content can we decode from the
parietal cortex? Andmore broadly, what representational information
do we conjure from memory during retrieval?

Here, we present a comprehensive characterization of the neural
substrates for retrieving memories documented across hundreds or
thousands of days, spanning as broad a range as seven years.
We recruited users of the 1SE app with at least 6 months of recorded
memories, and conducted a functional magnetic resonance imaging
(fMRI) experiment in which participants watched their own recorded
videos (Fig. 1). Importantly, participants viewed their videos inter-
leavedwith an equal numberof videos fromamatchedparticipant, to
be able to isolate neural patterns for mnemonic representations
rather than perceptual ones. From each participant, we collected rich
behavioral measures for each video, including its age (its time
of occurrence), location, memory strength, emotion, and content
(i.e., how familiar were people and places shown in the videos?).
These neural and behavioral data have been made publicly available
as a large-scale database of autobiographic memory (https://osf.io/
exb7m/). We observe a high degree of correlations across our
behavioral measures previously underreported in the field, suggest-
ing that some prior findings could be accounted for by memory
strength or even stimulus characteristics, rather than the memory
property of interest. Furthermore, we uncover a topography within
the medial parietal cortex that reflects memory content, age, and
memory strength.

Results
Twenty-three users of the 1SE app participated in our study. Each
participant had on average 762 (SD = 536.2, MIN = 175, MAX= 2210)
recorded videos to choose from: 11 participantswith 6months to 1 year
of videos, 6 participants with 1–2 years of videos, and 6 participants

Fig. 1 | Experimental methods. For the in-scanner task, participants viewed a
randomly intermixed sequence of 1-second videos, consisting of approximately
300of their ownmemory videos and300memoryvideos fromapairedparticipant.
This participant pair saw the exact same videos in the same order, so their visual
experiences were identical, but their memory experiences were non-overlapping,
only recognizing their own videos and not recognizing the videos of the paired
participant. After viewing a 1 s video, participants had a 5 s interstimulus interval

(ISI) during which they were asked to imagine or recall the context surrounding the
1 s video clip. Participants completed a behavioral labeling task after the scan,
where they rated their own 300 videos on a series of questions, including the
content of the video (people and places in the video), the video location (using GPS
coordinates on a map), their memory strength, and emotions for the event. Map
data ©2021 Google Inc.
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with 2–7 years of videos. For each participant, up to 300of their videos
were pseudo-randomly sampled for use in the study, so that their
entire time span was evenly sampled in each of the 10 fMRI runs. Nine
participants returned for a second session (tested with 300 different
videos) at least 6 months after the first session. All analyses reported
here are conducted at the level of experimental session (32 samples),
with the first and second sessions of a given participant treated as
independent sessions. Results were qualitatively similar if only a single
session was included from each participant (Supplemental Fig. 4).

We conducted a series of analyses on the behavioral and neuroi-
maging data, which we describe in detail below. First, we examined the
distribution of the behavioral characteristics of the memories,
revealing correlations across several measures. Second, we identified
key regions in the brain specifically sensitive to the retrieval of one’s
own autobiographicmemories. Focusing on themedial temporal lobe,
we found discriminable information about memory strength and
emotion, but not age or spatial location. We also found that memory
strength for a video could be predicted by its visual features. Third, we
examined the unique contributions of these differentmemory features
(memory strength, age, location, emotion, and content) across the
brain, and found that the medial parietal cortex showed a bilateral
topography of distinct representations of memory age, memory
strength, people familiarity, and place familiarity. All brain data from
the 32 samples and measures from the 9,266 total videos are publicly
available on a repository on the Open Science Framework (https://osf.
io/exb7m/).

Memories show rich variation and interrelatedness of features
We assessed and compared the behavioral features of thesememories
recorded “in the wild” to determine what influences memory strength
and emotion (Fig. 2). Many studies have focused on singular aspects of
memory, without considering thatmultiple aspects ofmemorymay be
interrelated. For eachof a participant’s ~300 videos that they viewed in
the scanner, participants made ratings on several aspects of the
associated memory (see Methods). Participants indicated the content
of the videos, by rating the familiarity of people and places in their
videos (i.e., was this a video of meeting someone for the first time?).
We also asked participants to label each video for: 1) its specific loca-
tion (geocoordinates), 2) the strength of thememory of the event, and
3) the emotionality of the captured event (valence: positive vs. nega-
tive, and strength: strong vs. weak). We quantified the distance of a
video as the geodesic distance between the video location and the
study site where the participant was scanned. The study site was
located in the Washington, DCmetropolitan area (Bethesda, MD), and
all participants lived in the DC area. We also obtained ameasure of the
age of a video, from the time the video was recorded in the app.

We first examined the spread of emotion and memory strength
ratings for the videos. The videos generally skewed from neutral to
positive in emotional valence (onaverage, 1.1%werevery negative, 4.1%
were somewhat negative, 27.5% were emotionally neutral, 37.8% were
somewhat positive, and 29.5% were very positive). This positive bias
may reflect an interesting aspect of memory; perhaps when doc-
umenting one’s life, app users prefer to select more positive videos to
represent a day’s memories. In contrast, there was a relatively uniform
distribution of memory strength ratings for these recorded videos (on
a scale of 1 = very weak to 5 = very strong, 18.0% received a 1, 17.4%
received a 2, 20.9% received a 3, 20.2% received a 4, and 23.5%
received a 5).

Next, we investigated the relationship between the content of the
videos (the presence of familiar people and places) and the other
memory properties. On average, 74.3% of videos (SD = 21.6%) had
people in them, with 93.2% (SD = 6.4%) rated as familiar people (Sup-
plemental Fig. 1a). Videos that contained newpeople were significantly
better remembered (i.e., had a higher rated memory strength) than
thosewith familiar people (t(28) = 3.07, p =0.005). However, therewas

no significant difference in the emotionality of a video based on the
familiarity of people in the video (p = 0.754). Participants also some-
times recorded themselves in their videos (as “selfies”). Participants
reported higher memory strength for videos with new people than
those with themselves (t(28) = 2.33, p = 0.027), and there was no dif-
ference in memory for videos with themselves or familiar people
(p = 0.839). Videos with selfies did not show differences in emotion
from videos with familiar (p =0.144) or new people (p =0.744).

In terms of the places shown in these videos, a majority of videos
were recorded in familiar places (M = 80.0%, SD = 12.0%, MIN = 87,
MAX= 286). Videos that occurred in new places had significantly
higher memory strength than those in familiar places (t(31) = 9.89,
p = 4.13 × 10−11). New place videos were also significantly more positive
(t(31) = 5.03, p = 1.96 × 10−5) and in farther locations from the study
location (t(31) = 5.29, p = 9.45 × 10−6), perhaps reflecting positive
memories of travel and vacations. We also categorized memories that
occurred in unique locations (locations with only a single memory,
such as a vacation spot), and common locations (the most common
location across all memories for a participant, such as one’s home;
Supplemental Fig. 1b). Videos that occurred in unique locations had
significantly higher memory strength than those that happened in
common locations (t(31) = 12.58, p = 1.02 × 10−13), and were rated with
more positive emotions (t(31) = 6.07, p = 9.97 × 10−7), again perhaps
reflecting a boost to unique vacation memories.

Finally, we investigated the interrelationships of the qualities of
the memories, their emotionality, strength, age, and distance. There
was no significant difference in memory strength between negative
and positive videos (including only participants with at least 5 negative
and 5 positive videos: t(26) = 1.32, p =0.200). Clear relationships
emerged in terms of memory strength and emotion as compared to a
memory’s age and distance (Fig. 3). In terms of memory age, more
recent videos were rated as being better remembered (Mean Spear-
man’s ρ =0.16, t(31) = 4.54, p = 7.96 × 10−5) and had more positive
emotions (Mean ρ = 0.07, t(31) = 3.71, p = 8.12 × 10−4). In terms of dis-
tance, farther away videos were better remembered (Mean ρ =0.19,
t(31) = 8.08, p = 3.95 × 10−9) and more positively remembered (Mean
ρ = 0.19, t(31) = 8.39, p = 1.78 × 10−9), echoing the behavioral findings
for novel places.

These results emphasize that the attributes of memories are
strongly interdependent: one cannot study the effects of memory age
or location in isolation without also considering memory strength or
emotion. Similarly, the specific content of the memory (who is there,
where is it happening) also may impact how that memory is repre-
sented. In this sample, the most memorable events appear to be
recent, positive events with new people in far-off new locations. The
most forgettable ones are those that occurred long ago, with highly
familiar people and places.

Representations in the brain for one’s own memories
With these highly interconnected features that are inherent to mem-
ory, howdo they interact to formaneural representationof amemory?
To address this question, we first tested whether we could identify
neural representations specific to an individual’s ownmemories. In the
MRI scanner, when participants viewed one of their own 1-second
videos, they were instructed to recall the events surrounding the video
in asmuch detail as possible. When they viewed a 1-second video from
a paired participant, they were instructed to instead imagine the
events surrounding the video.Thus, neural signatures for both types of
stimuli would reflect visually and semantically rich representations and
constructive, imagery-based processes. Both participants in a pair in
fact saw the exact same visual stimuli (the same videos in the same
order), so the only differences between a pair should be the individual-
specific mnemonic associations with the videos. Thus, we examined
where we could observe distinguishable traces in the brain for viewing
one’s own memory videos versus another’s memory videos.
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A group-level contrast of viewing one’s own videos versus the
other’s videos (Fig. 4; unthresholded maps in Supplemental Fig. 2)
revealed significant, bilateral clusters of activation in the ventromedial
prefrontal cortex (vmPFC), medial parietal cortex (mPC, encompass-
ing areas such as the retrosplenial cortex, posterior cingulate cortex,
and precuneus), lateral parietal cortex, the medial temporal lobe
(MTL), and hippocampus. These regions highly overlap with regions
previously identified for autobiographical memory processes, includ-
ing many regions often summarized as the default mode network
(DMN20,22). Importantly, the observation of mPC activity in our task
supports prior findings of mPC involvement in autobiographical
memory13, and shows overlap with mPC regions implicated in sensi-
tivity to familiar people and familiar places (Supplemental Fig. 316).

Similarly, these MTL and hippocampal effects support prior work
showing the involvement of these regions in autobiographicalmemory
strength or age5–7. Importantly, we do not observe significant effects in
parts of the occipital lobe corresponding to the early visual cortex (V1-
V3), suggesting that indeed there were no differences in the visual
experiences while watching the videos between paired participants.
Significant regions for the opposite contrast of higher activity for
viewing another’s videos over one’s ownvideosdo emerge in the insula
and in lateral parietal regions (blue areas in Fig. 4). These regions could
potentially reflect a novelty effect, an effect of increased imagining
for others’ events23,24, or a deactivation effect related to rerouting
of resources during episodic memory25,26. As a whole, clusters
observed in this contrast replicate across scanning sessions for the

Fig. 2 | The diversity ofmemories in the study.These plots show the distributions
of the ~300 memories per participant used in the current study along a range of
metrics. The temporal distribution shows a scatterplot of the age of each of the
participants’ memories. Each horizontal row represents each of the 32 experi-
mental samples, and samples from the same participant (N = 9) are indicated with
brackets at the left. While many memories occurred within one year of the
experimental scan, several participants had memories extending more than a year
prior, and some up to seven years prior to the experiment. Dots are color-coded
based on memory content (whether there are familiar/unfamiliar people in the
video, and whether it occurs in a familiar place). The content types are diverse
across participants, with some recording a majority of videos with familiar people

in familiar places, others recording a majority of videos with novel people, places,
or both, and even others recording a mix of all content types. The spatial dis-
tribution shows the locations of all videos, with each dot representing a video and
each color representing a participant. Videos were in diverse locations, with many
across the world, even more across the United States, and a large number con-
centrated in theWashingtonDCarea (where the studywasconducted). Looking at a
distribution of the emotional ratings for the memories, the documented videos, in
general, tended to be neutral or positive (rather than negative). Memory strength
ratings were evenly distributed from very weak to very strong. Error bars indicate
the standard error of themean across participants. Source data are provided in the
Source Data file.
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nine participants who participated in two sessions (Supplemental
Fig. 4). In sum, these clear differences between viewing one’s own
videos and those of another indicate that these stimuli elicit strong
signatures related tomemory for the video’s events, rather than only a
perceptual representation.

Mnemonic representations of time and space in the medial
temporal lobe
Next, we investigated targeted regions revealed in prior work to
maintain representations of memory age and location—namely the
hippocampus3,7,27 and other surrounding medial temporal lobe (MTL)

Fig. 3 | Relationships across memory qualities. Each plot shows regression fit
lines (intercept and slope) for all 32 samples for four comparisons: (top left)
memory age and strength, (top right) memory distance and strength, (bottom left)
memory age and emotion rating, and (bottom right)memorydistance and emotion
rating. These trends are shown for illustrative purposes and are statistically con-
firmed by Spearman rank correlations in the main text that make no assumption
about linearity. Memory strength ratings ranged from 1 (very weak) to 5 (very
strong), while emotion ratings ranged from 1 (very negative) to 5 (very positive). In
28 out of 32 participant samples, age had a negative relationship with memory

strength (i.e., older memories were less strongly remembered). In 30 out of
32 samples, distance had a positive relationship withmemory strength (i.e., farther
memories were more strongly remembered). In 25 out of 32 samples, age had a
negative relationship with emotion (i.e., older memories had weaker emotions). In
31 out of 32 samples, distance had a positive relationship with emotion (i.e., farther
memories had stronger positive emotions). Note that the emotion regression lines
tend to fall in the upper half of the charts due to the overwhelmingly neutral and
positive memories reported by participants (ratings of 3–5). Source data are pro-
vided in the Source Data file.

Fig. 4 | Activation differences based on videomnemonic content. Awhole-brain
group activation map (N = 32) for viewing one’s own videos (red/yellow) versus
viewing another person’s videos (blue), two-sided t-test, FDR-corrected, q <0.01.
The colormap represents the range of beta values. Because participant pairs had
identical visual content, these patterns should solely represent activation related to

memory for the event. Activation for viewing one’s own videos coincides with
regions frequently observed in autobiographical memory studies, including hip-
pocampus (Hipp.), medial parietal cortex (mPC), medial temporal lobe (MTL),
ventromedial prefrontal cortex (vmPFC), lateral prefrontal cortex (lPFC), lateral
parietal cortex (lPC), and inferotemporal cortex (IT).
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regions: the parahippocampal cortex (PHC), entorhinal cortex (ERC),
and amygdala (see Supplemental Tables 1–3 for betas and results split
by hemisphere).

For each region of interest, we ran regressions to test the rela-
tionship of voxel signal and our measures of memory: age, distance,
memory strength, and emotional valence. First, we examined each of
these factors in separate models, in order to replicate prior work that
has focusedon singularproperties likememory ageor strength, before
testing in a combinedmodel. The regression slopes for all participants
were then compared to a null hypothesis of zero slope. AllMTL regions
showed a significant effect of age, where more recent memories had
higher signal (Hippocampus: p =0.009, Cohen’s d = 0.50; Amygdala:
p =0.013,d =0.47; ERC:p =0.010,d =0.48; PHC:p = 0.005,d =0.54; all
FDR q <0.05). All regions also showed a significant effect of memory
strength, where stronger memories had higher signal (Hippocampus:
p = 4.46 × 10−6, d = 0.98; Amygdala: p = 1.09 × 10−5, d =0.93; ERC:
p = 6.37 × 10−6, d = 0.96; PHC: p = 8.10 × 10−5, d = 0.80; all FDR q <0.05).
These regions also showed an effect of emotion, where more strongly
positive memories had higher signal (Hippocampus: p = 7.27 × 10−5,
d =0.81; Amygdala: p = 2.18 × 10−5, d = 0.88; ERC: p = 4.52 × 10−5,
d =0.84; PHC: p =0.008, d =0.50, all FDR q <0.05). There were no
regions with bilateral significant effects related to the distance
of memory (all p >0.05). In sum, the MTL shows sensitivity to a
memory’s age, strength, and emotionwhen theseproperties are tested
separately.

Given our behavioral findings that these different memory prop-
erties are in fact highly correlated, we next examined how these dif-
ferent factors played a role in predicting MTL signals when tested in a
combined model. With a combined model (Fig. 5a), across all regions
the significant effect of age disappeared (all p >0.10), and there con-
tinued to be no significant effect of distance (all p > 0.15). In contrast,
significant effects of memory strength remained in all regions (Hip-
pocampus: p = 1.57 × 10−4, d =0.76; Amygdala: p = 6.12 × 10−4, d =0.67;
ERC: p = 0.003, d =0.56; PHC: p =0.014, d =0.46, all FDR q <0.05).

These findings corroborate a large body of work showing memory
strength effects in the hippocampus5,6. Significant effects of emotional
strength also remained in all regions except the PHC (Hippocampus:
p =0.009, d = 0.50; Amygdala: p = 4.59 × 10−4, d =0.69; ERC: p =0.003,
d =0.56; all FDR q < 0.05; PHC:p =0.218). Thesefindings replicateprior
work showing representations of the emotional content of memory in
the amygdala, hippocampus, and other MTL regions28,29. However, the
disappearance of an effect of memory age when tested in this com-
bined model suggests that memory age effects in the MTL could be
partially accounted for by confounding effects of memory strength or
emotion.

We also tested the ability to predict MTL signals with a combined
multiple regression model using a representational similarity analysis
(RSA) framework3,30. Instead of predicting mean activation for a
memory video in an ROI based on properties of that memory, RSA
looks at predicting pairwise pattern differences from pairwise beha-
vioral differences (seeMethods). For example, one predictionmight be
that two memories that are very different in emotional content would
be very different in neural signal. When testing a combined model
including representational dissimilarity matrices (RDMs) for memory
strength, age, distance, and emotion, we only find a significant con-
tribution of memory strength (Hippocampus: p = 1.16 × 10−4, d = 1.14;
Amygdala: p = 3.08 × 10−4, d =0.92; ERC: p = 3.58 × 10−4, d = 1.15; PHC:
p =0.013, d =0.57; all FDR q <0.05). Memory age, distance, and emo-
tion showed no significant relationship (all p >0.05). Overall, these
results suggest that effects of memory age or distance observed in the
hippocampus and MTL may be largely captured by memory strength
and emotion of the memories, as more recent memories and more
spatially distant memories tend to also be the best remembered and
the most positively rated.

As a control analysis, we also examined whether any aspects of
memory can be detected when a participant is viewing the videos of
another person for which they have no memory. This can reveal
whether there may be a contribution of visual features to these

Fig. 5 | Significant effects of memory and emotion in the hippocampus and
deep neural network (DNN) predictions. a Betas for all participants in the com-
bined model predicting hippocampal activation from the four factors of memory
strength, emotion rating, age (time from scan), and distance from scan site. Each
point indicates one of the 32 samples, and the bar indicates the average beta value
across participants. Note the much more constrained y-axis needed to display the
age and distance factors (beta range of −0.15 to 0.15) versus the memory and
emotion factors (beta range of −30 to 30). While memory strength (p = 1.57 × 10−4)
and emotion (p =0.009) show a significant positive relationship to hippocampal
activation, age and distance do not (p >0.10). Significancewas assessedwith a two-
sided t-test versus 0, with FDR correction across ROIs, q <0.05. b Prediction

accuracy of the VGG-16 Deep Learning Neural Network (DNN) layer activations on
themiddle video frame, for predictingmemory strength and emotion ratings. Each
histogram shows the distribution of prediction accuracy (Pearson correlation r of
predictions with true values of memory strength/emotion) of the 32 participant
samples. The dashed gray line indicates the mean prediction accuracy across all
participants. Formemory strength, both early (layer 2, p =0.004) and late (layer 20,
p = 2.11 × 10−6) layers were significantly able to predict memory strength from the
middle frame of the videos alone (top). Early (p =0.004) and late layers
(p = 1.30× 10−6) were also significantly able to predict emotion ratings from the
middle video frame (bottom). Significance was assessed with two-sided Wilcoxon
sign rank tests. Source data are provided in the Source Data file.
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features of thememory that account forMTL activation.We tested this
by examining a combinedmodel for predicting the brain activity from
participant Awhen viewing the videos of participant B, with predictors
for the memory strength, emotion, age, and geodesic distance as
indicated by participant B. One should expect no ability to predict
brain activity in this analysis because participant A should have no
knowledge of this information specific to participant B (such as the
strength of participant B’s memory). However, surprisingly, in this
combined model, there is a weak but significant relationship in some
MTL regions between the voxel patterns of participant A watching
these videos and participant B’s rated memory strength, in spite of no
prior experience with these videos (Hippocampus: p = 0.030, d =0.41;
Amygdala: p =0.050, d =0.55; PHC: p =0.047, d = 1.39). No other
memory featuresweredecodable. This suggests thatmemory strength
is partially reflected in the stimulus itself; there may be certain visual
features that correlate with memory strength, such as an intrinsic
memorability of these stimuli31. This could also suggest that partici-
pants are vividly imagining or simulating the events surrounding these
other-participant videos, which could engage the hippocampus32.

Given these results, we tested whether objectively measured
visual features from the videos could be used to predict subjective
memory properties like memory strength or emotion. We utilized the
image classification deep neural network (DNN) VGG-1633 to quantify
the visual information present in the middle frame of each 1-second
video (chosen to be representative of the whole video). While such
object classification DNNs are originally designed to classify the visual
features of images, they can also be successfully utilized to predict the
intrinsicmemorability of images34,35. To quantify these videos, we used
a cross-validated support vector regression (hold-out: 80% training,
20% testing, 25 iterations) to predict human memory strength ratings
from features in an early layer (layer 2) thought to represent low-level
visual information, and a late layer (layer 20) thought to represent
high-level or more conceptual information (Fig. 5b). Early layer fea-
tures were significantly predictive of the participant’s ratings of
memory strength (Wilcoxon sign rank test: Z = 2.90, p =0.004), as
were late layer features (Z = 4.74, p = 2.11 × 10−6), and late layer features
were more predictive than early layer features (Z = 4.45,
p = 8.47 × 10−6). This DNN was also predictive of emotion ratings at
both early (Z = 2.91, p =0.004) and late layers (Z = 4.84, p = 1.30 × 10−6),
with significantly better predictions by the late versus early layer
(Z = 4.64, p = 3.52 × 10−6). We also examined the role of motion in the
videos, as measured by optical flow across the first, middle, and last
frames (see Methods). The motion was not predictive of memory
strength ratings (Z = 0.98,p = 0.327), butwaspredictive of the emotion
rating of a video (Z = 2.84, p =0.005) such that on average, videos with
more motion were rated as having stronger positive emotions. These
results provide a possible explanation forwhymemory strength canbe
decoded from the brain of a participant who hasn’t experienced these
memories; some 1-second videos or even some memories are more
vivid and visually striking and result in higher memory strength and
emotional content, and this can be detected by a computational
vision model.

In sum, these results emphasize the importance of considering
the multifaceted features of memory: its strength, emotions, location,
age, and even its sensory features. In fact, somememories or videos of
memories that tend to be rememberedmore stronglymay also tend to
bemore visually striking, and brain activity could reflect someof these
differences in visual features. Considering these various aspects of
memory may help avoid confounds that could explain prior findings,
such as memory strength effects that could account for hippocampal
signatures of autobiographical memory age and distance.

Memory representations across the whole brain
Given the relatively weak effects of memory age and distance in
the MTL, we next expanded our combined model to an exploratory

whole-brain searchlight to identify whether such effects may occur
elsewhere in the brain. In a targeted ROI analysis, we then tested the
content specificity of the regions that emerged (see section below).
First, using a liberal threshold (p <0.01, uncorrected), we identified
voxels with significant slopes in a multiple regression predicting
searchlight voxel values from memory distance, age, strength, and
emotion, allowing us to examine the contributions of each factor
(Fig. 6; alternate views in Supplemental Fig. 5; views at a stringent
threshold in Supplemental Fig. 6). Even at this liberal threshold, no
regions emerged with a significant effect for a memory’s distance
(although some temporal lobe regions do emerge if testing only with
videos within a constrained range of 50 km, Supplemental Fig. 7).
Clusters of voxels did emerge with sensitivity to the age of the mem-
ory. Specifically, bilateral regions in the medial parietal cortex showed
higher signal for more remote memories. An area around the left
temporal parietal junction and secondary somatosensory cortex, and
an area in the left anterior temporal gyrus showed higher signal for
recent memories. The hippocampus did not emerge as showing a
specific effect ofmemory age. However, its activity did reflectmemory
strength, along with many cortical regions, including medial parietal
areas, anterior temporal lobe, medial prefrontal cortex, and lateral
parietal regions (also present at FDR-corrected q <0.01, Supplemental
Fig. 6). Activity related to emotion also emerged in several regions,
including the amygdala, temporal areas, and parietal regions (also
present at q <0.01, Supplemental Fig. 6). Interestingly, emotion is also
the only memory feature reflected in activity in the visual cortex,
possibly reflecting the relationship we observed between a video’s
visual features and the emotion associated with memory. These
regions for memory age, strength, and emotion replicate when people
and place familiarity are also included as predictors in the regression
(Supplemental Fig. 8).

This current analysis shows voxels with significantly higher and
lower univariate activation related to absolute measures of the mem-
ory age, strength, and emotion for specific memories. A com-
plementary measure is whether distances in neural patterns map onto
behavioral distances between memories, reflecting sensitivity to rela-
tive differences between pairs of memories. To test this question, we
ran a whole-brain RSA regression searchlight, to see how pairwise
distances between memory videos in memory distance, age, strength,
and emotion were predictive of pairwise distances in neural repre-
sentation (see Methods). To calculate pairwise distances for memory
age anddistance, wemodeled those values logarithmically, given prior
work suggesting a logarithmic representation of time in behavior and
the brain3,36. With this complementary analysis, we observe many
similarities to the univariate analysis (Fig. 7). Significant patterns for
memory strength were observed in the medial parietal cortex, medial
temporal lobe, and other temporal lobe regions. Patterns for emotion
were observed in the temporal lobe and a more superior medial par-
ietal region. Again, no significant regions emerged for memory dis-
tance. Finally, we again observe bilateral medial parietal patterns
related to the age of memory, as well as temporal lobe sensitivity.
Interestingly, these patterns show a negative slope, indicating that
memories that are closer together in time and/or memories that
occurred longer ago are more neurally distinct.

Medial parietal sensitivity to memory content and age
In both whole-brain analyses, bilateral clusters in the mPC emerged
that were sensitive to the age of a memory and its strength. This
temporal age region is of particular interest, given that we did not see
sensitivity to memory age in other regions, such as the hippocampus,
even with a liberal threshold. Further, the mPC is thought to represent
aspects of the content of a memory, particularly with distinct areas
sensitive to the recall of familiar people and familiar places16,17. Our
contrast of viewing one’s own versus another’s memories also showed
selectivity in similarmPC areas (Fig. 4). Thus, themPCmaybe sensitive
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to different aspects of amemory’s content, and serves as a particularly
interesting region to examine with our richly quantified memory set.

To test whether memory content effects are specific to the mPC,
we examined the locations of the peak voxels for each type ofmemory
information. Specifically, we identified the top 1000 voxels across the
whole brain showing a significant effect formemory strength,memory
age, and the familiarity of the people and places within the videos.
These four contrasts revealed significant, symmetrical bilateral regions
primarily within the mPC (Fig. 8a, whole brain maps in Supplemental
Fig. 9, maps with the same colormap in Supplemental Fig. 10).
Importantly, these four contrasts had low voxel overlap with each
other, suggesting separate clusters within the mPC for these different
memory properties (age, strength, people familiarity, and place
familiarity). ThemPCdidnot contain any of the top voxels for emotion
information (Supplemental Fig. 11). Interestingly, the top significant
regions for people familiarity showed a positive effect, while those for
scene familiarity showed a negative effect (voxels for the opposite
directions are shown in Supplemental Fig. 12).

To confirm whether these mPC regions were specific to each
factor, we tested the selectivity of each region using a leave-one-
participant-out approach. In other words, for each participant we
localized eachmPC region in all other participants, and then computed
the mean z-scored beta value for the excluded participant for each
factor (Fig. 8b). We then compared the beta values across all partici-
pants versus 0 using two-tailed t-tests, FDR corrected q < 0.05. This
allowed us to see whether subregions within the mPC were topo-
graphically stable across participants (i.e., does participant N have
discriminable information in a region defined by all other partici-
pants?), and whether these subregions were sensitive to specific
information (e.g., is the discriminable information for participant N
only a single factor like memory age, or multiple factors?). The age-
selective region was significantly sensitive only to memory age
(t(29) = 4.73, p = 5.39 × 10−5), showing that these voxels only reflect
temporal information, and are not sensitive to other factors like
memory strength. The people-selective region was sensitive to both

people familiarity (t(28) = 3.02, p =0.005) and memory strength
(t(30) = 7.65, p = 1.57 × 10−8). Similarly, the place-selective region was
sensitive to both place familiarity (t(31) = 4.38, p = 1.25 × 10−4) and
memory strength (t(30) = 5.18, p = 1.40 × 10−5). Thus, while these peo-
ple and place regions are distinct from each other, these regions are
also modulated by the strength of the memory. Finally, the memory
strength region was sensitive to people familiarity (t(28) = 2.71,
p =0.011) and memory strength (t(30) = 8.16, p = 4.18 × 10−9). We find
that the activity in thismemory strengthmPC region is not predictable
by the DNN-based visual features from the videos (see Methods,
p =0.498), suggesting that this region is specifically sensitive to the
strength of a memory, and not its visual features.

Finally, we conducted an analysis within the age-specific mPC
region to examine the nature of its sensitivity to time. While memory
age information has been frequently identified in the hippocampus3,
no such regions havebeen identified in themPC toour knowledge.Our
whole-brain searchlight RSA suggested that a logarithmic representa-
tion of time significantly predicted activity within the mPC, however it
is also important to confirm that this region is specifically sensitive to a
logarithmic representation of time over a linear or exponential
representation. Using RSA (see Methods), we compared the age-
sensitivemPC subregion to hypotheticalmodels based on logarithmic,
linear, or exponential representations of time. We found a small but
significant correlation of the mPC subregion with the logarithmic
model (Mean ρ = −0.006, t(31) = 2.32, p =0.027), but not with the
exponential model (Mean ρ = 0.008, p =0.078) or linear model (Mean
ρ = −0.001, p =0.522). The subregion also had a significantly stronger
correlation with the logarithmic model than with the exponential
model (t(31) = 2.21, p =0.035) or with the linear model (t(31) = 2.34,
p =0.026). The negative logarithmic correlation corroborates the
results from the whole-brain RSA multiple regression, which observed
negative slopes. This suggests thatmemories that are older or closer in
time are represented more distinctively in this brain region.

In sum, these spatially separated peaks across content types
suggest a topography of memory information within the mPC, with

Fig. 6 | Representations of different memory content. Maps show whole-brain
results from a multiple regression predicting voxel beta values from separate
predictors for a memory’s distance, age, strength, and emotion. Activation repre-
sents the mean regressor slope (β) for each predictor, where significance was
assessed by comparing the slope across all participants with a two-sided t-test
versus a null hypothesis slope of 0 (p <0.01, uncorrected;more stringent threshold

shown in Supplemental Fig. 5). The colormaps represent the range of beta values
for each predictor, after centering. Surface maps, as well as a volume slice of the
hippocampus (indicated in purple) are shown. Thesemaps reveal voxels where the
signal is significantly predicted bymemory age, strength, and emotion. No regions
emerged with sensitivity to memory distance. Alternate views can be seen in Sup-
plemental Fig. 5.
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different clusters representing specific types of information: strength,
people, places, and age.

Discussion
Here, we conducted a large-scale neuroimaging study of real-world
memories, spanning 9266 total recorded autobiographical videos
across 32 visits, from2days prior to up to 2547days prior (7 years ago).
We identified memory-specific signals across the brain that showed
greater signal for viewing one’s own memories versus another’s, in
spite of identical visual content. We then zoomed in to look at the

ability to decode different types of memory properties. We identified
effects of memory age and location within the MTL, but found that
memory strength and emotion could fully account for both of these
factors. We also found that memory strength and emotion could be
partially determined from stimulus features alone, as measured by an
image recognition DNN. However, when we investigated outside the
MTL, we identified a region within the mPC with unique variance
explained by the age of a memory, with representations of both
absolute and relative time. A closer look at the mPC revealed a mne-
monic topography, with distinct peaks related to memory age, mem-
ory strength, people familiarity, and place familiarity. Further, a
subregion sensitive to memory age within the mPC replicates prior
behavioral hypotheses of a logarithmic temporal representation in
memory36. In sum, we have discovered a series of bilateral subregions
within the mPC that show sensitivity to different aspects of retrieved
memory content, thanks to the use of the diverse autobiographic
memory stimuli naturally recorded through social media.

In this study, we were unable to find strong signatures of memory
age (or physical distance) in the hippocampus. Recent memories ten-
ded to be stronger and more emotional, and both of those factors
subsumed any effects of memory age in the hippocampus. This high-
lights a concern with autobiographical memory research that is often
under-addressed: when isolating one property of amemory (e.g., age),
it is essential to include all other properties that may be confounded
(memory strength, emotion, location, content). Some prior findings of
memory recency in the hippocampus could be partially explained by
these other confounding factors, e.g.3. However, some other work
attempting to factor out the effects of memory strength do still
observe higher signal in the hippocampus for recent versus remote
autobiographical memories11. At first glance, our results appear to
support theories that changes in hippocampus signalwithmemory age
instead reflect a weaker memory strength or a semanticization of the
memory9,37. However, higher signal for remote memories (separate
from memory strength) in the neocortex supports the predictions of
the standard trace model that representations of more remote mem-
ories transfer to the neocortex8. Future studies could investigate spe-
cific subfields or subregions of the hippocampus, in case temporal
representations exist at finer neural scales. In fact, prior work has
identified signals for both recency11 and remoteness38, specifically in
the posterior hippocampus. It is also important to note that these daily
recorded memories could elicit differential processing based on the
type of memory—for example, some videos might elicit recall of a

Fig. 7 | Representational similarity analysis of differentmemory content.Maps
showing bilateral views of results from a multiple regression predicting the
representational dissimilarity matrices (RDMs) of voxel beta values, from separate
RDMs for a memory’s distance, age, strength, and emotion. Memory distance and
age were logarithmically transformed before creating RDMs. Map color values

represent the similarity between the brain-based RDM and each predictor RDM, as
the regressor slope (β). Significancewas assessed by comparing the slope across all
participants with a two-sided t-test versus a null hypothesis slope of 0 (p <0.01,
uncorrected).

Fig. 8 | Distribution of memory content in the medial parietal cortex. a The
medial parietal cortex (mPC) contains a topographic map representing different
types of memory information. Shown here are the top 1000 voxels with signal for
four different types of information: memory age, people familiarity, place
familiarity, and memory strength. Each map is shown at 50% transparency; if a
voxel is shared acrossmultiple content types, it will be colored by bothmaps (i.e.,
a “winner” is not determined in any given voxel). Note the low amount of overlap
across content types and hemispheric symmetry of these maps. b Results of a
leave-one-out analysis of the mean beta for each content type in each of the
topographic regions. Topographic regions were localized with all but one parti-
cipant, and then themean z-scoredbeta of the left-out participant is plotted (each
dot). Bars show the mean beta across participants, and * indicate a significant
difference in a two-tailed t-test versus 0 (FDR corrected across all comparisons,
q < 0.05); exact statistics are reported in the main text. Source data are provided
in the Source Data file.
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specific episode, while others might elicit a familiarity signal for a
routine event. Future research combining memory age with a cate-
gorization of these types may reveal a more nuanced story about dif-
ferent theories of consolidation.

However, our study did reveal a key role of the mPC in memory,
reflected by topography of distinct representational clusters for
memory age, strength, people, and places. The mPC has only recently
emerged as a region for investigating representations of long-term
memory content16,17,39. While the mPC consistently emerges in studies
of autobiographical memory, prior accounts hypothesized that the
parietal cortex’s involvement in memory was related to working
memory or attentional control12. The parietal cortex was originally
believed to play aminor role in autobiographicmemory, because early
lesion patients were still able to remember events, unlike hippocampal
lesion patients40. However, more targeted looks at both medial and
parietal lesionpatients andhealthy volunteers undergoing transcranial
magnetic stimulation have revealed that autobiographic memories
lose high amounts of detail when the parietal cortex is disrupted7,19–21.
The current results reveal a potential role for the mPC in representing
detailed content of a retrieved memory across a topography, with
separate clusters representing temporal, people, place, and memory
strength information. For the subregion sensitive tomemory strength,
the precuneus within the mPC has been identified in prior work as a
region particularly sensitive to the vividness of recollective memory
experiences2,41. It is possible that engagement of this subregion
could reflect participants performing imagery to assess the vividness
of their recollection for those events. Previous work has identified
other clusters in the mPC specific to long-term people versus place
memory16, and these clusters are separate from those during
perception18,42,43. Further, prior work investigating mPC as an orienta-
tion system in the brain has identified voxel clusters that separately
represent comparisons of physical distance, temporal distance, and
personal distance, supporting the notion that different regions within
the mPC may support different types of information44. Our current
study shows that such representations occur beyond the usage of
cognitive maps to calculate distance, but also spontaneously during
the recall of rich, individual memories from one’s life. However, what
specific information is represented in these mPC subregions is still an
open question. For example, the subregions that are sensitive to the
familiarity of people and places could be some sort of category-
specific “familiarity detector”14, could be sensitive to specific types of
semantic information associated with these memories, or could con-
tain information about specific familiar items (e.g., face identity). Such
questions will be important drivers for future work, and this temporal
mPC region we have identified could serve as a key region in which to
examine questions about memory consolidation.

While the interactions ofmemory age, strength, and content were
a key aim of our current study, we also investigated the representa-
tions of memory location and emotion. Although representations of
large spatial scales have been previously identified in the
hippocampus3, we were unable to find clear representations of the
spatial location (i.e., geodesic distance) of the memory in medial
temporal lobe or medial parietal regions. Given that distant memories
tend to be more emotionally positive, contain novel content, and be
better remembered, we conjecture that prior findings could have been
due to these other characteristics. It is also possible that spatial
representations may only occur in the brain at smaller, local scales
(e.g., for your neighborhood), and the videos in the current study
spanned too broad a set of locations. Indeed, when limiting memories
to just 50 km around the scan site, some selective regions emerged in
the temporal cortex (Supplemental Fig. 7), although not in the MTL or
mPC. This suggests that future workmay need to utilize a constrained
set of ranges in order to study geodesic distance. It is also possible that
themethods used in the current studywere too different from those in
prior work (e.g., using recorded videos instead of lifelogging camera

snapshots), resulting in divergent findings. We did, however, identify
several regions sensitive to the emotion of memory, including the
amygdala, medial temporal lobe, visual cortex and many other areas
across the cortex. This replicates prior findings supporting an impor-
tant role for emotion and the amygdala in neural representations of a
memory28,29, as well as a role of the hippocampus in emotional
processing45. However, unlike prior work that has observed either
higher memory strength46 or lower memory strength47 for more
negative memories, we did not observe a relationship between emo-
tion and memory strength. This lack of relationship could result from
how participants used the app; overwhelmingly, participants chose to
record more neutral or positive memories over negative memories.
There are several possible explanations for this positive memory bias,
and a fascinatingquestion iswhat drives thedecision tomakea specific
memory cue. Perhaps negative memories are often less predictable
and also more inappropriate and uncomfortable to record and docu-
ment. Perhaps participants only want to chronicle positive aspects of
their life through this app, especially since these videos are often
shared with friends on social media. Or perhaps more generally, the
average day tends to be neutral or positive for those who use such
apps. There is also the important question of whether such externally
recorded videos are truly naturalistic asmemory cues, although recent
research has shown that mobile videos are effective triggers of mem-
ory reactivation even for older adults48. The answer to this question
may be changing as our lives become more reliant upon mobile cam-
eras and social media. Future work could examine and even manip-
ulate these different strategies for selecting a mnemonic cue and
analyze how they impact representations of these different memories.

The emotion of a memory also showed significant responses in
the early visual cortex. This could reflect top-down feedback to V149,50.
However, this could also reflect the relationship between the visual
features of amemory and its content. In fact, we found that a DNNwith
similarities to the human visual system (VGG-1633) could predict a
participant’s memory strength and emotion for a video based on a
single frame. This highlights an important takeaway in memory
research—sensory features of amemorymaybe tightly interlinkedwith
its content and emotion, and some aspects of “memory vividness”
could represent visual vividness of the original event. For example,
exciting and visually striking events (e.g., a concert, an arcade) could
tend to be more memorable and positive. The qualities of a memory
itself could alsodrive the visual features a person chooses to capture in
their memory cue. For example, a boring, forgettable day at home
could cause a participant to capture a mundane and visually bland
video, like a wall or piece of furniture. A memory is thus closely
interwoven with the features that represent it, and as memory
researchers, we must consider how such sensory features may influ-
ence the neural and behavioral representations of such memories.
Overall, this study serves as an important demonstration of the com-
plexity of real-world memories—multiple factors such as time, loca-
tion, strength, emotionality, content, and sensory features are all
intertwined, and so these factors must be simultaneously considered
even when wanting to only study a single factor.

The current study leveraged a popularmobile app (1SE) to recruit
a set of participants with hundreds to thousands of pre-existing
memory stimuli. This resulted in many diverse and representative sti-
muli over a large time span. While this methodology has provided
insight into the neural representations of memories, it also opens up
several further questions. Participants had different ranges and sam-
pling of their memories across time, preventing us from looking at the
exact same time points across all participants. Future studies could
examine more constricted but consistent time points across partici-
pants (e.g., having them watch all 365 videos from the last one year).
We anticipate such methods could help answer important questions
such as the time course at which neocortical consolidation takes place.
Participants also differed in their motivations behind using the app,
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and thus the types of content represented in their videos; for example,
some participants recorded similar things gradually changing every-
day (e.g., a baby or pet growing up at home), while others intentionally
recorded disparate and diverse experiences (e.g., traveling the world
or starting college). While we were able to leverage this large variance
to simultaneously assess many attributes of memory, some of our
effects may be weaker as a result. For example, it is possible thatmore
routine memories would have different representations from dis-
tinctive memories, e.g., the former being more gist-like51–53, and future
work could examine how neural representations differ based on the
distinctiveness of the memory.

Another key question is the influence of memory reinstatement
on representations of these memories. While we limited participants’
reviewing of their memories (see Methods), participants could have
rewatched some or all memories prior to enrollment in the study. This
could influence the level of semanticization of individual memories or
the amount of interference acrossmemories.Memory reinstatement is
a potential issue with many, if not a majority, of autobiographical
memory studies, given that participants often have to supply
descriptions of memories or photos to experimenters (triggering
reinstatement), and we likely naturally reinstate important memories
from our lives. However, future work could quantify the number of
replays of memories from an app like 1 s Everyday to look at influences
of reinstatement on memory representations. Interestingly, partici-
pants could even be using special strategies to select their memory
videos—perhaps intentionally selecting memories that have low
interference and rich semantic content. Future studies could have
participants utilize such an app with specific constraints, in order to
equalize the types of content that are recorded. However, one key
advantage of the current method is in our ability to leverage the rich,
pre-existing data already collected by the app users. One major
obstacle to conducting similar studies with experimental manipula-
tions is that onemust build the set ofmemories fromscratch,making it
infeasible to look at memories that span multiple years.

The daily images and videos that we record for social media show
incredible promise as ameans to examine autobiographicalmemories.
Indeed, future memory work going forward could benefit from a
combined examination of both naturalistic observational studies and
controlled interventional studies, to benefit from the rich variance and
long time scales of the former, but the ability to test targeted
hypotheses with the latter. With this rich set of daily recorded mem-
ories, we have illustrated the incredible importance of considering the
range of factors that make up a memory when measuring their
representations in behavior in the brain. Importantly, we have uncov-
ered a topography of mnemonic information in the medial parietal
cortex, sensitive to the content, time, and strength of a memory.

Methods
The study and its experimental procedures were approved by the NIH
Institutional Review Board (NCT00001360, 93M-0170).

The 1 s everyday application
1 s Everyday is amobile app available on iOS andAndroid developedby
Cesar Kuriyama in 2013. The app has over 1,500,000 users in the
United States, with some users having used the app daily since its
inception. The guiding principle of the app is that users should record
a brief 1-second video each day, documenting their lives regularly
regardless of the excitement or mundaneness of that day. To select
their 1-second video for a day, participants record videos of memories
throughout the day using the app or their built-in camera app. At the
end of the day, the user then selects a 1-second snippet from any of
their recorded videos to serve as the second for that day. Thus, a
1-second video represents a user’s choice for the most salient memory
cue for that day. An example 1SE video can be viewed on our OSF page
at https://osf.io/exb7m/. In order to recruit participants for this study,

the 1SE app posted an in-app advertisement for userswith IP addresses
in theWashington, DC area to participate in a study based around their
memories.

Participants
Twenty-three adults (14 female, 9 male; Mage = 28.3, SDage = 5.86,
Range = 19 to 37.1 years) participated in the study, and nine partici-
pants returned over 6 months later to participate in a second session.
All participantswere compensated for their time ($90 for the fMRI task
and $40 for the post-scan video labeling), and provided informed
consent to participate and have their video data used in this study,
following guidelines approved by the NIH Institutional Review Board
(NCT00001360, 93M-0170). All participants were right-handed, with
normal or corrected vision, and had at least 6 months of recorded
videos to participate in the study.

Behind the scenes, participants were paired, so that each partici-
pant would see videos from their own life, as well as videos from
another’s life. Theseparticipant pairs nevermet eachother; the pairing
was only for the purposes of video presentation. When possible, we
attempted to pair participants with similar numbers of videos andwith
similar types of video content (e.g., parents documenting their child’s
life; college students). Participants were not given any further infor-
mation about their pairedparticipant, andwereonly allowed to see the
paired participants’ videos once (in the scanner), to minimize com-
promising private information of their paired participant. During
recruitment, we asked each participant if they knew anyone else
interested in the study, to ensure they did not know the person they
were paired with. No participant reported recognizing the videos from
the other individual.

Stimuli
App users were recruited for the study if they had at least 6 months of
videos recorded. The spread of times included 2 days up to 7 years
prior to the day of the scan. Participants supplieduswith 762 videos on
average (minimum 175, maximum 2210). Participants were asked to
provide their videos approximately one week before they were
scheduled to come in for the scan. One-second video clips were
removed that contained any explicit, obscene, or uncomfortable
images (e.g., injuries, spiders, nudity). Clips were also removed that
contained any identifiable information of the participants (e.g., full
name or address). A black rectangle was placed over the dates
embedded in the videos by the app, so participants could not identify
the time of the video. In natural use of the app, it is possible that
participants watched their own videos multiple times, or different
numbers of times per video. In general, the app is usually used to
create a compilation of one’s videos once a year (for posting on social
media), so we think participants did not repeatedly watch their videos
over a long period. Importantly, as soon as participants were recruited
for the study (usually 1+ months before coming in for the scan), they
were asked not to rewatch any videos they’ve recorded.

For the experiment, we sampled three hundred videos per parti-
cipant evenly and randomly across their vetted collection of videos.
While a majority of participant samples had at least 300 videos (N = 23
out of 32), nine participants had fewer than 300 usable videos (170,
250, 260, 260, 270, 280, 286, 294, and 296 videos) and thus all videos
were used for their experimental sessions, and we attempted to pair
them with participants with smaller numbers of videos. For partici-
pants who returned for a second session 6 months later, we collected
new videos from them, and sampled a non-overlapping set of videos
across the videos provided by them.

While one second is very brief, these videos capture rich amounts
of information and are often highly recognizable to the person who
recorded the video. A majority of the time, these videos are outward-
facing (not including the recorder) and are selected as a cue to the
main activities of that day. Common subjects of a clip may include a
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concert, an outing with a friend, a favorite TV show, a sports event or
game, food, or even boredom at home or one’s office. One second is
long enough to identify a location, a song, a sentence, or an event.
Examples of a diverse set of one-second videos recorded by the cor-
responding author can be seen at (https://osf.io/exb7m/).

In-scanner task
Participants first participated in a 7.1-min localizer taskwhere they saw
blocks of faces, objects, scenes, and mosaic-scrambled object images
and had to identify a back-to-back repeated image. These images all
came from an independent experiment, and the purpose of this scan
was to localize face-, scene-, and object-selective visual regions in the
participants’ brains. We did not conduct any analyses in the current
paper with this localizer data.

Participants thenmovedonto themain task, which consisted of 10
runs of 6.3min each. In each run, participants saw a set of 60 1-second
video clips, 30 of their own and 30of the partnered participant. Videos
were presented with an event-related design, and there was a 5 s inter-
stimulus interval between each video. Videos were presented in a
randomized order, with their own videos and the partnered partici-
pant’s videos randomly intermixed. Importantly, a participant and
their paired participant saw the exact same videos in the exact same
sequence, so any differences that emerge are truly due to mnemonic,
and not visual, processing of the videos. The videos in each run were
selected to evenly sample the entire time span of the participant’s
collection of videos. For example, if a participant had 10 months of
videos, Run 1 would contain 30 videos spanning the full 10 months (3
videos per month), as would Runs 2, 3, etc. This even sampling was
performed with a random date jitter, to avoid embedding structure in
the sampling (e.g., avoiding always sampling from the same day of the
week). Participants with fewer videos experienced 10 scanner runs that
each showed fewer videos and spanned a shorter period of time.

While watching the videos, participants performed a visual ima-
gery task. They were instructed that when they saw one of their own
videos, they should try to remember what was occurring in that video
and surrounding memories for that day. When they saw someone
else’s videos, they were instructed to imagine what was occurring in
that video and its surrounding context. Participants did not make any
button presses during the task. All in-scanner tasks were coded in
Psychtoolbox-3 for MATLAB R2019a54.

Post-scan video labeling
After the scan, participants completed a web-based behavioral task in
which they saw each of their own ~300 videos and labeled them for a
wide range of information. Participants first identified where the video
occurred, as specifically as possible, using a Google Maps API-based
search that saved the latitude and longitude of the location. This was
generally relatively easy for participants, as they could input addres-
ses, business names (e.g., a restaurant name), or a business name
combined with location (e.g., the Starbucks in Bethesda). Participants
rated thememory strength of the videos (“how strong is yourmemory
for this event?”) on a Likert scale of 1 (very weak) to 5 (very strong).
They then indicated the length of the memory that 1-second cue
retrieved: seconds, minutes, hours, the whole day, or N/A (if they did
not retrieve a memory); this data was not analyzed for the current
study. They labeled the emotions for the event (“how would you
describe your emotions for this event?”): Very negative, somewhat
negative, neutral, somewhat positive, and very positive. They also
measured the content of the memory: 1) whether it contained people
and how familiar they were with them at the time of the memory, 2)
whether it contained the participant themself, and 3) whether the
place depicted in the video was new or familiar at the time of the
memory. Finally, to quantify any flashbulb memories, we asked them
to name videos that contained an important event (not analyzed in this
study). Participants could work on this labeling task remotely, as it

usually took 2–4 h to complete, but were asked to complete it within
48 h of the scan. They were not allowed to search for information or
ask others for assistance in remembering an event.

Scanning parameters
The experiment was conducted at the NIH Clinical Center, using a 3
Tesla General Electric MRI scanner system with a 32-channel head coil.
Whole-brain anatomical scans were acquired using the MP2RAGE
sequence, with 1mm isotropic voxels. Whole-brain functional scans
were acquired with an EPI scan of 2.5mm isotropic voxels (repetition
time= 2500ms, echo time = 30ms, flip angle = 75 degrees), with slices
aligned parallel to the temporal lobe. Functional scans were pre-
processed with slice timing correction and motion correction using
AFNI version 22.2.12 and surface-based analyses were performed using
MATLAB R2019a and SUMA 22.2.1255,56. No smoothing was applied.
Anatomical regions of interest (ROI) were localized in the MTL,
including the hippocampus, PHC, ERC, and amygdala, using Free-
Surfer’s recon-all pipeline. Group contrasts were generated in the
surface-space by surface-based alignment to a template surface, and in
the volume space by alignment to the MNI template space.

Analyses
General linear model. First, in order to observe differences between
viewing one’s own videos versus another’s videos, we conducted a
general linear model (GLM) in each participant, with videos split
between two conditions: their own videos, and another’s videos.
Group univariate contrasts were then produced using a t-contrast of
own vs. other’s videos. We conducted the group contrast across all
participant samples (Fig. 4, Supplemental Fig. 2), as well as just within
the first and second sessions of the nine participants who came in for
two sessions separated by at least 6 months (Supplemental Fig. 4).

Next, to model the voxel values for each video, we conducted a
GLM that included every video as a 6-second block regressor con-
volved with a canonical hemodynamic response function. The
t-statistic of the beta value for a given videowas taken as its voxel value
for all following analyses. For both GLMs, six nuisance regressors were
also included for motion (x, y, z, roll, pitch, yaw), computed from the
motion correction. The resulting beta values for each video were then
utilized as inputs for the proceeding fMRI analyses: the regression
analyses, the representational similarity analyses, and the voxel peaks
comparison.

Regression analyses for relating mnemonic content and the brain.
We employed regressions to assess the degree to which various
aspects of memory were related to the voxel values within a given
region. We conducted these analyses first within our anatomical ROIs
in the MTL. We then conducted these same analyses in a whole-brain
searchlight of 5-voxel diameter iteratively moved throughout the
brain. The main predictors modeled for every video and entered into
the regression were:
1. Memory age is calculated as the number of days the memory

occurred before the scan.
2. Memory strength is the participant’s rating of their strength of the

memory (1 = very weak, to 5 = very strong).
3. Emotion, the participant’s rating of their emotions for the mem-

ory (1 = very negative, to 5 = very positive)
4. Memory distance is calculated as the geodesic distance of the

memory’s location to the scanning center at the NIH.

These predictors were then entered into a model to predict the
rank-ordered mean voxel value (t-statistic) within the ROI for each
video. These t-statistics were rank-transformed in order to avoid any
assumptions of a linear relationship (given that time may vary loga-
rithmically). For example, we can test whether older memories corre-
sponded with higher (or lower) voxel activation without assuming the
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voxel activation itself should necessarily increase linearly (just the
ranking). To observe the relationships between a single predictor and
the ranked voxel value, these were computed as simple linear regres-
sions (where β is the resulting slope, and ε is the residual and intercept)
as described in Eq. (1).

ranked tstatistic = βðpredictorÞ+ ε ð1Þ

We then computed multiple regressions (Eq. (2)) to examine the
contribution of each predictor to the mean voxel value. No predictors
showed evidence of multicollinearity (all r <0.20, in contrast with a
rule of thumb of r >0.80 indicative of multicollinearity).

ranked tstatistic = β1 memory ageð Þ+β2 memory strengthð Þ
+β3 emotionð Þ+ β4 distanceð Þ+ ε

ð2Þ

The resulting betas across participants were then compared
against a null hypothesis slope of 0 using a one-sample two-tailed
t-test. If the average slope (beta) across participants for a given pre-
dictor is significantly different from 0, this suggests a significant
positive (or negative) relationship between the predictor and voxels in
the brain. We report Cohen’s d for effect size, and performed FDR
correction (q <0.05) across the ROIs for each analysis. We ran this
multiple regression both for predicting the voxel values for watching
one’s own videos from one’s own ratings of those videos, but also for
predicting the voxel values for watching another’s videos from the
other’s ratings of those videos.

Representational similarity analysesofmemorycontent. To serve as
a complementary measure to the univariate regression analysis, we
also analyzed patterns of memory content in the brain using repre-
sentational similarity analysis (RSA). RSA tests the degree to which
behavioral hypotheses relate with patterns in the brain, by observing
the similarity between pairs of stimuli30. The idea is that, within a given
brain region, the similarity of patterns of voxels across stimuli can
capture the representational geometry of that region; for example,
stimuli with more similar patterns may also be more cognitively simi-
lar. The voxel-based representational geometry of a region can thus be
compared to hypothetical representational geometries of behavioral
measures to test the involvement of different cognitive processes.
Representational geometries are compared as representational dis-
similarity matrices (RDMs), or matrices representing the pairwise dis-
tances between all stimuli. Here, neural distance in a given region
between two memories was calculated as 1 minus the Pearson corre-
lation of the voxel vectors of each memory. Behavioral distances (e.g.,
distance in memory age) between two memories were calculated as
the absolute value of the difference in the behavioral measure for each
memory. RDMswere thus calculated from the brain and the behavioral
measures of memory strength, emotion, memory age, and distance.

We conducted RSA in the anatomical ROIs in the MTL, as well as
across the whole brain. For both, we tested a multiple regression to
observe the degree towhich the behavioral RDMs in conjunction could
predict the brain-based RDM. Time and distance were modeled loga-
rithmically, based on prior work suggesting logarithmic representa-
tions of time and distance using a similar multiple regression RSA
framework in the hippocampus (Nielson et al., 2015). For memory age,
we took the base-10 log of each measure of memory age (number of
days from scan) before creating the memory age RDM. For memory
distance, we modeled each memory as a vector with the start point at
the scan site and the endpoint at the memory location (defined by
latitude and longitude indicated by the participant). For each pair of
memories, we took the base-10 log of the magnitude of each pair of
vectors. We then calculated the Euclidean distance between their
endpoints. These log-transformed pairwise distances were then used
as the distance measures in the memory distance RDM. Memory

strength and emotion were kept in their original units (not log-trans-
formed), given that they were rated on a Likert scale with no specific
prediction of a logarithmic representation. The final regression for-
mula tested in each region was that in Eq. (3).

RDMðsearchlight voxelsÞ = β1ðRDMðlog10 memoryageÞÞ
+β2ðRDMðmemory strengthÞÞ
+β3ðRDMðemotionÞÞ
+β4ðRDMðlog10 distanceÞÞ+ ϵ

ð3Þ

Group maps were then formed by taking the average beta across
participants for a given predictor. Significance was tested using t-tests
comparing the beta across participants to a null hypothesis of 0.
Whole-brain analyses were conducted in searchlights across the whole
brain with a diameter of 5 voxels.

Representational similarities of temporal representations. While
our whole-brain searchlight RSA suggests a logarithmic representation
of time in thememory agemPC region,wewanted to confirm that time
was indeed best modeled logarithmically. To this end, we conducted
RSA within the memory age mPC ROI to compare different hypothe-
tical representations of memory age. This ROI was defined as the sig-
nificant mPC region identified by the multiple regression group
analysis (Fig. 6), transformed into each participant’s native space. We
tested three RSA models based on hypotheses about memory age.
These models were constructed as matrices, where each cell contains
thepairwise temporaldistancebetween twomemories. First, we tested
a linear hypothesis where the distance between two memories is
constant regardless of how remote they are. The pairwise distancewas
calculated as |timeB – timeA | . Second, we tested a logarithmic
hypothesis where the temporal distance between two memories
decreases as they become more remote. Pairwise distance was calcu-
lated as |log10(timeB) – log10(timeA)|. Third, we tested an exponential
hypothesis where the temporal distance between two memories
exponentially increases as they become more remote. Pairwise dis-
tance was calculated as |10timeB – 10timeA | .

In order to compare each hypothesis with the brain, a RDM was
constructed for the ROI. For each video, we extracted its vector of
voxel activations in that ROI. We then constructed a matrix of the 1 –
the Pearson correlation between all pairs of memory voxel vectors. To
compare the brain to these temporal hypotheses, we then took the
Spearman rank correlation between the upper triangle of this ROI-
based matrix with the upper triangle of each temporal hypothesis
matrix. This Spearmancorrelationwas calculated for everyparticipant,
and then Fisher Z-transformed. Finally, these transformed correlation
coefficientswere compared to a null hypothesis of0with a one-sample
t-test and compared to each other using paired-samples t-tests, to see
whether any one temporal hypothesis better explained the data than
the others.

Computer vision predictions of video memory strength and emo-
tion. We conducted two analyses to test the relationship of the visual
features within a video and ratings of memory strength and emotion:
1) an analysis based on a visual DNN, and 2) an analysis based on
optical flow. To extract the visual features for each memory, we took
the middle frame of each 1-second video, and inputted it into the
VGG-16 DNN for object classification33. The early layers of VGG-16 are
typically thought to extract early visual features of an image (e.g.,
color, edges, orientations), while the later layers of VGG-16 are
thought to extract late visual and semantic information (e.g., specific
object parts and categories, like faces). These visual DNNs have also
shown correspondences with the human visual system57,58. The VGG-
16 DNN outputted a vector of values at each layer for each middle
frame of the videos.We then tested the degree towhich the early and
late layer output vectors can predict a person’s rating of memory
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strength and emotion for a video. For the early layer, we looked at
layer 2 (the first layer after the image input), while for the late layer,
we looked at layer 20 (the penultimate layer before the category
prediction). For a given participant, 80% of their videos were utilized
as a training set for a support vector regression (SVR) that learned to
predict memory strength ratings from a given layer’s outputs for a
given video’s middle frame. We then tested this model on the
remaining held-out 20% of their videos, and correlated memory
strength predictions with actual memory strength. This training and
testing was repeated iteratively across 25 iterations per participant,
resulting in an average correlation coefficient reflecting prediction
performance. The same analysis pipeline was also conducted for
predicting a video’s emotion rating from the early and late layer
outputs of the video’s middle frame.

We also tested whether VGG-16 could predict brain activity in the
mPCsubregion sensitive tomemory strength.We rana similar analysis,
where for each participant we conducted 25 iterations of a SVR, using
80% of the data for training and a hold-out of 20% of the data for
testing themodel. For each iteration, an SVRwas trained to predict the
meanbrain activation in the group-definedmPC subregion sensitive to
memory strength, based on the layer 20 values from VGG-16. Predic-
tion performance was calculated as the average Pearson correlation
between the predicted and actual brain activation measures for the
held-out test data across the 25 iterations.

Next, we examined the relationship of motion to memory
strength and emotion. We estimated motion using a toolbox for real-
time optical flow59, which conducts edge detection across an image
and then estimates movement of those edges using the Lucas-Kanade
method60. For a given one-second clip, we calculated the total mag-
nitude of opticalflowbetween the first andmiddle frame, and between
the middle and last frame of the video, and then averaged these two
measures. This provides ameasure of howmuchmotion there is in the
video. For each participant, we then calculated a Spearman’s rank
correlation between the amount of motion in a video and its memory
strength ratings or emotion ratings to assess how much motion was
predictive of these features.

To test the success of these predictions across participants, we
compared the mean correlation coefficients across participants
against a null hypothesis of 0. Because these correlation coefficients
may not be normally distributed, they were compared utilizing Wil-
coxon sign rank tests, which test against a median of 0 (rather than a
mean of 0). A significant positive result indicates that prediction
accuracy is significantly higher than chance.

Voxel peaks comparison across memory factors. In order to com-
pare the distributions of memory information in the mPC, we visua-
lized the peaks of significant activation for different types of
information. First, the significant voxels for each information type
were identified using group-level univariate contrasts. People famil-
iarity voxelswere identifiedwith a t-contrast ofmemories with familiar
people versus novel people. Three participants did not have at least
five videos with novel people, and so were excluded from this analysis.
Place familiarity voxels were identified with a t-contrast of memories
occurring within familiar versus novel places.Memory age voxels were
identified with a t-contrast of recent memories (within the last three
months) and remote memories (more than three months ago). This
cut-off was selected so that there would be a large number of mem-
ories in each bin, while trying to avoid the “recent” bin containing too
many older memories (thus potentially washing out any effects).
However, similar peaks emerge for other time cut-offs. Memory
strength voxels were identified using an ANOVA distinguishing the five
memory strength response options. One participant was excluded
from this analysis for not having at least five weak memories. Finally,
we also investigated the top 1000 voxels for an ANOVA distinguishing
the five emotion response options, however, no voxels occurred in the

mPC (Supplemental Fig. 11). All contrasts were thresholded at p <0.05,
and then we visualized the top 1000 of these voxels to identify peak
regions associated with each property of memory.

To test the selectivity of these regions, we conducted a leave-
one-out analysis at the participant level. Participants were aligned to
the surface space. For each participant, we identified the top 1000
voxels for each group contrast (memory age, people familiarity,
place familiarity,memory strength) as described above,with all other
participants. We then took the medial parietal portion of each con-
trast, defined as any of these significant voxels on the medial surface
posterior to the central sulcus. Within each of these mPC regions
defined by N−1 participants, for the excluded participant N we then
measured the mean beta value of the four contrasts (memory age,
people familiarity, place familiarity, and memory strength). Essen-
tially, this allows us to see whether a set of voxels sensitive to a
certain type of information (e.g., memory age) in all other partici-
pants shows this same sensitivity in the left-out participant. This was
repeated for all 32 participant samples. Note that no constraints were
put on the regions, so they could include overlapping voxels. To test
the selectivity of each region, we then conducted two-tailed t-tests of
the measures for the 32 samples versus a null hypothesis of 0. The
resulting statistics were then FDR corrected with a threshold
of q < 0.05.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Video features, memory features, and fMRI data generated in this
study have been deposited in a repository on the Open Science Fra-
mework under access link https://osf.io/exb7m/. Raw memory videos
and memory geocoordinate information are protected and are not
available due to data privacy laws. The graph data generated in this
study are provided in the Source Data file. Source data are provided
with this paper.
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