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Combining mass spectrometry and machine
learning to discover bioactive peptides
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Sonny K. Kjærulff1,2, Zhe Wang3, Guangjun Meng3,4, Carsten Jessen 1,
Petteri Heljo1, Qunfeng Jiang3,5, Xin Zhao3, Bo Wu3,6, Xueping Zhou 3,7,
Yang Tang3,8, Jacob F. Jeppesen1, Christian D. Kelstrup1, Stephen T. Buckley1,
Søren Tullin1,9, Jan Nygaard-Jensen1,9, Xiaoli Chen3, Fang Zhang3,10,
Jesper V. Olsen 11, Dan Han3, Mads Grønborg1,13 & Ulrik de Lichtenberg 1,12,13

Peptides play important roles in regulating biological processes and form the
basis of amultiplicity of therapeutic drugs. Todate, only about 300peptides in
human have confirmed bioactivity, although tens of thousands have been
reported in the literature. The majority of these are inactive degradation
products of endogenous proteins and peptides, presenting a needle-in-a-
haystack problem of identifying the most promising candidate peptides from
large-scale peptidomics experiments to test for bioactivity. To address this
challenge, we conducted a comprehensive analysis of the mammalian pepti-
dome across seven tissues in four different mouse strains and used the data to
train a machine learning model that predicts hundreds of peptide candidates
based on patterns in the mass spectrometry data. We provide in silico vali-
dation examples and experimental confirmation of bioactivity for two pep-
tides, demonstrating the utility of this resource for discovering lead peptides
for further characterization and therapeutic development.

Peptides are known to be potent regulators of a diverse set of biolo-
gical functions and form the basis of around 80 marketed drugs, with
an additional 150 peptide-based candidates in clinical development1.
Examples of well characterized bioactive peptides include GLP-1, Islet
amyloid polypeptide (amylin) and Peptide YY (PYY) which regulate
glucose stimulated insulin secretion, glycogen deposition in muscle,
and colonic mobility, respectively2–4.

Most bioactive peptides are formed by specific enzymatic clea-
vages of protein precursors, exemplified by pro-glucagon which is
processed, in a tissue-specific manner, into at least nine different

peptides with divergent functionalities5. Peptide activity may further-
more be modulated by post-translational modifications or extra-
cellular peptidases6–8. For most of the well described peptide
hormones, the precursor travels via the canonical secretory pathway
where it is cleaved by prohormone convertases, trimmed by carbox-
ypeptidase E9,10 and in some cases amidated by the PAM enzyme
(requiring a Glycine in the +1 position). However, not all bioactive
peptides follow this path11–14 (Supplementary Fig. 1). For instance, the
antimicrobial peptide Buforin is proteolytically generated from his-
tone H2A15, illustrating that peptides can be formed even from
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intracellular proteins with a function far removed from that of the
peptide. Other peptides originate from cleavage of longer peptides, as
illustrated by the vasoconstrictive peptide Angiotensin-II which is
formed in the blood from the inactive Angiotensin-I peptide by the
Angiotensin-converting enzyme (ACE)16. ACE also cleaves the vasodi-
lator peptide Bradykinin into an inactive form17 and is the target of
hypertension drugs due to its role in regulating these potent bioactive
peptides. When studying biological samples and whole tissues, one
should thus expect to observe multiple variants of the same peptides,
only some of which are bioactive, as well as differences in abundance,
processing, secretion, and degradation across tissues.

Advances in high-throughput omics technologies have over the
past decades shed light on the many layers of cellular regulation, and
led to the systematic mapping of the human genome, transcriptome,
and proteome, as well as the regulatory roles of RNA, epigenetic
modifications, and post-translational modifications. In comparison,
discovering bioactive peptides and uncovering their mode of action
remains a major challenge and to date only about 300 peptides have
been characterized in human. The majority of these functionally vali-
dated peptides, which include neuropeptides, endocrine peptides, or
antimicrobial peptides, have been discovered via years of focused
experimentation, rather than by large-scale comprehensive mapping.
The fact that peptides are only formed and released in certain tissues
and cell types under certain conditions—which may be unknown or
difficult to reproduce experimentally—adds to the complexity of
identifying bioactive peptides.

In recent years, mass spectrometry (MS) based peptidomics ana-
lysis has emerged as a powerful and sensitive tool for systematically
mapping the peptide space (the peptidome) present in tissues or
biofluids18–23, including known bioactive peptides, longer inactive
precursor peptides, shorter inactive forms, as well as the thousands of
inactive degradation products formed as a consequence of natural
protein and peptide turnover. MS-based peptidomics analysis is thus
well-suited for monitoring the abundances of already known peptides
in tissues and cellular extracts but using it as a tool for discovering
novel bioactive peptides presents a major needle-in-a-haystack chal-
lenge of separating the small set of real bioactive peptides from the
vast background of observed degradation products and inactive pre-
cursors. The sum of unique peptide sequences reported from small-
and large-scale peptidomics experiments during the past decade far
exceeds the capacity for functional testing. Methods for identifying
and prioritizing the most promising candidates peptides for experi-
mental validation are therefore needed to advance the field of peptide
discovery24,25.

In this study, we conducted a large-scale peptidomics analysis of
seven different organs in four different mouse strains. Realizing that
the majority of the observed peptide sequences are likely inactive
degradationproducts,wedeveloped a computational algorithmbased
on machine learning that uses the structure of the peptide clusters
observed for each protein to predict the most likely endogenously
functional peptides. We show that the algorithm can indeed identify
many of the known annotated bioactive peptides directly from ourMS
data and that the other high-scoring candidate peptides suggested by
the algorithm display characteristics similar to those of the known
peptides, such as originating from secreted protein precursors and
having known cleavage motifs in their flanking regions, even though
the algorithm does not use these features as input for its predictions.
To further enhance our ability to identify potential bioactive peptides,
we combine the output of our prediction framework with in-silico
bioactivity prediction based on amino acid composition to identify a
number of interesting new candidate peptides. Using in-vitro and in-
vivo screening models of diabetes, we confirm potential bioactivity of
several of these predicted peptides. For each tissue investigated, we
provide a list of the highest scoring peptides that collectively repre-
sents a resource ripe for further exploration and functional

characterization. We lastly demonstrate that additional known pep-
tides can be identified by combining our prediction frameworkwith an
algorithm that assembles observed degradation fragments into full
length peptides.

Results
Experimental setup
Our experimental and computational workflow is illustrated in Fig. 1a.
We investigated seven metabolically active tissues consisting of liver,
muscle, intestine (ileum), brain, pancreas, epididymal fat, and sub-
cutaneous fat from four different mouse strains commonly used in
diabetes research; leptin receptor-deficient mice C57bl/KS-Leprdb/
Leprdb (DB) versus C57bl/KS-Leprdb/+ (WT), andC57bl/6Jmice fed a low-
fat diet (LF) or high-fat diet (HF)26. To ensure statistical robustness of
peptide abundance estimation, we used 12 animal replicates in each
group, leading to a total of 336 samples. All tissue samples were heat-
stabilized27,28 before homogenization to minimize post-mortem
degradation of the in-vivo peptidome. We elected not to reduce/
alkylate the samples as our downstream automated peptide synthesis
platform did not cope well with the complexity of intra- or inter-
molecular sulfide bridges (Supplementary Fig. 2a). Peptides were
subsequently separated from co-purified proteins using a molecular
weight cut-off spin-filter20 which offered scalable and consistent pep-
tide enrichment over proteins without any significant size bias below
the cutoff29,30 (Supplementary Fig. 2b,c). Peptide mixtures were ana-
lyzed by online nanoflow liquid chromatography tandem mass spec-
trometry using high-resolution higher-energy collisional dissociation
fragmentation31. Rawfiles were searched with a selected number of
post-translational modifications using two different search engines
which resulted in the high-confidence identification of 157,857 unique
peptide sequences across all tissues, conditions, and replicates
(Fig. 1b). The output was filtered and combined32 (Supplementary
Data 1), and accuracy, score distribution and sequence coverage were
comparable to other peptidomics dataset20,22 (Supplementary
Fig. 3a–j). The data set provide comprehensive coverage of different
tissues and conditions under which peptides may be produced and
secreted. It is, to our knowledge, the largest single peptidomics study
to date in terms of tissue coverage and number of samples/repli-
cates (Fig. 1c).

Tissue, diet and genetic background manifests at the pep-
tide level
Althoughmany of the observed peptides are found inmultiple tissues,
each tissue contributes with a unique set of peptides, with ileum being
the largest contributor of unique sequences (Fig. 1b). Non-linear
dimensionality reduction with UMAP reproduced the tissue and
experimental groups (Fig. 2a,b) and clustering showed that tissue type
wasmore stronglymanifested in the data than strain background, with
the two fat tissues being most closely related (Fig. 2c). Interestingly,
different sequencemotifs were observed in the flanking regions of the
detected peptides from different tissues, in line with the expectation
that enzymatic processing varies by tissue (Supplementary Fig. 4). An
additional test experiment verified that the tissue-specific peptide
signatures do not simply reflect degradation of highly abundant pro-
teins (Supplementary Fig. 5a,b and Supplementary Data 2).

Sensitivity and degradation in peptidomics data
To assess the sensitivity and coverage of our data, we compared it to a
curated list of 294 known and annotated peptides extracted from
different peptide databases33,34 (Supplementary Data 3), and found
that 89 (30%) of these appear in our MS data, including their known
post-translational modification pattern, with an additional 76 known
peptides covered partially by shorter fragments. Our mammalian
peptidomeanalysis of 7 tissues thus coversnearly half of the annotated
mouse peptides, as full or partial matches, demonstrating the
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sensitivity of the technology and the potential of this data set as a
resource for discovery of new bioactive peptides. The challenge,
however, is that the known peptides are set against a vast background
of peptides representing degradation fragments rather than real
endogenously produced peptides with biological functions.

Mapping observed peptide sequences onto their cognate
protein backbone proved to be a powerful way to illustrate the
structure of the data, as exemplified for Secretogranin-1 (CgB);
a protein of the granin family known to be processed into bioactive
peptides35 (Fig. 3a). We observe several of the known
Secretogranin-1 peptides as well as clusters indicating the exis-
tence of other uncharacterized peptides. The peptide clusters
observed tend to align perfectly with flanking dibasic motifs10 (KR,
RK, KK, RR, etc.) consistent with Secretogranin-1 being canonically
cleaved by prohormone convertases in islets, pancreas, intestine
and brain where these enzymes are known to process many other
precursors into peptides. Some peptides, like LE-20, are found in
multiple tissues, whereas the PE-11 cluster is exclusively observed
in brain, in accordance with previous findings36. Comparing the
pancreatic peptidome (blue) to that of the secreted content from
stimulated islets of Langerhans19 (green) confirms that many of the
peptides observed as distinct clusters in whole tissue samples are
indeed actively secreted, including LE-20, Bam-1745, and several
uncharacterized peptides (Fig. 3a). Our approach even detects
intracellularly stored peptides, as demonstrated by the Manserin
peptide which is visible in whole pancreatic tissue data but not in
our islet secretion data (Supplementary Fig. 6a,b and Supplemen-
tary Data 4). Whole tissue peptidomics thus reduces the reliance on
knowing and inducing the exact conditions under which secretion

of a given peptide occurs, making it suited for comprehensive
discovery-oriented analysis of the peptidome.

Secretogranin-1 (Fig. 3a) at the same time illustrates the challenge
of using the data; the observed clusters which contain the known
annotated peptides are co-located with observations of many shorter
degraded variants making it non-trivial to single out the sequence of
the real active variant of the peptide automatically from the data. In
some cases, longer unprocessed variants are also seen. On top of this
complexity for the knownbioactive peptides, routine breakdown of all
other proteins is also measured in whole tissue peptidomics.

Using large-scale peptidomics data for discovering potential new
bioactive peptides thus present a needle-in-a-haystack challenge of
initially separating real functional peptides from the background noise
of peptide andprotein degradation. Suchdegradation is not specific to
our data but also observed in other recently published peptidomics
studies as well (Fig. 3b), even though all of these take preventive
measures to minimize inadvertent post-mortem degradation
during sample handling. Therefore, new computational methods are
needed to separate signals fromnoise in suchdata from living cells and
tissues.

Computational identification of bioactive peptides
Since visual inspection, as illustrated for Secretogranin-1 (Fig. 3a), is
neither objective, reproducible nor scalable to tens of thousands of
proteins and peptides, we developed a computational method to
identify the most promising potential new peptides directly from the
MS data. We first engineered a series of features from the MS data to
represent the positional patterns, such as the relative abundance of
peptides starting at a given position relative to the position before it
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(Fig. 4a; intensity start as example), as well as additional features that
express amino acid modifications observed by MS (C-terminal ami-
dation and N-terminal acetylation) (see Supplementary Note 1). We
then trained various machine learning methods by using the set of
known annotated peptides as positive examples (Supplementary
Data 3) and the remaining observed peptides as negative examples.
Each peptidewas represented by its feature vector andnestedfive-fold
cross-validation was used to ensure that the performance metrics
reported for each model is based only on predictions on the hold-out
test sets unseen by the methods during training and parameter opti-
mization (Fig. 4b, Supplementary Note 1). The more advanced, non-
linearmodels (RandomForest andSVMs) didnot confer any advantage
over their simpler linear counterparts (Bayesian and simple logistic
regression; Fig. 4c, Supplementary Fig. 7a), and no performance ben-
efits were observed with elastic net regularization or SMOTE (Sup-
plementary Fig. 7b,c), despite the highly imbalanced training and test
sets (few positive examples and many negative examples). We there-
fore chose to base our final method, that we term Predicted Peptide
Variant (PPV), on simple logistic regression which offers a high degree
of explainability and allows easy quantification of the importance and
directionality of the input features. We found that the largest con-
tribution to the model predictions comes from the features that
encode the likely start and stop of a peptide cluster (Fig. 4b) and that
C-terminal amidation adds positively to the predictions, consistent
with this modification being required for the bioactivity of many
known peptides37, including Neuromedin-C for which we confirmed
the importance of the amidation for the function of the peptide
(Supplementary Fig. 8a–c).

We compared the PPV model to a simple null model (AUC 0.732)
which uses the abundance of each peptide as its only predictor. The
Null model finds only 5 known training peptides among the 300 most
abundant peptides, showing that the known peptides cannot be
identified simply from their abundance. In comparison, the PPVmodel
(AUC 0.886) identifies 48 known training peptides among its top 300
predictions, corresponding to a 176-fold enrichment over randomly
picking peptides from the mass spectrometry data.

The PPV model was used to score and rank all observed peptides
in each tissue, resulting in the identification of both known bioactive
peptides and uncharacterized candidate peptides. The list of high-
scoring peptides for each tissue is available as a supplementary table
(Supplementary Data 5) and the source code for the model is openly
available from GitHub (https://github.com/jancr/ppv).

It should be noted that although most of the annotated peptides
extracted from peptide databases have validated functions, the posi-
tive training set (SupplementaryData 3) also contains peptides that are
known to exist but forwhichnobioactivity has yet been reported, such
as the C-terminal peptides of NPY and PYY. The PPV method is there-
fore not a predictor of bioactivity per se but rather amethod suited for
identifying peptide candidates that manifest with patterns in MS data
similar to those displayed by known peptides. We therefore bench-
marked the PPVmethod against a previously published computational
method called PeptideRanker, which predicts bioactivity of peptides
solely based on their amino acid sequence (Fig. 4c). When applying
both methods to our data set, the PPV method identifies 3 times more
known peptides (48 vs 14) in the top 300 compared to PeptideRanker
and has a better AUC (0.886 vs. 0.769), demonstrating that PPV

c
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extracts more signal from the structure of the MS-data than Pepti-
deRanker does from the amino acid composition towards recovering
the known, annotated – and predominantly bioactive – peptides.

Model predictions and in-silico validation
To further build confidence in the PPV results,we analysed theflanking
regions of the high-scoring predicted peptides and found a clear
tissue-specific enrichment of sequence motifs (Fig. 5a). The positive
training peptides were removed prior to this analysis to ensure that
any signals observed reflect the properties of the new predicted pep-
tideswithout bias from thepeptides that themodelwas trainedon. For
brain, pancreas and ileum, the flanking regions show marked enrich-
ment of the di-basic cleavage motifs recognized by prohormone con-
vertases which are known be active in these particular tissues
(Supplementary Fig. 9). Different motifs were observed in fat tissues,
indicating that other enzymes may be active here. The peptides

predicted by the PPV model also more often originate from secreted
proteins (Fig. 5b). This aligns with the fact that most, albeit not all,
annotated peptides come from precursors which contain an
N-terminal signal peptide. Since none of the input features to the PPV
model encode knowledge of the amino acid sequence of the flanking
regions around the predicted peptides, or the secretion status of the
parent proteins, the enrichment of these properties independently
supports the validity of our methodology and predictions.

When applied to tens of thousands of peptides observed in a
tissue, the probabilistic PPV model only predicts a small subset of
peptides with a high probability of being real peptides (Fig. 5c). The
number of very high-scoring (>0.05; red) and high-scoring (>0.01;
yellow) peptides were 93/610 for brain, 39/481 for intestine (Ileum),
64/455 for pancreas, 20/229 for liver, 18/306 for quadriceps muscle,
34/346 for epidydimal fat, and 42/462 for subcutaneous fat, respec-
tively (Supplementary Data 5). Since the PPV method is not a perfect
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predictor and since it does not predict bioactivity per se, we should
expect some of the predicted peptides to be false positives or real
peptides with no direct biological activity (e.g. the C-terminal peptides
of NPY and PYY). We therefore advice the reader to take into con-
sideration other data as well when evaluating these lists which are
purely based on signals extracted from the MS peptidomics data.

Table 1 illustrates the predictions for the 25 highest scoring pep-
tides found in brain tissue demonstrating the PPV method’s ability to
identify known bioactive neuropeptides among tens of thousands of
other peptides observed. Many of the predicted peptides identified
share the flanking sequence motifs characteristic of neuropeptides
(recognized by pro-hormone convertases).

The PPV predictions are illustrated visually for the neurosecretory
protein VGF (Fig. 5d) using red and yellow colour to highlight the
highest scoring peptides. The data and predictions confirm the exis-
tence of previously reported peptides but also shows that VGF pro-
cessing is considerably more complex than hitherto described. An
example is the brain-specific and highly conserved, 46-amino acid
peptide (position 375-420) which we decided to call “GGGE-46”
(Fig. 5d). This peptide is among the high-scoring in brain (PPV score
0.017) and its sequence is perfectly flanked by di-basic cleavagemotifs
(RR and KR). Interestingly, a previously reported shorter form
(375–407)38 scores well below our threshold, illustrating the dis-
criminatory power of the PPV algorithm. The model also correctly
identifies the right variant of NERP-1 (rank 10 in brain with score 0.273)

which is involved in body fluid homeostasis39 (in both brain and pan-
creas independently) and confirms the existence of the uncharacter-
ized “24-63” peptide (rank 49, score 0.084), while scoring other
variants within those clusters low. Both peptides were only annotated
recently and therefore not included as positive examples during
training (in fact, they were wrongly labelled as negatives). Their iden-
tification among the top 50 highest scoring peptides in brain (out of
20,597observed) thus serve as independent “in-silicovalidation”of the
PPV model’s ability to generalize beyond its training data (no over-
fitting). The correct identification of NERP-1 furthermore demon-
strates that the model does not simply pick the longest variant in a
cluster, since several low scoring variants were found to extend
beyond the NERP-1 sequence. Other high-scoring in-silico validation
examples that were not part of the positive training set include Ser-
pinin-RR, ‘joining peptide’ from POMC, EH24 from pro-Thyrotropin-
releasing-hormone and IP2 from pre-pro-glucagon (Supplemen-
tary Data 5).

Another way to visualize and explore the data is to plot the results
of the twoorthogonalmachine learning approaches (PPV based onMS
data and PeptideRanker based on sequence composition) against each
other for the highest scoring 300 peptides (Fig. 5e) using different
coloring for the known peptides and the uncharacterized and poten-
tially bioactive peptides. This nicely illustrates that many of the pep-
tides identified via their expression pattern in our largeMS data set (by
the PPVmethod) have an amino acid composition similar to that of the
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Fig. 4 | Computational identification of potential bioactive peptides.
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distribution plot, the group of known annotated peptides is shown as blue bars, all
other observed peptides as white bars and the overlap between the two in light
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known bioactive peptides (high PeptideRanker scores), which increa-
ses the likelihood that these are in fact bioactive.

Examples of uncharacterized peptides identified
Much to our surprise, the highest-scoring peptide in pancreas tissue
(Supplementary Data 5; Pancreas) is a hitherto undescribed peptide
found exclusively in pancreatic tissue where it is observed in all 48
mice (4 conditions x 12 replicates). The 22-amino acid peptidemaps to
an unreviewed protein precursor (Uniprot: D3Z596) originating from
the insulin-2 gene. Its N-terminal sequence is identical to that of the
connecting peptide (C-peptide) of insulin (including the known clea-
vage motif) but the rest of the sequence is distinctly different, and the
peptide is amidated at its C-terminal. The sequence matches neither
the normal insulin-2 precursor (P01326) nor that of insulin-1 (P01325),
and we therefore considered if alternative splicing could explain our
findings.

A splice site prediction analysis of the second intron of Insulin-2
suggests several possible acceptor sites (Fig. 6a), however only
through splicing to a cryptic A2 acceptor site would the correct
reading frame be established (Fig. 6b). This particular reading frame
includes a C-terminal Glycine right before the stop-codon which is
likely converted by the PAM enzyme to the C-terminal amidation we
observe in our data (Supplementary Fig. 10a–c). This suggests a pos-
sible secretory role for the alternatively spliced peptide, that we
termed Disjoining-peptide (D-peptide). Curiously, the D-peptide is
scored 36 times higher than the classical C-peptide by the PPV algo-
rithm, indicating that the D-peptide, not the C-peptide, is the one
which stands out most clearly in the MS-data. The D-peptide is also
scored relatively high by PeptideRanker (0.495) in support of a
potential bioactive role for the peptide.

Some of the peptides are found independently in multiple tissues
and we therefore combined the prediction probabilities from

Fig. 6 | A unique high-scoring peptide formed through alternative splicing in
insulin. a Insulin-2 (Uniprot: P01326; NCBI sequence: NC_000073.7: c142233463-
142232393) from Mus musculus strain C57BL/6J. Splicing and pro-peptide proces-
singwill generate themature insulin’sA- andB-chain and the connecting-peptide (C-
peptide). The splicing in intron2 takes place between donor site 1 (D1) and acceptor
site 4 (A4) as shown on the right. Introns are in small letters, exons is in capital
letters. The ASSP and NetGene2 splice site predictions show the relative strength of
donor sites (underlined; blue) and acceptor sites (boxed; red) normalized to D1.

b The Ins2-202 transcript (Ensembl ID: ENSMUST00000105930.8) match the Uni-
prot entry D3Z596, and is a 79 amino acid variant of insulin. Alternative splicing
between theD1 donor site and the cryptic A2 acceptor site introduces a new reading
frame with a premature stop-codon forming a pro-peptide consisting of an intact
B-chain and a uncharacterized peptide (D-peptide) after prohormone convertase
cleavage. The PAM enzyme converts the terminal Glycine in 2 sequential steps to a
C-terminal amidation. Bottom right contains an alignment between the classic
C-peptide and the D-peptide.
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individual tissues into a consolidated score for each peptide across all
tissues, as an alternative way of viewing the prediction output
(Supplementary Data 5; PPV combined). This approach highlighted
an N-terminal peptide derived from the glycolytic enzyme Tpi1 that
the PPV method identifies consistently across brain, pancreas,
muscle and fat tissues. The peptide, that we named APTR-15, con-
tains the substrate binding residues of Tpi1 and is structurally fol-
lowed by an exposed loop containing a prohormone convertase
GRK motif consistent with its observed C-terminal amidation
(Supplementary Fig. 11a–c). It should be noted that the enzyme is
intracellular and would not under normal circumstances be co-
localized with the prohormone convertases in the secretory path-
way. Our data nonetheless strongly indicate that this particular
peptide is formed in-vivo across multiple tissues. A potential
bioactive role for this peptide is supported by PeptideRanker which
scores it higher (0.844) than well described peptides like pan-
creatic hormone, Orexin-B, Gastrin-releasing peptide and VIP
(Fig. 5e, Supplementary Data 5).

Non-Glycine mediated amidation
Some of the high scoring peptides are found (in our MS data) to be
amidated at the C-terminus without the Glycine (in position +1)
that would normally be recognized and converted by the PAM
enzyme (Table 1, Supplementary Data 5). Such PAM-independent
peptide amidation has been reported in several other studies20,21

and detailed inspection of the MS/MS ion spectra of selected
examples from our study indeed support C-terminal amidation
(Supplementary Fig. 12a–h). We cannot completely exclude the
possibility of side-chain Glutamic acid to Glutamine conversion
among a smaller subset of Glutamic acid containing peptides
where the fragment ion series does not unambiguously confirm
the amidation to be positioned in the C-terminal. A closer look at
the sequence context around these non-Glycine amidations
(Fig. 7a) reveal a decrease in dibasic amino acids, indicating that
they are likely not products of prohormone convertases in the
canonical secretory pathway. These peptides are instead enriched
in a E/P motif around the site of amidation (Fig. 7a,b). These find-
ings apply across the global data set as well as among those pep-
tides selected by our algorithm. Although the enzymatic or non-
enzymatic amidation mechanism remains to be elucidated, the
data indicates that the majority of these peptides cannot be
explained as random artifacts of the experimental procedures or
the algorithm.

Experimental validation of predicted peptides in diabetes-
related models
The computational framework developed and presented in this study
can be used to shortlist the most promising peptides of which many
should statistically be expected to be bioactive (Supplementary
Data 5,6). Validating such bioactivity and uncovering the mode of
action of a candidate bioactive peptide is, however, inherentlydifficult,
as it requires some initial functional hints to guide the choice of assays
or models for confirmation. Such hints could be obtained from spe-
cialized sequence-based prediction tools likeMultiPep40 although they
still predict fairly broad functional categories (e.g. “neuropeptide”)
that may have limited utility for guiding assay selection.

To authenticate the bioactivity of someof our predicted peptides,
we relied on a set of diabetes-related assays and models already
established in house and validated using known metabolic peptide
hormones (Supplementary Fig. 13a–d) and selected non-functional
peptides (Supplementary Fig. 14a–d). We therefore sought to increase
the chance of a functional read-out in these particular assays by
selecting candidates that originate from pre-cursor proteins/genes
with functional links to diabetes, obesity and metabolism in public
databases such as Gene Ontology (geneontology.org)41, DISEASES
(diseases.jensenlab.org)42 and PHAROS (pharos.nih.gov)43. This
approach obviously has limitations in cases where such information is
scarce or where the function of the peptide is far removed from that of
the parent protein/gene-level to which such data is linked (Supple-
mentary Fig. 1).

Selected peptides were chemically synthesized or expressed in
E. coli and tested for activity in-vitro, aswell as injected subcutaneously
in db/dbmice to quantify acute changes in relative blood glucose (BG)
in-vivo. One of the predicted peptides that displayed potential bioac-
tivity was a previously undescribed peptide from Secretogranin-1 that
we termedNHPD-50 (position 386-435). It has a high PPV score (0.028)
and is flanked by dibasic KR-motifs (Fig. 3a, Supplementary Data 5).
Secretogranin-1 (CgB) is a component of the neuroendocrine secretory
granules, and peptides from the granin family are known to regulate
catecholamine, islet amyloid polypeptide and insulin release44. The
NHPD-50peptide reduced BG significantly four hours after single dose
administration in db/db mice (Fig. 8a) and a significant increase of
insulin in plasma was observed six hours after administration (Fig. 8b).
The finding was replicated in a follow-up experiment using twice daily
dosing (Fig. 8c) which showed a sustained BG lowering effect of this
peptide over 8 h. In contrast, injection of low scoring peptides did not
elicit any response in these in-vivomodels (Supplementary Fig 14a–d).
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Fig. 7 | Logo andenrichmentplotofnon-Glycine amidatedpeptides. a Logoplot
calculated for non-Glycine amidated peptides with a PPV score above 0.01 (fore-
ground: non-Glycine amidated peptides, background: all non-Glycine peptides).
Left side constitutes the C-terminal end of the peptide (non-Glycine amidated), and
right side the flanking protein region. b Bar plot showing the individual or

combinatorial enrichment of amino acids in the −1 and +1 position around the non-
Glycine amidated peptides for PPV predictions above 0.01. The length of the bar is
the enrichment of the motif compared to the background. Source data are pro-
vided as a Source Data file.
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We did not observe a glucose stimulated insulin secretion (GSIS)
response in INS1E cells or in mouse primary islets suggesting that the
effect on blood glucose and the peptide-mediated plasma insulin
increase acts through an indirect mechanism. To explore if an engi-
neered NHPD-50 peptide variant with longer half-life could induce
sustained BG reduction, we generated an N- and C-terminal albumin
protracted version and expressed the construct in db/db mice using
hydrodynamic gene delivery (Supplementary Fig. 15a). The protracted
peptide did not confer sustained BG lowering effect in this experiment
and offered only limited effects on plasma triglycerides and free fatty
acids (Supplementary Fig. 15b,c). We did, however, observe a sig-
nificant reduction of 3-hydroxybutyric acid in plasma suggesting a
potential role in fatty acid metabolism (Supplementary Fig. 15d). In
summary, our experiments support that the predicted NHPD-50 pep-
tide displays bioactivity, although the data is not sufficient to decipher
the exact biological mechanism of the new peptide.

Despite attempts to discover the potential biological function of
the alternatively spliced insulin D-peptide, we did not observe any
acute changes inBG, suggesting that theD-peptide probablymaintains
other functions unrelated to insulin or the classical C-peptide45.

Fragment assembly identifies known and uncharacterized
peptides
For someof the known bioactive peptides without a perfect full-length
match, we observed shorter peptides that collectively covered the
sequence. We therefore devised an algorithm which assembles over-
lapping fragments into in-silico predicted full-length peptides and
found an additional 17 matches to known peptides including Amylin,
Glicentin, Gastrin-releasing peptide, Somatostatin-28, PACAP-related-

peptide and the CART peptide, demonstrating the potential of frag-
ment assembly for identifying real bioactive peptides.

We therefore combined the assembly algorithm with the PPV
model into a method termed PPV-assembly (Supplementary
Note 1) with the aim of discovering additional peptides from our
data (Supplementary Fig. 16a, b). The assembly creates on average
5 extra synthetic peptides for every observed peptide (expanding
the data set from ca. 150.000 sequences to 1.2 million in total),
many of which are likely not real (Supplementary Data 6) and we
therefore found the PPV-assembly approach most useful in cases
where other sources of information points to a particular protein
of interest.

As an example, themodel combined fragments in-silico to predict
a newpeptide inGelsolin (Supplementary Fig. 17). Gelsolin is a calcium-
regulated protein secreted into the blood facilitating pancreatic β-cell
proliferation and insulin secretion through actin remodelling and
syntaxin-4 interaction46. Its N-terminal domain (28–161) has been
suggested to normalize BG in diabetic mice47. When administering this
PPV-assembled peptide (position 567-625) to 3T3L1-MBX cells, we
observed a dose-dependent increase in glucose uptake (Fig. 8d) and a
dose-dependent inhibition of PEPCK expression in primary hepato-
cytes, indicative of gluconeogenesis suppression (Fig. 8e). Further-
more, GSIS (insulin secretion) in INS1E cells was increased at the
highest concentrations (Fig. 8f). The in-vitro data thus suggests that
the predicted in-silico assembled Gelsolin peptide may have a biolo-
gical function. However, neither the new peptide (567–625) nor the
N-terminal domain (28–161) affected BG in our in-vivo model and the
possible in-vivo mechanism of action for the peptide thus remains
unclear.
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Discussion
The complex task of discovering new bioactive peptides is a two-step
process, as one needs first to identify likely bioactive candidates and
secondly employ the correct assay to unequivocally authenticate
bioactivity.

In this study, we provide a resource to support the first step by
sharing lists of candidate peptides (observed and assembled) pre-
dicted to be real and potentially bioactive by our machine learning
framework (the PPV method) which we apply to a large whole-tissue
peptidomics study of seven tissues that—to our knowledge—is by far
the largest study conducted to date in terms of tissues, replicates and
samples. The benefits of this approach are described above but here
we also wish to highlight the limitations and biases of the resource we
share with the broader scientific community.

Firstly, many important tissues and biological conditions are
not covered in our study, meaning that certain peptides may be
missed entirely. Secondly, we initially tested the use of reduction
and alkylation but found that this only provided marginal
improvements in the identification of cysteine-containing peptides
at the expense of poorer identification rates of other peptides.
Taking into account the need to disentangle intramolecular
cysteine-bridges and the difficulty in chemically synthesizing such
peptides, we chose to not reduce and alkylate. Some known
cysteine-containing peptides, like insulin, are thus absent from our
analysis. The same applies to peptides with certain post-
translational modifications48, like the active form of CCK8 which
is sulfated on Tyrosine. To avoid a combinatorial explosion in the
search space, the MS analysis was performed with only Oxidation
(M), acetylation (N-term), amidation (C-term) and pyro-glu (Q/E) as
variable modifications. The PPV method does identify the correct
unmodified variant of CCK8 illustrating both the strength and
limitation of the approach, as well as the difficulty in authenticating
bioactivity which depends on testing the correct bioactive form in
the right assay.

Themachine learning based algorithms (PPV, PeptideRanker, etc.)
are also not perfect, and should be expected to produce both false
negatives (bioactive peptides missed) and false positives (non-func-
tional peptide variants and degradation products predicted to be real
and/or bioactive). The chance of the latter is arguably lower among
peptides originating from secreted proteins and/or those precursors
already known to formother bioactive peptides. We therefore provide
the readers with the option to filter on these properties in the lists of
candidate peptides (Supplementary Data 5,6). Vice versa, more false
positives should be expected among predicted peptides originating
from cytosolic proteins and we also note that the PPVmodel may have
a slight bias towards peptides that start right after an initiator
Methionine. Nonetheless, we found it relevant to share all predictions,
since some bioactive peptides are known to be produced from intra-
cellular proteins (Supplementary Fig. 1).

Another limitation of our approach is that both machine-learning
frameworks used in this study (PPV and PeptideRanker) are trained to
identify bioactive peptides as a general class, and hence cannot be
used to pinpoint the exact biological- or molecular function of a
peptide to guide assay selection. We did not in this work explore
prediction of more fine grained functional categories owing to the
relatively small set of positive examples (bioactive peptides) available
to train the machine learning framework on.

In this work, we used other contextual information to select
candidate peptides to test in a set of assays available to us. A larger
systematic study would be required to assess the validity of this
approach as a generalized concept for matching candidate peptides
and functional assays.

The experimental validation of bioactivity also comeswith its own
set of limitations. Even in cases where the right bioactive form of a
peptide is identified and tested in a suitable model, the functional

readout may still be absent due to formulation issues, short peptide
half-life, or the absence of other complementary factors required for
full activity.

The central idea behind our PPV method is to turn the degrada-
tion “noise” that characterizes MS-based peptidomics studies into an
asset rather than a challenge by learning from the global and local
structure of the data. The concept could potentially be improved with
new or improved feature encoding, unsupervised representation
learning, and more refined approaches for assembling peptides in-
silico.

In conclusion, our peptide data and predictions provide a com-
prehensive resource amenable for functional exploration beyond
diabetes and suggest that more peptides than previously recognized
could be functional entities with potential regulatory roles.

Methods
Animal experiments
Animal studies were carried out in accordance with the Danish Act
on Experiments on Animals - Appendix A of ETS 123 and EU Direc-
tive 2010/63. Animal protocols was approved by the Institutional
Animal Care and Use Committee of Novo Nordisk Research Center
China and Ethical Review Council in Novo Nordisk A/S (Permission
no. 2015-15-0201-00616). Animals were purchased either from
Taconic (lean C57bl/6J mice), Jackson Laboratory (diet induced
obese C57bl/6J mice fed 60% high fat diet (HF) and C57bl/6J mice
fed 10% low fat diet (LF)) or Charles River (C57bl/KS db/db and
C57bl/KS db/+). Mice were all male and 12 weeks of age upon arrival
and housed under standard conditions including a 12 h–12 h
light–dark cycle, ∼21 °C, and water and food ad libitum. All mice
were anaesthetized using isoflurane/O2/NO2 and following tissue
extraction euthanized by decapitation at 15 weeks (C57bl/KS db/db
“DB” and C57bl/KS db/+ “WT”) or at age 26 weeks (“HF” and “LF”
mice). Collected organs (subcutaneous fat, epidydimal fat, pan-
creas, brain, liver, quadriceps muscle and gut ilium) were quickly
rinsed in ice cold PBS and freeze clamped with Nitrogen-cooled
iron. For the perfusion experiment anesthetized animals were
transcardially perfused with an isotonic saline solution containing
protease inhibitors20. Removed organs were flash frozen in 2-
methyl-butane and stored at −80 °C. Male diabetic BKS.Cg-Dock7m

+/+ Leprdb/J (stock no: 000642) strain introduced from the Jackson
Laboratory USA was used for blood glucose measurements. Upon
arrival, mice were housed as 5 mice per cage under a condition of
12 h light/dark cycle with controlled temperature (26 ± 2 °C), con-
trolled humidity (55 ± 10%) and free access to water and chow diet
(Altromin 1320 diet).

Islet purification and stimulation
500 islets pr. replica experiment were isolated from mouse pancreas
using an established protocol49. The islets were conditioned in serum-
freemedium (Gibco) containing 2mML-glutaminewith Pen/Strep. The
islets were stimulatedwith 500 µM3-isobutyl 1-methylxanthine (IBMX)
and 10 µM Forskolin for 1 h at 37 °C before being collected at 290 g for
2min. The supernatant was analyzed for the secreted peptide content.

Peptide extraction
Removed organs were flash frozen in 2-methyl-butane and stored at
−80 °C. For analysis tissue samples were taken directly from a frozen
state and heated to 95 °C in an air-evacuated cartridge in a Denator T1
heat stabilizor27. Extractionof peptideswas done essentially as (ref. 20)
with the following modifications. We used 5 µLmg−1 tissue weight of
0.5% acetic acid or 6M urea as determined to be most effective for
each individual tissue. Microcon YM-10 cut-off filters (Millipore) were
preconditionedwith 500 µL2%MeCN/3%MeOHand500 µL 5Murea in
0.5% acetic acid. The filtrate was loaded onto in-house packed reverse-
phase C8 STAGE tips with two Empore C8 discs preconditioned with
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40 µL MeOH, 40 µL 80% MeCN/0.5% acetic acid and twice with 50 µL
0.5%acetic acid/0.1% trifluoroacetic acid (TFA). Stage tipswerewashed
twice with 200 µL 0.5% acetic acid/0.1% TFA.

Shotgun proteomics
For brain proteomics experiments n = 3 of each strain were used.
Proteins were extracted with 6 µL/mg of 6M Gnd-HCl, 5mM TCEP,
10mM CAA, 10mM Tris-Cl pH = 8.0, 1mM EDTA lysis buffer after
denaturing heat stabilizationof thebrain sample. Onemgprotein from
each sample was reduced/alkylated and subsequently digested with
5 µg Lys-C for 2 h and 5 µg Trypsin in 1% SDC, 100mM Tris-Cl pH 8.0
overnight at 37 °C using a FASP approach with a 10 kDa MWCO spin
filter. The tryptic peptides were subsequently cleaned up on a C18
SepPak column using standard methods. 50 µg of each digest was
subsequently fractionated into 20 fractions using a Waters acquity
CSH C18 1.7 µm1.0× 15mmcolumnon a Ultimate 3000HPLC (Dionex,
Sunnyvale, CA, USA) operating at 30 µL/min. Buffer A consisted of
5mM ammonium bicarbonate and buffer B consisted of 5mM
ammonium bicarbonate, 90% acetonitrile. Proteomics data was sear-
ched using MaxQuant (ver. 1.5.6.2).

Mass spectrometry analysis
Peptides were eluted into 96-well microtiter plates with 20 µL 40%
MeCN/0.5% acetic acid followed by 20 µL 60% MeCN/0.5% acetic acid.
Peptides were reconstituted in 10 µL 2% MeCN, 0.5% acetic acid, 0.1%
TFA after vacuum centrifugation in a speed-vac. Five microliters of the
peptide eluate was separated by a linearMeCN gradient for 160min in
a 15-cm fused-silica emitter packed with reversed-phase ReproSil-Pur
C18-AQ 1.9 µm resin (Dr. Maisch GmbH) using a nanoflow Easy-nLC
system (Thermo Scientific). The LC was connected through a nano-
electrospray ion source to the mass spectrometer. We either used a
QExactive orbitrap or QExactive HF orbitrap instrument using a top6
higher-energy collisional dissociation (HCD) fragmentation method50.

Peptide identification
Raw MS files were processed using the MaxQuant software (ver.
1.6.0.1, Max-Planck Institute of Biochemistry, Martinsried) and
Mascot (ver. 2.6.2). HCD-MS/MS spectra were de-isotoped and fil-
tered using the 10 most abundant fragments per 100m/z range.
Peptides were identified by searching all MS/MS spectra against a
concatenated forward/reverse target/decoy of the mouse com-
plete proteome (proteome ID: UP000000589). The HCD-MS/MS
spectra were searched with Oxidation (M), acetylation (N-term),
pyro-Glu (Q/E), amidation (C-term) as variable modifications and
with no enzyme specificity. Search parameters were set with pre-
cursor ion tolerance of 4.5 p.p.m. and MS/MS tolerance at 0.02 Da.
FDR were set at 0.05 at protein level and 0.01 at peptide level.
Minimum peptide length was set to seven amino acids and peptides
identified with a Mascot score of less than 20 were discarded. All
raw data was curated and annotated and stored on an in-house
build Omics-manager system. For the MaxQuant search of all tis-
sues combined we used the mouse complete proteome down-
loaded from Uniprot 28th June 2017. Both proteomics and
peptidomics data have been deposited to the ProteomeXchange
Consortium51 via the PRIDE52 partner repository with the data set
identifier PXD022225.

Data quality assessment and analysis
One rawfile (DB_09 from Sc. Fat) was truncated and removed from
subsequent analysis. Data quality plots were made in R-studio (ver.
4.1.0; 2021-05-18). Strain and tissue specificity plots were generated
using UMAP library in Python53 (ver. 3.9.7). Remaining data assessment
plots were made with Seaborn (ver. 0.11.2) and Matplotlib (ver. 3.5.1)
in Jupyter notebook (ver. 6.4.7). Gene ontology was done using

geneontology.org41. Kullback–Leibler divergence logo plots were cal-
culated as (ref. 54).

PPV model
The positive training set used in the predicted-peptide variant (PPV)
model consists of known peptides and pro-peptides extracted from
Uniprot the 26th January 2017.We added annotated peptides from the
SwePepdatabase33 and theNeuroPepdatabase34 to construct a curated
list of known annotated peptides (Supplementary Data 3). Delayed
annotation was determined by extracting known annotated peptides
from Uniprot version 2021_02. For PPV predictions in each individual
tissue, we used pertinent Mascot files, and a combined MaxQuant
search covering that tissue. Output files weremerged and combined as
follows: If a peptide was exclusively observed in MaxQuant or present
in both datasets we used the abundance value provided from Max-
Quant. If a peptide was exclusively observed in Mascot, we fitted a
transfer function as a first-degree polynomial log(y) = a ∗ log(x)+b,
where the target y was MaxQuant abundance predicted by the x
Mascot abundance. The PPV model itself is based on Logistic Regres-
sion andwritten in Scikit-learn (ver. 1.0.2) in python55 (ver. 3.9.7).When
training the logistic (PPV) and comparative non-linear models we used
nested 5-fold cross validation to ensure that reported performance
metrics are based only on data unseen by the models during training
and optimization. For the PPV-assembly model, were trained on an up
sampled dataset, and evaluated using nested cross-validation. 14 mass
spectrometry features were engineered from the data (Supplemental
Note 1). Feature frequency plots weremadewithMatplotlib (ver. 3.5.1).
Calibration curves weremadewith Seaborn (ver. 0.11.2) in Jupyter (ver.
6.4.7). The PPV source code can be downloaded freely from: https://
github.com/jancr/ppv. Supplementary Data 5, 6 contains all PPV pre-
dictions and PPV-assembly predictions with a score higher than 0.01.

Bacterial peptide production
DNA sequences encoding peptides above 35 amino acids in length
were fused C-terminally to a 6xHis-SUMO-tag and cloned into pET11d-
derived plasmid. The plasmid was transformed into an E. coli
BL21(DE3)-derived host stain, HNC54, expressing the NucB nuclease
from Staphylococcus aureus (UniProtKB: A0A447ZB30). To over-
express 6xHis-SUMO-fusions, individual clones were inoculated in a
96-well format containing 1.2mLTerrific Broth containing ampicillin in
each well and cultivated at 37 °C with shaking at 800 rpm for 4-5 h.
IPTG was added to 0.5mM final concentration to induce expression
and cultivation continued at 37 °C for 16 h. Cells were harvested by
centrifugation and resuspended in 100 µL PBS pH 7.4 and freeze-
thawed twice. Resulting cell lysate was mixed with 1.2mL PBS pH 8.0
containing 8M urea and 10mM imidazole and centrifuged and the
supernatant loaded on a Ni-NTA resin (QIAGEN) column pre-
equilibrated with PBS pH 8.0 containing 10mM imidazole. After
washing with 20 bed volumes of PBS buffer, the fusion peptide was
eluted with PBS pH 8.0 containing 500mM imidazole. A PD10 column
(GE Healthcare Life Sciences) was used to change the buffer into PBS
containing 20mM imidazole pH 8.0. The eluted fusion-peptide was
digested with a SUMO protease at 1:500 (w/w, enzyme/protein) at
room temperature overnight. The peptide was recovered in the flow-
through fraction using a Ni-NTA column, and purified with Source 30
reverse-phase chromatography (GE Healthcare Life Sciences). Briefly,
the Source 30 RPC column was washed with 5 bed volumes of 20mM
ammonium bicarbonate, and washed with 10 bed volumes of 0.5M
arginine at pH 9.0. The peptide was eluted with 40% isopropanol in
20mM ammonium bicarbonate and the eluate evaporated with
SpeedVac (ThermoFisher Scientific) to less than 0.5mL, and then
lyophilized to dryness. The lyophilized product was reconstituted in
PBSpH7.4. Peptides used for in-vivodosingwere checkedwith respect
to purity, molecular mass, and endotoxin levels (<1 EU/kg animal)
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using RP-HPLC and Kinetic Turbidimetric LAL testing according to the
supplier (Charles River Laboratories).

Peptide array synthesis
Synthesis were carried out in four 96-well plates using an Intavis
Multipep RSi synthesizer using Fmoc based solid phase peptide
synthesis (SPPS). For C-terminal amide Fmoc-PAL AM resin from
Novabiochem was used and for C-terminal acids the corresponding
preloaded TGT resins fromNovabiochemwere used. Each peptidewas
synthesized on 5 µmol scale based on resin loading. The synthesis
protocol used double deprotection using 20% piperidine + 0.1M
oxyma in DMF and triple couplings using 6 equivalents amino acid/
DIC/oxyma 1:1:1 in each coupling and for a total of 3 h coupling time.
Cleavage of peptides from resin was carried out using TFA/DTT/TIPS/
water 96:2:2:2 (1.2mL) and the cleaved peptides were collected in
corresponding 96-well deep well plates. The volume of TFA was
reduced under a stream of nitrogen to 200-300 µL per well. The pep-
tides were precipitated with 1.2mL ether and filtered and washed in
deep-well Solvinert plates with a hydrophilic membrane. The crude
peptides were dried using vacuum and redissolved in 500 µL DMSO
and collected in 96-well plates. All peptides were analysed byUPLC-MS
for assessment of purity. The DMSO stocks were lyophilized, then
redissolved in acetonitrile/water 1:1 (1mL) and then lyophilized again
to produce the peptides as white powders.

Formulation of peptides
Freeze-dried peptides were rehydrated and formulated on 96-well
plates. Endotoxin contents of 2 formulations per well plate were
measured using LAL assay to rule out bacterial contamination. Rehy-
dration buffer for each peptide was based on its calculated isoelectric
point (pI) so that its pH was ≥1 pH unit away from pI. Peptide con-
centration and purity was checked after rehydration with RP-UPLC
using Acquity BEH C18 1.7 µm 2.1 × 30mm column (Waters) and
detection at UV215 nm56. Mobile phases A & B consisted of 0.1% TFA in
H2O and 0.1% TFA in 80% ACN/H2O, respectively, and elution was
carried out from 20% to 95% phase A at 30 °C. Peptides with <40%
purity were discarded, and the rest formulated at 300 µM in 50mM
phosphate at pH 6.0, 7.0 or 8.0, 12mg/mL propylene glycol and
0.5mg/mL polysorbate 20 and sterilefiltered into glass vials for in vivo
studies and plastic Micronics tubes for in vitro studies under LAF.
Freeze-thaw (F/T) stability was checked by measuring peptide con-
centration and purity using RP-UPLC before and after 3 F/T cycles.
Formulationswereflash-frozen and stored at−80 °Cuntil use. Peptides
displaying in vitro or in vivo effects were resynthesized and purified at
>90% purity and reformulated using same formulation protocol.

Peptide administration and blood glucose measurement
Male diabetic BKS.Cg-Dock7m+/+ Leprdb/J (stock no: 000642, Jackson
Laboratory, USA) older than 11 weeks and with blood glucose levels
higher than 16mMwere selected and allocated to different treatment
groups by randomization based on blood glucose. The mice body
weight was measured and recorded. Peptide solution was put at room
temperature at least 30min before dosing and dose solution was
prefilled into 0.5mL 29G insulin syringe (Insulin syringe, BD, USA)
according to body weight. Baseline blood glucose was taken before
peptide dosing and then an intraperitoneal injectionwas done tomice
with dosing volume at 5mL/kg per body weight at indicated peptide
concentration. Blood glucose wasmeasured at 30min, 1 h, 2 h, 4 h, 6 h
post dosing. In the acute daily peptide dosing study, animals were
dosed at morning (~9 am), in the 4 days BID peptide dosing study,
animals were dosed in the morning (around 9 am) and after 4 h BG
measurement (around 13 pm). Tail vein blood for BG measurement
was collected into heparinized glass capillary tubes and 5 µL subse-
quently mixed with 250 µL of EKF system solution and vortexed to a
homogeneous solution. Glucose level was measured using glucose

oxidase method (glucose analyser, BIOSEN 5040, Germany). At ter-
mination mice were anesthetized with isoflurane and blood was taken
from the orbital puncture and transferred into two EDTA coated tubes
and euthanized.

Surgery and liver perfusion
Perfusion buffers were pre-warmed to 37 °C and gassed with 95:5
O2:CO2 for approximately 15–30minprior to surgery. 8weeks oldmale
Sprague Dawley Crl:CD(SD) rats (Charles River) were anesthetized with
a mixture of N2O/O2/isoflurane. Once animals had reached a surgical
plane of anaesthesia, a U-shaped incision was made from the rib cage
to the lower abdomen through the skin and muscle layer leaving the
ribcage and diaphragm intact. The viscera were exposed, and the
stomach and intestineswere displaced to the right to reveal underlying
blood vessels. The hepatic portal vein was isolated and cannulated
with a 21G luer adapter connected to prefilled catheter immersed in
250mL of perfusion buffer 1 (Kreb’s Ringer with 20mM glucose,
120mM NaCl, 2.8mM NaHCO3, 20mM glucose, 1%1 Sol’n C, 5mM
HEPES, 100 µM EGTA, and pH adjusted to 7.4). Perfusion buffer 1 was
slowly infused at a rate of ~5mL/min using a peristaltic pump. The
diaphragm was punctured to expose the thoracic cavity and the aorta
severed. The flow rate was then slowly and steadily increased to 25mL/
min. A vacuum pump was used to remove perfusion/blood overflow.
Perfusion was continued until less than 5mL of the initial 250mL
volume of perfusion buffer remains. Perfusion was then switched to a
perfusion buffer 2 (120mMNaCl, 2.8mMNaHCO3, 20mMglucose, 1%1
Sol’n C, 5mM HEPES, 1.4mM CaCl2, adjusted to pH 7.4) with a col-
lagenase blend (7mg/ml, Liberase TM Research Grade, Roche). Per-
fusion was continued until less than 5mL of the 250mL perfusion
buffer remains. The liver was then immediately excised and processed
for hepatocyte isolation. At the completion of the procedure the heart
was removed to ensure euthanasia.

Hepatocyte isolation
After perfusion, the rat liver was excised and transferred to sterile dish
containing 20mL wash medium (Gibco #11043023), 5.5mM glucose,
supplemented with 5mL Penicillin/Streptomycin 1% (Gibco #15140-
114), 100 nM dexamethasone, 10% FBS (Ausbian #VS500T), and 1 nM
insulin (in house produced), and teared with forceps. Cells were dis-
persed by gently aspiration and filtered through a 100 µm nylon filter
into a 50mL tube. Cells were pelleted at 100 g at 4 °C for 3min.
Supernatant was decanted and cell pellets dispersed by aspirating
gently with a bore pipet in 10mL wash medium. Washing and resus-
pension steps was repeated for 3 times. Isolated hepatocytes were
suspended in 20mL Basal media (as wash medium but with 4% FBS).
Cell number and viability were counted with a haemocytometer.
Hepatocytes were diluted and plated into collagen-coated wells
(30,000/well) and cultured in basal media for 4 h, then changed to
starvation media (as wash medium with 0.1% FBS) overnight.

PEPCK qPCR
Primary hepatocytes were prepared as described above. Cells were
treated with serial diluted peptide, 10 nM insulin and 10 nM glucagon
(both controls in house produced) for 4 h. After treatment, cells were
lysed, and RT-PCR was performed with Cells-to-CT Kit (Ambion
#4402955) according to manufacturer’s recommendation. In brief,
cells were lysed with 25 µL lysis buffer with shaking at 750 rpm for
10min before 2.5 µL stop solution was added. Reverse transcription
was performed in 384 well-PCR plate. qPCR analysis was performed
with Applied Biosystems ViiA7 instrument (Life technologies). G6pc
and Pck1 expression in H4IIE cells were measured and normalized to
Rplp0. PEPCK, G6PC and Rplp0 qPCR primers were purchased from
ThermoFisher; PCK1 TaqMan Gene Expression Assays (Rn01529014
m1), G6PC TaqMan Gene Expression Assays (Rn00689876 m1), RPLP0
TaqMan Gene Expression Assays (Rn03302271 gH).
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Glucose uptake assay
3T3-L1MBX fibroblasts (ATCC, #CRL3242)were seeded at 20,000 cells
per well in collagen coated 96-plates (Corning #356650) in DMEM
(Gibco #10569) with 10% FBS (Ausbian #VS500T). Cells were differ-
entiated into adipocytes for 4 dayswith 3% FBS, 1μg/mL human insulin
(in-house produced), 0.5mM isobutylxanthine (Sigma #I5879), 1 µM
dexamethasone (Sigma #D4902) and 2 µM Rosiglitazone (Sigma
#R2408), followed by 3% FBS and 1 µg/mL insulin for another 7 days,
then maintained in 3% FBS for 8–11 days. After differentiation, cells
were treated with diluted peptide and 100 nM insulin as positive
control overnight in DMEM low glucose medium (Gibco #A1443001).
Glucose uptake was measured by Glucose Uptake-Glo™ assay kit
(Promega #J1343) according to the manufacturer’s recommendation.
Briefly, cells were incubated with 0.5mM 2DG in PBS for 10min at
25 °C, before stop buffer and neutralization buffer were added
sequentially. 2DG6P detection reagent were added to cell samples and
incubated for 1 h before luminescence measurement on Envision
(PerkinElmer). Data was analyzed with GraphPad Prism v7.

Glucose stimulated insulin secretion assay
The INS1E luciferase cells developed in the lab of Claes Wollheim, was
transfected with the proinsulin-Luciferase reporter construct57. INS1E
Luciferase clone21 cells were seeded in pre-coated 96 plates at 50,000
cells/well and cultured for 3 days in RPMI1640mediumwith GlutaMAX
(Gibco #61870), 1% Penicillin/Streptomycin (Invitrogen #15140-122),
50 µMmercaptoethanol (Sigma #M3148-25ml), 10% fetal bovine serum
(GIBICO #10100-147), 100mM sodium pyruvate (GIBICO #11360), 1M
HEPES (GIBICO#15630). cellswerewashedwithKRBHbuffer (1xKrebs-
Ringer buffer) supplemented with 10mM HEPES (#15630-080), 1%
GlutaMAX (#35030-061), 24mM NaHCO3 (#25080-094), 0.2% BSA
(SIGMA #B2064), 1% Penicillin/Streptomycin (#15140-122) and adjus-
ted to pH 7.4. 100 µL KRBH with 0.5mM glucose were added and
incubated at 37 °C for 2 h. Cells were subsequently washed with KRBH
buffer once before 100 µL KRBH with diluted peptides in 16.7mM
glucose were added at 37 °C for 30min. After treatment the cells were
centrifuged at 100 g for 2min. 50 µL supernatant was transferred to a
new 96-well plate. Nano-Glo luciferase assay (Promega #N1120) were
performed according to manufacturer’s recommendation. In brief,
Nano-Glo luciferase buffer was mixed with substrate at 50:1 ratio,
before the mixture was added to cell supernatant at a 1:1 ratio. The
mixture was incubated at room temperature for 10min before lumi-
nescence measurement on Envision (PerkinElmer). Data was analyzed
with GraphPad Prism v7.

Hydrodynamic gene delivery
CHGBplasmids and control plasmids weremanufactured byGenscript
(Nanjing, China) at transfection grade with endotoxin <25 EU/mg, and
all plasmids were diluted in saline to a concentration of 20μg/mL,
2.5mL of pre-warmed dose solutions with 50 µg construct or 10 µg as
positive control were carefully injected into conscious mouse through
tail vein within 5 s using a 25 G syringe. Plasma was collected on
termination day.

Plasma insulin measurement
We employed Luminescence Oxygen Channeling Immunoassay
(LOCI). 4 µL sample/calibrator/control was applied together with 7 µL
assaybuffer in 384-well LOCI plates coatedwithmAbHUI018 (5 µg/mL)
conjugated acceptor-beads corresponding to 35 µL/well. The assay
plate was shaken for 1 h at room temperature, and after wash 10 µL of
biotinylated guinea pig anti-mouse insulin Ab 4077 (6 µg/mL) was
added to each well (10 µL/well). Both the mAb HUI018 and pAb 4077
are in-housed produced. The assay plate was again shaken for 1 h at
22 °C. Afterwashing, 10 µL streptavidin coated donor beads (67 µg/mL)
were added to eachwell and incubated for 60min at 22 °C. Plates were
read in an Envision plate reader with a filter having a bandwidth of

520–645 nmafter excitation by a 680 nm laser. The totalmeasurement
time per well is 210ms including a 70ms excitation time. The lower
limit of quantification is 20 pM.

Plasma β−3-hydroxybutyrate (3-HB) measurement
3-HB were measured using a Cyclic Enzymatic Method and an auto
biochemical analyzer Cobas C501 with reagents (Cat no. 41773501/
41373601/41273791) purchased from Wako Chemicals GmbH,
D-41468 Neuss.

Plasma triglycerides measurement
Triglyceridesweremeasuredby autobiochemical analyzer CobasC501
with reagents (Cat no. 20767107322) purchased from Roche Diag-
nostics GmbH, D-68298 Mannheim.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper as Supplementary Data
files 1–6 and in the Source Data file. The raw mass spectrometry data
and processed search files have been deposited at the Proteo-
meXchangeConsortium via the PRIDEpartner repositorywith the data
set identifier PXD022225. Public peptide databases such as SwePep
(http://www.swepep.org/), Uniprot (https://www.uniprot.org/) and
NeuroPep (http://isyslab.info/NeuroPep/) were used for Supplemen-
tary Data 3.

Code availability
The PPV code is available in the GitHub repository at https://github.
com/jancr/ppv, released under the MIT licence (https://zenodo.org/
record/7140868#.Y0EvSNhBw2w). All plots can be regenerated from
the Jupyter notebook: https://github.com/jancr/ppv/blob/master/
notebooks/manuscript_figures.md.
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