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Chemical space docking enables large-scale
structure-based virtual screening to
discover ROCK1 kinase inhibitors

Paul Beroza 1 , James J. Crawford 1, Oleg Ganichkin2, Leo Gendelev1,
Seth F. Harris3, Raphael Klein4, Anh Miu5, Stefan Steinbacher 2,
Franca-Maria Klingler 4,6 & Christian Lemmen4

With the ever-increasing number of synthesis-on-demand compounds for
drug lead discovery, there is a great need for efficient search technologies. We
present the successful applicationof a virtual screeningmethod that combines
two advances: (1) it avoids full library enumeration (2) products are evaluated
by molecular docking, leveraging protein structural information. Crucially,
these advances enable a structure-based technique that can efficiently explore
libraries with billions of molecules and beyond. We apply this method to
identify inhibitors of ROCK1 from almost one billion commercially available
compounds. Out of 69purchased compounds, 27 (39%) haveKi values < 10 µM.
X-ray structures of two leads confirm their docked poses. This approach to
docking scales roughlywith the number of reagents that span a chemical space
and is therefore multiple orders of magnitude faster than traditional docking.

Virtual screening aims to computationally search the universe of
potential organic molecules to identify a manageable number of vir-
tual “hits”, whose physical samples can be obtained and tested in the
laboratory to assess their activity on a desired target. One such com-
putational method, molecular docking, is widely used in drug dis-
covery initiatives. It uses the three-dimensional structure of the target
protein and places small molecules into its binding site. There is,
however, a computational complexity inherent in the docking process:
the evaluation of each small molecule requires consideration of its
various low-energy three-dimensional conformations, each of which
has a distinct 3D geometry. Further, a larger screening library should
improve both the number and quality of the hits identified1, thereby
increasing the downstream chances of drug discovery success. As a
result, ever larger libraries of compounds have been considered, with
recent docking campaigns reaching the billion-compound milestone,
but only through the deployment of significant computational
resources2,3.

The development of high-throughput docking has been accom-
panied by a significant growth in the number of unique small

molecules that can be obtained. Most significantly, the availability of
“synthesis-on-demand” molecules, in which well-validated synthetic
routes are coupledwith ever-expanding lists of building blocks, has led
to a combinatorial explosion in the number of molecules available for
purchase. The chemical supplier Enamine’s REAL Space, for example,
comprisesmore than 20 billion compounds (as of 07/2021).While this
seems large, it is dwarfed by the numbers obtained through combi-
natorial synthesis based on published reaction protocols:
KnowledgeSpace4 with 1014 compounds or that reported by Glax-
oSmithKline with 1026 molecules5.

Docking of such large combinatorial spaces is impossible with
current hardware limitations. Even enumeration of the products is not
feasible, so potential products can only be stored as building blocks
(see Methods for further description of building blocks) and connec-
tion rules that allow for on-the-fly compound generation. One
approach to explore these large chemical spaces uses a similarity
method called Feature Trees6,7. The algorithm compares a query
molecule to all building blocks, and the best building blocks are joined
with complementary building blocks to make new molecules,
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according to the chemistry rules that define the space. This approach
has been used successfully numerous times in virtual screening of very
large chemical spaces8.

The first approach to explore chemical spaces in three dimensions
in a similar combinatorial manner, without brute-force enumeration,
was FlexNovo9. It placed chemical fragments in an active site and
iteratively expanded the most promising candidates by joining them
with other fragments. However, the chemical spaces explored were
based on splitting and recombining existing molecules10,11, without
consideration of reaction rules. This inherently limited the synthetic
feasibility of the chemical space that could be explored, since only a
subset of fragment combinations could actually participate in validated
chemical reactions. In the current work, we restrict the combination of
fragments to those that can participate in validated chemical reactions,
allowing us to navigate the same chemical space that is defined by the
synthesis-on-demand virtual libraries of reactions and their associated
building blocks. Through the combination of structure-based evalua-
tion of fragments with the reaction rules from established chemical
spaces, we can explore larger chemical spaces that were previously
restricted to 2D searchmethods. Our strategy, whichwe termChemical
Space Docking, capitalizes on the synergy of the exploration of large
chemical spaces and easy access to physical samples of identified hits.
This approach can be considered an extension of earlier work on
combinatorial docking, inwhich aknownbindingmoietywas expanded
into products using a single reaction scheme12–14.

Results
Selection of building blocks by docking
Building block fragments of the two-component chemical space
(136,835 in total derived from the 71,894 building blocks (see Meth-
ods): a building block may have moieties that can participate in dif-
ferent reactions and therefore give rise to more than one building
block fragment) were dockedwith the FlexX docking application15 into
the binding site of 2ETR with pharmacophore constraints (see Meth-
ods). Up to 10 docked poses per fragment were generated, which led
to a total of 129,125 poses. These were assessed with the HYDE scoring
function16,17, and the top-scoring 50,000 poses were imported and
inspected in SeeSAR18 to select the best 500 unique building block

fragments and associated poses. Selection criteria for the initial
docked poses were:

• Additional hydrogen bond interaction: along with the required
hinge-binding pharmacophore, at least one additional hydrogen
bond was required between ligand and protein.

• Ligand efficiency: the molecular weight of the fragments was
required to range from 45 to 450 g/mol. Preference was given to
small fragments with high docking scores.

• cLogP: fragments with calculated LogP values over 4 were
excluded.

• Linker geometry: the docked pose of the fragment was required
to orient its reactive moiety in a geometry that would result in a
productwith a potentially favorable interactionwith the protein.
Vectors that pointed toward the protein interior or toward the
solvent were excluded.

• Torsion energy: docked fragments with high torsion energies
were excluded19,20.

• Chemical diversity: preference was given to chemically diverse
and interesting scaffolds.

Representative fragment poses are shown in Fig. 1. The pose
orientations and reaction vectors span the binding site and provide
good coverage of its volume by the enumerated complete combina-
torial products.

Expansion of libraries and filtering of products
Following the chemistry rules of the two-component chemical reac-
tions, each of the selected 500 docked fragments was used as the
starting point for a full library enumeration of products21. The resulting
500 libraries yielded a total of 5,236,824 products. Each of the 500
libraries was docked using the previously computed fragment pose as
a template with FlexX. For each product, up to five docked poses were
generated, resulting in 23,305,389 docked poses of complete virtual
products. These were subsequently scored with the HYDE algorithm,
and the relaxation, clash-removal, and score-optimization during this
step led to the rejection of over half of the poses for a total of
10,391,986 for further evaluation and filtering.

Fig. 1 | Dockedposesof selected starting fragmentposes.A representative set of
docked poses (80 of the 500 initial fragments) are shown in the ROCK1 binding
site. The binding pocket surface is shown in gray, and the hinge-binding

pharmacophore is shown as two green spheres. Linkers are shown in light blue and
serve as reaction vectors for product library enumeration (each fragment repre-
sents a library of ~10k molecules).

Article https://doi.org/10.1038/s41467-022-33981-8

Nature Communications |         (2022) 13:6447 2



The top scoring 50,000 poses were selected and out of these the
best poses per molecule (~33,000 virtual products) were chosen for
further analysis. Strain energy filtering was done with the Chemalot
software package22. Docked poses with an internal strain energy of five
kcal/mol were removed, which reduced the number of molecules to
5940. To corroborate the docking results from FlexX, we redocked the
remaining 5940 to the ROCK1 structure using the FRED docking
program23. Further, in order to increase the chemical diversity of the
compounds selected, we performed k-means clustering on the 5940
compounds using the default k-means clustering in Vortex24, resulting
in 500 clusters. From each cluster of compounds, the cluster member
that had the best FRED docking score was selected for further
evaluation.

The 500 cluster representatives were subjected to two qualitative
filters: compoundswith excessive flexibility and those containing large
hydrophobic groups were rejected. Of the compounds remaining, a
final set of 77 was chosen by visual inspection and ordered for pur-
chase from Enamine (www.enamine.net). Of those, physical samples
were obtained for 69.

Analysis of active molecules
Of the molecules obtained, 27 had Ki values below 10 µM (the upper
limit of activity detection for the assay), corresponding to a hit rate of
39% (Enamine catalog IDs listed in Supplementary Information). The
most potent compound was 38 nM, and 13 compounds (19%) had
submicromolar potencies. Structures and ROCK1 Ki values for the
active compounds are shown in Supplementary Table 1. Many of the
active molecules identified are structurally similar to known ROCK1
actives (see Supplementary Note 3 for analysis), which demonstrates
that our method can deliver what is found through traditional
screening and medicinal chemistry.

Figure 2 shows the initial fragment hits that led to the active
molecules shown in Supplementary Table 1. The two phenylpyrazole
fragments clearly yielded not only the largest number of actives but
also the most potent ones. Beyond these two starting fragments, the
others show an interesting structural diversity in their ability to inter-
act productively with the kinase hinge regionwhile optimally orienting
a reactive moiety to have favorable interactions elsewhere in the
binding site after the full product is docked.

The active compounds were grouped by their hinge-binding
motifs: pyrazoles, lactam/pyridones, azaindoles, and indazoles. Each
of the four groups consists of at least three activemolecules. It is worth
noting that the ligand in the structure used for the docking calcula-
tions contained a pyridine hinge-bindingmotif, and that motif was not
represented in the active molecules identified. Figure 3 shows the
binding pose of themost potent activemolecule from each of the four
chemotypes. In addition to the hinge-binding motif, which was
required of all docked compounds, all active molecules identified in
the virtual screening campaign contain a hydrophobic group that
interacts with the P-loop of the kinase. This is particularly interesting
because the ligand in the complex structure used for the docking
calculations does not interact with the P-loop in this way; that volume
in the protein/ligand complex is unoccupied.

The pyrazole class was the most populous, with fifteen active
molecules. Perhaps unsurprisingly, these also featured the greatest
structural diversity and the most potent examples. Examination of
their docked poses revealed that they contained a phenyl group distal
to thehydrogenbondingN-Npair of thepyrazole (Fig. 3a). This phenyl-
pyrazole moiety fills a similar volume to that of the purine group in a
native ATP-bound kinase structure. In addition to the phenyl group, all
actives contained a C- or N-linked amide group at the para position
to the pyrazole, providing the connection to the hydrophobic
P-loop group.

The second most populous group, the lactam/pyridones, com-
prised three fused heterocycle hinge binding motifs: isoquinolinone,

dihydroisoquinolinone, and isoindolinone. For these compounds,
both the carbonyl oxygen and the amide nitrogen form hydrogen
bond interactions with the protein backbone of the hinge (Fig. 3b). As
with the pyrazole inhibitors, the lactam/pyridones all have a hydro-
phobic group tucked under the P-loop. The saturated 6-membered
example (compounds 18, 19, and 21) is quite unprecedented for
ROCK1 inhibitors. There were no examples of that motif as a hinge
binder in the ChEMBL ROCK1 actives.

The three azaindole inhibitors have a distinctive tetra-
hydropyridine ring linking the putative hinge-binding group with the
atoms that interact with the P-loop (Fig. 3c). This group also contains
the most potent compound outside of the pyrazole hinge-binders.

Finally, the indazoles comprised three approximately equipotent
actives whose docked poses bridge the hinge binding motif to the
P-loop interaction by way of an acyclic amide. In two of the indazole
analogs, a pyrazole group interacts with the P-loop and forms a
hydrogen bond interaction with the catalytic lysine (Fig. 3d). In the
third analog, the amide linkage is flipped, and the amide carbonyl
group interacts with the catalytic lysine.

Confirmation of docked poses by X-ray crystallography
To facilitate further validation of the method and confirm the postu-
lated binding modes, we obtained co-crystal structures of ROCK1 in
complex with Compound 1, the most potent inhibitor identified in the
virtual screening campaign, and with Compound 22, an inhibitor we
considered structurally unique. The structureswere solved and refined
to a final resolution of 2.34 Å (Compound 1) and 2.74 Å (Compound
22). The crystals contained four monomers of the ROCK1 kinase
domain in the asymmetric unit, of which chains A, B, and C were
relatively well defined, while the fourth copy of chain D was quite
poorly ordered and not used in analyses (see Methods). Focusing on
the chain A example in each structure, the resulting electron density
shows a clear binding mode for each ligand (Figs. 4a and 5a). These
were placed and refinedby contributors to this workwhowere blinded
to the docking pose results. A comparison between the experimental
protein-ligand complexes and the docking poses obtained in the vir-
tual screen is shown in Figs. 4b and 5b. The root-mean-squaredeviation
between the docked pose and the X-ray structure was 0.97 Å (Com-
pound 1) and 2.30 Å (Compound 22).

With the Compound 1 example, the pyrazole nitrogens that bind
the hinge motif are 0.8 or 1.0 Å apart between the experimental
structure and the docked model, while the alignment of the protein
atom component of these hydrogen bonds show 0.4 or 0.6 Å separa-
tions. The mid-ligand phenyl linker ring has a distinct tilt in the
experimental structure, but the overall ligand position remains co-
located with the docked model (Fig. 4b). This is despite a large dif-
ference in the protein structures where our crystal structure model
wasbuilt, interpreting density to indicate an inversion of theDFGmotif
(which also leads into a disordered activation loop) such that the
inward location of the phenylalanine 217 sidechain creates a very dif-
ferent platform surface for the base of the ligand binding pocket.
Similarly, the tip of the P loop of our structure is slightly lifted relative
to the crystal structure used as a template for the docking (2ETR),
allowing some differences in the ligand methoxy ethyl tail moiety.
Since docking protocols generally do not account for such large con-
formational changes and protein dynamics, the consistency of the
experimental and docked ligand poses in this example are all themore
remarkable.

Analogously for Compound 22, the azaindole nitrogen atoms
involved in hydrogen bond interactions to the kinase hinge are only
0.4 or 1.0 Å displaced between the experimental and docked poses. In
this case, the displacement between the twomolecules becomes larger
as one moves distally to the hinge towards the back portion of the
pocket underneath the P loop. For example, the carbonyl group on the
docked ligand that interactswith the tip of the conserved kinaseN lobe
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lysine 105 is displaced 1.8 Å from the experimental structure and the
respective distal phenyl groups underneath the P loop are 3.4 Å apart.
However, it is critical to note that the protein itself demonstrates shifts
of similar size in our alignment, such that we observe displacements

between our experimental structure and that used as a template in the
docking procedure of 2.1 Å at the zeta nitrogen of Lys105 and 2.4 Å for
equivalent backbone C-alphas (Phe87) at the P loop turn, or a 4.2 Å
difference at the outer tip of that phenylalanine 87 sidechain. These

16,20 19,21

18 17

25,26,27 22,23,24

1,13 2-12,14,15

Met156

Glu154

Met156

Glu154

Lys105

Met156

Glu154

Met156

Glu154

Met156

Glu154

Met156

Glu154

Met156

Glu154

Lys105

Met156

Glu154

Fig. 2 | Initial fragment hits. Two-dimensional depictions of the initial frag-
ment hits that led to one or more of the final 27 active molecule products. Key
protein interactions with the ATP binding site are shown. Below each

example is the list of active molecules in Supplementary Table 1 that were
derived from the initial fragment hit.
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observations suggest that the bulk of the observed ligand displace-
ment is due to the malleability and differences in the protein compo-
nent that the docking algorithms would not be expected to achieve.
For instance, ROCK1’s helix C is partially unwound in the mid-section
affording greater plasticity and this directly abuts the P loop and outer
portions of the binding pocket. It is again reassuring that given those
large adjustments in the protein, the ligand binding conformation
itself is quite well matched between the two models, albeit with this
tilted trajectory differential. Overall, these experimental structures
confirm the expected binding modes.

During the execution of the virtual screening campaign, a pub-
lication reported a series of phenylpyrazole ROCK1 inhibitors, and a
crystal structure of one of the inhibitors was deposited in the protein
databank (PDB ID 7JOU)25. That structure has a very similar binding
mode to the one we obtained, further validating our approach. The

second structurally characterized inhibitor, Compound 22, and its
analogs, contain a tetrahydropyridine linking group, which were not
found in our survey of PDB kinase inhibitor structures. Comparison of
the docked pose of the ligand with its X-ray coordinates shows good
agreement with the ligand geometry in the hinge region, although the
plane of the pyrrolopyridine ring is slightly rotated. This difference is
magnified further from the hinge. There is some torsional variation in
the terminal phenyl group, but there is good overall agreement
between the two ligand geometries.

Discussion
By typical metrics used to evaluate a screening campaign—hit rate,
potency, and structural diversity of hits—this virtual screen succeeded
beyond our expectations. A hit rate of 39% rivals the highest reported
in the docking literature, and the potencies meet the criteria for most

Fig. 3 | Docked poses for the most active molecules from each of the four
chemotypes identified. The hinge residues are at the left and the P loop (green) is
at the top of each panel, while the original 2ETR ligand is shown in thin white sticks
for reference. a Compound 1 (pyrazole) in orange. b Compound 16 (pyridone) in

magenta. c Compound 22 (azaindole) in purple d. Compound 25 (indazole) in
yellow. Hits identified by Chemical Space Docking all interact with the kinase P-
loop, and two interact with the catalytic lysine (see a and d). Neither of these
interactions is present in the PDB ligand.

Fig. 4 | Comparison of the X-ray structure of compound 1with its docked pose.
aX-ray structure: the refined 2Fo-Fc electron density is depicted at 1 sigma contour

in the vicinity of the ligand. b Overlay of the docked pose (light green) and X-ray
conformation (dark green).
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biological screens for activity.Moreover, all of the hits have chemically
related analogs that are also potent, which provides a nascent
structure-activity relationship for each series. After the screening of
only 69 compounds, the compounds identified could easily be starting
points for a hit-to-lead medicinal chemistry effort on a therapeutic
target in a modern drug discovery campaign.

The docking of reaction building block fragments and the selec-
tion of those that are most promising, followed by instantiation of the
sub-libraries associated with them, provide an efficient, and in this
example, highly successful alternative to current docking strategies
based on enumerated libraries. Accordingly, our validation study
opens the door to structure-based search of a much larger chemical
space than was previously available. The ever-increasing reaction-
based chemical spaces comprise numbers that are many orders of
magnitude beyond what can be considered for docking completely

enumerated libraries. Even the computational requirements to create
the products, much less to efficiently dock them, are daunting. Che-
mical Space Docking overcomes these obstacles.

The computational resources needed for different docking
approaches are shown in Fig. 6. Recently published large-scale docking
campaigns and their associated computation times1,2,26,27 are compared
with our docking approach. Traditional full library docking encounters
resource limitations as the size of the chemical space increases. Our
approach, with its much lower CPU requirements, is a much more
efficient method.

One might argue that bigger and bigger libraries—let alone che-
mical spaces—are not needed28. It could be sufficient to work with a
comparatively small, manageable, diverse library to find starting
points for any drug discovery challenge. However, recent work has
shown that a full virtual library screen is essential to identify the best

Fig. 5 | Comparison of the X-ray structure of compound 22 with its docked
pose. a X-ray structure: the refined 2Fo-Fc electron density is depicted at 1 sigma

contour in the vicinity of the ligand. bOverlay of the docked pose (cyan) and X-ray
conformation (bone).

Fig. 6 | Computational requirements for large-scale docking campaigns. Tra-
ditional full enumeration docking curves are calculated based on the time needed
to dock each molecule: 10 s (red), 1 s (yellow), 0.1 s (green). Chemical Space

Docking curve shown in light blue. Large-scale docking campaigns from the lit-
erature are shown as individual data points (including Space Docking results
described here and similar campaigns)1,2,26,27,40.
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active compounds. Both the quality and quantity of hits deteriorates if
smaller libraries are screened1,29. Another important recent finding is
that even ultra-large chemical spaces are surprisingly unique30, which
makes the case for efficient search of large chemical spaces evenmore
compelling. As long as the quality of the virtual screening hits is
maintained, there seems to be good reason to cast the net as widely as
possible in chemical space in the pursuit of bioactive molecules.

Although wide screening is preferable, computational resources
are always limited. Our approach achieves a balanceby focusing on the
most promising building blocks for expansion, a so-called greedy
optimization strategy. This has been applied quite successfully in
numerous drug discovery applications, where complete searches are
impractical31. Greedy methods require both additive scoring and
optimal partial solutions to an optimal complete solution. To some
extent this is a given here. Anoptimally scoring compoundpose canbe
expected to score favorably in all of its component interactions within
the binding site. Since the approach presented here starts with all
building blocks considered in the first pass, chances are that for a
multi-component, top-scoring molecule, at least one of its compo-
nents will also be a top-scoring solution in the first pass. Further, the
top-scoring component will likely survive as a solution through the
greedy iterations. It should be noted that the practical restriction on
the number of candidates that can be exhaustively searched by brute-
forcedockingwill probablyposea greater limitation tofinding thebest
molecules than the unlikely omission introduced through the present
greedy heuristic29.

Comparisons between Chemical Space Docking and docking fully
enumerated compound libraries are described in Supplementary
Note 4. Enumeration of random selections from the full Enamine
product space leads to a vast number of poor docking compounds,
while Chemical Space Docking significantly enriches for good dockers.
Comparison of Chemical Space Docking with complete enumeration
of two select chemical subspaces shows a similar efficiency gain. While
the majority of the best scoring compounds in the full enumeration
were also found by our protocol, some high scoring compounds were
not - the result of filtering the initial building blocks as described
above. In any case, a significant fraction of high scoring compounds
are found by Chemical Space Docking at a small fraction of the com-
putational cost of brute force docking of an entirely enumerated
compound space.

The docked poses of the starting fragments are critical for the
success of the Space Docking approach. By design, candidate mole-
cules are built from a single reaction vector for each candidate frag-
ment pose. Ideally, the binding site provides guidance about where to
initiate the building process: a deep pocket or a known required
interaction. In the case of kinases, the hinge interaction, which is
common to almost all orthosteric kinase inhibitors, provides such a
docking anchor: the initial fragment has to make a hydrogen bond
interaction with the hinge. Not surprisingly, the actives identified
include chemicalmotifs that are knownhinge binders32,33. Binding sites
that do not possess an obvious point from which to grow molecules
in situ might prove more challenging. In such cases, more poses for
the initial fragments may be required to identify the best
starting point.

Immediate plans to advance the results presented here include
the automation of much of the workflow. For example, evaluation of
the initial binding poses for the best geometry for further expansion
was done largely by visual inspection; subsequent filtering of the
enumerated products was also done sequentially by custom scripts
and visual inspection. Many such stepsmay be automated with careful
algorithmic development, which is currently underway. Further,
extension of the method to three-component reactions will greatly
increase the size of the chemical space considered in the search.
Finally, kinases are well-established as druggable targets, and

application of the method to more challenging therapeutic targets is
on-going.

The results presented here demonstrate that structure-based
methods can be extended to the vast chemical spaces that were pre-
viously restricted to searches based on chemical graphs or reduced
representations. Our hope is that informing such large-scale searches
with protein structural information will greatly improve the number,
quality, and novelty of chemical leads identified through virtual
screening.

Methods
Docking protocol and chemical space definition
The initial stage of our virtual screening workflowwas the definition of
the appropriate docking protocol for the virtual screen. The 2ETR
structure was chosen because its binding site could accommodate
ligands from other PDB ROCK1 entries and had well-defined electron
density in the ATP binding site (see Supplementary Note 1)34. Further,
best docking results were obtained when the canonical kinase hinge-
bindingmotifs were required: either (1) a ligand hydrogen bond donor
was within hydrogen bonding distance of the backbone carbonyl of
Glu 321 or (2) a ligand hydrogen bond acceptor was within hydrogen
bonding distance of the backbone nitrogen of Met 323. The binding
site and pharmacophore constraints used in the docking calculations
are shown in Fig. 7. Further details of the calculations that led to the
selection of the protein structure and the pharmacophore constraints
are described in Supplementary Note 1.

Building block fragments
The set of compounds to be searched with our reaction-based
docking method was built from the two-component subset of the
Enamine REAL Space compounds (reactions and building blocks
were accessed in April 2019: https://enamine.net/compound-
collections/real-compounds). This comprises 71,894 building
blocks and 102 reactions, for a maximum possible total of
858,125,390 virtual productmolecules. A building block is amolecule
that contains a functional group that can participate in a chemical
reaction. A building block fragment, or simply “fragment,” is derived
from a building block by retaining the part of the building block that
remains after the reaction and introducing a dummy linker atom that
defines the connectivity to a complementary fragment (i.e., the sec-
ond building block in a two-component reaction). A building block
may contain more than one functional group (compatible with dif-
ferent reactions) and can therefore give rise to more than one dis-
tinct fragment. All building block fragments were docked and the
best poses were selected for further evaluation. Then, following the
available reaction schemes, this set of anchor fragments underwent
combinatorial expansion and docking of the complete chemical
products. Finally, the docked products were further filtered to
identify the most promising molecules.

Biological assay
Human ROCK1 protein (amino acids 1–477 from accession number
NP_05397.1)was purchased fromCarnaBiosciences (Cat#01-109). This
sequence contains the catalytic domain of the protein, and the bio-
chemical activity was measured by the HTRF KinEASE-STK S2 Kit
(Cisbio, Cat# 62ST2PEB) according to the manufacturer’s protocol. To
determine the IC50, compounds were first dispensed by the Echo
LiquidHandler (Labcyte) into white 384-well plates (PerkinElmer, Cat#
6008289). A total of 3μL of 2x ROCK1 enzyme solution was added to
the compounds, followedby a 10min incubation at room temperature.
Then, 2x ATP and STK S2 peptide solution were added to initiate the
one-hour enzyme reaction at room temperature. The final condition of
the reaction was 1.5 nM Rock1, 3μM ATP, 0.5μM STK S2 peptide in
50mM HEPES pH7.2, 10mM MgCl2, 0.1% BGG, 0.005% Brij-35, 1mM
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DTT. The reaction was quenched by adding 6μL of the detection
mixture that contained Streptavidin XL665 and STK Antibody-
Cryptate (Cisbio) and incubated for 1 hour at room temperature. The
HTRF (665 nm/620nm) signal was readon the PHERAstar reader (BMG
Labtech). All measurements were done in triplicate.

X-ray structure determination
HumanROCK1 (kinase domain, residues 6 to 405,with N-terminal TEV-
cleavable His tag) was expressed in insect cells. Purification was per-
formed at 4 °C, with an initial Ni-NTA affinity chromatography step
followed by TEV cleavage of the His tag. TEV-cleaved ROCK1 was pas-
sed over a second Ni-NTA column, and the ROCK1 protein from the
flow-through was resolved by size exclusion chromatography in
100mM NaCl, 20mM HEPES/NaOH pH 7.5 and 2mM beta-
mercaptoethanol. Peak fractions were collected, concentrated to
22mg/ml, flash frozen in liquid nitrogen, and stored at −80 °C. For
crystallization the protein was diluted to 16mg/ml with storage buffer.
The protein was incubated for 1 h on ice with the respective ligand at
1mM concentration (added from 100mM DMSO stock). For crystal-
lization (hanging drop) 0.5 µl of the protein/ligand solution, 0.5 µl of
the reservoir solution were mixed and incubated over 100 µl of reser-
voir solution in Linbro Plate (Jena Bioscience GmbH). The reservoir
solution contained 15–17% PEG5KMME, 0.1M HEPES/NaOH pH 7.5, 5%
(v/v) tacsimate pH 7.5. For cryoprotection with TMAO the Free
Mounting System (FMS) was used35. X-ray diffraction data were col-
lected at the Swiss Light Source (Villigen, Switzerland) on beamline
PXII/X10SA with an EIGER detector (Dectris), and processed with
autoPROC36. Molecular replacement was performed with MOLREP37,
model building with COOT38, and refinement with REFMAC539. Of the
four copies of the kinase domain observed in the crystallography
asymmetric unit, chain D had quite poor electron density suggesting
significant disorder, yet sufficient signal to indicate its presence. We
therefore excluded that molecule from analytical consideration in this
work, focusing rather on the chain A example, where both the protein
and ligand were relatively well defined. In an initial submission, side
chain occupancies were lowered to zero formuch of chain D; this was,
however, deemed questionable by PDB validation and we have in
response restored the occupancies to 1 throughout chainDdespite the

fact that some of the global and chain D local quality statistics suffer.
While notably, the real space RSRZ fit criteria, higher B factors in chain
D, and some elevation of the global R factors, nonetheless, chains A, B,
and C provide more robust substrate for analysis as shown in the
electron density figures throughout this work. The Ramachandran
profiles show 0.07% outliers and 98.06% favored geometries for the
ROCK1-compound 1 complex structure, and 0.22% outliers and 95.05%
favored geometries for the ROCK1-compound 22 complex. See Sup-
plementary Note 2 for further details.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided in this paper. Chemical structures and their
analytical and biological characterization are presented in the manu-
script and its Supplementary Information. Crystal structure coordi-
nates and structure factors for compounds 1 and 22 are deposited in
the PDB under accession codes 7S25 and 7S26. Source data are pro-
vided in this paper.

Code availability
Software tools for docking and analysis:

FlexX 4.3 and SeeSAR 10.0: BioSolveIT GmbH, Sankt Augustin,
Germany, www.biosolveit.de

FRED implemented in OEDocking 1.4.1: Open Eye Scientific Soft-
ware (www.eyesopen.com)

MOE 2019.0104: Chemical Computing Group (www.
chemcomp.com)

Vortex 2018.03.71496.53-s: Dotmatics, Inc. (www.dotmatics.com)
Chemalot cheminformatics code is available in Github: https://

github.com/chemalot/chemalot (downloaded May 2020)
Software tools for X-ray structure determination:
COOT 0,9.6 and REFMAC5: 5.8.0258 MRC Laboratory of Mole-

cular Biology (https://www2.mrc-lmb.cam.ac.uk/personal/pemsley/
coot/)

MOLREP 11.0 (https://www.ccp4.ac.uk/).

Fig. 7 | The ATP binding site of ROCK1 (PDB ID: 2ETR). The pharmacophore
constraint forhydrogenbond interactionwith the kinase hinge residues is shown as

green spheres. A different kinase ligand (PDB ID 3V8S) is shown to illustrate both
possible hinge interactions that are consistent with the pharmacophore constraint.
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