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Hemisphere-specific spatial representation
by hippocampal granule cells

Thibault Cholvin 1 & Marlene Bartos 1

The dentate gyrus (DG) output plays a key role in the emergence of spatial and
contextual map representation within the hippocampus during learning. Dif-
ferences in neuronal network activity have been observed between left and
right CA1-3 areas, implying lateralization in spatial coding properties. Whether
bilateral differences of DG granule cell (GC) assemblies encoding spatial and
contextual information exist remains largely unexplored. Here, we employed
two-photon calcium imaging of the left or the right DG to record the activity of
GC populations over five consecutive days in head-fixed mice navigating
through familiar and novel virtual environments. Imaging revealed similar
mean GC activity on both sides. However, spatial tuning, context-selectivity
and run-to-run place field reliability was markedly higher for DG place cells in
the left than the right hemisphere. Moreover, the proportion of GCs reconfi-
guring their place fields between contexts was greater in the left DG. Thus, our
data suggest that contextual information is differentially processed by GC
populations depending on the hemisphere, with higher context discrimination
in the left but a bias towards generalization in the right DG.

A fundamental and fascinating feature of the mammalian brain is its
capacity to acquire, store, and recall novel conscious memories. The
mammalianhippocampus is particularlydecisive for episodicmemory.
By routing spatial and contextual information through its canonical
trisynaptic circuitry from the dentate gyrus (DG) to CA3 and via
Schaffer collaterals to CA1, with the latter thus acting as the output
node of the hippocampus, it allows the processing and transfer of
contextual information to neocortical areas. Each of the hippocampal
regions is characterized by specialized cellular and neuronal network
operations1–6. Computational studies proposed that the DG circuitry is
particularly crucial for the implementation of pattern separation, i.e.,
the ability to segregate and store similar but discrete contexts and
events by activity patterns of minimally overlapping granule cell (GC)
populations4,6,7. The DGs’ segregating function is supported by the
absence of direct synaptic connections among GCs8,9 and their sparse
discharges10,11. However, experimental data yielded conflicting results,
reporting either weaker3,12,13 or stronger14–16 discrimination between
similar but distinct contexts by activeGCpopulations, thus, leaving the
question of DGs’ role in spatial segregation unresolved.

A further gap in our understanding of DGs’ circuit function is the
open question of whether functional lateralization exists between the
left and the right DG, as observed in human and mouse CA1-3 hippo-
campal areas17–20. Particularly, do GC assemblies express hemispheric
lateralization in the representation of contextual information? Corre-
lations betweenBOLD signals in humans and cognitive tasks suggested
that the left hippocampus supports autobiographical long-term
memory formation19, while the right one contributes to the identifi-
cation of places and the egocentric navigation among them21–23. Data
from surgeries in epileptic patients also point to lateralization, as
removal of the left hippocampus affects verbal memory, and the right
hippocampal resection causes deficits in complex visuospatial
tasks24,25. Moreover, microdissection of dorsal CA1 areas in rats sug-
gested a bias of the left hippocampus towards the emergence of
memory engrams (defined as cell ensembles representing an experi-
ence (such as exploring a new environment) and which can be reacti-
vated upon recall26), and of the right CA1 towards the retrieval of
spatial information and route computation during navigation27. These
studies as a whole suggest that left and right hippocampi, in both
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humans and rodents, do not carry the same information. However,
data are lacking on interhemispheric functional differences in the DG.
Indeed, a large body of previous studies focused on CA1-3 areas in
mice, with emphasis on interhemispheric molecular, cellular and
synaptic differences, for example, distinctions in receptor expression
profiles in hippocampal principal cells28, morphological and physio-
logical single-cell characteristics including bilateral CA3 projections to
CA129,30, and functional as well as dynamic characteristics of Schaffer
collateral inputs31–34. In vivo studies focused on lateralization in phy-
siological circuit function and noted differences in the properties of
neuronal network oscillations35,36 as well as in the retrieval of working
memory37 between the left and right CA3 in rats. Although functional
lateralization of the DGneuronal network has so far not been observed
in vivo, it is to be expected. First, the volumeof the granule cell layer is
larger in the right than the left DG, indicating differences in the total
number of GCs providing information with their mossy fiber axons
onto CA3 pyramidal cells38. Second, the number of GCs expressing the
immediate early gene product cfos is higher in the left than in the right
DG of mice exploring a novel environment, suggesting a higher frac-
tion of active GCs or their elevated probability to undergo synaptic
plasticity induction at their perforant path inputs in the left DG39.
Third, it has been suggested that the left and right CA3 play different
roles in the acquisition and retrieval of spatial memories, with the left
CA3 being more involved in the encoding of defined locations,
whereas the right one is in the integration of rout information and
working memory31. Finally, CA3 pyramidal cells are the main target of
mossy fiber synapses. This pathway is the only projection from the DG
to CA3, and appears to be strictly ipsilateral40. Given these hemi-
spherical differences in CA3 and the DG, it is likely that upstream GCs
may be functionally lateralized.

Here, we performed two-photon calcium imaging of GC popula-
tions in head-fixedmice executing a goal-oriented task in both familiar
and novel virtual environments characterized by different sets of cues
and boundaries. Our results show that despite similar activity levels of
GCs in bothhemispheres, spatial tuning responses ofGCs in the leftDG
convey higher information content than the ones in the right DG.
Moreover, place cells in the left DG show less run-to-run variability and
higher stability across days in a given environment as compared to
their right counterparts. Finally, GCs with a place field remap sig-
nificantly more between environments in the left than in the right DG,
indicating higher contextual differentiation in the left hemisphere and
a marked bias towards generalization across contexts in the right DG.
Thus, we provide novel insights about the functional lateralization of
memory processes taking place in the hippocampus and propose that
differential routing of spatial informationmay underlie the emergence
of hemisphere-specific context-encodingGCensembles in theDG. This
division of labor between left and right DGs would then allow the
feeding of downstream hippocampal areas (e.g., CA3) with distinct
contextual information associated with either segregation or gen-
eralization between distinct spatial representations3,4,14,16.

Results
Imaging place- and context-modulated activity patterns of DG
GCs in both hemispheres
To obtain the activity of GCs, we performed two-photon calcium ima-
ging of GC populations with single-cell resolution. Mice ran on a
spherical treadmill in one familiar and one (out of two) novel virtual
environments (4m-long virtual linear tracks; “Methods”) characterized
by different wall patterns, visual cues, and floor textures (Fig. 1a, e and
Supplementary Fig. 1) and were offered soymilk rewards placed in
distinct locations depending on the environment (Fig. 1e and Supple-
mentary Fig. 1). To measure neuronal activity in the DG of both hemi-
spheres, mice were injected with adeno-associated viruses (AAVs)
expressing the calcium indicator GCAMP6s panneuronally in the left or
right DG (Fig. 1b–d). Imaged GCs were located in the upper half of the

granule cell layer to largely record from mature GCs. We used fast
scanning to record on average 234.6 ± 25.5 (left) and 248.6 ± 28.5 (right)
cells per imaging session (“Methods”). After at least 10 days of famil-
iarization to the first track, imaging sessions were started. Mice ran on
the familiar track in alternation to the novel track in blocks of five runs
(Fig. 1e). Animals ran slightly faster on average in the novel environ-
ment, and no difference in running speed was observed between ani-
mals with left and right-sided implantations (Fig. 1h). Licking frequency
was higher inside than outside the reward zones on familiar as well as
novel tracks, indicating proper identification of the reward locations in
both environments (Fig. 1i and Supplementary Fig. 1).

Before analyzing activity levels and spatial information content of
GCs from both hemispheres, we first computed the mean baseline
noise of fluorescence signals and mean peak amplitude of calcium
transients from groups of GCs jointly recorded per session. For both
measures, we revealed no difference between left and right DGs
(Supplementary Fig. 2). Moreover, GCs with stable place fields on
subsequent runs in the familiar or novel environmentwereobserved in
both hemispheres (Fig. 1f, g). Conclusively, our analyses indicate
similar somatic recording quality yielding reliable assessments of
neuronal activity and spatial information content of GC ensembles in
both hemispheres.

Mean activity and spatial tuning of GCs is higher in the left than
right hemisphere across days
To examine contextual representations during hippocampus-
dependent learning3,41, we imaged the same populations of GCs dur-
ing 5 consecutive days in the left or right DG (Fig. 2 and Supplementary
Fig. 3). The mean activity of GCs in mice exploring the familiar or the
novel contextwas similarly sparse in the twohemispheres (Fig. 2a), and
in the range of activity levels previously observed in navigating
rodents3,42,43. Except day 1, during which GCs’ mean activity in mice
representing the familiar context was mildly higher than the one
representing the novel context in the left DG (P ≤0.05; Fig. 2a), on all
subsequent days, the initially observed difference was lost (Fig. 2b).
This was very likely caused by a mild increase in average GC activity in
the novel context on days 2–5 (Fig. 2a, right). Consequently, differ-
ences in mean activity between familiar and novel contexts were
similar across days and hemispheres (Fig. 2c). The sparse representa-
tion in the DG was further reflected by small fractions of cells being
active with more than 1 transient per minute in the familiar, novel or
both contexts in both hemispheres (Fig. 2g). In linewith the hypothesis
that novel context representation emerges over timewith learning44–47,
the total fraction of place cells representing the novel environment
increased in both hemispheres over days (Fig. 2h, green). Notably, the
fraction of all active cells was mildly but significantly higher in the left
DG independent of the day of examination (χ2 test, P <0.001; Fig. 2g),
which was mirrored in a larger percentage of place cells (Fig. 2h),
suggesting that larger ensembles of GCs are processing spatial infor-
mation in the left DG. Although the number of fields represented by
each place cell was similar between hemispheres, these place fields
were significantly larger in the novel environment in the left DG, while
no such difference was observed in the familiar one (Supplementary
Fig. 4), suggesting a lower granularity in novelty space coding in the
left DG. Thus, GC activity is sparse in both hemispheres with a larger
place-coding fraction of cells in the left compared to the right DG.

Further analysis of spatial coding properties revealed that the
average spatial information content of GCs was consistently higher in
the left DG (Fig. 2d, e). Moreover, in the novel context, spatial tuning
markedly increased in the left DG over consecutive days of spatial
learning and reached values similar to the familiar context after the 4th
day of exposure to the novel environment (Fig. 2d, right). Consequently,
the difference in spatial tuning between familiar and novel contexts was
particularly high on the 1st day of novelty exposure in the left DG and
monotonically declined across days of learning (Fig. 2f). Thus, in line
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with our previous data of improved contextual representations in the
DG upon day-by-day learning3, GCs representing the novel context
showed gradually increasing spatial tuning and growing place cell
populations over time. However, this effect was more pronounced in
the left hemisphere, resulting in larger ensembles of GCs place cells with
improved spatial encoding properties in the left than right DG.

Place cells in the left DG discriminate better between contexts
than in the right DG
Next, we probed neuronal discrimination between contexts in the left
and right DG during spatial learning (Fig. 3), by first quantifying the

activity-rate difference score between contexts (activity in familiar—
activity in novel) for each individual active cell based on the normal-
ized activity-rate difference between the two contexts on each of the 5
consecutive days (Fig. 3a–c). The average activity-rate difference score
was markedly higher in the left compared to the right DG across
recording days (P <0.001; Fig. 3c). Notably, the distribution of activity-
difference scores was exceptionally broad on the 1st day of novelty
exposure, indicating that although most GCs were active in only one
context14,manyotherswereactive in both contexts3,12. Thedistribution
of activity-difference scores gradually narrowed on subsequent days,
reaching the highest values on the last day (comparison across all days,
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Fig. 1 | Two-photon calcium imaging of DG granule cells activity from either
left- or right-implanted mice navigating through familiar and novel virtual
environments. a Experimental schematic of our virtual reality setup for head-fixed
mice. b Confocal image showing GCaMP6s-labeled neurons in the DG (green),
tissue counterstained with DAPI (blue). Red dotted line indicates a typical imaging
plane in the granule cell (GC) layer. cConfocal image showingGCaMP6s labeling of
GCs in the DG. d Average fluorescence of GCaMP6s signals of GCs recorded in vivo
using 2-photon microscopy imaging. e Top, schematic of familiar and novel 4m-
long virtual environments. Yellow drops indicate the locations of soymilk rewards.
Bottom, timeline of a recording session. a–e In all, 21 mice implanted either in the
left (n = 11) or right (n = 10) hemisphere were used. Most animals were recorded
twice, using two different novel environments, for a total of 36 datasets (nleft = 18,
nright = 18; see also Supplementary Figs. 1 and 9). f Left panels, raw calcium traces
(gray) with significant transients (red) and linear trackposition (blue) over time of a

single GC from a left-implanted mouse. The same cells have been imaged over 5
consecutive days in both familiar and novel environments; days 1, 3, and 5 are
shown. Right panels, calcium activity over track distance of this GC in familiar (top)
and novel (bottom) environments. g Same as (f) for a GC from a left-implanted
mouse.hMean running speed (excluding resting periods) depending on the side of
implantation and environment (familiar/novel). nleft = 18 datasets, nright = 18 data-
sets. i Lick rates ratios observed in the reward zones (regions around the reward
sites, see “Methods”) compared to licking on the remaining track. A ratio above 1
indicates that mice are licking preferentially in the reward zones. nleft = 11 datasets,
nright = 14 datasets. h, i Three-way repeated measures ANOVAs, Tukey’s post hoc
test. ns not significant; *P <0.05; **P <0.01; ***P <0.001. Symbols with lines indicate
mean ± SEM. For exact P values, see Supplementary Table 1. Source data are pro-
vided as a Source Data file.

Article https://doi.org/10.1038/s41467-022-34039-5

Nature Communications |         (2022) 13:6227 3



P <0.001; Fig. 3c), indicating improved discrimination between con-
texts throughout learning. However, average discrimination tended to
be higher in the left DG along the entire experiment, including the fifth
recording day (left DG: median =0.86, mean = 0.73 ± 0.012; right DG,
median =0.81,mean =0.68 ±0.017 onday 5;P < 0.05; Fig. 3c). Next, we
determined trial-to-trial reliability (mean pairwise cross-correlations
between all runs, see also “Methods”) of place cell firing on the same
track across days (Fig. 3d). Remarkably, place field reliability was
markedly higher in the left DG for both tracks on every recording day
(familiar, left vs right across days, P < 0.001; novel, left vs right DG
across days, P <0.001; Fig. 3d), pointing to more reliable representa-
tions in the left DG. Unexpectedly, reliability in representation
increased not only for the novel context on subsequent days, as would

be expected during learning3, but also for the familiar context (day-by-
day familiar and novel, P <0.001 for both comparisons; “Methods”),
suggesting that novel environment exposure might influence and
improve the representation of the already experienced familiar con-
text. Finally, consistency of place field firing, defined as the activity-
rate correlation between the first five runs and last five runs in a given
environment (“Methods”) was higher in the left DG across days
(familiar, left vs right, P < 0.001; novel, left vs right, P <0.001; Fig. 3e).
Thus, GCs in the left DG show higher context discrimination andmore
reliable place-field representations.

To examine stability in place field locations throughout
learning in the two hemispheres, we determined day-by-day
activity map correlations (Fig. 3f–h). Despite the generally high

Fig. 2 | Left- and right-hemisphere DG granule cells show differences in their
activity levels and spatial information content. aMean activity (ΔF/F*s−1) of all
granule cells (GCs) from either left- and right-implanted mice recorded over 5
consecutive days in both familiar and novel environments. 21 mice implanted
either in the left (n = 11) or right (n = 10) hemisphere were used. b Same data as
(a) plotted as individual datasets. Each animal is represented by a different
color. Thin lines connect data points (small dots) obtained in familiar and novel
environments from the same animal during a given session. Thick lines connect
overall mean values (circles). c Mean activity-difference score (activity(Fam) –

activity(Nov)) of all GCs. dMean spatial information of active (>1 transient/min)
GCs. e Similar to (b) for spatial information. f Mean spatial information dif-
ference score (SI(Fam) – SI(Nov)) of active GCs. g Fraction of active cells (>1
transient/min) depending on the environment (familiar, novel or both).

h Fraction of place cells among the active cells depending on the environment.
a–f nleft = 18 datasets, nright = 18 datasets. a, d Three-way repeated measures
ANOVAs, Tukey’s post hoc test. Side, Context, and Days refer to the three main
effects. b, c, e, f Two-way repeated measures ANOVAs (per day for b and e),
Tukey’s post hoc test. Side and Days refer to the twomain effects. g nleft = 4224
cells, nright = 4224 cells; h nleft = 1009–1255 cells, nright = 904–1096 cells.
g,hTest for population overlap (χ2 test). ns, not significant; *P < 0.05; **P < 0.01;
***P < 0.001. In d, *P < 0.05 or **P < 0.01, different from the other group (left vs
right) for each individual day; #P < 0.05, different from the same group in the
other environment on day 1 (familiar vs novel); P value combined with a bar
shows comparisons between left and right for all days in the familiar and the
novel track. Circles with lines indicate mean ± SEM. For exact P values, see
Supplementary Table 1. Source data are provided as a Source Data file.
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GC place field stability3, activity map correlations between 2 con-
secutive days were significantly higher in the left compared to the
right DG for both tracks (familiar, left vs right, P < 0.001; Fig. 3f,
left; novel, left vs right, P < 0.001; Fig. 3g, left). Moreover, average
day-by-day spatial map correlations improved across prolonged
time in both hemispheres for both tracks (Fig. 3f, g, left). However,
the average place field maps for both familiar and novel contexts
remained more stable in the left than right DG throughout all days
(Fig. 3f, g, right). Thus, stability in GC place cell maps improves

during learning to reach more stable contextual representations in
the left than the right hemisphere.

Previous work led to controversial results on the amount of neu-
ronal discrimination between environments in the DG, ranging from
minimal overlap, i.e., pattern separation4,14 to marked instantaneous
overlap, i.e., generalization of spatial representations3,13. To address
this potential controversy, we quantified place field remapping
between familiar and novel contexts on consecutive days in the two
hemispheres (Fig. 3h). In the left DG, activitymapcorrelations between

Fig. 3 | Place granule cells of left and right DG show different levels of dis-
crimination between familiar and novel environments. a, b Activity maps of
place GCs imaged over 5 consecutive days in left (a) and right (b) DG in the
familiar environment. Sorting according to the cells activity on day 3 (21mice in
total; 11 left-implanted and 10 right-implanted mice). c Activity-rate difference
scores (|(activity(Fam) – activity(Nov))|/(activity(Fam) + activity(Nov)), see also
“Methods”) between familiar and novel environments of place GCs. d Mean
place field reliability (pairwise cross-correlations between all runs on the same
track) of place GCs. e Mean session consistency (activity correlation between
the first five and last five runs in a given environment) of place GCs. f Spatial
correlation from one day to the next, familiar environment. Left panel, mean
activity correlation between 2 consecutive days for place GCs, familiar envir-
onment. Right top panel, median activity map correlations (color-coded;
Pearson’s R) over 5 consecutive days on the familiar track (F1–F5). Each row

shows median correlation values for GCs having a place field on that day. Right
bottom panel, same as the top right panel but for right GCs. g Spatial correla-
tion from one day to the next, novel environment. Similar to (f) for the novel
environment (recording days, N1–N5). h Spatial correlation between environ-
ments (similar to f, but between familiar and novel environments for each day).
i–k Fraction of place cells (same cells as in f, g, and h, respectively) showing
high (r ≥ 0.6, orange), medium (0.1 < r < 0.6, green) or low (r ≤ 0.1, blue) field
correlations between two consecutive days in familiar (i) or novel (j) environ-
ments, andbetween familiar and novel environments for each day (k). c–hTwo-
way ANOVAs after alignment and ranking (see “Methods”), Tukey’s post hoc
test. i–k χ2 test for population overlap. Boxes, 25th to 75th percentiles; bars,
median; whiskers, 99% range. Values indicate the number of cells. ns not sig-
nificant; *P < 0.05; **P < 0.01; ***P < 0.001. For exact P values, see Supplemen-
tary Table 1. Source data are provided as a Source Data file.
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contexts were close to zero throughout all days, but they were sub-
stantially higher in the right DG, pointing to improved contextual
encoding in the left hemisphere (left vs right DG, two-way ANOVAs,
P <0.001; comparison across days, ns; Fig. 3h). This difference was
even more pronounced when we focused our attention on GCs
showing place fields in both contexts (Supplementary Fig. 5). Indeed,
high correlations between contexts could be observed in a substantial
fraction of place cells in both hemispheres, but many more place cells
in the left DG had place fields in different locations (global remapping)
compared to the right DG (Supplementary Fig. 5h, left; see also Sup-
plementary Fig. 5a, b for place maps on familiar and novel track). We
thus quantified the fraction of globally remapping and stable (i.e.,
generalizing) place cells on every recording day (Supplementary
Fig. 5k). The fraction of globally remapping place cells (mean place
field correlation between tracks r ≤0.1) was significantly higher in the
left DG, whereas the fraction of place cells with stable place fields
across contexts (mean place field correlation between tracks r ≥0.6)
was markedly higher in the right DG (Fig. 3i–k and Supplementary
Fig. 6). Finally, we verified that considering only the first dataset from
each animal (initial novelty exposure, novel 1) led to similar results
(Supplementary Fig. 7). Thus, consistent with the higher space and
context specificity of the left DG, a larger space-coding GC ensemble
appears to be specific to each context in the left hemisphere. In con-
trast, and in line with the observed lower space and context specificity
of the right DG, a larger GC population seems to generalize between
contexts in the right hemisphere.

Context representations are more reliable in the left than
right DG
To address whether the observed differences in activity rates and
spatial correlation-dependent parameters between left and right DG
may influence the accuracy of encoding of space and context, we
applied an inverse approach and used the recorded cell activity to
decode the animals’ concurrent location and context with a
population-vector-based method (refs. 42, 48; Fig. 4 and Supplemen-
tary Fig. 8; “Methods”). We used subsamples of randomly selected
active cells of varying size (range: 5–100 cells) recorded in a given
session, to first define decoding performance for both context and
space independent of the hemisphere (Fig. 4a). With increasing num-
ber of cells, the context and spatial error monotonically declined
(Fig. 4b–e). Consistent with our experimentally observed higher ability
to differentiate between contexts in the left DG, context and spatial
errors were higher for the right than the left hemisphere for all
recording days (Fig. 4b–e). Notably, average context and spatial errors
for a fixed number of cells (n = 50) declined across days and reached
the lowest values in the left DG (Fig. 4c, e). A similar trend could be
observed if we restricted our analyses to sessions in the familiar or
novel context (Supplementary Fig. 8d–k). Here, interestingly, the
average context (Supplementary Fig. 8j, k) and spatial (Supplementary
Fig. 8f, g) decoding errors predicting the novel environment were
similar between left and right DG on day 1, but differences emerged
over the course of subsequent days of novelty exposure, supporting
the hypothesis that learning improves spatial and contextual repre-
sentation, particularly in the left DG. Thus, the left hemisphere is car-
rying more information about space and context than the right one.

To systematically examine which of these activity-dependent
spatial and contextual coding parameters may account for the
observeddifferences in decodingquality between left and rightDG,we
sorted GCs in each dataset by their value of a given parameter and
separated half of the cells with the higher values (upper half) from the
remaining cells (lower half). We then divided the decoding error
obtained from the upper half by the one obtained from the lower half
for eachdataset (SupplementaryFig. 8l–o).A ratiomarkedly belowone
indicates that the examined parameter had an influence on decoding
performance. This approach revealed that the mean activity rate and

spatial information (SI) were strong determining factors of spatial and
contextual decoding performance (Supplementary Fig. 8l, n). Notably,
the predicting values for these spatial and contextual coding proper-
ties were always higher in the left than right DG, and while they
improved over days in both hemispheres, the highest improvement
was observed in the left DG (Supplementary Fig. 8m, o).

The hippocampus is required for rapid context recognition dur-
ing behavior49,50. The readout of this information depends, however,
on the duration of contextual exposure. We, therefore, investigated
how rapidly reliable contextual information can be read out from
hippocampal GC ensembles in the left and right DG of varying sizes
(Fig. 4f, g). We quantified the decision value for the identification of a
context for a given neuronal ensemble size over a continuously
increasing integration time (Fig. 4f). As expected, the decision accu-
racy improved with increasing population size and prolonged time of
observation. However, the time interval needed to reach 90% of per-
formance accuracy for a similarly sized GC population (50 cells) was
significantly higher in the right compared to the left DG (Fig. 4g).
Moreover, the integration timedeclined over days, indicating that day-
by-day exposure to the virtual environments improved contextual
representation. Indeed, the median time required to achieve 90%
contextual decoding accuracy was 30 s in the left and 65 s in the right
DG on day 1, and improved to 9 s in the left and 30 s in the right DG on
day 5 (Fig. 4g). Thus, a relatively small GC ensemble from the left DG
can provide a reliable representation of the currently explored envir-
onment much faster than a similar cell population from the right
hemisphere.

Discussion
Using 2-photon calcium imaging, we obtained GC population activity
in the left and right DG and found that activity patterns representing
the familiar and the novel environments differedmarkedlymore in the
left than in the right hemisphere, resulting in higher context specificity
in the left DG (Fig. 3c, h). Moreover, trial-to-trial reliability and session
consistency were higher in the left than right DG (Fig. 3d, e), thereby
permitting more stable spatial and contextual representations, which
support the formation and recall of episodicmemories2,51,52. Finally, cell
associations representing novel contexts increased across learning
and resulted in larger GC place cell ensembles in the left DG, sug-
gesting bilateral differences in the sparsity of representations (Fig. 2g,
h). Thus, we provide first evidence for hemisphere-specific spatial and
contextual representations in the DG ranging from stronger dis-
crimination (pattern separation) in the left, to weaker discrimination
between environments (generalization) in the right DG (Fig. 4h). These
data may help to reconcile current inconsistencies in the literature
reporting different degrees of spatial discrimination on the level of the
DG network3,4,6,13,14,42.

Functional lateralization is common in vertebrate brains and
proposed to provide benefits in sensory, cognitive, and motor cap-
abilities, presumably by allowing parallel and separate processing of
information by the two hemispheres31,53–55. For example, left-right
cortical asymmetry seems to improve the ability to search for food
while simultaneously being attentive to predators56–59. Hippocampal
functional lateralization is well-documented in humans19,20, but has
been less investigated in rodents. Previous work largely focused on the
lateralization of the CA1 and CA3 neuronal network and showed dif-
ferences in anatomical connectivity, spine size and the expression of
synaptic plasticity28,31,33,60. CA1 pyramidal cells receive extensive CA3
afferents from both the ipsi- and contralateral sides29,30. However,
inputs from the left CA3 form smaller synapses and show stronger
associative long-term plasticity than inputs from the right CA328,32–34,60.
Consistent with the finding that optogenetic silencing of the left but
not the right CA3 impaired the performance in a long-term spatial
memory task34, it appears that the two hippocampal hemispheres do
not provide the same information to CA1. Indeed, it has been
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suggested that the left CA3 is more responsible for the storage and
discrimination of discrete locations within the environment, whereas
the right CA3 seems to be more involved in integrating contextual
information, presumably to guide navigation during spatial working
memory tasks31,34,61,62. This information is transmitted to CA1, where
bilateral data are merged17 before being relayed to the cortex to

support behavioral execution63–65. Our work fits to the proposed
functional lateralization of CA3 by demonstrating that interhemi-
spheric differences in the formation and retrieval of spatial and con-
textual memory exist already upstream of CA3, in the DG. As direct
bilateral connections from GCs to CA3 pyramidal neurons are
lacking66, strict unilateral mossy fiber projections may support
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functional CA3 lateralization. However, future work will be required to
shed light on potential differences inmorphological and physiological
characteristics of mossy fiber synapses originating from the left and
right DG, including bouton size, extent of synaptic plasticity, receptor
subunit composition, and connectivity between GCs and CA3
pyramidal cells.

What are the potential mechanisms that could account for the
observed differences in spatial and contextual representation across
hemispheres in the DG? The entorhinal cortex (EC) provides both self-
motion- and global-feature-based environmental information to the
hippocampus67–70. Optogenetic modulation of excitatory projections
from the EC to the hippocampus influence the encoding of spatial and
environmental features within CA1 and CA3 pyramidal cells71–73. Thus,
interhemispheric differences in the projections from the EC to the
hippocampus may underlie the observed lateralization of spatial
representation and context discrimination of the left and right DGs.
Moreover, differences in the divergence and the strength of lateral
inhibition provided by local GABAergic interneurons to the DG
circuitry74–76 may contribute to hemisphere-specific shaping of GC
place field characteristics. Finally, considering the marked anatomical
and functional lateralization of CA3 principal cells (see above), it
appears likely that back-projecting CA3 principal cells77,78 transmit
different information to the left and right DGs. Thus, future work will
have to address the contribution of excitatory and inhibitory inputs to
the DG on the functional lateralization observed at the level of the
granule cells.

What might be the functional relevance of stronger decorrelation
in the left andweaker discrimination of environmental representations
in the right DG for downstream hippocampal areas? During environ-
mental exploration, a spatial map progressively emerges within the
DG79, which pushes downstream CA regions either to recall a familiar
or to form a novel representation4. Whether a familiar (already stored)
representation is updated or a novel one is formedmaydepend on the
influence of both DG inputs on the attractor dynamics of downstream
hippocampal areas. Additional inputs, such as the modulatory signals
originating from parahippocampal structures providing information
about the saliency of novel environments80 and the ones from the EC
may further contribute to the determination whether CA1 networks
will lean towards the refinement of an already stored memory or the
creation of a new representation. Modeling studies propose that
nonlinear interactions between inputs from the DG, neuromodulators
and the EC are required for memory recall81. Thus, we propose that
inputs of the twoDGsmay influence the switchbetween the recall of an
existing memory and the formation of a novel representation. Evi-
dently, environmental parameters such as different settings of virtual
realities and different degree of their alterations may also be deter-
mining factors in this process.

Ourwork reconciles the prevailing debate on the different roles of
the DG in orthogonalizing cortical inputs to support cognitive dis-
crimination of distinct representations, and in generalizing shared
properties of distinct memories4,14,15,82,83. We show that a substantial
fraction of GCs represents context-specific representations,

particularly in the left DG, which in turn will support contextual dis-
crimination processes in the hippocampus6. Our work also confirms
earlier evidence that a substantial fraction of GCs might encode
common features of different spatial contexts and thereby corrobo-
rates context generalization3. We show that this fraction of cells is
particularly located in the right DG (Fig. 3 and Supplementary Fig. 5).
Moreover, transient increase in excitability of GCs ensembles expres-
sing the immediate early gene cfos during initial learning improves
context discrimination84,85, presumably by increasing cfos-driven
functional and structural plasticity. Consistent with this finding, cfos-
positive GC populations are larger in the left compared to the right
DG39. Thus, we propose that a subpopulation of GCs particularly
numerous in the left DG may be crucial for context discrimination,
whereas a separate ensemble of context-invariant GCs predominantly
located in the right DG may be involved in context generalization3,12,13.
Taken together, our results suggest an intriguing connection between
DGs’ functional lateralization and the published inconsistencies in the
degreeof contextual discrimination in theDGof behavingmice3,4,13,14,42.
More work is needed to rigorously test how the observed interhemi-
spheric DGdifferencesmay be influenced by the richness of the virtual
realities as well as the behavioral relevance of the task14, and to bridge
the gap between functional DG lateralization and the physiological
properties of the involved GCs.

Methods
Subjects
All experiments involving animals were carried out according to
national and institutional guidelines and approved by the “Tierver-
suchskommission” of the Regierungspräsidium Freiburg (license
#G20/137) in accordancewith national legislation.Weused a total of 21
C57BL/6J wild-typemale mice aged 9–12 weeks at the beginning of the
experiments. 11 mice were implanted in the left hemisphere, 10 in the
right one.Most animals were recorded twice, using twodifferent novel
environments to obtain two independent datasets per animal (for a
total of 36 datasets, 18 left, 18 right), allowing us to reduce the number
of animals used.Micewere housed on a 12-h light–dark cycle in groups
of 2–3mice in a roommaintained at a temperature of 21 °C (±1 °C) and
relative humidity of 55% (±10%). No statistical methods were used to
predetermine the sample size. The experiments were not randomized
and the investigators were not blind to allocation during experiments
and outcome assessment.

Surgery: virus injections and head plate implantation
All surgical procedures were performed in a stereotactic apparatus
(Kopf instruments) under anesthesia with 1.5–2% isoflurane and
analgesia using 0.1mg kg−1 buprenorphine. An eye lubricant ointment
(Bepanthen, Bayer) was applied to protect corneal membranes during
surgeries. The skinwasfirst disinfected twicewith alternating solutions
of 70% ethanol and Povidone-iodine (Betadine, Avrio Health L.P.)
before the surgical incision. A small craniotomy (diameter 0.5–1mm)
was made over the hippocampus (A/P −2.0mm, M/L ± 1.4mm from
Bregma). Dura was carefully pierced with a needle in the center of the

Fig. 4 | Decoding of space and context from neuronal activity confirms inter-
hemispheric differences in the encoding of familiar and novel environments.
aDecoding example. Left panel, activity over time of an ensemble of GCs recorded
in the left hemisphere. Right panel, decoder output. White line denotes true posi-
tion of the mouse and the green dots the most likely decoded position.
b Contextual decoding error as a function of the number of cells used simulta-
neously for decoding. c Average contextual decoding errors for ensembles of 50
cells. d Same as (b) for spatial decoding error. eAverage spatial decoding errors for
ensembles of 50 cells. f Cumulative probability for decoding the correct environ-
ment as a function of time and ensemble size for GCs recorded in the left (top) and
right (bottom) hemispheres. Bright colors indicate high predictive value. Note, that
high predictive values can be obtained with smaller ensembles in less time in the

left than right DG. g Average time to 90% context-decoding accuracy for a fixed
ensemble size of 50 cells. h Schematic: left GCs show low generalization and high
discrimination between contexts, while right GCs offer less context selectivity.
b–g nleft = 18 datasets, nright = 18 datasets. b, d Three-way repeated measures
ANOVAs, Tukey’s post hoc test. c, e, g Two-way repeated measures ANOVAs (for
eachparameter independently in c and e), Tukey’s post hoc test. Boxes, 25th to 75th
percentiles; bars, median; whiskers, 99% range. ns, not significant; *P <0.05;
**P <0.01; ***P <0.001. Stars above individual circles refer to comparisons between
cells in the left and right DG (b, d). # cell *** refers to a three-way ANOVA (influence
of cell number, side, and day). Circles with lines indicate mean ± SEM. For exact P
values, see Supplementary Table 1. Source data are provided as a Source Data file.
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craniotomy and a glass micropipette was lowered at D/V − 1.75mm
below the brain surface, where 400nL of AAV1.Syn.GCaMP6s.W-
PRE.SV40 (titer 1 × 1012 vg (viral genomes) per ml; Addgene plasmid
#10084386) were slowly injected in the dentate gyrus. The target
volumewas slowly injected over ~2min and the glassmicropipette was
further left in situ for 7min to ensure complete diffusion of the viral
vector in the parenchyma. During the same surgical procedure, mice
were implanted with a stainless-steel headplate (25 × 10 ×0.8mmwith
8mm-wide central aperture) installed horizontally over the hippo-
campus, centered on A/P = −2.0mm and M/L = ± 1.8mm from Bregma
and secured with dental cement (Super-Bond Universal Polymer
Radiopaque, Catalyst V and Quick Monomer, Sun Medical). Post-
operative analgesic treatment consisted of Carprofen administration
(5mg kg−1 of body weight) provided during 3 days after surgery. Mice
were allowed to recover from surgery for at least 5 days before any
further experiment.

Surgery: imaging window implantation
During a second surgery taking place at least 7 days after the first one
(described in the previous section), an imagingwindowwas implanted.
Using the same anesthesia/analgesia protocol as described above, a
craniotomy (diameter 3mm) was drilled at A/P − 1.9mm, M/
L ± 1.8mm. Under continuous irrigation with chilled saline, part of the
somatosensory cortex and posterior parietal association cortex loca-
ted above the hippocampus were progressively aspirated until the
external capsule was exposed. The outer part of the external capsule
was then gently peeled away using fine forceps, leaving the inner
capsule and the hippocampus optically accessible, yet undamaged.
The imaging window implant consisted of a 3-mm-wide coverslip (CS-
3R, Warner Instruments) glued to the bottom of a stainless-steel can-
nula (3-mmdiameter, 1.3-mmheight). This windowwas gently lowered
into the craniotomy using forceps until the coverslip was sitting on the
external capsule. The implant was then fixed to the surrounding skull
using cyanoacrylate. Mice were allowed to recover from window
implantation for at least 4 days before any further experiment.

Virtual environment setup
As previously described3,42,87,88, our custom virtual environment setup
consisted of an air-supported polystyrene ball (20-cm diameter)
attached on one side with a small metal axle (restraining the ball
motion to the forward–backward direction). Ball movement was
monitored using an optical sensor (G-500, Logitech) and translated
into forward motion inside the virtual environment. The forward gain
was set such that 4m of distance traveled along the circumference of
the ball equaled one full traversal of the linear track. When the mouse
reached the end of the track, screens were blanked for 4–10 s before
the mouse was “teleported” back to the start of the linear track. The
virtual environment was displayed on four TFT monitors (19″ screen
diagonal, Dell) arranged in a hexagonal arc around the mouse and
placed ~25 cm away from the head of the animal, thereby covering
~260° of the horizontal and ~60° of the vertical visual field of the
mouse. The virtual environmentswerecreated and simulatedusing the
open-source 3D rendering software Blender 2.79b (available at www.
blender.org). The three different environments used in the present
work consisted of distinct arrangements of textured walls, floors and
3D-rendered objects placed along the tracks sides. When the mouse
reached any of the rewarded sites (of which the positions were dif-
ferent for each environment; see Fig. 1e and Supplementary Fig. 1), 2 µl
of soymilk were dispensed through a spout in front of the mouse.

Behavioral training
Five to seven days after head plate implantation, mice were allowed to
explore a first (hereafter-called “familiar”) virtual environment for
10–30min daily, with gradually increasing timespans over days. Once
the mice showed evidence of habituation to this behavioral task (i.e.,

appropriate position on the ball and consistent voluntary running,
usually after 5–10 days of training), food scheduling was initiated with
a goal of ~85% of the ad libitum body weight. Training in the familiar
environment was maintained for 30–60min daily until consistent
reward licking and voluntary running were observed (i.e., at least
10–12 days of exposure to the familiar environment before any ima-
ging session). For half of the mice, this familiar environment was the
one indicated as ‘familiar’ in Fig. 1e. For the other half of the animals,
the actual familiar environment was the one presented as “novel” in
Fig. 1e (and thus, for these animals, one of the two novel environments
was the one presented as “familiar” in Fig. 1e). In both configurations,
and therefore for all mice, the familiar environment was always offer-
ing four reward sites, while the two novel environments contained two
reward sites each (in distinct locations, see Fig. 1e and Supplemen-
tary Fig. 1).

Behavioral paradigm for imaging sessions
From the first day of imaging, mice were introduced to a novel envir-
onment, which had different visual cues and floor and wall textures,
but had the same dimensions as the familiar environment. For each
imaging session, mice alternatingly ran on the familiar and one of the
two novel tracks for a total of 30 runs per day. Runs were grouped by
blocks of 5x each track (starting with the familiar one) for a total of 3
blocks and 15 recordings for each track. This recording procedure was
repeated over 5 consecutive days during which the same exact field of
view (and therefore the same population of cells) were imaged. In
many of the mice, the visible area under the imaging window was
sufficiently large to allow for the selection of several imaging fields of
view that contained different populations of granule cells. We, there-
fore, replicated this procedure a second time for most of the animals
using a second novel environment. The familiar environment always
remained the same for a given animal. In thismanner, weperformed, in
total, 36 experiments of 5 days each (18 experiments in animals
implanted on the left hemisphere and 18 in animals implanted in the
right hemisphere). Among the 18 datasets obtained from left-
implanted animals, 11 datasets were acquired using the first novel
environment, and 7 using the second novel environment. Similarly,
among the 18 datasets obtained in animals implanted on the right
hemisphere, 10 were acquired using the first novel environment, and 8
using the second one. Grand totals of granule cells imaged were of
4224 granule cells in left-implanted animals and 4475 granule cells in
right-implanted animals (Mean number of cells imaged per session ±
SEM: left, 234.6 ± 25.5; right, 248.6 ± 28.5).

Reward-related licking behavior
Licking by the mice was monitored using an infrared optical lick
detector placed in front of the metal lick spout dispensing the reward.
For someof the recording sessions, no lickdatawere acquired. In total,
lick data from 11 out of 18 sessions in the left-implanted animals and 14
out of 18 sessions in the right-implanted animals were recorded. The
reward zones were defined as the 5 bins (i.e., 25 cm) around the center
of the reward sites. The remaining of the track was considered as
outside of the reward zones. Thus, the ratio of licking between the
inside and outside of the reward zones was computed as themean lick
rate in the reward zones divided by the mean lick rate on the
remaining track.

In vivo two-photon calcium imaging
In vivo calcium imaging was performed using a resonant/galvo high-
speed laser scanning two-photonmicroscope (Neurolabware) through
a ×16 objective (Nikon, 0.8 N.A., 3mmWD) with a frame rate of 15.5 Hz
and using a single plane for imaging. GCaMP6s was excited at 930 nm
with a femtosecond-pulsed two-photon laser (Mai Tai DeepSee,
Spectra-Physics). To block ambient light from reaching the photo-
detectors, the animal’s head plate was attached to the bottom of an
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opaque imaging chamber before each experiment, and the mouse
was then affixed to the virtual environment setup using this head
chamber. A ring of black foam rubber was placed between the ima-
ging chamber and the microscope objective, and a metallic collar
surrounding the objective was sitting on the imaging chamber,
blocking any remaining stray light. Granule cells were imaged at a
depth ~650 µm in the DG (Supplementary Fig. 9). Laser power and
photomultiplier (PMT) detectors (Hamamatsu H11706-40 GaAsP)
were compensated appropriately for each imaging session, ensuring
consistent recording conditions. Data were acquired using the
Scanbox software (Neurolabware).

Histology
At the end of the experiments,mice were deeply anaesthetized using a
mixture of ketamine/xylazine (Sigma Aldrich), then intracardially
perfused with 0.1M phosphate-buffered saline (PBS) for 5min fol-
lowed by 4% paraformaldehyde (PFA) in PBS for 10min. Brains were
further immersed in 4%PFA for 3 h, then kept in PBSuntil theywerecut
into 80-µm-tick coronal sections containing the hippocampus (usually
the day after). Slices were counterstained with DAPI and mounted in
Mowiol. Image stacks of GCaMP6s and DAPI fluorescence were
acquired with a confocal microscope (LSM 710, Zeiss). In all animals,
the locations of the in vivo-imaged hippocampal regions were con-
firmed by comparing averaged two-photon calcium images with con-
focal images.

Calcium imaging data processing and ROI extraction
The processing of all raw calcium data was done using the Python-
based toolbox Suite2p, a free automated pipeline for processing two-
photon calcium imaging recordings (available at www.github.com/
Mouseland/suite2p). Briefly, Suite2p first aligns all frames of a calcium
movie using two-dimensional rigid registration based on regularized
phase correlation, subpixel interpolation, and kriging89,90. This toolbox
then allows visual inspection of the registered movie. Only datasets in
which consistent alignment over the entire course of the experiment
(i.e., 5 days of recording) was achieved were kept for further proces-
sing. Suite2p then performs automated cells detection and neuropil
correction by computing a low-dimensional decomposition of the
data, which is used to run a clustering algorithm that finds regions of
interest (ROIs) based on the correlation of the pixels inside them. All
ROIs were manually curated to ensure the most accurate selection of
granule cells and care was taken to verify that segmented entities were
clearly visible throughout the entire experiment. Granule cell somata
were mainly identified based on size and location: granule cells can be
disambiguated from other cell types by their small soma size and their
location in the granule cell layer. Neurons with unusually large somata
or locations within the hilus were discarded, and the frequency and
shape of the calcium transients were also used to discard any putative
interneuron.

Significant calcium transients were identified as previously
described87,91. This approach has been used in numerous hippocampal
in vivo calcium imaging studies in other88,92,93 and our lab3,42. Imaging
was performed in the upper blade of the granule cell layer (corre-
sponding to coordinates AP = 2.0mm,ML = 1.2mm, DV = 1.8mm from
brain surface and 600–700 µm under the window) in both left- and
right-implanted animals, thereby ensuring equivalent imaging loca-
tions along the lateral and septo-temporal axes of the DG. Moreover,
the imaging plane of the field of view always comprised GCs situated
superficially, in the middle and in the deep granule cell layer, thus our
data included cells imaged along the entire radial axis of the granule
cell layer.We restrictedour analyses toperiodswith a running speedof
at least 5 cm s−1. In brief, calcium traces were corrected for slow
changes in fluorescence by subtracting the 8th percentile value of the
fluorescence-value distribution in a window of 20 s around each time
point from the raw fluorescence trace. We obtained an initial estimate

on baseline fluorescence by calculating the mean and standard
deviation (s.d.) of all points of the fluorescence signal that did not
exceed 2.3 s.d. of the total signal.We thendivided the rawfluorescence
trace by this value to obtain the ΔF/F trace. This trace was used to
determine the parameters for transient detection that yielded a false
positive rate (defined as the ratio of negative to positive oriented
transients) <5%and extracted all significant transients fromthe rawΔF/
F trace87. Definitive values for baseline fluorescence and baseline s.d.
were calculated from all points of the trace that did not contain sig-
nificant transients. A transient mask was created, and for further ana-
lysis, all values of this ΔF/F trace that did not contain significant
calcium transients were set to zero87 in order to improve the signal-to-
noise ratio. Using this method, ΔF/F is expressed in units of s.d. (the
standard deviation of the baseline fluorescence).

Activity differences and spatial information
Activity-rate difference scores were calculated either for each dataset
(and all cells) as the difference between the activity in the familiar and
the novel environment (activity(Fam) – activity(Nov); Fig. 2c, f), or for
each place cell using the following formula: |(activity(Fam) –

activity(Nov))|/(activity(Fam) + activity(Nov)), in Fig. 3c and Supplementary
Fig. 5c. To measure the spatial information (SI) content, we adapted a
common method of SI assessment94 for calcium imaging data. The
average calcium activity (mean ΔF/F) was computed for each 5-cm-
wide bin along the linear track and used as an approximation for the
neurons’ average firing rate in that location. As previously
described3,42, spatial information was calculated as SI =

PN
i= 1λilog2

λi
λ pi

in which λi and pi are the average calcium activity and fraction of time
spent in the ith bin, respectively, λ is the overall calcium activity aver-
aged over the entire track, andN is the number of bins on the track (80
bins in total). Therefore, SI content is inferred from differences in the
calcium activity and expressed as bits * s−1. For each cell, significant SI
was assessed by shuffling y traces (position of the animal along the
track) of the original dataset and computing the SI score of the
resulting shuffled dataset. This procedure was repeated 1000 times,
and the P value was determined as the fraction of shuffled datasets in
which the SI score was higher than the SI score of the original dataset.
Spatial information was considered significant if P <0.05.

Place-field identification
Place fields were identified according to publishedmethods3,42,87,88. In
brief, the mean ΔF/F was computed from significant calcium tran-
sients for each 5-cm-wide bin along the linear track (80 bins) and this
mean fluorescence over distance was then smoothed by averaging
over the three adjacent points for each bin. Potential place fields
were initially identified as contiguous regions of this ΔF/F over dis-
tance plot in which all of the points were greater than 25% of the
difference between the bin with the highest ΔF/F value and the
baseline value (mean of the lowest 20 out of 80 bins’ ΔF/F values). In
addition, the candidate place fields had to fulfill the following cri-
teria: (1) the width of the potential field had to be of at least 3 bins
(corresponding to 15 cm running distance); (2) the mean ΔF/F value
inside the field had to be at least seven times the mean of the ΔF/F
value outside the field; and (3) significant calcium transients had to
be present at least 20% of the time in which the mouse was moving in
the field. Potential place fields that fulfilled these criteria were
accepted if their P value from bootstrapping exceeded 0.05. For
bootstrapping, the ΔF/F trace for each experiment was broken into
segments of 50 consecutive imaging frames and randomly shuffled,
and this was performed 1000 times. Then the place field detection
procedure described above was performed on each of the shuffled
ΔF/F traces, and the P value of the place field was defined as the
number of these randomly shuffled traces on which a place field was
detected according to the outlined criteria divided by the number of
shuffles (i.e., 1000).
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Place field consistency, the similarity between contexts and
trial-to-trial reliability
Toassess the similarity of a placecell spatial representation indifferent
environments, we calculated the mean ΔF/F value for each of the 80
bins on the track, based on all significant calcium transients (activity
map) for each cell and environment. As previously described42, each
recording session consisted of three blocks of five runs in each
environment (for a total of 6 blocks and 30 runs). Therefore, the sta-
bility of place fields wasmeasured as the cross-correlation of themean
activity maps between the average activity of the first and the second
(Fig. 4f, h) or third (Fig. 3e and Supplementary Fig. 5e) blocks of five
consecutive runs on the same track and session. The similarity of place
fields between contexts (remapping) was quantified as the correlation
of mean activity maps for all runs in familiar and novel environments
(Figs. 3h and 4f, h and Supplementary Fig. 5h). Finally, the trial-to-trial
reliability was computed by calculating the pairwise cross-correlations
between the calcium signals of all individual runs in one session on the
same track and then averaging theobtained values for eachcell (Fig. 3d
and Supplementary Fig. 5d).

Population-vector-based decoding
As described previously42, to decode position and context from neu-
ronal activity data, we first split every dataset in two interleaved halves
of template- and testing runs, respectively. Templates for population-
vector-based decoding were then generated using the template runs
by calculating themean activity for each 5 cmbin on familiar and novel
linear tracks. Neuronal activity from the testing data was used to cal-
culate population activity vectors for each 100-ms bin, and we com-
puted the Pearson correlation value for each of those population
vectors with the template population vectors for each position. The
most likely decoded location was then determined as the spatial bin
that had the highest correlation with the population activity at a given
time48. Context error for each time bin was either 0 if the decoded
location was in the correct environment, or 1 otherwise (Fig. 4a, right).
The mean context error was then obtained by averaging over all time
bins (Fig. 4b, c). To obtain the mean spatial error, we calculated the
absolute distance between the most likely decoded spatial location
(irrespective of the decoded context) and the true location at each
timepoint and averaged this distance across all timepoints (Fig. 4d, e).
The same approach was used to determine context and spatial errors
in each environment (familiar or novel, Supplementary Fig. 8d–k).

Cumulative context-decoding performance
Contextual decoding was often incorrect in individual 100-ms time
bins, although on average it correctly predicted in which environment
the animal actuallywas in all recordings (Fig. 4b, c).Wehence reasoned
that averaging over an increasingly larger number of 100ms bins
should increase the likelihood of decoding the correct context. To get
a robust estimate for the time course over which such improvement
might happen, we randomly drew 50 cells from each recording to
perform context decoding as outlined above. We then calculated a
decision value for the current context for increasingly longer time
intervals (Δt). For each Δt, we divided the test data into non-
overlapping segments of length Δt and calculated the average deci-
sion value for the current context across all 100-ms bins within this
segment. If the mean context decision fell closer to the correct con-
text, that value for that individual segment was 0, otherwise it was 1.
We then averaged over all segments of length Δt to obtain the mean
accuracyof context decoding for segments of this size. This procedure
was repeated for 25 different random ensembles in each individual
recording, leading to an average accuracy curve (Fig. 4f). The time to
90% decoding accuracy (using a fixed sample size of 50 randomly
drawn cells) was then determined as the first Δt for which the mean
context-decoding accuracy exceeded 90% (Fig. 4g).

Decoding using spatial versus mean-rate templates
Todeterminewhether context-specific spatialmaps carried contextual
information, we either constructed location- and context-stratified
decoding templates (Supplementary Fig. 8b, left) or a simplified
context-only template where solely the mean activity rates across the
entire linear track (familiar or novel, respectively) were used to con-
struct population vectors for the decoding template (Supplementary
Fig. 8b, right). We then compared decoding performance on the test
runs for each of these templates per dataset by building a ratio
between the two obtained error values. A ratio below 1 would indicate
that the decoding performance of the template using spatial and
contextual information was superior to one that used context-
dependent firing rate differences only (Supplementary Fig. 8c).

Statistics
The reported n indicate numbers of cells and exclude missing
(“NaN”) values. Unless otherwise stated, error bars are showing
standard errors of the mean. On whisker plots, boxes are showing
25th to 75th percentiles, while whiskers indicate the 99% range. All
statistical tests are described in the corresponding figure legends.
Unless otherwise stated, statistical comparisons were made between
cells fulfilling the specific criteria as indicated in the figure legends.
To allow the use of ANOVAs on data that initially do not fulfill all the
required assumptions (e.g., normally distributed population and/or
common variance), we used a recently-developed tool named
ARTool (available at https://depts.washington.edu/acelab/proj/art/)
created by Wobbrock et al.95,96. In brief, this approach offers to apply
an additional align-and-rank procedure to the raw data before pro-
ceeding with regular ANOVA. This preliminary step ensures that the
resulting ANOVA will have main effects and interactions with
appropriate Type I error rates and suitable power. Furthermore, in
their most recent work, the authors extended the ART approach with
an additional procedure referred to as ART-C95 developed to facil-
itate post hoc pairwise comparisons. In the present paper, we used
this tool to analyze data such as correlation values (e.g., Fig. 3c–h and
Supplementary Fig. 5c–h).When this approach was not necessary, we
used two- or three-way repeatedmeasures ANOVAs (e.g., Fig. 4). In all
cases, post hoc pairwise comparisons were performed using Tukey’s
test. All comparisons were two-sided, and the null hypothesis was
rejected at the P < 0.05 level.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Original/raw data reported in this study are available from the lead
corresponding authors upon reasonable request. Any additional
information required to reanalyze the data reported in this paper is
available from the lead contact upon reasonable request. Source data
are provided with this paper.

Code availability
The original code of our Two-photon calcium imaging pipeline
(MATLAB code) has been deposited at Zenodo.org (https://doi.org/10.
5281/zenodo.5410473) and is publicly available as of the date of
publication.
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