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Brainstem networks construct threat prob-
ability and prediction error from neuronal
building blocks

Jasmin A. Strickland 1,2 & Michael A. McDannald 1

When faced with potential threat we must estimate its probability, respond
advantageously, and leverage experience to update future estimates. Threat
estimation is the proposed domain of the forebrain, while behaviour is elicited
by the brainstem. Yet, the brainstem is also a source of prediction error, a
learning signal to acquire and update threat estimates. Neuropixels probes
allowed us to record single-unit activity across a 21-region brainstem axis in
rats receiving probabilistic fear discrimination with foot shock outcome.
Against a backdrop of diffuse behaviour signaling, a brainstem network with a
dorsal hub signaled threat probability. Neuronal function remapping during
the outcomeperiod gave rise to brainstemnetworks signaling prediction error
and shock on multiple timescales. The results reveal brainstem networks
construct threat probability, behaviour, and prediction error signals from
neuronal building blocks.

Faced with a potential threat, we must estimate its probability, deter-
mine an appropriate response, and—should we come away intact—
adjust our estimates for future encounters. Historical and current
descriptions of the brain’s threat circuitry emphasize a division of
labor in which forebrain regions estimate threat probability, while the
brainstem elicits behavior1,2. However, behavior signaling is not
observed in expected brainstem neuronal populations, such as the
periaqueductal gray3,4, which instead signals threat probability5.
Instead, periaqueductal behavior signaling is observed in an unex-
pected, cue-inhibited population6. Furthermore, the brainstem peria-
queductal gray is a source of prediction error3,7,8, a learning signal to
adjust threat estimates9. These findings necessitate a more complex
role for the brainstem in threat estimation. However, evidence of
widespreadbrainstem threat probability signaling remains elusive, and
more complete descriptions of brainstem behavior and prediction
error signaling are needed. Recording a 21-region axis with
Neuropixels10 during probabilistic fear discrimination11, we report the
brainstem constructs signals for threat probability, fear behavior, and
prediction error from neuronal “building blocks” organized into
functional networks. Remapping of neuronal function between
cue and outcome periods revealed distinct brainstem network

organization for threat probability, fear behavior, and prediction error
signaling.

Results
Ten rats (four females) werefirst shaped to nose poke for food reward.
Independent of poke-food contingencies, rats received probabilistic
fear discrimination during which three cues predicted unique foot
shock probabilities: danger (p = 1), uncertainty (p =0.25), and safety
(p = 0) (Fig. 1a). A 0.25 uncertainty probability was chosen because
higher probabilities can produce behavior equivalent to danger12. Rats
were implanted with a Neuropixels probe through the brainstem
(Fig. 1b) to permit high-density, single-unit recordings fromacomplete
dorsal-ventral axis during discrimination. Fear was calculated with a
suppression ratio (see methods), comparing reward-seeking rates
during baseline and cue periods. Ratio extremes indicated complete
suppression of reward seeking (1) versus no suppression (0). Ratios
between 0 and 1 indicated intermediate levels of suppression. Rats
showed complete discrimination during recording sessions. Suppres-
sion of rewarded nose poking was high to danger, intermediate to
uncertainty, and low to safety (Fig. 1c; ANOVA main effect of cue
[F(2,142) = 149.2, p = 1.26 × 10–35], Supplementary Fig. S2). We isolated

Received: 19 January 2022

Accepted: 11 October 2022

Check for updates

1Department of Psychology&Neuroscience, BostonCollege, ChestnutHill,MA02467, USA. 2Department of Psychology,DurhamUniversity, DurhamDH13LE,
UK. e-mail: jasmin.strickland@bc.edu; michael.mcdannald@bc.edu

Nature Communications |         (2022) 13:6192 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-4243-0319
http://orcid.org/0000-0003-4243-0319
http://orcid.org/0000-0003-4243-0319
http://orcid.org/0000-0003-4243-0319
http://orcid.org/0000-0003-4243-0319
http://orcid.org/0000-0001-8525-1260
http://orcid.org/0000-0001-8525-1260
http://orcid.org/0000-0001-8525-1260
http://orcid.org/0000-0001-8525-1260
http://orcid.org/0000-0001-8525-1260
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34021-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34021-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34021-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34021-1&domain=pdf
mailto:jasmin.strickland@bc.edu
mailto:michael.mcdannald@bc.edu


and held 1812 neurons during 73, 1-h recording sessions (965 neurons
from the 4 females, Supplementary Table S1). Neurons spanned 21
brainstem regions13 (Fig. 1d), including subregions and neighboring
regions of the superior colliculus, periaqueductal gray, dorsal raphe,
and median raphe (Fig. 1e and Supplementary Table S2).

Brainstem neurons showed marked cue firing that varied in time
course, direction, and pattern (Fig. 2a). K-means clustering for mean,
single-unit firing in 1-s bins from 2-s prior to 2-s following cue pre-
sentation (danger, uncertainty, and safety) revealed neurons could be
organized into at least 21 functional clusters; potential building blocks
for brainstem construction of threat probability and behavior. Cluster
size varied (min size = 24, max= 219, and median= 83) and consistent
firing themes emerged when clusters were visualized (Fig. 2b and
Supplementary Figs. S3 and S4). Many clusters showed ordered cue
firing that differentiated danger, uncertainty, and safety (e.g., k1, k2,
k6, and k7). Principal component analysis (PCA) revealed ordered cue
firing (danger > uncertainty > safety) to be the primary low-
dimensional feature across all brainstem neurons (PC1, explaining
29.7% of firing variance; Fig. 2c, inset).

We used an iterative, PCA shuffle analysis to determine the mag-
nitude of each cluster’s PC1 contribution. Cue firing for the neurons
comprising a specific cluster (e.g., k1) was shuffled, while cue firing for
the neurons of all other clusters was left intact (e.g., k2–k21). Shuffling
and PCA were performed 1000 times per cluster. The change in %
explained firing variance from the complete data (29.7%) to the shuf-
fled data was calculated and averaged across the 1000 iterations for
each specific cluster [PC1 complete – mean (PC1 k1 shuffled)]. PC1
contribution per unit was obtained by dividing the final value by the
number of neurons in the cluster. Clusters contributing more to PC1
have higher values.

PC1firing information originated fromnine clusters (k1–k9; Fig. 2c
and Supplementary Fig. S5) composed of a minority of neurons (505/
1812, 27.9%). Clusters k1–k9 showed shorter firing latencies following
danger onset, and across all clusters, danger firing latency negatively
correlated with the magnitude of PC1 contribution (R2 = 0.41,
p =0.0017; Fig. 2d). Clusters k1–k9 further separated themselves based

on cluster-cluster cue firing correlations (Fig. 2e and Supplementary
Fig. S5), forming a functional subnetwork within the larger brainstem
network. An exception was k3, which showed weak firing correlations
with fellow clusters. K1 and k2 neurons showed indicators of a sub-
network hub: having the greatest PC1 contributions, shorter danger
firing latencies (Fig. 2d), and strong firing correlations with the
majority of their fellow clusters. Furthermore, k1 and k2 single-unit
firing correlated most strongly with mean cue firing of their fellow
subnetwork clusters (Fig. 2f and Supplementary Fig. S5). Neurons from
each cluster were observed in at least six brainstem regions (Fig. 2g).
Subnetwork neurons—including k1 and k2 hub neurons—were con-
centrated in the deep layer of the superior colliculus and subdivisions
of the periaqueductal gray.

Ordered cue firing is the predominant brainstem feature. Yet,
ordered cuefiring could reflect fear behavior or threat probability. Cue
firing reflecting behavior should scale to the level of suppression,
invariant of shock probability. Cue firing reflecting threat probability
should linearly scale with shock probability (0.0, 0.25, and 1.0),
invariant of the level of suppression. Linear regression revealed unique
fear behavior and threat probability signaling across the 21 clusters
(Fig. 3a). Clusters showed considerable temporal variation in signaling
prior to and following cue presentation, characterized by greatest
signaling at onset (e.g., k5), offset (e.g., k15), sustained over cue pre-
sentation (e.g., k10), or even U-shaped signaling peaking mid cue
(e.g., k6).

To reveal low-dimensional signaling features across all clusters
(and therefore across the brainstem), we performed PCA on fear
behavior and threat probability beta coefficients prior to and following
cue presentation (Fig. 3b, top). PC1 reflected a sustained behavior
signal that peaked mid cue presentation, with lesser and opposing
threat probability signaling (62.7% of signaling variance; Fig. 3b, mid-
dle). PC2 reflected a sustained threat probability signal that peaked
during early cue presentation, with lesser behavior signaling (26.12% of
signaling variance; Fig. 3b, bottom, Supplementary Fig. S5). Thus,
stable signals for fear behavior and threat probability emerged from
disparate, temporal signals across clusters.

To reveal network-specific contributions to low-dimensional sig-
nals, we iteratively shuffled or “lesioned” cluster firing for one network
(e.g., subnetwork clusters k1–k9), while leaving the remaining clusters
intact (e.g., supranetwork clusters k10–k21). After network-specific
firing shuffling, we performed linear regression for each cluster, then
performed PCA for behavior and threat probability beta coefficients
across all clusters. Comparing intact signaling (Fig. 3b), to signaling
observed with the subnetwork lesioned (Fig. 3c), versus the supra-
network lesioned (Fig. 3d), allowed us to determine the relative con-
tributions of each brainstem network to behavior and threat
probability signaling.

Sustained threat probability signaling depended more on the cue
subnetwork, while sustained fear behavior signaling depended more
on the cue supranetwork (Fig. 3c, d). Lesioning the subnetwork left
sustained behavior signaling intact (Fig. 3c, PC1, middle), but reduced
threat probability signaling, most apparent at cue onset (Fig. 3c, PC2,
bottom). By contrast, lesioning the supranetwork diminished sus-
tained behavior signaling (Fig. 3d, PC1, middle), and shifted sustained
threat probability signaling to dynamic, probability-to-behavior sig-
naling (Fig. 3d, PC2, bottom). Neurons contributing to the subnetwork
and supranetwork were distributed throughout the brainstem. Subtle
anatomical biases were only apparent for the cue subnetwork (Fig. 3e),
with the deep layer of the superior colliculus and the lateral subdivi-
sion of the periaqueductal gray (also sources of hub neurons) con-
tributing more to the cue subnetwork. These findings reveal the
brainstem is composed of diverse, neuronal building blocks whose
specific cue firing patterns (Fig. 2a) carry unique temporal information
about threat probability and fear behavior (Fig. 3a). A sustained fear
behavior signal is observed across all brainstem neurons (Fig. 3c,
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middle) while a sustained threat probability signal (Fig. 3d, bottom) is
constructed by functional subnetwork.

Fear behavior and threat probability signals are shaped by pre-
diction errors generated following surprising shock delivery and
omission. To capture prediction error-related firing, we focused on the

10 s following shock offset. Brainstem neurons showed marked and
varied firing changes, particularly following “surprising” shock on
uncertainty trials (Fig. 4a). K-means clustering for mean post-shock
firing (4 trial types: danger, uncertainty shock, uncertainty omission,
and safety) revealed brainstem neurons could be organized into at
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least 11 functional clusters (min size = 46,max= 322, andmedian = 169;
Fig. 4b and Supplementary Fig. S6). PCA for mean post-shock firing of
all 1812 brainstemneurons revealedpositive prediction error, on topof
shock responding, to be the primary low-dimensional feature (PC1
explains 17.7% of firing variance, Fig. 4c and Supplementary Fig. S7).
The prediction error is “positive”because the PC1weight for surprising
shock delivery (on uncertainty trials) exceeded the PC1 weight for
predicted shock (on danger trials). The prediction error is not “signed”
because it did not include an opposing, negative error—greater firing
decreases to surprising shock omission (on uncertainty trials) versus
predicted omission (on safety trials).

Unlike the cue period, the temporal pattern of shock firing orga-
nized outcome clusters. K1–k3 neurons showed phasic firing changes
following shock. K1 neurons showed the greatest, phasic firing
increases to surprising shock, and k2 neurons greatest, phasic firing
increases to predicted shock, while k3 neurons physically suppressed
firing following shock irrespective of trial type (Fig. 4b, left column).
Cluster-cluster firing correlations revealed k1–k3 formed a phasic
outcome network (Fig. 4d and Supplementary Fig. S7). K6–k9 neurons
showed sustained firing changes following surprising shock (Fig. 4b,

right column). K6 neurons selectively inhibited firing to surprising
shock, while k7 and k8 neurons showed sustained firing increases that
were maximal to surprising shock. Cluster-cluster firing correlations
revealed k6–k9 formed a tonic outcome network (Fig. 4d). Network-
specific PCA for post-shockfiring revealed equivalent andphasic shock
firing on danger and uncertainty trials to be the primary low-
dimensional feature of the phasic outcome network (explaining
37.0% of firing variance; Fig. 4e, left). PCA further revealed selective
firing to surprising shock, and opposing firing to safety, to be the
primary low-dimensional feature of the tonic outcome network
(explaining 29.2% of firing variance; Fig. 4e, right).

Within the phasic outcome network, k1 and k2 single-unit firing
was better correlated with population firing of their fellow network
clusters than were k3 neurons (Fig. 4f, left). It is problematic to
describe k1 and k2 neurons as hubs, given that the total network
contains only 3 clusters. K6 neurons were a hub for the tonic outcome
network. K6 neuron firing, the cluster decreasing firing to surprising
shock, correlated most strongly with population firing of their fellow
tonic outcome clusters (Fig. 4f, right). Neurons comprising the phasic
and tonic outcome networks differed somewhat in their anatomical
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distribution (Fig. 4g). Phasic outcome neurons were more common at
axis extremes: subregions of the periaqueductal gray, dorsal raphe,
and paramedian raphe. Tonic outcome neurons were distributed
throughout the brainstem, a patternmost striking for k6 hub neurons.

We turned to linear regression in order to distinguish brainstem
signals for sensory shock (equating shock firing on danger and
uncertainty trials), versus prediction error (differential shock firing on
uncertainty trials compared to danger). First, cluster-specific linear
regression revealed unique shock and prediction error signals across

the 11 outcome clusters (Fig. 5a). For example, k1 neurons transiently
signaled both sensory shock and prediction error, while k6 neurons
exclusively signaled error. PCA for shock and prediction error beta
coefficients across all clusters (therefore all brainstem neurons)
revealed opposing sensory shock andprediction error signals to be the
primary low-dimensional feature (PC1, 53.7% of signaling variance;
Fig. 5b, middle). PC2 reflected dynamic, sensory shock to prediction
error signaling (33.4% of signaling variance; Fig. 5b, bottom and Sup-
plementary Fig. S7).
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Rapid sensory shock signaling depended on the phasic outcome
network (Fig. 5c). Lesioning the phasic outcome network (using a PCA
lesion approach identical to the cue networks) left signaling domi-
nated by sustained prediction error (80.0% of signaling variance;
Fig. 5c, middle), while the residual reflected sustained shock (16.8% of
signaling variance; Fig. 5c, bottom). By contrast, lesioning the tonic
outcome network emphasized opposing, phasic sensory shock and
prediction error signaling (61.3% of signaling variance; Fig. 5d,middle).
Residual signaling reflected dynamic, sensory shock to prediction
error (29.8% of signaling variance; Fig. 5d, bottom), similar to that
observed across all brainstemneurons (Fig. 5b, bottom). Thus, a phasic
brainstem network signals sensory shock and prediction error from a
subset of neuronal building blocks transiently responsive following
shock. Concurrently, a tonic brainstem network preferentially con-
structs positive prediction error from a subset of neuronal building
blocks sustaining activity following shock. Anatomical biases for pha-
sic and tonic outcome network neurons were absent (Fig. 5e).

The same 1812 neurons constructing threat probability and
behavior during cue presentation, signaled shock and prediction error
following shock delivery. We were curious whether there was a rela-
tionship between network membership during cue and outcome per-
iods. Recall that the cue subnetwork was composed of 505 neurons
(27.9% of all neurons), many fewer neurons than the cue supranetwork
(1307/1812, 72.1%). Given this imbalance, the relevant question is if the

proportion of phasic (n = 265) and tonic (n = 613) outcome neurons
contributing to the cue subnetwork differ from 27.9%. Chi-squared
testing found neither the phasic outcome neurons (85/265, 32.1%;
χ2 = 2.27, p =0.13) nor the tonic outcome neurons (159/613, 25.9%;
χ2 = 1.17, p =0.28) differed from the expected proportion of 27.9%. A
neuron’s membership to cue networks constructing threat probability
and fear behavior had no influence on membership to outcome net-
works signaling sensory shock and prediction error.

Discussion
We set out to reveal brainstem signaling of threat probability versus
fear behavior. Supporting a prevailing view1, we observed functional
populations whose firing was better captured by trial-by-trial fluctua-
tions in behavior, rather than threat probability. The firing indepen-
dence of these populations and their diffuse anatomical distribution
meant continuous brainstem behavior signaling from cue onset
through shock delivery. Opposing the prevailing view, functional
populations whose firing was better captured by threat probability
were observed. Continuous brainstem threat probability signaling was
also achieved by anatomically diffuse functional populations. How-
ever, an organized threat probability signal was uncovered. Brainstem
populations showing pronounced differential firing to danger, uncer-
tainty, and safety, plus short-latency danger firing changes, formed a
functional subnetwork. Subnetwork “hub” neurons were concentrated
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in the deep layer of the superior colliculus and periaqueductal gray.
Rather thanbeing the exclusive domainof the forebrain, the brainstem
constructs threat probability.

We further found that prediction error signaling is fundamental to
the brainstem. This is consistent with prior studies which have repor-
ted prediction error in the periaqueductal gray7,8,14. However, our
results paint amore complex picture. First, the brainstem contains two
networks operatingondifferent timescales.Aphasicoutcomenetwork
is engaged following shock, with composing functional populations
inhibited to shock, or showing selective firing increases to surprising
or predicted shock. Populations for a surprising shock—positive error—
overlap with known centers for prediction error generation8. A tonic
outcome network signals a positive prediction error. Unique to the
tonic outcome network: composing functional populations—even the
hub—are anatomically distributed. Even more, hub neurons show
preferential firing decreases to surprising shock. The results suggest
eithermultiple aversive prediction error systems in the brainstem, or a
single system in which a tonic error signal opens a window of per-
missibility for phasic error to update threat estimates15.

Construction is an apt term for brainstem threat probability and
prediction error signaling. A remarkable feature of single-unit
responding during the cue and outcome periods was its diversity:
direction, magnitude, trial-type pattern, and temporal characteristics.
Single-unit responding was diverse—not chaotic. Order first emerged
in population firing: single units with similar function were observed
across regions. Functional populations were not isolated, but showed
specific patterns of correlated firing. The result was a consistent,
network-level signal for threat probability during the cue period; and
signals for prediction error during the outcome period. Stable
network-level brainstem signals are constructed from disparate neu-
ronal building blocks.

A caveat to our prediction errorfindings is thatwedidnot observe
population-level or brainstem-level signaling of negative error. The
intermediate levels of nose poke suppression to the uncertainty cue
confirm that shock omission was detected—otherwise, uncertainty
behavior would have been equivalent to danger. Though because we
selected a 25% foot shock probability for the uncertainty cue, shock
trials were rarer than omission trials. There is evidence that midbrain
dopamine neurons signaling prediction error are sensitive to rare
outcomes16. Had we made shock omission rarer than shock delivery
(e.g., using a 75% shock probability), neural correlates of negative error
might have emerged. Yet given that a 50% shock probability cue can
support behavior comparable to a 100% cue12, negative error gener-
ated by surprising omission to a 75% shock cuewould be insufficient to
weaken cue-shock associations and reduce fear behavior.

Viewing the forebrain as the sourceof threat estimationhasmeant
continuous refinement of forebrain threat processing. Cortical sub-
regions are being linked to specific threat functions17. Amygdala threat
microcircuits are beingmapped in intricate detail18. Brainstem regions
contain the building blocks needed to construct threat estimates. This
finding necessitates refinement and detail of brainstem threat function
on par with its forebrain counterparts. Expanding on prior brainstem
work19–21, our results reveal the superior colliculus22–24 and periaque-
ductal gray25–27 as prominent sources of threat information. We reveal
abundant and diverse threat signaling in the paramedian raphe28, an
unstudied region adjacent to the serotonin-containing median raphe.
Critically, these regions do not function in isolation. Rather, the
superior colliculus and periaqueductal gray organize a local brainstem
network to signal threat probability.

Perhaps the brainstem signals threat probability, but this signal is
trained by the forebrain. This would be consistent with our findings.
Yet, where do forebrain threat estimates originate, and once formed,
how are threat estimates updated? Prediction error provides a plau-
sible mechanism for forming and updating threat estimates. Pre-
ferential responding to surprising aversive events—consistent with

positive prediction error—has been reported inmany human forebrain
regions29. Preferential responding to surprising omission of aversive
events—consistent with negative error—has also been observed in
human forebrain regions30. However, opposing firing changes to
positive and negative error in the same region—a requirement of a
signed prediction error31,32—aremore narrowly observed in the human
brainstem8. Direct manipulation of error-related activity in the brain-
stem of rats and mice alters fear behavior3,7,33–35. Available evidence
suggests that learned threat estimates originating in the forebrain
require prediction error generated in the brainstem. In which case, de
novo acquisition of a brainstem threat estimate, trained by the fore-
brain, would require brainstem-generated prediction error. Also
plausible–brainstem-generated prediction error may train and update
a brainstem threat estimate, bypassing the forebrain altogether.

Fully revealing the brainbasis of threat computation is essential to
understanding adaptive and disordered fear. Our finding of wide-
spread and organized brainstem threat signaling calls for the aban-
donment of the historical division of labor view. In its place, we must
embrace a brain-wide view of threat computation36–38 in which brain-
stem networks are not limited to organizing fear behavior but are
integral to estimating threat.

Methods
Subjects
Subjects were six male and four female Long-Evans rats, split over two
rounds of testing. The first round included three female and twomale
rats born in the Boston College Animal Care facility, housed with
mothers until postnatal day 21 when they were weaned and single
housed. The second round included four males and one female,
obtained from Charles River weighing 250–275 g on arrival. All were
maintained on a 12-h light-dark cycle (lights on 0600–1800) and were
aged between 95 and 140 days old at the time of the first recording
session. All protocols were approved by the Boston College Animal
Care and Use Committee, and all experiments were carried out in
accordance with the NIH guidelines regarding the care and use of rats
for experimental procedures.

Behavioral apparatus
Training took place in individual sound-attenuated enclosures that
each housed a behavior chamber with aluminum front and back walls,
clear acrylic sides and top, and a metal grid floor. Each grid floor bar
was electrically connected to an aversive shock generator (Med
Associates, St. Albans, VT) through a device that ensured the floor was
always grounded apart from during shock delivery. A single food cup
and central nose pokeopening equippedwith infraredphotocells were
present on one wall. Auditory stimuli were presented through two
speakers mounted on the enclosure ceiling. Auditory cues were 10 s in
duration and consisted of repeating motifs of a broadband click,
phaser, or trumpet, which previous studies have found to be dis-
criminable and equally salient. Testing took place in an identical
chamber, but was equipped with a custom plastic food cup, plastic
front and back walls, and multi-axis counterbalanced lever arm
(Instech Laboratories, MCLA) with plastic tubing that held the
recording cable and entered the chamber via a custom plastic top.

Nose poke acquisition
Rats were food restricted to 85% of their free-feeding body weight,
with ad-libitumaccess towater.After pre-exposure topellets (Bio-Serv,
Flemington, NJ) in their home cages for 2 days, rats were shaped to
nose poke for pellet in the experimental chamber. During the first
session, the nose poke port was removed, and rats were issued one
pellet every 60 s for 30min. In the next session, the port was rein-
serted, and poking was reinforced on a fixed ratio 1 schedule in which
one nose poke yielded one pellet until they reached ~50 nose pokes or
30min.Nosepokingwas then reinforcedon a variable interval 30-s (VI-
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30) schedule for one session, then a VI-60 schedule for the next four
sessions. The VI-60 reinforcement schedule was utilized during sub-
sequent fear discrimination and was independent of auditory cue and
shock presentation.

Fear discrimination
Rats received 12 sessions of Pavlovian fear discrimination prior to
Neuropixels implant. Each 54-min session consisted of a 5-min
warm-up period in the chamber followed by 16 cue presentation
trials. Each auditory cue predicted a unique shock probability
(0.5mA, 0.5 s): danger, p = 1.00; uncertainty, p = 0.25; and safety,
p = 0.00. Shock was administered 2 s following the termination of
the cue on danger and uncertainty-shock trials. A single session
consisted of 4 danger, 2 uncertainty-shock, 6 uncertainty-no shock,
and 4 safety trials with a mean inter-trial interval of 3min. Trial
order was randomly determined by the behavioral program and
differed for each rat, in every session. The physical identities of the
auditory cues were counterbalanced across individuals. Following
recovery from surgery, rats received one VI-60 session to habituate
to being connected to the recording cable. Rats then received
between 1 and 10 discrimination sessions during which single-unit
activity was recorded.

Calculating suppression ratios
Timestamps for cue presentations, shock delivery, and nose pokes
(photobeam break) were automatically recorded by the Med Associ-
ates program. Baseline nose poke rate was calculated for each trial by
counting the number of pokes during the 20-s pre-cue period and
multiplying by 3. Cue nose poke rate was calculated for each trial by
counting the number of pokes during the 10-s cue period and multi-
plying by 6. Nose poke suppression was calculated as a ratio: (baseline
poke rate – cue poke rate) / (baseline poke rate + cue poke rate). A
suppression ratio of “1” indicated complete suppression of nose pok-
ing during cue presentation relative to baseline. A suppression ratio of
indicated “0” indicates equivalent nose poke rates during baseline and
cue presentation. Gradations in suppression ratio between 1 and 0
indicated intermediate levels of nose poke suppression during cue
presentation relative to baseline.

Surgery
Following the 12th discrimination session, rats were returned to ad-
libitum food access and underwent stereotaxic surgery performed
under isoflurane anesthesia (1–5% in oxygen). Four screws were
screwed into the skull around the target cap area to aid adhesionof the
cap, and the skull was also scored in a crosshatch pattern. A cra-
niotomy with a 1.4mm diameter was carried out, and the underlying
dura fully removed to expose the cortex. Immediately prior to implant
the probe was painted with Dil to later identify histology tracks
(ThermoFisher, V22886). To maximize recording regions, each
implant was aimed at coordinates −8.00 AP, −2.80 ML, −7 to −7.5 DV,
with a 15° angle. Each Neuropixels probe (1.0 probe) and head stage
were secured in apre-prepared customhead cap. The capwasheld and
slowly lowered during implant using a modified stereotaxic arm until
the max DV was reached, or until the cap contacted the skull. The
craniotomy was sealed using silicone gel (Dow DOWSIL 3-4680). Once
the cap was in place, the ground wire was wrapped around the two
screws positioned laterally to the cap to ground the probe. Vacuum
sealing grease (Dow Corning) was applied around the base of the cap
to fill any space between the cap and the skull and protect the probe.
Caps were cemented into place using orthodontic resin (cc 22-05-98,
Pearson Dental Supply), and the head cap lid was secured in place on
the head cap. Rats were given one week to recover with prophylactic
antibiotic treatment (cephalexin, Henry Schein Medical) prior to data
acquisition and received carprofen (5mg/kg) for postoperative
analgesia.

Data acquisition
Neural data were recorded using Open Ephys with the Neuropixels PXI
plugin running on an acquisition computer connected to the PXI
chassis (PXIe-1071) containing the Neuropixels base station. Behavior
events were controlled and recorded by a separate computer running
Med Associates software. To get behavior timestamps, signals were
sent fromMedAssociates to theNIDAQmxOpen Ephysplugin, viaMed
Associates TTL adapter boxes (SG-231) plugged into a connector block
(National Instruments, BNC 2110) connected to an I/O module (PXI-
6363) in the PXI chassis. During recording sessions, the cable was first
connected to the head stage and the head stage lid fixed in place, then
the recording channels and reference for that session and subjectwere
selected. To maximize the acquisition of neurons from the midbrain
region, the channels selected were either the lowest bank of 384
channels, or channels 193–575, used in a double alternating order
across sessions and counterbalanced across subjects. The external
referencewas selected unless that proved ineffective in which case the
tip reference of the probewas used instead. After this, the doors to the
chamber were closed and the fear discrimination and recording ses-
sion started. Sessions were only included for analysis if the probe
signal was maintained throughout all 16 trials, if the signal was lost for
any reason that session was discarded. Subjects were recorded from
daily up to either ten total recording sessions, or until data was no
longer able to be acquired from a subject.

Probe retrieval
Following recording sessions, rats were placed back into the stereo-
taxic frameunder isoflurane anesthesia. Theheadcap lidwas removed,
the ground wire cut, and the head stage disconnected and removed.
The cement securing the probe holder in place was scraped away with
a scalpel blade and the holder slowly pulled up and out of the cap. The
probe was then rinsed and soaked in DI water, followed by a soak in a
tergazyme solution before a final rinse with DI water before and if still
functional after explant safely stored for re-implant.

Histology
Once the probe had been explanted, the rat was removed from the
frame and deeply anesthetized using isoflurane before being perfused
intracardiallywith 0.9% biological saline and 4%paraformaldehyde in a
0.2M potassium phosphate buffered solution. Brains were extracted
and fixed in a 10% formalin solution for 24 h, then stored in 10%
sucrose/formalin. Brains were sliced with a microtome into 40μm
sections (from approximately Bregma −6.5 to −9, to ensure the full
extent of the probe tracks could be identified). The tissue was rinsed,
incubated in NeuoroTrace (ThermoFisher, N21479), rinsed again, and
then mounted prior to imaging within a week of processing (Axio
Imager, Z2, Zeiss) to locate probeplacement using the visibleDil tracks
and NeuroTrace. Neuron locations were established by identifying the
3D location of the tip of the probe relative to the Allen Atlas, as well as
the location in which the probe entered the brain (not including the
cortex) and the vector of implant calculated. These were also checked
against expected electrophysiology patterns (regions of expected low
and high activity) for location accuracy.

Neuron sorting
Data were automatically spike sorted using Kilosort 239 or 2.5 (https://
github.com/MouseLand/Kilosort). Clusters identified by Kilosort were
manually curated in Phy (https://github.com/cortex-lab/phy). To
assess if activity reflected single-unit activity, inter-spike interval,
waveform shape, firing rates, activity change across channels, were all
examined. Neurons were also assessed for potential merges with
similar nearby clusters, and for potential splitting out of noise/other
neurons. Neurons were only kept for analysis if the pattern of activity
was confidently identified as neuron activity, and not noise or multi-
unit activity. Accepted neurons were finally screened usingMatlab and
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only kept if consistently recorded throughout all trials in the session
recorded in, any neurons that showed clear drop-offs or loss of
recordings were discarded. A total of 52% of neurons accepted in Phy
passed Matlab screening. Complete descriptions of spike sorting are
provided in the Supplementary information.

Analysis
Matlab was used to extract, collate, and analyze the single-unit data
and behavior timestamp events. Fear wasmeasured by suppression of
rewarded nose poking (baseline poke rate – cue poke rate)/(baseline
poke rate + cue poke rate). Perceptually uniform colormapswere used
to prevent visual distortion of the data40. K-means clustering was
performed by systematically varying the number of clusters and
examining the output for over/under clustering. Single-unit and
population firing analyses utilized k-means clustering, PCA, linear
regression combinedwith iterative shuffling. Complete descriptions of
single-unit analyses are provided in the Supplementary information.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The single-unit data generated in this study have been deposited at
https://crcns.org/. Source Data are provided with this paper.

Code availability
Code for single-unit analyses is available at https://crcns.org/.
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