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Micro-scale functionalmodules in thehuman
temporal lobe

Julio I. Chapeton 1 , John H. Wittig Jr1, Sara K. Inati 1 &
Kareem A. Zaghloul 1

The sensory cortices of many mammals are often organized into modules in
the form of cortical columns, yet whether modular organization at this spatial
scale is a general property of the human neocortex is unknown. The strongest
evidence for modularity arises when measures of connectivity, structure, and
function converge. Here we use microelectrode recordings in humans to
examine functional connectivity and neuronal spiking responses in order to
assess modularity in submillimeter scale networks. We find that the human
temporal lobe consists of temporally persistent spatially compact modules
approximately 1.3mm in diameter. Functionally, the information coded by
single neurons during an image categorization task ismore similar for neurons
belonging to the same module than for neurons from different modules. The
geometry, connectivity, and spiking responses of these local cortical networks
provide converging evidence that the human temporal lobe is organized into
functional modules at the micro scale.

The primary sensory cortices of many mammals can often be divided
into distinct cortical columns containing neurons with similar tuning
properties1,2. This type of organization falls under the broader concept
of modular networks, where a modular network is one that can be
naturally partitioned into groups of nodes, or modules, that have den-
ser connectivity to each other than to the rest of the network3–7. Net-
works comprised of spatially compact modules possess fundamental
evolutionary8–12, metabolic13–15, and computational advantages16–20. Such
modular networks that can produce complex dynamics while being
metabolically efficient may be particularly relevant for human
cognition21,22.

The clearest examples of cortical modules in which measures of
connectivity, structure, and function converge are the barrel columns
in the rodent somatosensory cortex. These columns can be visualized
with a variety of histology methods, and neurons within each column
share similar tuning properties and exhibit denser connectivity to one
another than to neurons from other columns2,23–27. In non-human pri-
mates, systematic investigations of inferior temporal cortex have
established the presence of columnar modules in which cells within
the same column respond to similar though not necessarily identical
features, while cells in different columns respond to different
features28,29. Models using simple iterated functional modules can

produce object representations that approximate the neuronal
responses of these cells and perform reasonably well in object recog-
nition tasks when compared to humans30. These findings coupled with
the aforementioned theoretical considerations have motivated the
hypothesis that modular organization in the form of cortical columns
may in fact be a general principle for cortical circuits.

In humans, however, clear examples of modular organization at
the scale of cortical columns are restricted to the primary visual
cortex, in which anatomical and high magnetic field studies have
revealed maps of retinotopy, ocular dominance, and orientation
selectivity31–39. These studies rely upon the fact that the response
properties of the primary visual cortex are well known, and stimulus
contrasts can be designed to strongly and differentially activate local
patches of tissue. The response properties of local circuits in higher-
order brain regions are less clear, however, limiting the ability to
functionally map the human brain at the submillimeter scale. Func-
tional imaging and electrocorticography studies have identified
function specific modules in higher-order brain regions, but only at
larger spatial scales and in larger brain patches. Some examples
include the face selective fusiform face area40–43 and the intraparietal
sulcus region in the case of numerical processing44,45. But there has
been no direct evidence that higher-order regions in the humanbrain
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are organized into functional modules at the spatial scale of cortical
columns.

Here, we test the hypothesis that the human temporal association
cortex, a higher-order brain region involved in semantic processing,
exhibits a modular organization at the micro scale. We tested this
hypothesis by specifically investigating whether the functional circuity
of this brain region displays the following features: (i) If the temporal
lobe is organized intomodules at this spatial scale, then thesemodules
should have dense internal connectivity and sparser connectivity to
neighboring modules. (ii) Similar to the functional columns identified
in the primary visual cortex, cortical modules in the human temporal
lobe should be spatially contiguous ellipsoids around 1mm in width,
and (iii) if they are constrained by slowly-changing structural con-
nectivity they should also be reproducibly identified from day to day.
(iv) The information coded by neurons within a module should be
more similar than information coded by neurons from different
modules, and (v) the boundaries between modules should be sharp in
terms of both functional connectivity and neural responses.

To assess if local temporal lobe circuits exhibit these features,
we analyzed local field potential (LFP) and single unit spiking
activity captured through microelectrode arrays (MEAs) implan-
ted in participants with drug resistant epilepsy who were being

monitored for seizures. Based on the LFPs captured in each MEA,
we constructed weighted and directed functional networks, and
analyzed the evolution of these networks over several days. We
find that local cortical networks in the temporal lobe are parti-
tioned into spatially compact modules approximately 1.3 mm in
width, and that these modules persist over time and different
cognitive demands. Critically, in response to images presented
during a category recognition task, neurons within modules have
more correlated neural responses and share more information
regarding the semantic category of the image than neurons from
different modules. The connectivity, spatial geometry, and func-
tional properties of these networks support the hypothesis that
the modular organization that has long been observed in primary
sensory cortices may also characterize the micro-scale circuitry of
the human temporal lobe.

Results
Directed functional connectivity in local circuits of the tem-
poral lobe
We analyzed local field potentials (LFPs) captured from microelec-
trode arrays (MEAs) implanted in the anterior middle temporal gyrus
of eight participants who were being monitored with intracranial

Fig. 1 | Directed functional connectivity in local cortical networks. a Schematic
of recordings and individual blocks. From each MEA we extract 20 data blocks, 5 s
each, for functional connectivity analysis. b Weighted and directed adjacency
matrix for a single session. For each session we construct a weighted and directed
adjacency matrix by computing the pair-wise conditional Granger causality, F ,
between every pair of electrodes. For ease of visualization the colormap shows
log10F . c For each individual MEA we threshold the adjacency matrix from each
session and set all values that were not significantly different from zero equal to
zero. The end result is a series of adjacency matrices, or layers, where each layer

corresponds to a session. d Adjacency matrix similarity across sessions. For every
MEA, the average correlation between adjacency matrices from different sessions
(orange bars) is large (0.4 < r <0.9) and larger than the maximum similarity
between pairs of shuffled networks (gray bars, n = 500 surrogates). e Multi-layer
network representation. By attaching links between the same node across layers,
we can represent adjacency matrices from all sessions as a single multi-layer net-
work (dotted lines show the intra-layer links for a single node). This allows us to
find the optimal partition of the network into communities for all sessions at once.
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electrodes for drug resistant epilepsy. We used a single MEA in two of
the participants (4mm×4mm with 96 electrodes), and two smaller
MEAs in the remaining participants (3.2mm×3.2mm with 64 elec-
trodes each). We considered each of the 14 total MEAs separately
(implantation sites shown in Supplementary Fig. 1a). Participants per-
formed cognitive tasks during several different experimental sessions
throughout the monitoring period, and we extracted 20 separate
blocks of data (each of duration 5 s) from each experimental session
for connectivity analyses (Fig. 1a; Supplementary Fig. 1b, c; see
Methods).

In every experimental session, we computed the pair-wise con-
ditional Granger causality (GC), F j!i, between all pairs of microelec-
trodes to construct aweighted-directed adjacencymatrixof functional
connections for eachMEA (Fig. 1b). Pair-wise conditional GC quantifies
the degree to which activity of a source electrode can predict the
future activity of a second target electrode over and above the degree
to which the target electrode’s activity is already predicted by its own
past and the past of all other electrodes besides the source46. This
helps mitigate spurious causalities that may arise due to common
dependencies or instantaneous field effects like volume conduction47.
Moreover, Granger causal methods have shown a higher correspon-
dence to anatomical connectivity compared to other measures of
functional connectivity48. For eachMEA in each sessionwe generated a
weighted and directed network representation by treating each
microelectrode as a node and the GC values as the connection weights
between the nodes. We set entries in the adjacencymatrix that are not
significantly different from zero to be exactly zero (Fig. 1c; see
Methods)49.

Across all MEAs, we find that local functional networks in the
temporal lobe are sparse (connection probability = 0.26 ± 0.08), and
the functional network in each individualMEA is highly similar across
experimental sessions. For each MEA, we quantified this similarity by
computing the average correlation between every pair of adjacency
matrices from different experimental sessions (mean correlation =
0.7 ± 0.13 across MEAs; Fig. 1d). We compared these correlations to
the maximum similarity that would be observed between rando-
mized networks with the same degree distributions as the real net-
works (n = 500 surrogates for each MEA; see Methods)50. In each
MEA, the similarity of the network between every pair of experi-
mental sessions is significantly greater than the maximum similarity
between the surrogate networks, demonstrating that the strength
and direction of the identified functional connections are stable
across several days.

Local functional networks are composed of temporally persis-
tent modules
The stability of micro-scale functional networks motivated us to use a
multilayermodularity approach that allows us to identify and track the
evolution of network modules across experimental sessions. We con-
sidered each adjacencymatrix fromeach session as an individual layer,
stacked the layers chronologically, and connected each node to itself
across consecutive layers to generate a single multilayer network for
eachMEA (Fig. 1e; seeMethods). This type ofmultilayer network is also
known as a temporal network51,52. We then used multilayer modularity
maximization to find the best partition of the network into commu-
nities across all sessions53,54. This approach optimizes a multilayer
quality function,Qml, which is bounded from above by 1 and quantifies
how well a partition concentrates connectivity within modules. In
practice, values larger than 0.3 are taken as evidence for a modular
network55. One of the main advantages of the multilayer approach is
that communities maintain their labels across the layers so that indi-
vidual communities can be tracked over time. The end result of opti-
mizing the multilayer modularity function is a time-dependent
partition of nodes into modules.

Local networks in the temporal lobe are highly modular (Qml >
0.35 for everyMEA), andmembership ineachmodule does not change
substantially from one session to the next (Fig. 2a; Supplementary
Fig. 1d; Supplementary Fig. 2 for all MEAs). Although we used the pair-
wise conditional GC to define functional connectivity between nodes,
the stronger connectivity within modules and weaker connectivity
across modules is evident even when using other metrics of con-
nectivity such as correlation or coherence (Supplementary Fig. 3).
Because optimizing modularity will always partition a network into
individual modules, it is important to determine if the quality of this
partition is higher than what would be expected by chance from ran-
dom networks with similar statistics. Hence, for each MEA we com-
pared the modularity to the modularity that would arise in random
networks with the same degree distribution as the real networks
(n = 500 surrogates for eachMEA). Localnetworks in the temporal lobe
are significantly more modular than what would be expected by
chance both in each individual MEA (Supplementary Fig. 4a; Supple-
mentary Table 1) as well as across all MEAs (Qml =0.45 ± 0.06 vs
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0.27 ± 0.06 for the surrogates; t(13) = 18.16, p <0.001; paired t-
test; Fig. 2b).

To test how reproducible these partitions are from day to day we
computed the stationarity and normalized persistence of the multi-
layer partitions54,56,57. Stationarity quantifies how quickly or slowly
community structure evolves from one time point to the next and is
defined as the average correlation between subsequent partitions for
each MEA. The partitions of each local network we examined in the
human temporal lobe change slowly from one session to the next, and
change significantly more slowly than expected by chance (Supple-
mentary Fig. 4b; Supplementary Table 1). Across all MEAs together, we
found that the average stationarity of the partitions is significantly
greater than the stationarity expected by chance (0.67 ±0.11 vs
0.20 ± 0.06; t(13) = 15.37, p < 0.001; paired t-test; Fig. 2c). Normalized
persistence tallies the number of nodes that do not change modules
between sessions, normalized by the total number of nodes. We found
that within each MEA, the vast majority of nodes remain within the
same module across all sessions (0.87 ± 0.04 for the example MEA;
Supplementary Fig. 4c; Supplementary Table 1). Across all MEAs, the
average persistence is significantly greater than the persistence
expected by chance (0.81 ± 0.07 vs 0.37 ± 0.06; t(13) = 19.42, p < 0.001;
paired t-test; Fig. 2d). The stability inmodularorganizationobserved in
these local functional networks raises the possibility that these parti-
tions arise from the hypothesized columnar organization of local
structural networks in the cortex.

Spatial geometry of modular networks
To examine if the geometry of these modules is consistent with
columnar organization, we used the root mean square distance from
all nodes within a module to the module’s centroid to generate an
estimate of each module’s diameter (Fig. 2e; see Methods). In each
MEA, the distribution of module diameters across all modules and all
experimental sessions exhibits a stereotypical size for each individual
module of approximately 1.3mm, similar to the size of the ocular
dominance columns in the human visual cortex31–34,36–38 (Supplemen-
tary Fig. 5a for all MEAs). In each case, the distribution of module
diameters is significantly smaller than the module diameters that are
present in the surrogate networks (Supplementary Table 2). On aver-
age across all MEAs, the identified modules are significantly smaller
than themodules that emerge from the surrogate networkswhich, due
to the lack of any spatial embedding, tend to have sizes closer to the

size of the entire array (1.31 ± 0.24mm vs 2.37 ± 0.22mm;
t(13) = − 17.46, p <0.001; Fig. 2g).

We used a metric of spatial compactness to quantify how con-
tiguous amodule is in space (Fig. 2f; seeMethods). Thismetric takes on
a maximum value of 1 if all nodes within a module are spatially con-
tiguous. In each individual MEA, we found that the modules are indeed
spatially compact (Supplementary Fig. 5b), and more compact than
what would be expected by chance (Supplementary Table 2). On aver-
age, across all MEAs the spatial compactness of the true local networks
is significantly greater than the spatial compactness of the random
networks (0.89 ±0.1 vs 0.35 ± 0.05; t(13) = 20.97, p <0.001; Fig. 2h).

We did not find any systematic differences in geometry due to the
different array sizes (3.2mm vs 4mm; Supplementary Fig. 5c). In
addition, the quality, persistence, and size of themoduleswe identified
are relatively robust to different parameters used to maximize mod-
ularity (see Supplementary Fig. 6), supporting the claim that modules
in this patch of cortex have a stereotypical size and shape.

Frequency specific contributions to within vs across module
connectivity
Oscillations at different frequencies have been proposed as a
mechanism to coordinate neural activity across multiple spatial and
temporal scales48,58–61. Modular networks can produce faster pro-
cesses within modules and slower processes across modules, offer-
ing a natural way for the brain to process information locally while
also integrating information from spatially distributed neuronal
populations17,62. To test for this possibility, we calculated the relative
contribution of each individual frequency to the total Granger
causality for each connection (see Methods). We separated the
connections into those that are contained within a module and those
that span across modules. On average, within-module connectivity is
stronger at all frequencies, consistent with the definition of mod-
ularity (Fig. 3a for an individual MEA). We can account for these
overall shifts in the GC spectrum by normalizing the individual
spectra, allowing us to compare the relative frequency contributions
to connectivity within and across modules (Fig. 3b).

Within individualMEAs, we found that the average normalized GC
spectrum across sessions for within-module electrode pairs has a lar-
ger contribution from higher frequencies compared to across-module
electrode pairs (Fig. 3b inset). To quantify this effect across MEAs we
aggregated frequencies into five frequency bands: delta (2-4Hz), theta
(4-8Hz), alpha (8-16Hz), beta (16-32Hz), and broadband gamma (70-
150). Across all MEAs, functional connectivity within modules is
mediated by significantly greater high frequency activity and sig-
nificantly less low frequency activity than connectivity across mod-
ules (Fig. 3c).

Differential coding by functional modules
Although functional connectivity suggests that local networks in the
human temporal lobe are organized into spatially compact modules,
establishing that the identified modules are indeed functionally dis-
tinct fromone another requires evidence that neuronswithin different
modules respond differentially during cognitive processing. A subset
of participants performed an image categorization task while we
recorded single unit spiking activity from a population of neurons
using each MEA (5 participants, n = 10 MEAs; 10 total experimental
sessions; Fig. 4a; Supplementary Fig. 7; see Methods). Because the
arrays were implanted in a region often implicated in processing
semantic representations, particularly of famous people and
places63–65, we tested whether the spiking responses could be used to
discriminate image categories, and if so, whether such neural coding
differed between neurons belonging to different modules. We ana-
lyzed each session from eachMEA independently since the set of units
recorded from the same MEA on one day is almost entirely different
from the set of units recorded on a separate day66.

Fig. 2 |Quality, temporal evolution, andgeometryofnetworkpartitions. a (left)
Optimal multilayer partition for an individual MEA. Every row represents an elec-
trode and every column a session. The color of each cell denotes the community
that node was assigned to for that session. Electrodes were sorted according to
their community assignment for the first session. (right) Spatial embedding of
individual modules. The locations of the electrodes are shown with each electrode
colored according to the community it was assigned to. bModularity index across
all MEAs. Across all MEAs the modularity of the real networks is significantly larger
than for degree-matched random networks. c The stationarity across all MEAs is
significantly larger than for degree-matched random networks. d The persistence
across all MEAs is significantly larger than for degree-matched random networks.
e Illustration of module spatial extent. The module diameter is estimated as 2Rg,
where Rg is the radius of gyration for a set of equal masses. f Illustration of module
compactness. Themodule compactness is the number of nodes fromamodule that
arewithin themodule’s convexhull dividedby the total number of nodeswithin the
hull. g Module spatial extent across all MEAs. The module diameter is consistent
across all MEAs (1.31 ± 0.24mm). For reference, the average module diameter for
degree-matched random networks is closer to the size of the entire MEA
( ≈ 2–3mm). h The mean compactness is near 1 and significantly larger than for
degree-matched random networks, indicating that the modules are mostly con-
tiguous in space. For all box-plots the whiskers cover points within 1.5 IQR (inter-
quartile range) of the first or third quartile; values outside of this range are con-
sidered outliers and are represented by individual circles. The notches (triangles)
are placed at the median ± 1:57 IQRffiffi

n
p , where n is the number of MEAs.

Article https://doi.org/10.1038/s41467-022-34018-w

Nature Communications |         (2022) 13:6263 4



In an example session from an individual MEA, neuronal respon-
ses to an image of a famous person appear to depend on module
membership (Fig. 4b). Themagnitude and timing of spiking responses
appear consistent within modules, and more heterogeneous across
different modules. This was true for this individual trial, as well as on
average across all trials for this behavioral session. To quantify this, we
trained a linear classifier to discriminate among image categories using
only the spiking neurons within each identified module (median 23
neurons per module, range 7 to 34 for the example session and MEA).
In this example, by 500ms after stimulus presentation, classification
accuracy rises above chance levels in five of the seven identified
modules (Fig. 4c; see Methods). In 26 of the 75 modules identified
across all sessions and MEAs, overall classification accuracy using the
population spiking activity in that module is significantly greater than
chance (Supplementary Fig. 8a). Accuracy tends to be higher for
modules that contain more neurons, although this relation is not
absolute (Spearman’s ρ =0.51, p <0.001, Supplementary Fig. 8c).

The observed heterogeneity in classification accuracy across
modules, even within the same MEA, supports the hypothesis that the
modules are functionally distinct. It is possible, however, that a ran-
dom and spatially distributed subset of individual neurons code image
category, and that modules containing more neurons are more likely
to include those image category neurons simply by chance. If in fact
the modules do define patches of cortex that share similar functional
responses, then neurons within each module should share more
information about each image than neurons from different modules.
We directly tested for this by comparing classification accuracy after
shuffling neuron identities in twoways. In the first, for eachmodule we
shuffled the neuron identities using only neurons from that individual
module before classifying the hold-out set, whereas in the second, we
shuffled neuron identities with neurons from an entirely different
module (Fig. 4d; see Methods). In an example module, shuffling neu-
ron identity within the module decreases classification accuracy, but
overall classification still remains high and significantly greater than
chance (p <0.001, t(19) = 9.61 paired t-test; Fig. 4e). In contrast, when
shuffling neuron identities with neurons from a different module with
comparable classification accuracy, classification accuracy drops sub-
stantially and hovers near the chance level. Across all modules in this
MEA and session, classification accuracy is significantly better after
shuffling within compared to shuffling across modules (t(41) = 5.2, p <
0.001; Fig. 4f). This difference is consistent across all modules fromall
MEAs and behavioral sessions (t(297) = 9.7, p < 0.001; Fig. 4g), and
across sessions (module-averaged difference per session and MEA
t(15) = 3.1, p =0.007). The heterogeneity in codingwithin small patches
of tissue together with the shuffling analysis shows that the modules
are functionally distinct. Neurons belonging to the samemodule code
similar, though not identical, information regarding image category,

whereas category information is more independent across neurons
belonging to different modules.

Module boundaries are sharp
Within the context of brain mapping a distinction can be made
between modules, where functional boundaries are sharp, and func-
tional maps, where stimulus selectivity changes gradually41. We
therefore analyzed both the functional connectivity and similarity in
neural responses between electrodes at the boundaries of each mod-
ule. We defined the boundary for each module using it’s convex hull,
and identifiedelectrodes on theboundary thathave anearestneighbor
that is inside the boundary as well as a nearest neighbor that is outside
of the boundary (Fig. 5a). In this manner, we were able to compare
connectivity within and across modules while exactly matching for
distance. Across all MEAs, the average GC over all modules is larger for
comparisons within the boundary versus across (t(13) = 5.4, p < 0.001;
Fig. 5b).

We performed an analogous analysis using the average correla-
tion across all trials between neuronal spiking responses captured
during the categorization task (Fig. 5c). Because some units may not
fire at all duringmost trials,we restricted this analysis only to units that
spiked in at least half of the trials. Unlike the LFPs which are robustly
captured from nearly every electrode, the spatial coverage with
respect the single unit activity ismuch sparser. Nevertheless, across all
available comparisons (n = 21modules from9 sessions and 5MEAs) we
find that responses for pairs within the boundary are significantly and
substantially more correlated than for pairs across the boundary
(t(20) = 3.4, p =0.003; Fig. 5d). In these analyses comparisons between
within module and across module pairs are exactly matched for dis-
tance, highlighting that the boundaries of these partitions are not
arbitrary.

Discussion
In this study we provide evidence that local circuits in the human
temporal lobe are organized into spatially compact functional mod-
ules. These modules, identified by partitioning networks constructed
using measures of directed functional connectivity at the sub-
millimeter scale, persist over time and have a diameter of approxi-
mately 1.3mm. Importantly, these modules have functional
significance. During an image categorization task, neurons belonging
to the same module share more information about visual stimuli than
those belonging to different modules, and the boundaries of these
modules are sharp in terms of both functional connectivity and neural
responses.

In complex networks, modularity is typically defined based on
measures of connectivity, i.e., a modular network is one in which there
is strong connectivity within modules and weaker connectivity across
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modules. From the perspective of systems neuroscience, however,
evidence for modularity often relies upon functional differences
between modules. When activated by external stimuli, different
modules should exhibit different response properties and tuning. In

this context, identifying cortical modules in primary sensory cortices,
and specifically assigning them functional significance, is tractable
because there areoftenwell definedmappings between sensory inputs
and neural responses. Still, the strongest evidence for modular
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we show a representative image that is not part of the stimulus set. b Response
properties of individual modules. For an individual 'PERSON' trial the spike times
are colored according to the module that the spike came from (left). The grayscale
background represents the trial-averaged firing rate for each individual unit, and
the colored lines show the average firing rate for each module. Neuronal spiking
appears to cluster in time according to module membership. This was true for
individual trials as well as on average across all 'PERSON' trials. c Coding of image
category by individual modules. Each line represents the time-course of classifi-
cationwhen using data from only that module. Somemodules contain information

about the category of the image (colored lines) whereas classification for others
was below chance level (gray lines).d Schematic of within vs acrossmodule coding
analysis. For the shuffle within, we shuffle unit identities using only units from that
individual module before classifying a hold-out set, whereas for the shuffle across
we shuffle the data only from units that belong to different modules. e Effects of
shuffling on category classification. In this example, accuracy decreased when
shuffling within, but remained well above chance level. In contrast, after shuffling
across the classifier accuracy drops to near chance. f Scatter of classifier accuracy
after shuffling within and after shuffling across for a single session. The shuffle
within accuracy was significantly higher than the shuffle across. g Scatter of shuffle
within and shuffle across accuracy for all sessions. Across all sessions, shufflewithin
accuracy is significantly higher than the shuffle across accuracy. Different colored
points denote the individual arrays.
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organization in neural circuits arises when measures based on con-
nectivity, structure, and function converge, as is the case with the
cortical columns of the rodent barrel cortex23,24,27.

A central challenge in identifying modular organization in higher-
order regions of the human brain, however, has been establishing
convergence between connectivity and function in micro-scale net-
works. Obtaining precise knowledge of the connectivity diagram at the
submillimeter scale required to probe cortical columns is rare. There-
fore, functionalmodules inhumansare almost exclusivelydefinedusing
stimulus contrasts. Several neuroimaging and electrocorticography
studies have examined stimulus responses to identify functional mod-
ules at larger spatial scales and in larger patches of cortex, such as the
fusiform face area40–43 and the intraparietal sulcus region44,45, but
examples ofmodular organization at themicro scale in thehumanbrain
are mostly restricted to the primary visual cortex31–34,36–39. In higher-
order brain regions, the preferred stimuli for evoking localized neural
responses at themicro scale are less clear. Coupled with the limitations
in mapping connectivity at this spatial scale, obtaining convergence
between connectivity and function to identify micro-scale modules in
these regions has therefore been more difficult.

The lattice arrangement of the microarrays used in this study
provides a convenient template for studying the spatial properties of
local connectivity. Ideally, one would like to define connectivity based
on interactions between the activity of single neurons. However, high-

quality single unit activity of the type required for detailed analysis of
spike-spike interactions is typically only available in a subset of
recordings and from a subset of channels in the microarray, limiting
the spatial interactions that can be assessed. Our approach addresses
this challenge by using measures of functional connectivity to first
identify modules from LFP signals, and then independently examining
spiking activity of neurons within those identified modules to confirm
the functional differences between them. While our results do not
demonstrate explicit structural connectivity, the convergence of net-
work functional connectivity and neural responses in these local cir-
cuits provides evidence that this higher-order brain region exhibits a
modular organization. This strategy of first partitioning functional
networks constructed from LFPs and then separately validating that
thesemodules exhibit independent functional properties based on the
spiking responses of individual neurons, may provide a generalizable
approach for identifying the boundaries of functional modules
throughout the cortex. These partitions can then be used to guide
subsequent analyses.

A convenient consequence of this approach is that it allows us to
also examine connectivity as a function of LFP frequency. We find a
consistent difference in frequency content between connections
within modules and connections across different modules. In relative
terms, communication within modules is mediated by higher fre-
quency components, while communication across modules is
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boundary to inside and boundary to outside pairs for the individual MEAs and
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mediated by lower frequency components. This asymmetry in fre-
quency content may be related to oscillatory mechanisms of cortico-
cortical communication67–70. Indeed, there is evidence to suggest that
the specific oscillatory frequency involved in cortico-cortical com-
munication may be related to the spatial scale over which commu-
nication occurs58,61,71, consistent with our observations.

Processes like neural synchronization and cortico-cortical com-
municationmay operate overmultiple spatio-temporal scales; similarly,
corticalmodules spanmultiple scales in a hierarchical fashion21. Probing
human brain networks acrossmultiple spatial scales is therefore critical
for understanding how modular organization can subserve function.
Unfortunately, no single methodology currently exists that can ade-
quately sample activity at all of these spatial scales simultaneously.
While the MEAs used here are well suited for probing local structure,
there is a limitation on the extent of spatial coverage, particularly when
working with human patients in a clinical setting. Studies using high-
density electrocorticography, which offers broader spatial coverage at
the expense of spatial resolution, have previously demonstrated that
language processing in the temporal lobe is not spatially homogeneous
at a separationof4mm72.Combininghigh-density electrocorticography
withMEAs or studies withmultiple contiguousMEAs will be required to
link together these different spatial scales anddetermine the extent and
scale of hierarchical modularity in human brain networks.

The geometry of the temporal lobemodules we identify, spatially
contiguous ellipsoids approximately 1.3mm in diameter, suggests that
these modules could in fact reflect cortical columns. Early work in
humans using cytochrome oxidase staining identified ocular dom-
inance columns with similar dimensions31,32,37, as have more recent
neuroimaging studies33,34,36,38. Our results suggest that this columnar
organization may be preserved in the human anterior temporal lobe,
although recordings from multiple cortical layers will be required to
fully asses the columnarity of these circuits.

While the functional relevance of columnar organization has been
debated73, the fact remains that the clustering of neurons with similar
response properties into spatially segregated cortical columns is a
ubiquitous feature of sensory cortices across various species, includ-
ing tonotopicmaps in the auditory cortex, taste maps in the gustatory
cortex, somatotopic maps in somatosensory areas, and dominance
and orientation maps in the visual cortex2,74–77. Together with the
metabolic and computational advantages of modular networks, this
has raised the possibility that modularity may have particular func-
tional significance for human cognition22. For example, it has been
suggested that the coding of visual information by multiple cells in a
columnar module that have similar but not identical selectivity may
arise as a solution to one of the critical problems in object recognition:
achieving invariant yet precise representations28,30,78. In our data, we
find thatmultiplemodules contain category information that is largely
independent, and that within modules category decoding is much
more similar, although the information is not fully redundant across
individual neurons. This is consistent with the proposition that the
general class of an object canbe representedby the activity ofmultiple
modules whereas precise discriminations may rely on detecting dif-
ferences in the activity of neurons belonging to the same module.

In closing, our results rest upon converging evidence of both
connectivity and function and show that local functional circuits in the
human anterior temporal lobe have a modular organization. The
existence of functional modules that approximate the size and geo-
metry of cortical columns identified in the human primary visual cor-
tex, suggests thatmodularitymay be a general organizing principle for
neural circuits at the micro-scale.

Methods
Participants
Eight participants (4 female; 39.3 ± 9.5 years old; mean± SD) with drug
resistant epilepsy underwent a surgical procedure in which platinum

recording contacts were implanted on the cortical surface as well as
within the brain parenchyma. In each case, the clinical team deter-
mined the placement of the contacts to localize epileptogenic regions.
In all the participants investigated here, the clinical region of investi-
gation was the temporal lobes.

In each participant, for research purposes we placed one or two
microelectrode arrays (MEAs; Cereplex I; Blackrock Microsystems,
Inc., Salt Lake City, UT) in the anterior temporal lobe (ATL) in addition
to the subdural contacts. When using a single MEA, the MEA is com-
prised of 96 microelectrode contacts arranged in a 4 × 4mm grid. For
participants with two MEAs, each MEA is comprised of 64 microelec-
trode contacts arranged in a 3.2mm×3.2mm grid and both MEAs are
placed within 1–2 cm of one another. The length of each microelec-
trode in the MEAs is 1mm or 1.5mm. Given an average cortical thick-
nessof around3mm,weestimate that themicroelectrode tips likely lie
in the vicinity of layers 3 or 4. We implanted MEAs only in participants
with a presurgical evaluation indicating clear seizure localization in the
temporal lobe and the implant site in the ATL was chosen to fall within
the expected resection area. EachMEA was placed in an area of cortex
that appeared normal both on the pre-operative MRI and on visual
inspection. Across participants, MEAs were implanted 19.1 ± 13.6mm
away from the closest subdural electrode with any ictal or interictal
activity identified by the clinical team. Five out of the eight participants
received a surgical resectionwhich includes the tissue where theMEAs
were implanted. None of the participants had intracranial EEG
recordings that suggested that the source of seizure activity was in the
anterior lateral temporal cortex where the arrays were implanted, yet
these regions were removed as part of the standard surgical proce-
dure. While we cannot be certain that these regions are not pathologic
in some way, the clinical recordings suggest that they are not directly
involved in the seizures that were captured. One participant had evi-
dence of focal cortical seizure activity and received a localized resec-
tion posterior to the MEA site. Two participants did not have a
sufficient number of seizures during the monitoring period to justify a
subsequent resection. Neither participant experienced a change in
seizure type or frequency following the procedure, or experienced any
noted change in cognitive function.

Datawere collected at theClinical Center at theNational Institutes
of Health (NIH; Bethesda, MD). The Institutional Review Board (IRB)
approved the research protocol, and informed consent was obtained
from the participants and their guardians.

Microelectrode recordings and preprocessing
Localfieldpotentials. We digitally recordedmicroelectrode signals at
30 kHz using the Cereplex I and a Cerebus acquisition system (Black-
rock Microsystems, Salt Lake City, UT), with 16-bit precision and a
range of ±8mV. To obtain local field potentials (LFPs), we low-pass
filtered the signals at 500Hz (anti-alias), downsampled to 1000Hz,
and then re-referenced each time series by subtracting the average
signal across all microelectrode channels. We used the Chronux 2.11
toolbox to apply a local detrending procedure to remove slow fluc-
tuations (≲2Hz) from each electrode’s time series and used a
regression-based approach to remove line noise at 60Hz and all har-
monics up to the Nyquist frequency79. During this step we first
upsample the signals to 1020Hz so that the sampling rate is an integer
multiple of 60 and thendownsampleback to the original sampling rate
after the regression. These techniques do not suffer from some of the
distortions induced by high pass or notch filtering field potential
signals79. We minimally process the data and avoid unnecessary fil-
tering since excessive filtering and pre-processing can have a deleter-
ious effect on estimating the pair-wise conditional Granger
causalities49. Supplementary Fig. 1b shows the effect of pre-processing
on the power spectrum for an example channel and session.

We collected microelectrode recording data from experimental
sessions during which the participants performed a variety of
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cognitive testing tasks designed to test theirmemory or their ability to
correctly categorize visual stimuli. We analyzed data from these
experimental sessions since this ensures that the participants were
awake and actively engaged throughout the duration of each session.
We restrictedour analysis to sessionswith a durationof at least 30min.
Since some sessions lasted longer than 30min, we only analyzed the
first 30min of each session such that the time-scales for analysis are
the same for all participants. We discarded any sessions that contained
clear artifacts throughout. We also discarded all experimental sessions
that involved direct electrical stimulation so as to avoid electrical
artifacts. In total, we captured data from 3.6 ± 1.2 sessions per partici-
pant, and each experimental session was separated from the next
session by an average of 2.1 ± 2 days.

For each session, we rejected electrodes if they exhibited abnor-
mal amplitude, variance, or large line noise. In every individual session,
we calculated the root mean square amplitude and the variance of the
voltage values for each electrode. Any electrode with a voltage trace
whose RMS amplitude or variance was greater than three standard
deviations away from the mean across all electrodes was flagged for
visual inspection. We rejected any electrode which displayed clear
artifacts throughout the session and excluded that electrode from the
global average when re-referencing80. We also inspected time-
frequency spectrograms for each electrode after removing line
noise, and manually rejected any electrode still exhibiting significant
line noise power. We discarded an electrode from all sessions if we
rejected that electrode in any one session. After this procedure, we
retained 87.5 ± 0.7 electrodes from the 4mm×4mm arrays for sub-
sequent analysis, and 51.5 ± 4.2 electrodes from the 3.2mm×3.2mm
arrays.

Large non-stationary deflections in the time series, such as arti-
facts or epileptiform discharges, are problematic for computing
Granger causality since some of the assumptions of vector auto-
regressive models are violated46. To further mitigate any confounds
due to artifacts and epileptiform discharges, we split each session into
twenty 30-second clips and noted any time points where the voltage
exceeded four scaled median absolute deviations81. For each of these
time points we removed the adjacent five samples on each side and
interpolated using a piecewise cubic Hermite interpolating
polynomial82,83. From each 30-second clip we extracted the 5-second
window with the fewest number of time points that had to be inter-
polated. Therefore, we retained twenty 5-second blocks in each
experimental session that we used for connectivity analysis, with an
average inter-block interval of 77.3 ± 0.4 s across sessions. See Sup-
plementary Fig. 1d for an example of a single block of processed LFP
data sorted bymodule membership. For the purposes of our analyses,
we performed the pseudo-random selection of the individual blocks
from the first 30min of each session without considering any time-
locking to any external stimulus, event, or task. Thus, the data in the
blocks used for our analyses reflect spontaneous, though not neces-
sarily resting, activity.

Single unit activity. For five of the participants wemanually identified
single units offline that were recorded during a visual categorization
task. We used quantitative metrics of isolation quality to estimate the
quality of each unit used in subsequent analysis. After identifying a list
of channels with potential single-unit activity, we loaded the globally
re-referenced and bandpassed (0.3 to 3 kHz) time series of each
channel, one at a time, into Plexon Offline Sorter (Plexon, Inc., Dallas,
TX) for manual spike sorting. We converted the continuous-voltage
time series into a population of voltage snippets (1.067ms long,
30 samples) that crossed amanually defined voltage threshold. We set
the threshold such that random noise fluctuations in the signal would
occasionally cross the threshold and be captured as a noise snippet.
We projected each snippet into principle component space and only
retained isolated units that were separable from each other and from

noise throughout the duration of the experiment84. We identified a
total of 1034 unique units across 10 recording sessions (103 ± 47 units
per recording session) with an average spike rate of 1.47 ± 0.66 sp/s
and an isolation score of 0.89 ± 0.0685 (Supplementary Fig. 9). We
henceforth refer to these isolated units as spiking neurons.

Directed functional connectivity
We constructed an adjacency matrix for each MEA in each experi-
mental session by treating each microelectrode as a node and com-
puting the pair-wise conditional Granger causality between every pair
of microelectrodes (see Supplementary Text)46,49,86. The physical nat-
ure of structural connections in the brain makes neural networks
inherently directed and introduces temporal delays when information
is being transferred through these connections. Thus, given recordings
of sufficiently high temporal resolution, efforts should be made to
capture this feature of brain networks in measures of functional con-
nectivity. Substantial work has demonstrated that Granger causal
methods are adequate for detecting these relationships between cor-
tical regions69, reduce the effect of instantaneous field effects47, and
show higher correspondence to anatomical connectivity compared to
other measures of functional connectivity48.

The Granger causality from Y to X quantifies the degree to which
the activity in Y canpredict the activity inXbeyond thedegree towhich
the activity in X is predicted by its own past. These notions of predic-
tion and precedence in Granger causal analysis can be quantified using
vector autoregressive (VAR) modeling. In order to eliminate spurious
causalities that may arise due to common dependencies on a third
variable, Z, we compute the conditional Granger causality which is
defined as the conditional F -statistic:

F y!x∣z¼: ln
varðε0x,tÞ
varðεx,tÞ

ð1Þ

where εx,t is the residual of the full vector autoregressive model that
predicts the activity of electrode X based on the past of electrodes X, Y,
and Z, and where ε0x,t is the residual of the reduced model which only
uses the past of X and Z. If the variability of the residuals in the full
model is significantly less than that of the reduced model then the
inclusion of Y improves the prediction of X.

In a multivariate setting one can condition not just on a single
variable Z, but on all other known variables besides X and Y. This
defines the pair-wise conditional Granger causality,F y!x∣½xy� where [xy]
denotes conditioningon all variables besides x and y. For simplicity, we
use F or F y!x to denote the pair-wise conditional Granger causality.
Pair-wise conditional Granger causality quantifies the degree to which
activity of a source electrode canpredict the activity of a second target
electrode over and above the degree to which the target electrode’s
activity is already predicted by its own past and the past of all other
electrodes besides the source46. This helps mitigate any spurious
causalities that may arise due to common dependencies or volume
conduction.

We used the values F j!i as connection weights to construct an
adjacency matrix for each MEA in each experimental session. Given
each F -statistic, we determined whether each connection weight is
significantlydifferent fromzero and applied a Bonferroni correction to
each of the adjacency matrices49. We set entries in the adjacency
matrix whose connection weights are not significant to zero, and kept
the raw values for all entries deemed significant. Thus, for each array
and session we constructed a weighted and directed network repre-
sentation (Fig. 1c).

Spectral decomposition of conditional Granger causalities. The
framework described above can be implemented in the frequency
domain and conditional Granger causalities can be calculated as a
function of frequency for each electrode pair46,87,88. The fundamental
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spectral decomposition in the conditional case is given by:

1
2π

Z 2π

0
f y!x∣z ðωÞdω=F y!x∣z ð2Þ

In this way, band-limited information can be obtained by making use
of:

1
B

Z
B
f y!x∣z ðωÞdω=F y!x∣zðBÞ ð3Þ

where B is the band of interest. Because modularity is maximized by
grouping together electrodes with stronger functional connections,
the spectrum Granger spectrum for electrode pairs within the same
module could be biased to exhibit an overall positive shift compared
to the spectrum for for electrode pairs that span different modules. As
such, we normalized the individual spectra for each electrode pair to
have a total area of one, allowing us to compare the relative frequency
contributions in each electrode pair.

Multilayer modularity optimization
To track how the modular structure of local networks evolves over
time we adopted a multilayer modularity approach. First, we stacked
the adjacency matrices from all sessions for a single participant in
chronological order. This can be represented by a rank-3 adjacency
tensor, [A]i,j,s, where i, j are the indices for the electrodes and s denotes
the individual sessions (or layers). Hence, As represents the N ×N
adjacency matrix for session s where N is the number of electrodes in
an array. This network representation is also known as a temporal
network51,52. Next, for every electrode in layer s we introduced links of
weight ω from that electrode to itself in layer s + 1 (black arrows in
Fig. 1e). This type of coupling has been referred to as diagonal (across-
layer edges only from an electrode to itself), ordinal (only edges
between consecutive layers), and uniform (same edgeweight,ω, for all
across-layer edges) interlayer coupling54,89,90. For each arraywe setω to
be equal to the median non-zero weight across all sessions so that the
across-layer weights are of the same order as the within-layer weights
(Supplementary Fig. 6).

Once the functional networks have been cast into a multilayer
representation we can find the optimal partitioning across all sessions
by optimizing the multilayer quality function Qml

53:

Qml =
1
μ

X
ijst

½ðAijs � γPijsÞδst + δijωjst �δðcis,cjtÞ ð4Þ

were μ is the total summed weight across all edges and Pijs is the
expected connection strength for electrodes i and j in layer s under the
Leicht-Newman null hypothesis for directed networks91. cis denotes
that electrode i belongs to community c in layer s, and δij is the
Kronecker delta. γ is the resolution parameter, which we set to the
default value of 1 (Supplementary Fig. 6). Intuitively, the quality of the
optimal partition, Qmax

ml , also known as the modularity of the network,
tells us the fraction of the total edge weight that falls within groups
minus the expected fraction if the edges were distributed randomly3.
Modularity has an upper bound of 1, and in practice, values larger than
0.3 are taken as evidence for a modular network55. A major advantage
of this approach is that a module that exists in two different layers will
be consistently labeled, avoiding the need to match communities that
would arise if modularity was estimated for each session separately.

Because modularity optimization has been shown to be compu-
tationally intractable for most networks (NP-hard)92, computational
heuristics must be applied to find approximate solutions. To this end,
we used the generalized Louvain algorithms93. The quality of the
optimal partition is nearly-degenerate in that many partitions exist
whose quality value is very close to that of the true optimum. The

number of such partitions is bounded by 2n�1 from below and the nth
Bell number from above, where n is the average number ofmodules94.
For the networks considered here n =6:1 ±0:9. Because the general-
ized Louvain algorithm is non-deterministic, we repeated the Louvain
algorithm 500 times for each MEA in order to adequately sample the
distribution of Qmax

ml values. We also systematically varied the resolu-
tion parameter γ and the between-layer coupling parameter ω to
confirm that this did not have a significant effect on our main results
(Supplementary Text and Supplementary Fig. 6).

To estimate the spatial extent of each module, we computed the
root mean squared distance from all nodes within a module to the
module’s center. This represents the radius of gyration, Rg, for a set of
equalmasses.Weused themodule diameter, 2Rg, as themeasureof the
module’s spatial extent. To quantify the spatial contiguity of each
module, we first calculated the convex hull for each module, and then
defined the spatial compactness of that module as the proportion of
nodes within the hull that belong to the module out all the nodes
containedwithin the hull (Fig. 2f). Hence, if the nodes in amodule tend
to be spatially contiguous, then the average spatial compactness of
that module over all sessions should be near one.

Visual categorization task
Fiveparticipants performedan image categorization task that required
them to viewa series of images and to reportwhether each imagewasa
person, place, object, or animal using the arrow keys (Supplementary
Fig. 7a). We presented the task on a laptop that was synchronized with
the data acquisition system used to record MEA data. Each MEA was
implanted in the anterior temporal lobe, a region often implicated in
processing semantic representations, particularly of famous people
andplaces63–65.We thereforeused an image set consistingof 60 images
each of famous people (e.g., Brad Pitt, Barak Obama), famous places
(e.g., Eiffel Tower, Niagara Falls), animals (e.g., raccoon, flamingo), and
man-made objects (e.g., light bulb, hammer). We obtained images
from free image searches online and the images had a range of dif-
ferent background detail, ranging from full natural scene backgrounds
(e.g., a dolphin jumping in the ocean) to portraits on a uniform back-
ground.Wecropped and resized each image to 1000× 1000pixels and
converted it to grayscale. We then randomly phase-shifted in the fre-
quency domain approximately 90% of the pixels to gently blur each
images and soften any individual features that could be used for
categorization (e.g., the facial features)95. We balanced the image set
for luminance, contrast, and spatial frequency using the SHINE
toolbox96. Each image covered ≈ 50% of the laptop’s screen, centered
over a gray background.

In each experimental session, we presented the full set of 240
images in pseudorandom order. We presented each image for 500ms
anddisplayed the four categoryoptions in texton the four edges of the
screen (top, bottom, left, and right) that corresponded to that option’s
arrow key. Once the participant made a selection on each trial, the
screen went blank for 200ms before the next image appeared. Every
60 images the task automatically paused and reported the score to the
participant (e.g., ’51 of 60 correct’). We defined the baseline period of
the task as the 2000-ms interval preceding and following each set of
60 presented images, during which time we presented an image of
fixed pattern noise on the screen in the same location as the catego-
rical images. Eachparticipant completed 2 ± 0.75 sessions (240 to 1680
trials per session). Performance was ≥88% (range 88 to 97%) and on
average median response time was 1053 ± 270 milliseconds across all
participants (Supplementary Fig. 7b, c).

Image classification using single unit activity
We considered a neuron to be amember of amodule if it was recorded
from amicroelectrode that was assigned to that module based on LFP
signals. The LFPs used to define the modules were typically extracted
from different sessions than the single unit activity used for image
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classification (10 categorization task sessions used for single unit
analysis, 20 sessions used for modularity analysis, and 4 sessions used
for both), hence we assign neurons to modules based on the closest
session in time. We only analyzed neurons that were recorded on a
microelectrode that was considered part of a module, and we only
analyzed modules for which we captured spiking activity from two or
more neurons. Across MEAs and behavioral sessions, we recorded
spiking activity from neurons belonging to 75 modules (median 8
neurons per module range 2 to 34; median 4.25 modules per MEA,
range 0 to 7; see Supplementary Fig. 8).

For visualization, we created a population spike raster for each
trial by aligning the spike times from each recorded neuron to the
image onset for that trial, and then separating the raster into different
modules. For classification analysis, we transformed spike times into z-
scored instantaneous spike rates using a 200-ms boxcar sliding win-
dow, with steps of 20ms. Due to the low spike rates of human tem-
poral lobe neurons, we square-root transformed spike counts in each
200-ms bin. We then converted the spike rates to a z-transformed,
baseline-corrected spike rate by subtracting the mean and dividing by
the standard deviation of the square root spike counts during the
baseline period66.

We used logistic regression classification with early stopping to
predict image category from population spiking activity84,97. We only
used trials in which the participant correctly identified the image
category. We used twenty-fold cross validation to estimate prediction
accuracy. Each hold-out set was made up of approximately 5% of all
trials uniformly distributed across the session. For each fold, one
quarter of the training trials were randomly selected to be used as the
early stopping test set. To avoid overfitting, we iteratively evaluated
this test set to determine when to stop annealing the regression
weights. We used the remaining training trials to z-score the training,
early stopping, and hold-out data. We repeated the random selection
of early stopping trials 50 times per fold, and computed the average
resultant weights for each fold before computing prediction accuracy
on the hold-out set.We separately performed this procedure using the
instantaneous rate of the neurons in each individual time bin from
−0.2 s to 1.2 s relative to image onset in order to visualize the time-
course of image category discriminability. Using this approach, the
number of predictors used for classification at each time point is
therefore equal to the number of neurons. Using the same procedure,
we also built a single classifier that estimated overall classification
accuracy for the entire response period using the aggregated spiking
data from every third time bin from 0.1 s to 1.2 s. In this case, the total
number of predictors used for classification is therefore the number of
neurons multiplied by the 18 selected time bins. We tested for sig-
nificant classification by comparing overall classification accuracy to
the overall accuracy of a matched surrogate. In this case, for each
surrogate, we calculated classification accuracy using exactly the same
procedure except that we randomly shuffled the trial-labels of the four
categories for the training and early-stopping trials. We considered
overall classification significant if a paired t-test between the 20 true
and trial-shuffled accuracy measurements were significantly different
at p ≤0.05 (two-tailed test).

We computed classifier weights and z-score parameters sepa-
rately for each module to determine whether the neurons in that
module significantly coded image categories. We used those same
classifier parameters to quantify the relative similarity of neural
coding among neurons within the same module versus neurons
from different modules by strategically shuffling the hold-out data
used to estimate classification accuracy. When shuffling within
modules, we randomly permuted the label of the neurons in the
hold-out data so the classifier weights were applied to data from a
different neuron from the same module when computing classifi-
cation accuracy for each fold. We repeated this shuffling procedure
100 times, averaging the accuracy within folds and then testing for

significance across folds versus a matched surrogate. When shuf-
fling acrossmodules, we followed a similar procedure, except in this
case there was a chance ofmismatch between the number of units in
the module used to build the classifier versus the number of units in
the module contributing data to the hold-out set. If there were
fewer units in the classifier module, we randomly selected a sub-
sample of units for the hold out set during each of the 100 itera-
tions. Similarly, if there were more units in the classifier module, we
randomly resampled neurons from the hold out set. We tested for
significant differences between shuffle-within and shuffle-across
classification accuracy using a paired t-test across modules, where
each module contributed a shuffle-within score and a shuffle-across
score. We also computed the average shuffle-within and shuffle-
across accuracy for all modules recorded from an array on a given
behavioral session, and computed a paired t-test on the distribution
of accuracies across arrays and sessions between the two
conditions.

Statistics
Results are reported as mean ± SD unless otherwise noted. We provide
statistics for modularity, stationarity and persistence for all arrays as
well as across all arrays in Supplementary Table 1. Similarly, we provide
statistics for module diameter and compactness in Supplementary
Table 2. We used a significance threshold of p =0.05 for all
statistical tests.

In order to compare the functional connections and modules
observed in each MEA to the connections and modules expected by
chance, we used a shuffling procedure. In brief, for each MEA in each
experimental session, we generated 500 surrogate networks. We
constructed each surrogate network by randomly swapping links
between the microelectrodes while ensuring that the distribution of
degrees matched the distribution of in and out degrees present in the
true networks.We performed this random shuffling 100 times for each
surrogate, and used the final iteration as the random network for that
surrogate. We compared the pairwise similarity between the true MEA
networks across all experimental sessions to the pairwise similarity
between the random surrogate networks for that MEA. Similarly, we
compared the quality of the optimal partition (modularity), the sta-
tionarity, the persistence, and the average module diameter and
compactness in the true data for each MEA to each of these measures
for the surrogate networks.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available at https://
research.ninds.nih.gov/zaghloul-lab/downloads and also from the
corresponding author upon reasonable request. Source data are pro-
vided with this paper.

Code availability
Except where otherwise noted, computational analyses were per-
formed using custom written MatLab (MathWorks) scripts. The cus-
tom MATLAB scripts used for analysis are available upon request.
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