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Single-nuclei and bulk-tissue gene-
expression analysis of pheochromocytoma
and paraganglioma links disease subtypes
with tumor microenvironment

A list of authors and their affiliations appears at the end of the paper

Pheochromocytomas (PC) and paragangliomas (PG) are rare neuroendocrine
tumors associated with autonomic nerves. Here we use single-nuclei RNA-seq
and bulk-tissue gene-expression data to characterize the cellular composition
of PCPG and normal adrenal tissues, refine tumor gene-expression subtypes
and make clinical and genotypic associations. We confirm seven PCPG gene-
expression subtypes with significant genotype and clinical associations.
Tumorswithmutations inVHL, SDH-encoding genes (SDHx) orMAML3-fusions
are characterized by hypoxia-inducible factor signaling and neoangiogenesis.
PCPG have few infiltrating lymphocytes but abundant macrophages. While
neoplastic cells transcriptionally resemble mature chromaffin cells, early
chromaffin and neuroblast markers are also features of some PCPG subtypes.
The gene-expression profile of metastatic SDHx-related PCPG indicates these
tumors have elevated cellular proliferation and a lower number of non-
neoplastic Schwann-cell-like cells, while GPR139 is a potential theranostic tar-
get. Our findings therefore clarify the diverse transcriptional programs and
cellular composition of PCPG and identify biomarkers of potential clinical
significance.

Pheochromocytomas (PC) and paragangliomas (PG) are rare neu-
roendocrine tumors of the adrenal medulla or extra-adrenal para-
ganglia, respectively. Most PG arise in the distribution of paraxial
sympathetic nerves. A subset, referred to as “head and neck PG” (HN-
PG) or “parasympathetic PG” arise in paraganglia associated with the
vagus or glossopharyngeal nerves, e.g., from the oxygen sensing chief
cells (glomus cells) of the carotid body1. Sympathetic PCPG arising
from chromaffin tissues release “fight or flight” hormones (e.g., epi-
nephrine or norepinephrine) causing symptoms including hyperten-
sion, sweating, palpitations, headache as well as severe cardiovascular
conditions if left untreated2,3. Although all PCPG have metastatic
potential4, metastases only arise in 10–20% of patients5. There is a
clinical need for biomarkers that can predictmetastatic progression in
patients. Treatments for metastatic PCPG include surgery, radiation,

chemotherapy, radiopharmaceuticals and tyrosine kinase inhibitors6

but none are curative with a median survival of ~6 years7. Improved
treatments will rely upon a better understanding of molecular and
cellular disease characteristics.

PCPG are heterogeneous reflected by their genetic, transcrip-
tional, DNAmethylation, biochemical and metabolic profiles8–13. Up to
40% of PCPG are hereditary involving more than 20 PCPG suscept-
ibility genes,whereas sporadicdisease causedby somaticmutations or
gene-fusions account for an additional 30–40% of cases14,15. Early
microarray analysis clustered PCPG into two groups; so-called cluster 1
(C1) and cluster 2 (C2)9 with further division later described10. C1 PCPG
are noradrenergic and pseudohypoxic, involving stabilization of
hypoxia-inducible factors (HIFs) under normoxic conditions8. Genes
implicated in C1 PCPG include EPAS1 (encoding HIF-2α subunit), HIF
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regulators including VHL and EGLN1 (encoding PHD2), and Krebs cycle
genes such as succinate dehydrogenase subunits (SDHA-D) and FH
among others16,17. These mutations in the Krebs cycle cause accumu-
lation of metabolic intermediates (e.g., succinate, fumarate) and inhi-
bition of the 2-oxoglutarate-dependent dioxygenases including HIF-
regulating prolyl hydroxylases and DNA and histone demethylases18,19.
C2 tumors are well-differentiated adrenergic tumors typified by
germline or somaticmutations inkinase signaling genes (e.g.,RET,NF1,
HRAS), TMEM127, and the MYC-binding partner MAX10,15,20. An addi-
tional “WNT-signaling” cluster associated with somaticMAML3-fusions
wasmore recently defined15. PCPG genotype is associated with disease
penetrance, metastatic risk and theranostic targets21.

In addition to neoplastic cells per se, stromal and immune cells in
PCPG are likely to be important for understanding tumor biology and
treatment22. Pseudohypoxia drives a proangiogenic program and C1
tumors are highly vascularized with irregular vascular patterns23.
Outside of histomorphology, inference from bulk RNA gene-
expression analysis and staining of select proteins in tissues, rela-
tively little is known of normal cell types within these neoplasms.
Furthermore, analysis of immune cells across a large series of PCPGhas
been largely restricted to in silico predictions from bulk RNA data in
the context of pan-cancer analysis24.

Herein, we apply single-nuclei RNA-seq (snRNA-seq) to a broad
selection of PCPG genotypes to identify stromal and immune cell
composition of tumors, compare the transcriptional profiles of neo-
plastic and normal cells within tumors and normal adrenal tissues,
respectively, as well as infer cell–cell signaling. Furthermore, a large
compendium of bulk-tissue gene-expression data is used to confirm
tumor genotype-subtype associations, validate the relative expression
of cell type markers across PCPG gene-expression subtypes and
identify genes and gene-sets differentially expressed between meta-
static and non-metastatic PCPG.

Results
Application of single-nuclei RNA-seq to frozen PCPG tumors
To explore PCPG and normal adrenal medulla (NAM) at single cell
resolutionwe applied droplet-based snRNA-seq to 32 frozen tumors or
healthy normal adrenal medulla (NAM) tissues (Fig. 1a) (see Methods).
Samples included 18 PC and seven abdomino-thoracic PG (AT-PG), five
HN-PG aswell as twoNAMtissues (Fig. 1b). PCPG represented 13 known
somatic or germline PCPG driver genes and were all primary tumors
(Supplementary Data 1). Three tumors were from patients who
developedmetastatic disease (E205, PC, EPAS1; E206, PC, EPAS1; E235,
PC, MAML3-fusion), and two tumors had locally invasive features
(E007, TMEM127; E025, AT-PG, SDHA). Two tumors were synchronous
PG from the same patient (P018, PGL1 and PGL3, SDHB).

After quality filtering (see Methods and Supplementary Fig. 1),
109,238 nuclei from 32 samples were clustered by UMAP (Fig. 1c).
Stromal and immune cell nuclei clustered by cell lineage, indicating
minimal technical variability, whereas neoplastic (NEO) nuclei clus-
tered by patient sample (Fig. 1c, d). Annotation of samples by pro-
cessing batch did not show obvious batch effects that would explain
the UMAP clustering pattern (Supplementary Fig. 2). Applying batch
correction by sample (see Methods) resulted in co-clustering of NEO
cells (Supplementary Fig. 3); however, it also caused removal of the
expected transcriptional differences between PCPG genotypes.
Therefore, uncorrected data were used for downstream analysis.

Stromal and immune cells were identified by similarity to the
FANTOM5 reference (see Methods) and cell type marker genes
(Fig. 1e). Broad cell lineages included fibroblasts, endothelial cells
(ECs), Schwann cell-like cells (SCLCs), myeloid cells, mast cells, T/NK
cells, B cells, and adrenocortical cells. The contribution of stromal and
immune cells within tumors was variable, from 0.5 to 76.7% of total
nuclei (Fig. 1f, Supplementary Data 2). A more detailed analysis of
normal cells is described below.NEO and normal chromaffin cells were

identified by TH and CGHA expression (Fig. 1e). NEO cells from para-
sympathetic HN-PG expressed NRG3 and LEF1, the latter identified as a
cancer checkpoint in HN-PG25. Low-level detection of chromaffin-
related mRNA transcripts in unrelated cell types may be explained by
ambientRNA; a known technical artefactwithdroplet-basedprotocols.
Attempts to remove this artefact bioinformatically were unsuccessful
therefore careful inspection of genes of interest was done to confirm
cell type specificity (see Methods).

NEO cells were confirmed by inference of aneuploidy (InferCNV),
showing chromosomal loss profiles concordant with SNP-array data
(where available) and loss of heterozygosity for PCPG tumor-
suppressor driver genes including VHL (chr3p), NF1 (chr17q),
TMEM127 (chr2q) and SDHB (chr1p) (Supplementary Fig. 4). Sub-clonal
NEO cell populations with additional chromosomal changes were
found in some PCPG tumors (e.g., P018-PGL1, P018-PGL3, E210, E209,
E196, E208) (Supplementary Fig. 4). For instance, P018-PGL1 involved
sub-clonal ch2q loss previously detected by SNP-array26 and ~25% of
cells had this alteration by snRNA-seq (Fig. 1g).

UMAP clustering of NEO cells was broadly concordant with gen-
otype or PCPG subtypes (Fig. 1h). For instance, NEO cells from tumors
with driver genes involving MAX, MAML3-fusion, NF1, and SDHD gen-
erally co-clustered by their respective genotype, whereas two FH-
mutant PC had greater interpatient heterogeneity (Supplementary
Fig. 5). Interestingly, for two synchronous primary PG (P018 - PGL1 and
PGL3) we previously reported evolutionary convergence based on
similar chromosomal copy-number alterations26. NEO cells from PGL1
and PGL3 co-clustered tightly by UMAP, indicating these synchronous
tumors also had highly similar transcriptional profiles (Supplemen-
tary Fig. 5).

Integration of snRNA-seq with bulk-tissue gene expression data
validates PCPG subtypes
Despite the utility of snRNA-seq to identify genotype associations
among PCPG, the limited number of biological replicates among
genotypes limited the generalizability to the broader PCPG popula-
tion. We therefore sought to integrate our snRNA-seq data with a
large compendium of published microarray and RNA-seq data
(n = 735 samples) (Supplementary Data 3). Following the removal of
poor-quality samples, data were harmonized to remove platform and
dataset biases (see Methods and Supplementary Fig. 6). UMAP was
used to cluster combined bulk-tissue and “pseudo-bulk” snRNA-seq
data (pooled total cells or NEO cells only) (Fig. 2a). No major biases
were observed by study or data type (Supplementary Fig. 6). For 14 of
32 snRNA-seq profiled samples, matched bulk-tissue RNA data was
available. Among paired data, pseudo-bulk snRNA-seq and bulk-
tissue samples co-clustered, whereas discordant pairs were resolved
by clustering pseudo-bulk NEO cells only (removing the contribution
of normal cells), for example, PC tumors E018 (RET) and E209 (MAX),
respectively (Fig. 2b).

UMAP clustering showed significant associations with PCPG dri-
ver genes (Fig. 2a, d Supplementary Data 4). Consensus clustering
identified nine PCPG subtypes, but two consensus clusters were con-
solidated based on their UMAP proximity and their association with
the kinase signaling pathway (Fig. 2c). Two bulk-tissue datasets were
previously used for subtype discovery (COMETE and TCGA)10,15,
enabling a comparison of PCPG subtype annotations (Fig. 2e). Sub-
types were in broad agreement, but increased resolution in our ana-
lysis was observed. For continuitywe adopted theC1/C2 nomenclature
and assigned an index PCPG driver gene or pathway to each subtype:
C1A1 (SDHx), C1A2 (SDHx-HN), C1B1 (VHL), C1B2 (EPAS1), C2A (Kinase),
C2B1 (MAX), and C2B2 (MAML3).

The C1 or “Pseudohypoxia” group was separated into four sub-
types. Based on available clinical annotation, C1A1 (SDHx) tumors were
predominantly AT-PG (69%) and were enriched for SDHB and SDHD
genotypes (Fisher’s test Benjamini-Hochberg (BH) adj. P-value <
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0.001). C1A2 (SDHx-HN) included all HN-PG tumors in the bulk
dataset although HN-PG were still only the minority (26%, 8/31) of
tumors in this group. C1A2 (SDHx-HN) were also enriched in SDHD-
mutants (Fisher’s test BH-adj. P-value < 0.001). Clinical annotation
showed an enrichment of metastatic PCPG in both C1A1 (SDHx) and
C1A2 (SDHx-HN) subtypes (Fisher’s exact test BH-adj. P-value < 0.001,
Supplementary Table 1).

The COMETE C1B cluster was split into C1B1 (VHL) and C1B2

(EPAS1), the latter enriched for EPAS1-mutants (Fisher’s test BH adj.
p <0.001), consistent with EPAS1-mutant PCPG having a distinct gene-
expression profile27. One FH-mutant PCPG (E211) clustered to C1B2

(EPAS1) and the other (E210) to C2B2 (MAX). In case E211, the FH
germline variant (FH c.700A>G) has previously been associated with
FH-deficient PC28 and loss of chr1q (including the FH locus) was infer-
red by snRNA-seq (Supplementary Fig. 7). The FH splice-site variant
(FH, c.268-2A) in case E210 has also been reported as a pathogenic
variant17. Evidence of altered FH RNA-splicing was found in E210

involving loss of exon 5 expression 3-prime of the FH variant, although
arm level chr1q loss was not found by snRNA-seq (Supplementary
Fig. 7). The observed subtype clustering of FH-mutants was unex-
pected given FH-deficient PCPG are thought to share molecular and
metabolic features with SDHx-deficient PCPG29. Our data suggest that
FH-deficient PCPG may be more heterogeneous than previously
described, although the involvement of other driver genes cannot be
excluded in these tumors.

Consistent with prior studies, the C2A (Kinase) subtype was
associated with genes involving kinase signaling (e.g., NF1, RET, HRAS,
TMEM127). C2B (COMETE) or WNT-altered (TCGA) subtypes were
overlapping, but in our analysis these tumors partitioned into two
groups; the heterogeneous C2B1(MAX) subtype consisting of MAX,
CSDE1, and H3F3A mutants and many with no reported driver; and
C2B2 (MAML3) consisting of 10 of 11 MAML3 fusion-positive PC. The
C2B2 (MAML3) subtype was positively associated with metastatic dis-
ease, consistent with the WNT-altered (TCGA) subtype having
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Fig. 1 | snRNA-seq for cell type identification, inferred copy-number analysis
and clustering of 30 PCPG and two NAM tissues. a Schematic describing the
workflow for single-nuclei isolation, Fluorescence-Activated Nuclei Sorting (FANS)
and 5’ chemistry using the 10x platform starting from frozen tissues (created with
BioRender.com). b Anatomical locations and sample size of tumors profiled with
snRNA-seq (created with BioRender.com). c UMAP clustering of all nuclei from all
samples colored by sample (individual color-sample key not shown, nSamples =
32). d UMAP clustering of all nuclei from all samples colored by cell type. ECs:
Endothelial cells, SCLCs: Schwann cell-like cells. (nNuclei = 109,238). e Expression
of major cell type markers in annotated UMAP clusters. Expression scale = Z-score

standard deviations from mean. f Relative proportion of cell types detected in
individual samples (cell type colored as per panel d). g Inferred copy-number in
NEO and non-NEO cell types by gene-expression for an SDHB-associated AT-PG
(P018-PGL3) (bottom panel; tumor cells with tumor subclones colored orange and
green), top panel; non-neoplastic cell types from all tumors and NAM tissues with
cell type colored as per panel d). InferCNV scale =modified expression, SNP array
scale = log ratio. h UMAP clustering of all NEO nuclei from all samples colored and
labeled by their known associated PCPG gene-expression subtype (C1/C2) (nNu-
clei = 109,238). i UMAP clustering with NEO nuclei labeled and colored by PCPG
genotype (nNuclei = 109,238).

Article https://doi.org/10.1038/s41467-022-34011-3

Nature Communications |         (2022) 13:6262 3



−7.5

−5.0

−2.5

0.0

2.5

5.0

−6 −4 −2 0 2 4

Genotype
WT (NAM)
RET
HRAS
NF1
BRAF
TMEM127
NGFR
MAX
CSDE1
H3F3A
KIF1B
IDH1

MAML3
FH
EPAS1
EGLN1
VHL
SDHA
SDHB
SDHC
SDHD
SETD2
Unknown

U
M

AP
 2

−7.5

−5.0

−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5

UMAP 1

Sample type
snRNA-Seq
Bulk

−7.5

−5.0

−2.5

0.0

2.5

5.0

−6 −4 −2 0 2 4

Bulk
Pseudo-bulk 
(all cells)
Pseudo-bulk 
(chromaffin/
tumor only)

Data type
a b c

E018 E209

UMAP 1

U
M

AP
 2

U
M

AP
 2

UMAP 1

d

Data type

Single-nuclei
Bulk

Location

Metastasis

Extraadrenal
Adrenal

Head and neck

Data type

Single-nuclei
Bulk

Data type

Single-nuclei
Bulk

Clinical 

Metastatic
Non-metastatic

N
or

m
al

C
1A

1 (
SD

H
x)

C
1A

2 (
SD

H
x−

H
N

)

C
1B

1 (
VH

L)

C
1B

2 (
EP

AS
1)

C
2A

 (K
in

as
e)

C
2B

1 (
M

AX
)

C
2B

2 (
M

AM
L3

)

C
2C

 (C
or

tic
al

 A
dm

ix
tu

re
)

WT (NAM)
SDHA
SDHB
SDHC
SDHD
SETD2
VHL
EGLN1
EPAS1
FH
RET
HRAS
NF1
BRAF
TMEM127
NGFR
MAX
CSDE1
H3F3A
KIF1B
IDH1
MAML3
Unknown

Cluster
Location
Clinical

e

C1A1 (SDHx)

C1A2 (SDHx-HN)

C1B1 (VHL)

C1B2 (EPAS1)

C2A (Kinase)

C2B1 (MAX)

C2B2( MAML3)

C2C (Cortical Admixture)

20 0 0 0 0

5 0 0 2 0

0 41 0 0 0

0 1 0 3 0

0 0 67 1 0

0 0 0 19 0

0 0 0 4 0

0 0 11 0 14

C
1A

C
1B

C
2A

C
2B

C
2C

20 0 0 0

3 0 0 1

14 0 0 0

10 0 0 0

0 66 0 2

13 0 13 1

0 0 9 0

0 2 0 18

Ps
eu

do
hy

po
xi

a

Ki
na

se
 s

ig
na

lin
g

W
nt

 a
lte

re
d

C
or

tic
al

 a
dm

ix
tu

re

COMETE TCGA

C
hr

om
af

fin
 c

el
ls

Ad
re

no
co

rti
ca

l c
el

ls
EC

s
Fi

br
ob

la
st

s
SC

LC
s

M
ye

lo
id

 c
el

ls
T/

N
K 

ce
lls

B 
ce

lls
C

hr
om

af
fin

 c
el

ls
Ad

re
no

co
rti

ca
l c

el
ls

EC
s

Fi
br

ob
la

st
s

SC
LC

s
M

ye
lo

id
 c

el
ls

T/
N

K 
ce

lls
B 

ce
lls

Differential expression
NEO cell vs normal chromaffin cell

Yes
No

Scaled exp

−4 −2 0 2 4

Scaled exp

−3 −2 −1 0 1 2 3

Cells expressing (%)

0 0.5 1

f

Su
bt

yp
e 

sp
ec

ifi
ci

ty
N

EO
 c

el
l s

pe
ci

fic
ity

Subtype

C2C (Cortical Admixture)

C2A (Kinase)
C1B2 (EPAS1)

C1A2 (SDHx-HN)

C2B1 (MAX)

C1A1 (SDHx)

C2B2 (MAML3)

C1B1 (VHL)

Normal
Multiple
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bulked snRNA-seq gene-expression data. a UMAP projection of all bulk-tissue
and snRNA-seq pseudo-bulked samples. Each dot represents an individual sample,
colored by genotype (nBulk = 735, n-snRNA= 32) (WT (NAM): Wild-type normal
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aggressive clinical features15, but did not reach statistical significance
(Fisher exact test BH-adj, P-value <0.05) in our analyis (Supplementary
Table 1). Finally, subtype C2C overlapped with the TCGA adrenocor-
tical admixture group15 and included NAM samples (bulk-tissue and
snRNA-seq analyzed). Accordingly, high numbers of adrenocortical
cells (29–44% of all cells) were detected in NAM tissues by snRNA-seq.
The C2C subtype was ignored from further analysis given the con-
founding nature of the adrenocortical cells in these samples and
therefore we concluded there are likely seven true PCPG gene-
expression subtypes.

Differential expression (DE) analysis was applied to bulk-tissue
data using a one subtype versus rest architecture (Log2FC >0.5, BH-
adj. P-value < 0.05) (Fig. 2f, Supplementary Data 5). Many subtype DE
genes were overexpressed in stromal and immune cells detected by
snRNA-seq, indicating enrichment of these cells in PCPG, as discussed
below. To identify NEO cell-specific genes, snRNA-seq datawas used to

contrast pseudo-bulked NEO cells (combining nuclei from multiple
samples for PCPG subtypes) and pseudo-bulked NAM chromaffin cells
(log2FC > 0.5, BH-adj. P-value < 0.05) (SupplementaryData 6). Between
439 and 2256 genes were DE between NEO cells and NAM chromaffin
cells, with 38 genes commonly DE in all PCPG subtype comparisons.

PCPG tumormicroenvironment is dominated by pro-angiogenic
cell types
To further dissect the identity and functional state of stromal and
immune cell types in PCPG we used supervised classification employ-
ing cell type references from two published cancer datasets30,31(see
Methods). The frequency and proportions of stromal cell subsets in
PCPG tumors is shown in Fig. 3a and SupplementaryData 2 and top cell
type marker genes in Fig. 3b.

UMAP clustering of fibroblasts and ECs showed distinct tran-
scriptional differences in these cells originating from tumors and NAM
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tissues (Fig. 3c, d). Myofibroblasts were detected in tumors
(0.02–1.49% of all cells) but not NAM tissues. DE genes between tumor
and NAM-associated fibroblasts (log2FC>0.5, BH adj. P-value < 0.05)
included FAP, INHBA and POSTN and these genes were accordingly
expressed inmyofibroblasts (Fig. 3b, Supplementary Data 6). Smooth-
muscle actin (ACTA2) expressing fibroblasts were detected in tumors
(0.35–2.44% all cells) and NAM tissues (0.34–2.5% all cells). Some
fibroblasts formed discrete UMAP clusters but were not classified to
cell types defined within published cancer references. The majority
(73–74%) of fibroblasts in NAM tissues expressed FMO2, a fibroblast
marker in healthy skin32. Two other fibroblast populations included
ACSM3-expressing cells detected in two PCPGs (E025, SDHA/C1A1;
E033, unknown driver/C2Bi) and MFAP5-expressing cells found at low
frequency in tumors and NAM tissues.

Consistent with neovascularization, FLT1-expressing ECs were
abundant in PCPG and comprised mostly of DLL4-expressing tip-like
cells (0.049–23.83% all cells). Pericytes, known to be important for
vessel formation, expressed MCAM and ILRAPL1 and were the domi-
nant fibroblasts in tumors (0.06–14.32% all cells) (Fig. 3a, b). DE
between tumor andNAMECs (log2FC >0.5, BH adj. P-value < 0.05) also
reflected the pro-angiogenic features of PCPG with overexpression of
TIE2 receptor ligand ANGPT2 and coagulation factor VWF (Fig. 3b,
Supplementary Data 6). Independent analysis of tumor and NAM-
derived tip-like or stalk-like EC subsets showed a substantial overlap in
DE genes (36.8%) irrespective of the EC subset (Supplementary Data 7,
Supplementary Fig. 8), suggesting a common tumor-associated EC
program.

Pro-angiogenic factor VEGFAwas over-expressed in NEO cells and
highest in VHL-mutant tumors, consistent with a higher number of ECs
detected in VHL-mutant PCPG compared to other PCPGs (T-test
FDR <0.05) (Fig. 3a, b, Supplementary Data 8). VEGFA was highly
correlated with EPAS1 expression in NEO cells across all PCPG (Spear-
man-rank correlation rho =0.72) (Fig. 3e),whereas NEOcells fromVHL-
mutants exhibited expression of additional HIF target genes including
HK1, HK2, CA12, SCL2A1(GLUT1) (Fig. 3f). Interestingly, angiogenesis
inhibitors ISM133 and HIF3A34 were under-expressed in NEO cells from
all PCPG subtypes compared to NAM chromaffin cells (Supplemen-
tary Data 6).

Unexpectedly, HIF-related genes VEGFA and EPAS1 were over-
expressed in C2B2 (MAML3) tumors, while relatively lowly expressed in
EPAS1 and FH-mutants, the latter commonly presumed to be pseudo-
hypoxic (Fig. 3f, g). Although relatively few ECs and pericytes were
detected in C2B2 (MAML3) tumorsby snRNA-seq,markers of ECs (FLT1,
ANGPT2, HEY1, DLL4) and pericytes (MCAM) were overexpressed in
C2B2 (MAML3) compared to other C2 subtypes in the bulk-tissue data
(Fig. 3g)(BH-adj. P <0.001). C2B2 (MAML3) PCPG therefore likely have
pro-angiogenic features.

Immune cell infiltrates in PCPGarepredominantlymacrophages
With respect to immune cells, myeloid cells were the dominant leu-
kocytes in PCPG (range 0.06–31.05%, mean 7.42%, all cells), consistent
with a prior study that showed abundant monocytes in PCPG35. Most
myeloid cells detected by snRNA-seq were classified as macrophages
(94% of total myeloid cells) with minor populations of CD16+ (1.9%)
and CD16− (2.5%) monocytes, IDO1+ (1%) and CD1C+ (1.9%) dendritic
cells and mast cells (TPSAB1)(3%)(Fig. 4a, b, Supplementary Data 2).

Macrophages are known to exhibit significant plasticity within a
spectrum of polarized states. Visualizing the canonical macrophage
marker genes, including so-called M1 and M2 markers, showed con-
siderable heterogeneity across tumors (Fig. 4c). In bulk-tissue gene-
expression data, tumors of the C1A2 (SDHx-HN) and C1B1 (VHL) sub-
types had higher expression of the macrophage markers (Fig. 4d). To
further validate our observations by IHC, CD68, CD163, and
CD206 staining was applied in 12 matched tumors and two normal
adrenal tissues (Fig. 4e, Supplementary Table 2) (see Methods).

CD163+ and CD206+ cells were far more abundant in the adrenal
cortex compared to the medulla, which explains a relatively high
expression of theseM2macrophagemarkers in NAMbulk-tissue gene-
expression data and NAM tissue macrophages by snRNA-seq (Sup-
plementary Fig. 9). Among PCPG tumors, intratumoral CD163+ and
CD206+ cells were highest in VHL-mutant PCPG (Fig. 4e) compared to
other subtypes.

Genes overexpressed in tumor-associated macrophages com-
pared to normal adrenal macrophages included PLXDC1 and PLAU
(log2FC >0.5, BH adj. P-value < 0.05) (Supplementary Data 7, Fig. 4c).
PLXDC1 is a transmembrane receptor for the pluripotent factor PEDC
that has important anti-angiogenic and anti-tumor functions36,37. PLAU
is a serine protease important for tissue remodeling and
angiogenesis38. Like our observation of canonical macrophage gene
expression across subtypes in the bulk gene-expression data, PLXDC1
and PLAU were highest expressed in C1A2 (HN-PGL) and C1B1 (VHL)
subtypes (Fig. 4d).

Lymphocytes represented a much smaller fraction of immune
cells in tumors by snRNA-seq (range 0.02–8.93%, mean 2.3%). CD3 IHC
staining in 12 PCPG confirmed the relatively low number of T cells
(mean= 5 cells/mm2) compared to CD163+ macrophages (mean= 105
cells/mm2) (Fig. 4f, Supplementary Table 2). Phenotyping of T cells by
snRNA-seq showed predominant CD4 expressing cells with minor
populations of cytotoxic T cells (CD8A, GZMB), NK cells
(NCAM1(CD56),GNLY) andT-regulatory cells (FOXP3) detected (Fig. 4a,
Supplementary Fig. 10, Supplementary Data 2). B cells formed three
distinct clusters: follicular (MS4A1), GZMB+ and plasma cells (FCRL5)
(Fig. 4e). Interrogation of lymphocyte markers in bulk-tissue data did
not show appreciable differences across PCPG subtypes but the innate
cell marker GLNY and cytolytic marker GZMB were slightly elevated in
C2B2 (MAML3) andC1A2 (SDHx-HN) tumors aswell as occasional outlier
cases in other PCPG subtypes (Fig. 4f).

Schwann-cell-like cells (SCLCs) and putative paracrine signaling
with NEO cells
PCPG, neuroblastoma, and NAM tissues contain Schwann-like cells
called sustentacular cells detected by IHC staining for SOX10 and
S10039,40. In mice and humans, chromaffin cells are thought to arise
from pluripotent neural-crest cells called Schwann-cell precursors
(SCPs) that also express thesemarkers41–43.Whether sustentacular cells
in PCPG are precursors or terminally differentiated cannot be con-
firmed in our data, therefore we described them as Schwann-cell-like
rather than SCPs.

SCLCs were abundant in some C1 PCPG (range 0–22.9%, mean
6.8%) but infrequent in C2 PCPG (range 0–3.89% mean 0.85%),
although not statistically significant between subtypes (Fig. 5a).
InferCNV analysis of the snRNA-seq data showed that SCLCs were
ostensibly diploid in PCPG (Fig. 5b), consistent with prior observations
using orthogonal approaches such as IHC44 and flow cytometry45.
CDH19 was expressed by SCLCs and RNA in situ hybridization (ISH)
targeting CDH19 in an AT-PG tumor (P018-PGL3) showed staining of
spindle-like cells, that were similar inmorphology to S100 + cells using
IHC (Supplementary Fig. 11). CDH19 and SOX10 expression in the bulk-
tissue data supported a trend towards a higher number of SCLCs being
present in C1 PCPG subtypes. C1B2 (EPAS1) PCPG had fewer SCLCs by
snRNA-seq and low SOX10/CDH19 expression in the bulk-tissue
data (Fig. 5c).

To investigate cell–cell communication in PCPG, we inferred
cell–cell interactions using the NATMI method46, ranking receptor-
ligand gene pairs based on the mean edge total expression weight for
receptor-ligand interactions (Supplementary Data 9). Inferred
receptor-ligand interactions between normal chromaffin cells and
SCLCs in NAM tissues was 8% of total edges (Fig. 5d) and 12% of edges
between NEO cells and SCLCs in PCPG (Fig. 5e). Receptors and ligands
significantly overexpressed in SCLCs (log2FC > 3, BH adj. P-value <
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0.05) were intersected with NATMI results to identify the top gene-
gene pairs between SCLCs and NEO cells (Fig. 5f). Ligand-receptor
pairs reflected known Schwann-cell function including LGI4-ADAM22/
ADAM23, GDNF-RET47, and FGF2-FGFR1/FGFR248. WNT (RSPO3-LGR4/
LGR5) and TGFB signaling (TGFB2-TGFBR1) also featured. Examples of
receptors overexpressed in SCLCs included ERBB3 (tumor ligands
NRG1, NRG2) and GDNF receptor 1 encoding GFRA1 (ligand NCAM1).

PCPG exhibit variable chromaffin cell differentiation patterns
PCPG variably express chromaffin-related genes indicating divergent
states of cellular differentiation or developmental origins. To deter-
mine the similarity of PCPG to sympathoadrenal cells during early
development we used a published snRNA-seq dataset of normal
human fetal adrenal tissues taken at seven developmental time
points49. Jansky et al. identified adrenal medullary cell types including
SCPs (cycling, late), bridge cells, connecting progenitor cells, chro-
maffin cells (early and late), and neuroblast populations (early, cycling,
and late) (Fig. 6a).

We used two approaches to compare NEO cells to normal fetal
adrenal cells. Firstly, we applied a supervised cell classificationmethod
like that used for classifying stromal and immune cells (Fig. 6b, c,
Supplementary Data 10). As expected, nearly all (99%) adult NAM
chromaffin cells classified as late chromaffin cells and 95% of SCLCs
classified as SCPs (89% late SCPs). Most NEO cells from C1 PCPG were

classified as early chromaffin cells (range 38–92%, mean 66%). In
contrast, NEO cells from C2A (Kinase) and C2B1 (MAX) tumors were
mostly classified as late chromaffin cells, except for two NF1-mutant
PCs (E027, E174) and a PC of no known gene driver (E033) that were
mostly comprised of NEO cells classified as early chromaffin cells. The
C2B2 (MAML3) PC had a higher fraction of early chromaffin cells (mean
56%),whilst neuroblasts (range 5–17%) and connecting progenitor cells
(range 1–9%) wereminor subsets. FH-mutants were divergent with one
case (E210) composed mostly of early chromaffin cells (62%) and the
other (E211) predominantly late chromaffin cells (92%).

A second approach involved calculating module-scores for cell
type marker gene-sets (see Methods). Cell type module-scores in NEO
cellswere calculated using gene-sets identifiedby Jansky et al. and data
for NEO cells was plotted pooling cells by PCPG subtype (Fig. 6d,
Supplementary Data 11). The same gene-sets were also used for gene-
set variance analysis (GSVA) calculating enrichment scores in indivi-
dual samples within the bulk-tissue data (Fig. 6e). The expression of
select sympathoadrenal cell typemarkerswas visualized in our snRNA-
seq data (NEO cells only) and the bulk-tissue data, respectively
(Fig. 6f, g).

Enrichment of early chromaffin genes was observed in
C1 subtypes, consistent with the cell classification approach. C1B1

(VHL) tumors also had enrichment of the connecting progenitor cell
gene-set; representing a transient cell population connecting bridge,
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chromaffin and neuroblast cell types detected at 7–8 weeks post-
conception49. As expected, C2A (Kinase) tumors had higher module
scores for late chromaffin cells and expressed PNMT, encoding the
enzyme that converts norepinephrine to epinephrine, as well as the
neuroblastmarkersRET andNPY. Notably,NPY expressionwas lower in
PCPG C1 subtypes but retained in C1B2 (EPAS1) tumors. C2B2 (MAML3)

PCPG had low expression of the chromaffin cell markers CARTPT and
DLK1 but high expression of early neuroblast markers including ALK,
RET, and NTRK3. A subset of PCPG had expression of bridge cell mar-
kers (ASCL1, CDH9, ERBB4), including tumors of the C2B1 subtype, for
example, a tumor with anH3F3Amutation (E326) and another without
a known gene driver (E033)50.
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Consistent with HIF-2α being important for development of
sympathetic and parasympathetic tissues51,52 EPAS1 and VEGFA were
overexpressed in connecting bridge progenitors and early chromaffin
cells (Fig. 6f, g). Remarkably, many other genes DE between PCPG

subtypes were either undetected or very lowly expressed in develop-
ing sympathoadrenal cell types compared to NEO cells. For instance,
C1B1(VHL) DE genes including PTHLH, TFAP2C, and AQP1 were lowly
expressed in both fetal and adult chromaffin cells. As previously
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described, C2B2 (MAML3) PCPG over-expressed Wnt and Hedgehog
pathway genes including GLI2 and WNT415 and these were also lowly
expressed in normal cell types. C2B2 (MAML3) tumors uniquely over-
expressed several transcription factors includingHMX1,HMGA2, IRX425

as well the water channel protein AQP2, the somatostatin ligand (SST)
ligand and its cognate receptor SSTR2, the latter being very lowly
expressed in C1B1 (VHL) tumors. Notably, MAML3 and the fusion-
partner genes UBTF and TCF4 were expressed in bridge, connecting
progenitor and early chromaffin cell types.

Cell receptors identified as putative theranostic targets in PCPG
tumors
Numerous genes overexpressed in NEO cells encode cell surface
receptors; an attractive class of therapeutic or diagnostic (ther-
anostic) targets (Fig. 7a, Supplementary Data 6). Among tyrosine
kinases, EGFR was overexpressed by C1A2 (VHL) tumors and some
C1A1 (SDHx) tumors, while KIT was highly expressed in the C2B2

(MAML3) subtype. EGFR overexpression has also been described in
VHL-associated renal cell carcinomas53. The androgen receptor
(AR) and G-protein coupled receptor VIPR2 were also highly
expressed in C2B2 (MAML3) tumors. The orphan G-protein coupled
receptor GPR139 had restricted expression to C1 PCPG. In the
developing fetal adrenal snRNA-seq data, GPR139 expression was
expressed in connecting progenitor and early chromaffin cells but
absent in late chromaffin cells (Fig. 6f). Comparative analysis
across TCGA pan-cancer gene-expression data confirmed GPR139
was highly expressed in subsets of PCPG, while also in CNS
malignancies and a subset of breast adenocarcinomas (Fig. 7b).

Transcriptional patterns associated with metastatic PCPG
Clinical annotation available for the bulk-tissue gene-expression data
enabled DE analysis between metastatic (n = 52) and non-metastatic
PCPG (n = 330). Given the significant transcriptional heterogeneity
across PCPG subtypes and the higher rate of metastatic disease in C1A
(SDHx) subtypes, C1A (SDHx) tumors were analyzed independently of

non-SDHx tumors. Interestingly, a total of 299 genes were DE between
metastatic and non-metastatic C1A (SDHx) tumors (Log2FC >0.5, BH-
adj. P-value <0.05) (Fig. 8a), whereas only 47 genes were DE in the non-
SDHx analysis and only three genes overlapping in both analyses
(Supplementary Fig. 13, Supplementary Data 12). GSVA was also done
using MSigDb Hallmark gene-sets as well as stromal, immune, and fetal
adrenal cell gene-sets49 (Fig. 8b, Supplementary Table 3). Among the
non-SDHx cases no gene-sets were significant between metastatic and
non-metastatic tumors.Metastatic C1A (SDHx) tumors had elevated cell
cycle-related gene-sets (Hallmark G2M, E2F targets, Mitotic spindle;
Jansky cycling neuroblast) (Log2Fold > 1.0, BH-adjusted P-value < 0.05)
and overexpressed canonical proliferation markers (MKI67, TOP2A)
(Fig. 8a). Conversely, SCLC and SCP gene-sets and Schwann-cell marker
genes (CDH19, SOX10) were down in metastatic C1A (SDHx) group
(Fig. 8a, b).Other genesoverexpressed inmetastaticC1A (SDHx) tumors
included collagens (COL1A1, COL6A3); overexpressed in fibroblasts and
occasionally NEO cells in our snRNA-seq data (Supplementary Fig. 12,
Supplementary Data 12), metalloproteases (MMP9, MMP12) expressed
at low levels in all cells in the snRNA-seq data, the EMT transcription
factor TWIST1 as well as the polycomb repressor EZH2, variably
expressed in NEO and stromal cell types (Supplementary Fig. 12).
Macrophage markers MARCO and CD68 were overexpressed in the
metastatic C1A (SDHx) tumors. Interestingly, the cell surface receptor
GPR139 was also overexpressed in metastatic C1A (SDHx) tumors.

Discussion
In this study, we confirmed a strong association between PCPG driver
genes and transcriptional programs within neoplastic and non-
neoplastic compartments. Importantly, our analysis increased the
resolution of PCPG subtyping, identifying distinct PCPG clusters
associated with rare PCPG driver genes, including EPAS1 (C1B2), FH
(C1B2, C2B1), MAML3-fusions (C2B2) as well as parasympathetic SDHx
HN-PG(C1A2)

9,10. Angiogenesis driven by HIF-pathway dysregulation is
a dominant feature in PCPG and we have described these features at
single-cell resolution. We confirmed PCPG neoplastic cells resembled
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type (Supplementary Data 5). Only those genes encoding cell surface receptors are
colored, with top receptors in each PCPG subtype labeled. The dotted line shows
log2 threefold change threshold used for selecting receptor genes. b Expression of
GPR139 across tumor types in the TCGA pan-cancer dataset of 10,211 tumors from

32 cancer types. PCPG are colored by their respective subtype. WT (NAM): Wild
type normal adrenal medulla (The lower and upper hinges of each boxplot corre-
spond to the first and third quartiles, respectively, and themedian value ismarked.
The whiskers extend to the largest and smallest value not greater than 1.5 times the
interquartile range above or below the upper and lower hinges, respectively. Values
beyond the whisker extents are deemed outliers and are plotted individually).
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normal chromaffin cells; however, they can have heterogeneous
transcriptional profiles expressing markers of early chromaffin and
neuroblast cells as well as genes that are not expressed in adult or fetal
chromaffin cells. Furthermore, by using a large series of bulk-tissue
gene-expression data we have explored differential expression in
metastatic and non-metastatic PCPG, identifying diagnostic or ther-
apeutic biomarkers that provide important leads for further
investigation.

Consistent with HIF-pathway activation, tumoral VEGFA expres-
sion, and abundant vascular cell types were observed in PCPG. VHL-
mutant PCPG exhibit the strongest induction of HIF target genes,
consistentwith the canonicalHIF-regulatory functionof VHL. Together
with loss of the VHL locus in neoplastic cells (Supplementary Fig. 4),
these findings support its classic tumor-suppressor function in PCPG,
which has been previously questioned owing to the unique genotype-
to-phenotype associations in PCPG compared to other VHL syndromic
tumors54. Uniquely, we found VEGFA and EPAS1 overexpressed in
MAML3 fusion-positive PCPG, which challenges the commonly held
view that HIF-pathway activation is restricted to C1 PCPG. The
mechanism for HIF-pathway activation inMAML3 fusion-positive PCPG
is unclear.MAML3 is a transcriptional co-activator of NOTCH signaling
and although NOTCH signaling can induce EPAS1 expression55, loss of
MAML3 exon 1 encoding the N-terminal NOTCH domain is a recurrent
in MAML3-fusions, making NOTCH induction of EPAS1 seem unlikely.
MAML3-fusion functionality may also be dependent on the 5′-fusion
partner gene including UBTF, a nucleolar transcription factor involved
in RNA polymerase 1 ribogenesis, and transcription factor TCF415.
Notably, as EPAS1 and VEGFA are expressed during early development
of adrenal and extra-adrenal paraganglia51,52 the transcriptional profile
of NEO cells may reflect, at least in part, an early developmental pro-
gram rather than MAML3-fusion induced HIF-pathway activation.
Clearly further experimentation will be required to determine a
potential link between MAML3-fusions and the HIF-pathway in PCPG.

Reliable clinical biomarkers of metastatic progression are still
needed in PCPG. With respect to PCPG subtypes, the C1A (SDHx) and
C2B2 (MAML3) subtypes have a higher propensity to develop meta-
static disease15. Morphological features, IHC stains, gene-expression,
somatic gene mutations (principally TERT promoter and ATRX muta-
tions) as well other features have been proposed for risk stratification7.
Our observation of cell-cycle and proliferation-related markers in
metastatic PCPG is wholly consistent with the reported association
between elevated Ki67 staining and increased risk of metastasis56.

Similarly, a reduced number of sustentacular cells reported in meta-
static PCPG57 is concordant with lower SCLC marker gene expression
observed in bulk-tissue gene-expressioin data. Other genes over-
expressed in metastatic PCPG included genes associated with tissue
remodeling and EMT, also consistent with a previous study58. Very low
Tcell infiltrates inmost PCPGmaypredict limitedbenefit from immune
checkpoint inhibitors, consistent with the modest responses to these
drugs observed in PCPG patients to date59,60. Macrophages were
abundant in PCPG but are highly heterogenous in their expression
profile, with macrophage marker expression highest in PCPG tumors
with neoangiogenic features, although not ubiquitous across all pseu-
dohypoxic subtypes, including a significant fraction of the C1A (SDHx)
group. Further immunohistochemical staining in a larger series is
required to deconvolve the relative spatial context of macrophage
infiltrates within the PCPG and potential associations with the meta-
static phenotype.

Importantly, we identified promising biomarkers that may inform
future treatment strategies in metastatic PCPG. Tyrosine kinase and
HIF-2α inhibitors have been proposed for treatment of pseudohypoxic
PCPG61, therefore, a similar rationale may be extended to C2B2

(MAML3) tumors, which have a higher propensity to develop meta-
static disease. G-protein coupled receptors are an attractive class of
therapeutic targets and among this group GPR139 expression is quite
novel. GPR139 synthetic agonists and antagonists have already been
identified, therefore direct pharmacological intervention is plausible62.
Alternatively, radionuclide-labeled small molecules, peptides or anti-
bodies targeting GPR139 or other identified cell surface receptorsmay
be used, analogous to targeting SSTR2 using 68Ga-DOTATATE in
PCPG63. Finally, because development of treatment strategies often
begins with histopathological assessment of biomarker protein
expression, our findings may expand the list of emerging biomarkers
applicable by pathologists in the diagnostic workup of PCPG.

Methods
Patient samples
Research was done under a protocol approved by the human research
ethics committee at Peter MacCallum Cancer Centre and under the
guidelines of the National Health and Medical Research Council in
accordancewith theHelsinki Declaration of 1975, as revised in 1983. All
patients provided written informed consent for the use of their dei-
dentified biospecimens for research purposes. No compensation was
provided for provision of samples. Patient samples were collected
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Fig. 8 | Differentially expressed genes and gene-set scores distinguishing non-
metastatic and metastatic C1A (SDHx) PCPG in bulk tissue analysis. a Volcano-
plot depicting DE genes between non-metastatic and metastatic PCPG (BH-adj. P-
value < 0.05, log2FC>0.5). b Differential GSVA scores for gene-sets observed

contrasting non-metastatic and metastatic PCPG (BH-adjusted P-value < 0.05,
log2FC>0.1) in only C1A (SDHx) samples. In panels a and b gene symbols and
pathways are color coded based on biological processes or cell type association.

Article https://doi.org/10.1038/s41467-022-34011-3

Nature Communications |         (2022) 13:6262 11



under protocols approved by the respective institutional review
boards (IRB). Organizations contributing patient samples included the
Victorian Cancer Biobank under protocols approved at Austin Health,
Melbourne Health, and Monash Health (n = 4), the Peter MacCallum
Cancer Centre (n = 4), Kolling Institute Neuroendocrine Tumor Bank
under a protocol approved at North Sydney Local Health District
(n = 8), National Institute of Health (n = 10), University of Colorado
(n = 1), University of Texas Health Science Center at San Antonio
(n = 2), Tufts Medical Centre (n = 1), and Palacky University (n = 2). (see
Supplementary Data 1 for patient and sample information).

Single-nuclei (sn)RNA-seq
snRNA-seq was performed using the ‘Frankenstein’ protocol
(dx.doi.org/10.17504/protocols.io.bqxymxpw)64. Briefly, nuclei from
frozen tissues were subject to fluorescence-activated nuclei sorting
(FANS) by 4′,6-diamidino-2-phenylindole (DAPI) on a BD FACSaria 2
instrument, sorting between 3000 and 10,000 nuclei per sample. Both
diploid and tetraploid populations were selected to account for gen-
ome duplication in neoplastic PCPG cells15. FAN-sorted nuclei were
immediately processed using the 10x Chromium Single Cell 5’ Library
& Gel Bead Kit (PN-1000002 following the manufacturer’s recom-
mendations (10x Genomics, USA). Once processed, snRNA-seq librar-
ieswere sequenced inmultiple batches on the IlluminaNova-Seq 6000
(Illumina, USA) using 150bp paired-end sequencing. Between 895 and
4822 cells were sequenced per tumor achieving near saturation cov-
erage at ~5800 unique sequence reads per cell. scRNA-seq binary base
calls (BCL) files were demultiplexed and converted into FASTQ files
using BCLtoFastq.

snRNA-seq primary data analysis
FASTQ sequence data were aligned to a custom hg19 (GRCh37, Cell-
Ranger reference genome version 3.0.0, build GRCh37.p13) “pre-
mRNA” reference, to account for reads that map to both exonic
(mRNA) and intronic (unspliced pre-mRNA) regions. This custom
referencewas created as describedhere: https://support.10xgenomics.
com/single-cell-gene-expression/software/pipelines/3.0/advanced/
references. Alignment and UMI counting were performed using cell-
ranger count (v3.0.2).

snRNA-seq data was subject to quality control and data filtering
(see Supplementary Fig. 1 for quality control metrics and thresholds).
To detect barcodes that likely contained RNA from two or more cells
(i.e. doublets), raw counts for each sample were annotated with
‘doublet scores’ using Scrublet (version 0.2.1)65. Scores were normal-
izedwithin each sample to themedian absolute deviation (MAD) of the
raw scores. Potential doublet barcodes were removed from further
analysis with Scrublet MAD values <2.

Further quality control filtering was done in the context of major
cell type types (determined by UMAP clustering) to account for the
range of transcriptional activity withinmajor cell lineages. Filtered cell
expression matrices from Cell Ranger for each sample were merged
into a singlematrix and processed using the Seurat R package (version
3.2.3)66. Within each sample, cells were filtered out if mitochondrial
genes exceeded a median absolute deviation (MAD) value of 5. Log-
scaled gene counts and total counts were normalized to MAD values
and the filtering threshold was selected per-barcode based on the raw
annotation of scMatch as it was observed that certain immune cell
types had significantly lower total RNA counts in the snRNA-seq data
sets. A threshold of −4 MAD score for B cells, T cells, mast cells or NK
cells, otherwise a threshold of −2.5 was used for all other cell types.

The filtered cell expression matrix was then normalized using the
SCTransform method with the mitochondrial gene count percentage
as a non-regularized latent variable in the variance stabilizing trans-
formation (VST) model67. Cells were then annotated with cell cycle
phase scores using Seurat’s CellCycleScoring function to provide cell
cycle classifications after the effect of total UMI counts per-cell had

been reduced in the data. SCTransform was then repeated, with the
G2M and S phase scores included as additional non-regularized latent
variables.

Uniform manifold approximation and projection (UMAP)
clustering
Variable genes were selected based on a residual variance threshold of
1.3. Principal Component Analysis (PCA) was then performed on the
resulting scaled expression values. A shared-nearest-neighbor (SNN)
graph was constructed using the Seurat FindNeighbors function with
the “Annoy” method, using the first 20 principal components (PCs), a
cosine distance metric, and number of nearest neighbors counted of
2068. Clusters were identified from the SNN graph using the Seurat
FindClusters function with the Louvain algorithm and resolution
parameter set to 0.8. The UMAP values were calculated from the top
20 PCs using the uwot R package (version 0.1.8) with cosine distance
metric and n.neighbors set to 20. For the cell-type-specific UMAP
values, PCA was repeated within each subset and the top 30 PCs were
used instead with the same parameters otherwise.

Harmony batch correction
Raw read counts were normalized with the Seurat R package using the
log-normalization method with default parameters. The top 3000
most variable featureswere then selected using the variance stabilizing
transformationmethod. The resulting subset was scaled and centered,
and principal component analysis (PCA) was performed using the
default parameters. To ameliorate sample or patient-specific batch
effects, the Harmony R package (v0.1.0) was applied to Seurat object
using patient identifier as the grouping variable. The resulting Har-
mony embedding was used to perform UMAP dimensional reduction,
neighbor finding, and cluster finding with the first 20 dimensions and
resolution of 0.5.

Stromal and immune cell type classification
Each cell barcode was annotated by cell type based on raw counts
using scMatch initially using the FANTOM5 reference data set collap-
sing to one cell type per UMAP cluster by taking themost common cell
annotation in each cluster69. Cell type labels (prior to the finer cell
subtype analysis) were also refined/curated based on gene markers of
known cell types accounting for the potential absence of cell types in
the FANTOM5 data set (e.g., chromaffin cells and SCLCs were not
represented). Major stromal and immune cell types were then later
reclassified using two cancer-related scRNA-seq reference datasets30,31

(GEO accession IDs GSE131907 and GSE146771). Log transcripts-per-
million from GSE146771 and counts from GSE131907 were normalized
with the LogNormalize function from Seurat with default parameters
collapsed to gene expression centroids by taking the mean value per
cell type. In a similar approach to scMatch, cells were scored against
each centroid using Spearman correlation on a subset of highly vari-
able genes. Variable genes were selected separately for the immune
cell types and for all other non-immune normal cell types by ranking
their residual variance within the respective groups within the final
SCTransform VST model and selecting the top 3000 genes. Centroids
from GSE131907 were used to annotate fibroblast, endothelial cell and
B cell subtypes. Centroids from GSE146771 were used to annotate T
cell, NK cell and myeloid cell subtypes. Unique clusters that did not
correspond well with any of the reference cell types but could not
otherwise be identified were manually labeled according to marker
genes of those clusters.

Inference of copy-number variation from snRNA-seq
The inferCNV R package (version 1.2.1) (https://github.com/
broadinstitute/inferCNV) was used to estimate cell-specific copy
number profiles based on gene expression. Adrenocortical cells,
chromaffin cells, endothelial cells, fibroblasts, and myeloid cells from
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all samples were used as the reference cell types for inferCNV. SCLCs
and tumor cells were processed independently to compare to the
reference diploid normal cell types. To compare the inferCNV with
other copy number methods, matched Affymetrix Cytoscan HD
microarray data was available for 12 samples26,50. Raw CEL file data
(GEO Accession ID: GSE61594, GSE94378) were processed using the
rawcopy R package workflow70.

Creation of the bulk-tissue RNA gene-expression compendium
Microarray data. Raw microarray data were obtained from seven
GEO accessions (GSE2841, GSE19422, GSE19987, GSE39716,
GSE50442, GSE51081, and GSE67066) and one ArrayExpress acces-
sion (E-MTAB-733). Affymetrix arrays were read into R (version 4.0.4)
with the ReadAffy function from the affy R package (version 1.62.0)
then normalized using robust multi-array average (RMA)71,72. Agilent
two-color arrays were read into R using the read.maimages function
from the limma R package (version 3.42.0)73. Expression values were
then normalized using the backgroundCorrect (with method = ‘

normexp’, offset = 5), normalizeWithinArrays (with method = ‘loess’),
normalizeBetweenArrays and avereps functions. To get expression
values with comparable distributions to the Affymetrix arrays, the
expression values (‘A’ values) rather than expression ratios were used
with an offset of −2.

Array probe expression values were collapsed down to single
values per HGNC gene symbol by taking the mean probe expression
value per gene. Gene symbols were matched to probes using the
AnnotationDbi R package (version 1.46.1) using the appropriate
annotation packages from Bioconductor74.

Bulk-tissue RNA-seq data. RNA-seq values quantified using HTSEQ-
count for the TCGA PCPG cohort were downloaded from the NCI
Genomic Data Commons (GDC) website15,75,76. RNA-seq counts from
our previous publication were used and data were processed as pre-
viously described50. Rawbulk-tissueRNA-seqdata from this prior study
is nowmade availableunder the sameaccession asdescribedbelow for
snRNA-seq.

Merging bulk-tissue RNA-seq and microarray data. Microarray and
RNA-seq datasets were merged into a harmonized expression matrix
(Supplementary Fig. 6). First, all microarray datasets weremerged into
a single matrix with all genes. Expression values were then quantile
normalized using the normalize.quantiles function from the pre-
processCore R package (version 1.46)77. RNA-seq counts were then
quantile normalized using the normalize.quantiles.use.target function
from preprocessCore with the microarray datasets’ quantile distribu-
tion as the target distribution. Batch effects were removed by fitting a
linear model using the samples without missing values for each gene
separately with sample genotype as a covariate using the remove-
BatchEffect function from the limma R package73. Samples without
annotated genotypes were set to zero weight in the linear model.
Replicate samples were removed from the analysis after batch effect
removal.

Clustering of PCPG bulk-tissue transcriptomes
Semi-supervised clustering of the merged expression matrix was
performed using ConsensusClusterPlus R package (version 1.5)78.
Clustering was performed using a cosine distance metric with only
the genes withmore than threeMADs above themedian coefficient of
variation across all samples among the genes with no missing values
and expression values mean-centered. Consensus clustering was
performed using the ConsensusClusterPlus function (pItem=0.7,
clusterAlg = ‘hc’, distance = ‘pearson’, innerLinkage = ‘ward.D2’, final-
Linkage = ‘ward.D2’, reps = 1000, maxK = 12, corUse = ‘

pairwise.complete.obs’, seed = 1). Initial clustering attempts identified
a cluster that was associated with batch (GSE19987 and GSE2841) but

not any genotypes. The cluster had no clear gene signature and sig-
nificantly higher than average normalized unscaled standard errors
(NUSE), so these samples were removed from the analysis before the
merging process was repeated. An initial consensus cluster number of
nine was chosen based on the point at which the proportion of
ambiguously clustered pairs stopped changing significantly. In addi-
tion, a cluster associated with normal adrenocortical cells and mix of
genotypes (C2C) was identified. Since this was a confounding factor in
the batch effect removal model, the batch effect removal process was
repeated a third time with samples initially assigned to cluster C2C to
zero weight to improve performance. Two clusters associatedwith the
kinase genotypes (C2A) were later merged based on their proximity in
UMAP space and common genotypes, yielding a final eight PCPG
clusters. UMAP values were calculated using the umap function from
the uwot R package using the same distance matrix as the clustering
analysis (n_epochs = 1000, min_dist = 0.1, metric = ‘cosine’, nn_me-
thod = ‘annoy’, n_neighbors = 15)79,80.

Projection of pseudo-bulk snRNA-seq samples into bulk-tissue
UMAP. Single-nuclei RNA-seq counts per-sample were summed to
produce pseudo-bulk expression profiles. These were also included as
a separate RNA-seq batch. A process for projecting new samples into
the existing UMAP projection was devised to compare the clustering
performance of pseudo-bulk analysis with all cells versus NEO cells
only. First, pseudo-bulk samples were quantile normalized using the
same quantile target distribution as used for the bulk microarray
merging process. Coefficients of the new samples’ batch were calcu-
lated by taking the mean value of the expression values minus the
coefficients of the corresponding genotypes of the new samples from
the original linear model fit. The batch coefficients were then sub-
tracted from the quantile-normalized expression values. Any missing
genes from the new samples from the highly variable gene list from the
bulk clustering analysis were then imputed using k-nearest-neighbors
imputation from the final bulk expression matrix by taking the mean
value from the 15 nearest neighbors (by cosine distance) in the bulk
matrix. The resulting expression matrix was then mean-centered and
projected onto the original umap model using the umap_transform
function from the uwot R package using the UMAP model from the
original bulk compendium.

Bulk-tissue differential gene expression analysis. Bulk-tissue differ-
ential gene expression analysis was performed using the limma and
edgeR packages in R. For DE analysis of bulk tissue, the quantile-
normalised bulk gene expression compendium was used. Linear
models were fit for genotype and tumor subtype. For the metastatic
versus non-metastatic analysis, we assumed any annotation of malig-
nant cases corresponded to a metastatic phenotype to conform to the
current nomenclature. Samples that did not have clinical data for
malignant/metastatic status were removed prior to modeling, and
subtype and metastatic were modeled as a single model factor. Batch
was included as a factor in each model to prevent confounding by
batch effects.

Contrast coefficients and standard errors for each gene were
estimated using the contrasts.fit function and log-fold-change values,
t-statistics and corresponding p values were computed by an empirical
Bayesmethodwith the eBayes functionusing the limma-trendmethod.
Within each contrast, this process was repeated for blocks of groups
and genes such that each gene’s coefficients were calculated with all
groups without missing values for that gene, as not every gene was
represented in the final expression matrix by samples from every
genotype or cluster group. P-values were then adjusted for multiple
testing to control the false discovery rate using the BH method.

Gene set enrichment scores for bulk data were calculated using
GSVA81. Gene sets that were used comprised the Molecular Signatures
Database Hallmark gene sets82, fetal adrenal cell-type specific gene
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sets49 (Supplementary Data 11) and gene sets derived from stromal and
immune cell types using our snRNA-seq data (log2FC > 3, P <0.05,
Supplementary Data 13). To determine DE at the gene-set level, GSVA
scores were modeled using the standard limma pipeline, with design
matrices constructed asdescribed for themetastatic vs non-metastatic
analysis above.

Pseudo-bulk differential gene-expression analysis. Pseudo-bulk
expression profiles were created at the level of broad stromal and
immune cell types for each tumor and normal adrenal samples. For
comparisons between tumor subtypes and normal adrenal, nuclei
were removed if there were <10 from a given sample in a cluster. A
small number of tumor sample nuclei that were classified as normal
chromaffin cells were also removed. DE analysis was performed using
the standard limma workflow. Tumor subtype and cell type were
modeled as a single design matrix factor and sex was included as a
second factor to prevent confounding by patient sex. Tumor and
normal samples were contrasted for each subtype and cell type. Cell
type-specific gene signatures were identified by performing pseudo-
bulk DE, comparing each major cell type cluster (aggregated per
sample) to all other non-tumor cell types (log2FC> 3, P < 0.05) (Sup-
plementary Data 13). To account for ambient RNA effect, correlation
between cell types from the sample of origin was estimated and sam-
ple of origin wasmodeled as a random effect in the data. Inspection of
gene-expression between cell types within individual samples was also
done to exclude any genes associatedwith potential ambient RNA that
originated from unrelated cell types in the same sample. For instance,
adrenocortical signature genes overexpressed inmany normal adrenal
cell types compared to the same cell types in tumor nuclei. Post-hoc
filtering of adrenocortical-related genes was performed for tumor
versus normal analyses.

Additional tumor versus normal tissue comparisons were per-
formed for pseudo-bulk profiles aggregated per sample at the level of
cell subtypes, where there was sufficient representation of the cell
subtype (>300 nuclei) across both tumor and normal tissues (stalk-like
endothelial cells, tip-like endothelial cells, macrophages) (Supple-
mentaryData 7). Pseudobulk expressionprofiles for each subtypewere
aggregatedper-sample and sampleswithbelow50cellswere removed.
Macrophages from each tumor subtype were also compared in a 1-vs-
rest comparison.

Receptors and ligands specific to SCLCs were identified by com-
paring SCLCs to all other cells including NEO cells (log2FC > 3 and BH
adjusted p < 0.05). Additional comparisons were performed between
each non-tumor cell type (aggregated per sample) vs all other cell
types, enabling identification of cell type-specific gene signatures
(log2FC > 3, P <0.05) (Supplementary Data 13). Heatmaps and dot
plots were generated using the ComplexHeatmap R package (ver-
sion 2.6.2).

Differential cell type abundance. The Speckle R package was used to
test for statistically significant differences in cell type abundance
between different tumor subtypes and genotypes. The get-
TransFormedProps function was used to calculate logit-transformed
cell type proportions for each tumor sample. To test for differences
between the tumor genotypes, a design matrix was constructed with
tumor genotype as a model factor. For the subtype comparisons, a
design matrix was made with tumor subtype as a model factor. Each
subtype and genotype were compared to all other subtypes and gen-
otypes using the propeller.ttest function.

NATMI analysis of cell–cell signaling. Seurat normalized expression
values were converted to CPMs then grouped by cell subtype and
sample prior to NATMI analysis (https://github.com/asrhou/NATMI).
The python 3 version of NATMI ExtractEdges with the suggested
dependency versions was run on each sample with default settings.

The predicted ligand-receptor interactions were then read into R for
further analysis. For a cell–cell connection to be kept for further ana-
lysis the ligand and receptorwereboth required to be expressed in>10
cells. Connections were also filtered out if receptor or ligand detection
rate <0.1. Cluster autocrine-signaling and interactionswhere the ligand
and receptor were the same gene were removed for data presentation
and interpretation. Furthermore, interactions that were not seen in at
least two samples were removed.

Visualizing gene-expression in the TCGA pan-cancer data. Level 3
gene expression counts were downloaded from the genomic data
commons using the TCGAbiolinks R package. Raw counts were TMM
normalized and transformed into log2 CPM using the edgeR R pack-
age. For the tumor comparison the log2 CPMs of GPR139 were then
plotted for samples defined as “Primary solid Tumor”, “Metastatic”,
“Additional - New Primary” or “Recurrent Solid Tumor” by their TCGA
barcode15. For the normal tissue comparison, log2 CPMs were plotted
for samples defined as “Solid Tissue Normal” by their TCGA barcode
against the previously mentioned tumor types for tumors in the PCPG
cohort.

Cell classification of PCPG NEO cells using a fetal adrenal refer-
ence. Fetal adrenal medulla snRNA-seq data (nSamples = 17) pre-
viously generated and pre-processed by49 was downloaded as a Seurat
object from (https://adrenal.kitz-heidelberg.de/developmental_
programs_NB_viz/). These data were visualized using the UMAP coor-
dinates provided. This dataset was used as a reference to classify NEO
cells and SCLCs from PCPG (nSamples = 30), normal chromaffin cells
and SCLCs from adult NAM (this study). Classification was performed
using the same method as described for supervised classification of
stromal and immune cells using the 3000 most variable genes in the
fetal adrenal data identified using Seurat FindVariableFeatures
function.

Fetal cell gene-module scoring in snRNA-seq andbulk-tissuegene-
expression data. Cell-type specific gene sets for fetal adrenal medulla
cell populations were downloaded from Jansky et al. supplemental
data49 (SupplementaryData 10).Gene-signature scores for PCPGnuclei
were calculated with the AddModuleScore function in Seurat with
default parameters. Briefly, this function scores single cells according
to the average expression of a gene-expression program and subtracts
aggregated expression of a set of (100) control genes. GSVA (v1.38.2)
was used to calculate gene set scores for bulk-tissue gene expression
profiles of the bulk gene-expression compendium.

RNAscope in situ hybridization. For RNAscope® ISH, a 20ZZ probe
(Hs-CDH19) targeting 456–1527 nucleotides of CDH19 (GenBank
accession NM_021153.3) was designed and manufactured by
Advanced Cell Diagnostics (ACD, Newark, CA). Four-micron thick
sections of formalin-fixed paraffin-embedded tumor tissue was
mounted on positively charged Superfrost® Slides. The RNAscope®
ISH assay was performed using an RNAscope® 2.5 HD Assay-BROWN
detection kit (ACD) following the manufacturers method. Sections
were deparaffinized briefly and then subjected to target retrieval
using Pre-treatment 1, 2, and 3 solutions for 10min at RT, 15min at
100–104 °C and 30min at 40 °C respectively, rinsing with dH2O
between each step. For the probe hybridization, slides were incu-
bated with the CDH19 probe (or the RNAscope® ISH positive control
probe PPIB (Cyclophilin B) for 2 h at 40 °C in a HybEZ™ oven, followed
by a series of signal amplification steps involving incubating with
specific amplification solutions. For signal detection a premix DAB
solution was used at RT for 10min. Slides were counterstained with
hematoxylin for 2min, dehydrated mounted and cover slipped. Ima-
ges were acquired using an Olympus BX51 fluorescent microscope
(Olympus, Tokyo, Japan).
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Immunohistochemistry and scoring of immune cells. Immunohis-
tochemistry (IHC) using 3,3′-Diaminobenzidine (DAB) was performed
on FFPE tissue sections using commercially available antibodies.
Details of antibodies and antigen retrieval methods is described in
Supplementary Table 4. Staining for S100 was done using a Leica-
Bond-3 automated staining platform (Leica Micro systems, Mount
Waverley, Victoria, Australia). All other stains were performed manu-
ally. Immune cell scoring was done by an expert pathologist (AJG). To
determine inflammatory cell counts, areas of blood extravasationwere
avoided as much as possible as were areas of fibrosis. Only inflam-
matory cells within the tumor were counted (that is circulating or
marginating inflammatory cells were not counted). CD206 also stains
for marginating neutrophils in capillaries, which were therefore
ignored. Similarly, CD206 positive neutrophils in the stroma were
disregarded.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The snRNA-seq as well as bulk-tissue RNA-seq data generated in this
study have been deposited in the EuropeanGenome-PhenomeArchive
(EGA) under accession code EGAS00001005861/ EGAD00001008403.
The data are available under restricted access as it is potentially
identifiable based on patient genotype. Access can be obtained by
researchers upon application through EGA to the study data access
committee (DAC) of the University of Melbourne. The DAC will
attempt to provide a response to all applications within ten days of
submissionand render afinal decisionwithin nomore than fourweeks.
Once the DAC has in principle approved an application a data transfer
agreement (DTA) will be mutually agreed and executed between
institutions and data will then be made available through EGA. The
remaining data are available within the article and supplementary
information. Source data required for the reproduction of figures
presented in this study are available from figshare (https://doi.org/10.
6084/m9.figshare.21080476). The publicly available microarray data-
sets used in this study are available from theGene ExpressionOmnibus
(accession numbers GSE13190730 GSE14677131, GSE28419, GSE1942283,
GSE1998784, GSE3971685, GSE5044285, GSE5108186, and GSE67066)87

and ArrayExpress (accession number E-MTAB-733)58. In addition,
publicly available Affymetrix Cytoscan HD array data is available from
the Gene Expression Omnibus under accession numbers GSE6159450.
and GSE9437826. Source data are provided with this paper.

Code availability
The code used for data analysis is available at https://github.com/
UMCCR-RADIO-Lab/snRNA-seq-atlas-of-pheochromocytoma-and-
paraganglioma.
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