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Single cell characterization of myeloma and
its precursor conditions reveals transcrip-
tional signatures of early tumorigenesis

Rebecca Boiarsky 1,2, Nicholas J. Haradhvala 1,3, Jean-Baptiste Alberge1,4,5,
Romanos Sklavenitis-Pistofidis1,4,5, Tarek H. Mouhieddine 6, Oksana Zavidij7,
Ming-Chieh Shih2, Danielle Firer1, Mendy Miller1, Habib El-Khoury4,
Shankara K. Anand1, François Aguet 1, David Sontag 1,2,9 ,
Irene M. Ghobrial 1,4,5,9 & Gad Getz 1,5,8,9

Multiple myeloma is a plasma cell malignancy almost always preceded by
precursor conditions, but low tumor burden of these early stages has hindered
the study of their molecular programs through bulk sequencing technologies.
Here, wegenerate and analyze single cell RNA-sequencing of plasma cells from
26 patients at varying disease stages and 9 healthy donors. In silico dissection
and comparison of normal and transformed plasma cells from the same bone
marrow biopsy enables discovery of patient-specific transcriptional changes.
Using Non-Negative Matrix Factorization, we discover 15 gene expression
signatures which represent transcriptional modules relevant to myeloma
biology, and identify a signature that is uniformly lost in abnormal cells across
disease stages. Finally, we demonstrate that tumors contain heterogeneous
subpopulations expressing distinct transcriptional patterns. Our findings
characterize transcriptomic alterations present at the earliest stages of mye-
loma, providing insight into themolecular underpinnings of disease initiation.

Multiple myeloma (MM) is a plasma cell (PC) malignancy residing in
the bone marrow (BM)1. MM is almost always preceded by the pre-
cursor states monoclonal gammopathy of undetermined significance
(MGUS) and smoldering multiple myeloma (SMM)1–3. However, the
progression risk is highly heterogeneous, whereby certain patients
progress quickly, while others never do. Patients with SMM exhibit
progression rates of 10% per year, compared to just 1% for MGUS4,5.
Currently, our ability to predict progression is mostly based on a few
clinical parameters (e.g., M-spike, light chains, and percent tumor
burden)6,7. Therefore, there is a need to further define molecular
characteristics of patients who are at risk of progression. A thorough

characterization of precursor cells and the state of the microenviron-
ment inMGUS and SMMpatients can help us distinguish themolecular
mechanisms that underlie initial tumorigenesis versus later progres-
sion, predict which individuals are most at risk for progression, and
identify potential targets for early therapeutic intervention.

Our understanding of genetic changes associated with disease
progression and tumor evolution inMM is founded on studies that use
clinical laboratory results and bulk analysis, includingmicroarrays and
DNA sequencing8. It has been shown that MGUS and SMM clones
already harbor chromosomal alterations that define MM (transloca-
tions involving IgH or hyperdiploidy)2,7, and that progression to MM
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may be driven by the acquisition of secondary genetic events and
mutational processes9,10. As such, stratification of SMM patients was
recently updated by the International Myeloma Working Group to
include cytogenetic abnormalities11. Additional studies showed that
integration of events includingMYC rearrangements, TP53 mono- and
bi-allelic inactivation, and RASmutants indeed help stratify patients by
their risk of progression to active MM12,13.

At the RNA level, it is challenging to draw conclusions about the
phenotype of precursor cells and the dynamics of malignant trans-
formation from bulk RNA-sequencing studies14 due to low tumor
purity (i.e., fraction of tumor cells in a sample) at the precursor stages.
Recently, single cell studies of precursor conditions15,16 have allowed
for characterization of these cells, but suchdatasets are still scarce and
require careful computational analysis in order to glean insights from
the limited number of abnormal cells present in biopsies frompatients
with precursor disease.

In this study, we generated and analyzed single cell RNA-
sequencing (scRNA-seq) data from 29,387 PCs representing 26 sam-
ples from patients with MGUS, SMM, or MM as well as nine normal
bone marrow donors (NBM). The single cell resolution of our
data allowed us to isolate and compare abnormal and normal PCs from
the same patient sample, even at precursor stages. We have previously
analyzed the immune microenvironment of these same patients17

(Supplementary Table 1), and here we explore transcriptional changes
within tumor cells as well as correlations between tumor and immune
cell activity in our cohort. We identify abnormal cells from within a
mixed sample, report our findings from a nuanced within-patient dif-
ferential expression analysis approach, and employ automatic rele-
vance determination non-negative matrix factorization (ARD-NMF)18

to highlight gene signatures that are active in our cohort and validated
in external cohorts. Taken together, our study (i) presents a highly
detailed and comprehensive view of the transcriptional transforma-
tion occurring in individual patients with myeloma and its precursor
conditions, (ii) discovers gene expression signatures that are shared
across patients with different driver events and at different stages of
disease, and (iii) characterizes heterogeneity both between and within
tumors.

Results
Single cell transcriptional profiles reflect driver events and
reveal patient-specific patterns
To investigate the gene expression dynamics of PCs at different stages
of MM progression, we performed droplet-based scRNA-seq of
35 samples isolated from BM aspirates of patients with MGUS (n = 6),
SMM (n = 12), newly diagnosed MM (n = 8), and nine healthy donors
(NBM, n = 9; Fig. 1a; Supplementary Tables 2 and 3). One patient was
biopsied both at the SMM stage and after progression to MM (SMM-1
and MM-8). Patients were followed for a median of 5.26 years
(1921 days; range[1400, 5314]). Of the 18 patients with MGUS or SMM,
0/6 MGUS and 7/12 SMM patients were observed to progress to MM
(Supplementary Table 2).

After filtering cells using standard quality controls, we analyzed a
total of 29,387 single CD138+ PCs (~850 from MGUS, ~8.4 × 103 from
SMM, ~1.7 × 103 from MM, and ~9 × 103 from NBM). The number of
CD138+ cells analyzed per sample ranged from 40 to 3414, with a
median of 591 (Supplementary Table 3). Projecting cells onto a 2D
Uniform Manifold Approximation and Projection (UMAP) plot, we
observed that cells fromourNBMsamples grouped together, while the
majority of cells from patients with precursor conditions and overt
MM formed separate groups of cells (Fig. 1b, c).

Applying Leiden clustering19, we obtained 25 clusters of cells
(Supplementary Table 4). Seven of these clusters represented healthy
cells as determined by the majority of cells in these clusters coming
from NBM samples and their overexpression of genes such as CD27.
We merged these clusters into one “healthy” cluster (Fig. 1d). Of the

remaining 18 clusters, 11 consisted almost exclusively of cells from a
single sample each, reflecting the fact that normal variation between
healthy individuals was minor compared to disease-associated
expression changes (Fig. 1e). With a few exceptions (Supplementary
Note 1), the clusters that represented multiple samples grouped cells
with shared disease biology: cluster 12 contained two sequential
samples from the same patient, cluster 21 contained proliferating
abnormal cells from 15 patients across disease stages, and clusters 3
and 20 (togetherwith cluster 24) represented all patientswith a t(11;14)
translocation (MGUS-6, SMM-4,6,9,12; Supplementary Fig. 1). We fur-
ther confirmed that batch effects such as age, sex, and sample pre-
paration were not driving clustering results (Supplementary Fig. 2).

Of note, our cohort included one patient, SMM-12, whose biopsy
included two distinct subclones. Both subclones harbored a t(11;14)
translocation and clonally expressed IgG kappa, suggesting that they
descended from the same parental clone, but only one acquired a
CD20+ phenotype (Supplementary Fig. 3a, b), a MM phenotype
occurring in up to 22% of patients20. This falls in line with previous
studies that have shown CD20+ myeloma cells to be correlated with
translocation t(11;14)21. Cells from the CD20- subclone clustered
together with cells from other t(11;14) samples in cluster 20, while cells
from the CD20+ subclone clustered separately in cluster 22, suggest-
ing large expression changes associated with the CD20+ phenotype.
Indeed, comparing gene expression in the CD20+ vs. CD20− sub-
clones, we found 455 differentially expressed genes (DEG) (|log(fold
change)| > log(1.5); false discovery rate q <0.1), with the topDEGs by q-
value reflecting the B cell-like phenotype of these cells, including
overexpression of CD74, CD20 (also known asMS4A1), and HLA class II
genes such as HLA-DRA and HLA-DRB1 (Supplementary Fig. 3c; Sup-
plementary Table 5).

To benchmark the performance of our experiment, we used
interphase fluorescence in situ hybridization (iFISH) to identify large-
scale structural genomic variants (Supplementary Table 2) and then
inspected the expression levels of translocation target genes cyclin D1
(CCND1), MM SET domain (MMSET/WHSC1), fibroblast growth factor
receptor 3 (FGFR3), MAF BZIP transcription factor (MAF), and MAF
BZIP transcription factor B (MAFB), as well as cyclin D2 (CCND2) and
Integrin Subunit Beta 7 (ITGB7), whose overexpression is also asso-
ciated with translocations. MM cells from patients with iFISH-reported
translocations exhibited overexpression of the respective target genes
(Fig. 1f). In 4/7 samples whose iFISH results were inconclusive due to
insufficient cell numbers, we were able to observe the overexpression
of translocationpartner genes orCCND2 and ITGB7, indicatingpossible
corresponding translocations. Our patient with sequential samples at
SMM(SMM-1) and after progression toMM(MM-8) confirms the ability
of RNA-sequencing to capture the cytogenetic phenotype even prior
to iFISH; while this patient’s iFISH results were inconclusive in the
sample taken during SMM, we were able to detect overexpression of
ITGB7, MAFB, and CCND2 at the transcriptional level, suggesting a
t(14;20) translocation, which was later confirmed by iFISH after the
patient’s progression to MM.

In silico dissection of normal and abnormal cells within samples
allows for characterization of disease even in samples with low
tumor purity
One major benefit of studying precursor disease at single cell resolu-
tion is the ability to separate normal and abnormal CD138+ cells within
each sample prior to downstream analyses. No individual marker
genes can reliably distinguish these populations, but our full-
transcriptome data enabled aggregation of an abnormal signal
across many genes. To this end, we clustered the cells from each
individual sample based on its highly variable genes (but excluding
genes located in immunoglobulin loci), and then examined patterns of
immunoglobulin and MM driver gene expression in each cluster to
label the cluster as containing normal or abnormal cells (see Methods;
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Supplementary Fig. 4). To complement and validate this method, we
also developed a Bayesian hierarchicalmodel for estimating the tumor
purity of each individual sample based only on the distribution of
immunoglobulin light chain expression (see Methods; Supplementary
Fig. 5). Comparing these results, we observed strong agreement
between the twopurity estimationmethods (Fig. 2a). Our labels closely

matched the Leiden clustering results (though not identically, high-
lighting the benefit of our curated labels), with 97% of cells we labeled
as normal and <1% of cells we labeled as abnormal belonging to the
healthy Leiden cluster (Fig. 2b).

Our purity results suggest that samples from patients with
precursor conditions have a sizable fraction of normal PCs, as
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fractions were isolated and are analyzed in this study. b, cUMAP representation of
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expression profile are placed nearby in this embedding. d Results of Leiden
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sample ID (colors match the legends given in (b) and (c), respectively). The
majority of clusters each consist of cells from a single sample. f Violin plots
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detected in samples by clinical iFISH assay (top).
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expected. On average, MGUS samples contained 73% normal cells
and SMM samples contained 8%, compared to just 0.5% in MM.
Furthermore, the variability of tumor purity values was also
greater at early stages of disease. Whereas MM samples had con-
sistently high tumor purity (range 0.98–1), we observed increas-
ingly large variability in SMM (0.58–1) and MGUS (0–0.81),
respectively. For our downstream analyses, we separated normal

and abnormal cells within each sample and characterized them
independently.

Transcriptional differences between abnormal and normal cells
across patients
We performed a differential expression (DE) analysis comparing
abnormal and normal cells. To this end, we split samples into their
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abnormal and normal populations, which we refer to as “pseudo-
samples.” We compared abnormal pseudosamples to normal pseu-
dosamples using limma-voom22,23 and found 764 DEGs (|log(fold
change)| > log(1.5); false discovery rate q <0.1; Supplementary
Table 6).

In addition to genes known to be important for MM biology like
CCND18 (upregulated), CD2724–26 (downregulated) and TMSB4X27

(downregulated), we also found other strongly regulated genes whose
connection to myeloma is less well characterized. The top 4 upregu-
lated DEGs by q-value included RBFOX2, STIM1, a transmembrane
protein thatmediates store-operated calciumentry and is of interest in
multiple cancers28–30, IFIT1, and the long non-coding RNA RP11-
395G23.3. The top 4 downregulated genes included CD19, a B cell
lineagemarker genewhichhas been explored as a therapeutic target in
MM31,32, CTSH, CD81, which regulates CD1933 and has been shown
by flow cytometry to be downregulated in MM and precursor
conditions34, and ITGB2. We also observed upregulation of PSMB4 and
HSPB1, which are associated with the proteasome (Fig. 2d).

Unsupervised clustering of the pseudosamples based on their
expression of these 764 DEGs showed good separation of abnormal
and normal samples, as expected, and revealed that hyperdiploid
patients exhibit especially high expression of these upregulated DEGs
and tend to cluster together. Abnormal samples did not cluster by
disease stage, underscoring the fact that many of these DEGs are
altered in both myeloma and precursor samples. All abnormal popu-
lations from SMM samples clustered together with the myeloma cells,
while from MGUS, one abnormal pseudosample clustered with mye-
loma cells and two clustered with the normal cells. The two abnormal
samples that clustered together with normal cells came from MGUS
patients with very low numbers of abnormal cells detected (n = 35 and
67 cells for MGUS-2 and MGUS-6, respectively). Thus, we could not
conclude that the MGUS phenotype is similar to that of normal cells,
since the averaged gene expression in those pseudosamples is inher-
ently noisy. Abnormal cells fromMGUS-3 (n = 205), on the other hand,
clustered together with other abnormal samples (Fig. 2e).

InterrogatingMSigDB hallmark genesets, we found that pathways
related to E2F targets, Notch signaling, G2M checkpoints, interferon
alpha response, and Wnt/beta-catenin signaling are differentially
enriched in abnormal samples compared to normal (t-test q <0.1;
Supplementary Fig. 6a). To investigate which pathway changes are
initiated at early stages of disease, we compared pathway enrichment
results specifically betweenMGUS and normal samples and found that
the Wnt/beta-catenin pathway is already upregulated (t-test q =0.08).
Individual upregulated genes from the Wnt/beta-catenin pathway
include DKK1, KAT2A, and TP53 (limma-voom abnormal vs. normal
q <0.025). Low sample size (n = 3) for abnormal MGUS samples may
have hindered our power to discover other pathways that are already
differentially enriched in MGUS vs. normal.

This DE analysis provides a general view of genes whose expres-
sion is consistently altered in disease, but it does not allow us to dis-
cover genes whose expression may be altered in just a small subset of
patients in our cohort. Additionally, whilenormal cells aremore similar
to each other than abnormal cells are (Fig. 1b, c), inter-patient differ-
ences still exist among them (Supplementary Fig. 7). Thus, this analysis
suffers from both high variance due to the small number of normal
samples and confounding effects due to non-disease-related differ-
ences between individuals that contributed healthy bone marrow and
tumor samples. We address these limitations with the following
analysis.

Within-patient abnormal vs. normal cell comparisons highlight
inter-patient heterogeneity and patient-specific disease
characteristics
To account for the limitations of the DE analysis described above, we
leveraged samples containing mixtures of normal and abnormal
plasma cells to perform a “within-patient” characterization of the dis-
ease. For each patient, we compared their abnormal plasma cells to
their own healthy plasma cells (Fig. 2c). This allowed us to specifically
characterize the unique transcriptional profiles of individual tumors,
which may not be shared across patients, without introducing the
confounding effects that would arise from comparing tumor cells to
normal cells from other healthy donors.

Of our eleven patients with both abnormal and normal cell
populations, ten had significant DEGs detected between these popu-
lations (|log(fold change)| > log(1.5); false discovery rate q < 0.1).
Overall, this method identified 1760 DEGs (Supplementary Table 7),
1509 of which were not found in the general abnormal vs. normal DE
analysis described above (Fig. 2f). We found DEGs that are unique to
individual patients (1323 genes) as well as genes recurrently affected
across patients, such as CD27 (upregulated in eight patients), CD79A
(upregulated in seven patients), and RPL25 (downregulated in seven
patients). Many DEGs were shared across samples from multiple dis-
ease stages (Supplementary Fig. 6b).

We next highlight some of the genes that were discovered in our
within-patient DE analysis, but not in the general DE analysis described
earlier (Fig. 2g). For example, within-patient DE identified significant
upregulation of FGFR3 and WHSC1 in our patient with t(4;14). The
general abnormal vs. normal cell comparison was not powered to
identify this upregulation, since the translocation only occurred in a
singlepatient inour cohort. Additionally,wediscoveredupregulationof
GNB2L1 (also known as RACK1; up in SMM-2, SMM-3, MM-6), a known
oncogene in other cancers35,36 that has recently been reported to be
upregulated in myeloma cell lines35,36, but not yet in clinical samples.
Among upregulated genes, we also found the histone gene HIST1H1C
(MGUS-3, SMM-2, SMM-3, SMM-8,MM-6), the cell surfacemarkersCD48
(MGUS-3, SMM-8) and CD59 (MGUS-3, SMM-2, SMM-3, SMM-8, SMM-

Fig. 2 | In silico dissection of transcriptional differences in normal and abnor-
mal plasma cells within patient samples. a The number of cells (top) and esti-
mated purity of each samplewith 95%confidence intervals (bottom). Sample purity
was estimated using two orthogonal methods: clustering of individual samples
(blue; the fractionof cells labeled abnormal per sample is plotted) andourBayesian
hierarchical purity model (orange; the mode of posterior sample purity is plotted).
Source data are provided as a Source Data File. b UMAP localization of individual
cells labeled normal or abnormal. c Cartoon schematic of our differential expres-
sion analysis.We run twoDEanalyses: First, we compareall abnormal (purple) vs. all
normal (yellow) cells using limma-voom.Next, we compare patients’ abnormal cells
to their own normal cells, controlling for inter-patient variability. Samples with
100% normal or abnormal cells were excluded from the within-patient analysis.
d Volcano plot of limma-voomDE results for abnormal vs. normal cell populations.
Orange denotes genes with q-value < 0.1. The 4 most significantly up- and down-
regulated genes and other selected genes are annotated. e Pseudobulk expression
of DEGs detected between abnormal and normal pseudosamples using limma-

voom (z-scored per gene). Each column represents the normal or abnormal cells
from a given sample. Color annotations denote disease stage (top), normal or
abnormal (second), paired columns coming from the same sample (third;matching
colors denote that columns correspond to the same sample; black denotes that
there was no paired sample), and whether IgH translocation or hyperdiploidy was
detected in that sample by iFISH (bottom). f Quantification of DEGs uniquely dis-
covered using within-patient DE. The venn diagram represents the overlap of DEGs
found using limma-voom and our within-patient DE approach. The bar plot
describes the numberofDEGs foundper sampleusingwithin-patientDE (right side)
and the number of abnormal and normal cells per sample (left side). g Volcano plot
of 1760 DEGs uniquely discovered using our within-patient DE approach. The y-axis
represents themaximum -log10(q-value) of the gene across samples included in the
within-patient analysis, and x-axis represents the maximum log2(fold change). The
color and size of a dot denote the number of samples for which that DEG was
detected, with blue dots representing DEGs detected in just one sample.
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10), and the proto-oncogene MYC (MGUS-3, SMM-2, MM-6) (Fig. 2g;
Supplementary Fig. 6c). We observed downregulation of SSR4 (SMM-2,
SMM-3, MM-3), associated with translocation of proteins across the
endoplasmic reticulum, and TPT1 (MGUS-3, SMM-8), a regulator of cell
growth and proliferation. ITM2C, which has been reported for its
expression onMMcells37,38, was upregulated in some samples (MGUS-3,
SMM-2, SMM-3, SMM-8) but downregulated in others (MGUS-6, SMM-
9).While higher expression of ITM2C has been reported in patients with
t(4;14) vs. without39, we cannot conclude this from our data, as ITM2C
was variably expressed in our three samples with t(4;14) (SMM-7, SMM-
8, MM-1; Supplementary Fig. 6d). Ribosomal proteins such as RPS28
(SMM-2, SMM-3, SMM-10,MM-3,MM-6), RPLP1 (MGUS-3, SMM-2, SMM-
3, SMM-10, MM-3, MM-4), RPL14 (MGUS-3, SMM-2, SMM-3, SMM-10,
MM-6), and otherswere recurrently upregulated, specifically in patients
with hyperdiploidy. Although these ribosomal protein genes were
upregulated in multiple samples, other samples had expression levels
similar to those of NBM samples (Supplementary Fig. 6d), possibly
explaining why they were only detected using within-patient DE.

NMF discovers gene signatures that capture transcriptional
programs
While our within-patient DE analysis allowed us to discover gene sig-
natures in individual tumors, we next employed a method to discover
gene signatures active in individual cells across our cohort, even if only
in a small subset of cells in a tumor, and to characterize signature
activity at the single cell level across disease stages.

Using our ARD-NMF method18,40, we decomposed the gene
expression profiles across all plasma cells in our cohort into 28 gene
signatures (Supplementary Table 8). Because we weremost interested
in highlighting signatures associated with disease biology rather than
patient-specific effects, we removed signatures that wereonly active in
a single patient. Similarly, since our goal was to find groups of genes
with shared activity patterns, we did not focus our downstream ana-
lyses on signatures that only represented the expression of a single
gene. After removing these “patient-specific” and “single-gene” sig-
natures, we retained 15 gene signatures and examined the top genes
from each signature to identify its underlying biological mechanism
(Fig. 3a; Table 1). We confirmed that signature activities did not cor-
relate with batch variables (see Methods).

A number of the NMF signatures represented subtypes of mye-
loma that have previously been reported; for example, we found a
signature of proliferation similar to that reported by Zhan et al.41 and
Broyl et al.42, a CCND1-related signature which is differentially active in
samples with t(11;14) (Fig. 3b), and a signature composed of MAFB,
CCND2, and ITGB7, which is active in samples with t(14;20).

We additionally discovered signatures that captured less well-
characterized disease biology common to multiple samples in our
cohort. For example, we found a signature with top genes CXCR4,
which plays a role in normal plasma cell development and has also
been implicated in MMprogression43,44, and RGS1 and RGS2, which are
regulators of G Protein signaling thatmay regulate the CXCR4-CXCL12
axis45. We additionally found signatures that represent the activity of
histone genes, interferon (IFN)-inducible genes, and genes involved in
protein synthesis, among others.

Gene signature activity correlates with disease stage and
microenvironment
For each gene signature, we tested whether its activity level varied
between abnormal and normal cell populations or with disease stage,
and discovered that three signatures had significantly different activity
levels (Kruskal–Wallisq<0.1 andDunn’sq<0.1). As expected,we found
that the t(11;14)-related signature is differentially active in abnormal
cells from samples with the corresponding translocation compared to
NBM cells. We found two additional signatures whose activity was
significantly correlated with disease, described in detail below.

Abnormal cells across disease stages share universal down-
regulation of gene signature seen in normal PCs. We discovered a
“normal plasma cell signature” that is downregulated in abnormal cells
at all stages of disease (q = 3.3 × 10−5 and 1.0 × 10−6 for SMM andMMvs.
NBM, respectively; while the same trend is observed in MGUS abnor-
mal cells vs. NBM, it did not reach significance, likely due to low
number of MGUS cases with sufficient abnormal cells). This signature
robustly characterizes the normal bone marrow plasma cells in our
data set (Fig. 3c, d), and highlights genes that are downregulated in the
abnormal cell portions of samples at all disease stages. The top genes
in this signature include CD27 and CD79A, which are associated with
the B cell lineage, as well as JSRP1, CTSH, HCST, and RNU12 (Fig. 3a;
Supplementary Fig. 8a). Other canonical B cell markers (CD20, BCL6,
PAX5, and E2F1)were not expressed on the normal PCs, suggesting this
observed downregulation is not due to B cell contamination among
thenormal cells in our cohort (Supplementary Fig. 9a, b).Given the low
tumor purity during early precursor conditions, this phenotype would
be obscured at early disease stages in bulk samples; analysis at a single
cell resolution, however, reveals that this healthy plasma phenotype is
significantly downregulated in abnormal cells as early as the MGUS
stage (Fig. 3c). Indeed, for our patient with serial samples at the SMM
and MM stages (SMM-1 and MM-8), we find similarly low levels of
signature activity at these two timepoints, underscoring the fact that
this phenotype is lost at early stages of disease and remains low as the
disease progresses (Fig. 3c). Interestingly, the activity of this signature
in normal cells also trends downward with increasing disease stage
(Jonckheere-Terpstra test p = 1.3 × 10−5).

The individual top genes on this signature are also downregulated
in patients’ abnormal cells compared to normal cells (Supplementary
Fig. 8b). The notable exception is our CD20+ sample, SMM-12: while
CD27 is upregulated in abnormal cells vs. normal cells in this sample,
the NMF normal plasma cell signature nonetheless has low overall
activity (Fig. 3c), demonstrating the universal loss of this signature
across tumors with different phenotypes.

Validation of normal plasma cell signature in independent data-
sets. To validate our findings,we ran the ARD-NMFalgorithmon single
cell data from Ledergor et al.15 and recovered a similar signature with
top genes CD27, CD79A, and JSRP1. This signature, too, is strongly
downregulated in abnormal cells at all disease stages (q = 2.4 × 10−4 and
1.5 × 10−5 for SMM and MM vs. healthy donors, respectively; only one
MGUS sample had abnormal cells, and it too appears to be down-
regulated; Fig. 3e, f). As additional validation in bulk data,we estimated
the activity of our normal plasma cell signature in bulk RNA sequen-
cing from newly diagnosed MM patients in the Multiple Myeloma
Research Foundation’s (MMRF)CoMMpassdataset, and alsoestimated
tumor purity in these samples (see Methods). We found a significant
negative correlation between signature activity and tumor purity,
further supporting this signature as a marker of normal plasma cells
(Supplementary Fig. 8c).

Interferon-inducible signature upregulated in tumor and micro-
environment. We discovered a signature enriched for IFN-inducible
genes, such as ISG15 ubiquitin like modifier (ISG15), MX Dynamin
Like GTPase 1 (MX1), and Interferon Induced Protein With Tetra-
tricopeptide Repeats 1 and 3 (IFIT1 and IFIT3)46 (Fig. 3a). Notably,
this signature is significantly upregulated in both normal and
malignant populations from overt MM patients compared to NBM
(q = 5.2 × 10−3 and q = 3.2 × 10−4, respectively; Fig. 4a). This upregu-
lation is specific to malignant disease, i.e. the signature is not sig-
nificantly upregulated in precursor conditions (one patient, SMM-
11, is an outlier with very high activity). Further, a previous study17

discovered similar IFN-inducible signatures when running ARD-
NMF on T cells and CD14+ monocytes from the microenvironments
of these same patients’ tumors. We found that the patients who had
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high IFN-inducible gene signature activity in their T cells and
monocytes also had high activity of this signature in their CD138+
cells (Fig. 4b). T cell and monocyte markers were not expressed in
CD138+ cells, suggesting this correlation is not due to cell type
contamination (Supplementary Fig. 9c).

Tumors contain transcriptionally heterogeneous cell
subpopulations
The NMF approach to signature discovery allows us to find groups of
genes with shared activity in single cells, and thus not only to examine
how signature activity varies between samples and disease stages, but

Fig. 3 | Bayesian non-negative matrix factorization uncovers gene signatures
which capturemyeloma cell biology across disease stages. a Top genes for nine
representative gene signatures. The importance score, plotted on the x-axis, is
based on both the strength of the gene’s contribution to the signature and its
specificity to the signature (seeMethods).bA signaturewith top contribution from
CCND1 is discovered and ismost active in sampleswith t(11;14), as expected. c,dWe
discover a ‘normal plasma cell signature’ that is active in normal plasma cells across
disease stages and downregulated in abnormal cells from MM and precursor
conditions. We visualize this signature’s activity by showing its mean activity ±
s.e.m. for the normal and abnormal populations within each sample (c) and on a
UMAP plot (log scale) (d). Mean activities were compared between groups, with ***
denoting q <0.001 for group differences (abnormal cells from SMM (n = 12) and

MM (n = 8), respectively, significantly differed from NBM (n = 9)). e Validation on
external dataset: our NMF algorithm run on external CD138+ single cell data from
MGUS, SMM, MM and healthy donors independently discovers a gene signature
similar to our normal plasma cell signature, with shared top genes CD27, CD79A,
and JSRP1. f After labeling cells in that dataset as normal or abnormal, we discover
that this signature follows the same pattern as in our data, with high activity in
normal cells and a significant decrease in activity in abnormal cells across disease
stages. Mean activities ± s.e.m. across cells in normal and abnormal portions of
samples are shown, with *** denoting q <0.001 for group differences (abnormal
cells from SMM (n = 5) and MM (n = 13), respectively, significantly differed from
NBM (n = 11)). Source data are provided as a Source Data File.
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also between subpopulations of abnormal cells within a single sample.
Indeed, we find that tumors are heterogeneous, with subpopulations
of cells expressing distinct subsets of the NMF gene signatures we
discovered (seeMethods). For example, considering our samples from
myeloma patients, inMM-1, disjoint subsets of cells expressed the IFN-
inducible, proliferation, extracellular signaling and protein synthesis
signatures; this is discernible by coloring MM-1’s cells either by the
activity level of these signatures (Fig. 4c; Supplementary Fig. 11) or the
top genes from these signatures (Supplementary Fig. 10a). Similarly,
MM-2 contains a subset of cells with high expression of the protein
synthesis signature, MM-4 contains a subset of proliferating cells, and
MM-5 contains a subset of proliferating cells as well as cells with
varying activity of signature 22 (a single-gene signature representing
the expression of TMSB4X) (Fig. 4c; Supplementary Figs. 10b–d, 11).
The NMF signatures that were found to exhibit intratumor hetero-
geneity in multiple samples were those relating to HLA class II genes
(heterogeneous in two samples), extracellular signaling genes (het-
erogeneous in two samples), proliferation genes (heterogeneous in
eight samples), protein synthesis genes (heterogeneous in two sam-
ples) and IFN-inducible genes (heterogeneous in two samples).

Discussion
Early identification of patients with precursor conditions at risk of
progressing to overt MM could allow for early therapeutic interven-
tion. However, the current risk criteria used to identify high risk pre-
cursor patients who would most benefit from treatment are mostly
based on clinical parameters such as M spike, light chains or percent
tumor burden6. Therefore, elucidation of the molecular transforma-
tion that occurs at early tumorigenesis and later at high risk SMM
before disease progression is critical for developing informed criteria
for patients whowould benefit fromearly intervention and targets that
may be exploited for therapeutics9,10,47.

Here, we leveraged single-cell RNA sequencing to overcome the
challenges of characterizing the transcriptomics of these low burden
precursor states.While somepatients at early stages of diseasehad low
disease burden, such that their driving cytogenetic translocations
could not yet be detected by iFISH in the clinic, we demonstrate that
scRNA-seq is sensitive enough to already reveal their underlying
cytogenetic changes. This result highlights the possibility of using RNA

sequencing to detect changes in patients’ bone marrow plasma cells
earlier than methods currently used in the clinic48.

Precise labeling of normal and abnormal cells in each sample
revealed low tumor purity in samples from earlier disease stages, even
when subsetting to only CD138+ cells. This suggests that conclusions
drawn from bulk studies of precursor conditions are likely influenced
by heavy contamination from normal plasma cells. For example, Chng
et al.14 concluded that their “MYC activation signature” is upregulated
in a subset ofmyelomas, but not inMGUS.While it is possible thatMYC
activation really did not occur in theirMGUS samples, we findMYC and
some of their MYC activation signature genes to be significantly
upregulated in two precursor patients in our cohort (MGUS-3 and
SMM-2), as well as in two MM patients (MM-5 and MM-6). The upre-
gulation of MYC in MGUS is clinically relevant, as it is associated with
tumor aggression, poor clinical outcomes, and potentially with disease
progression12,13,49. Both the low tumor purity inMGUS and the potential
rareness of this phenotype among MGUS patients would have made
this difficult to discover without single cell data, the ability to distin-
guish normal vs. abnormal cells, and our within-patient DE analysis.

Through our isolation of abnormal cells, we found that patients
with early precursor conditions already exhibit transcriptomic altera-
tions seen in overt MM. As one important example, we identified a
signaturepresent innormal plasma cells but uniformly lost at all stages
of MM progression. CD27, one of the top genes of this signature, has
been previously discussed in MM literature, but has been reported to
have variable expression in myeloma cells, increased expression in
MGUS, and a correlationwithprognosis24–26. Our data shows significant
downregulation of CD27 compared to normal plasma cells as early as
the MGUS stage (Supplementary Table 7; Supplementary Fig. 6c).
Although we observe a trend of decreased CD27 expression in MM
compared to SMM (Supplementary Fig. 6c), it raises the question of
the extent to which previous results were confounded by increasing
tumor purity as the disease progresses. Thiswouldneed to be tested in
a larger cohort with single cell data.

In addition to CD27, abnormal plasma cells had lower expression
of another mature B cell marker, CD79A, as well as decreased enrich-
ment of immune pathways, such as complement pathway (including
decreased expression of complement receptor 2, CR2, also known as
CD21). Similarly, other studies found absence or low levels of B cell
surfacemarkersCD19, CD27, andCD45onabnormal cells compared to
normal plasma cells24,50. Our study extends the characterization of
matched abnormal and normal plasma cells to the whole tran-
scriptome. It also supports the hypothesis that the loss of B cell
immune functionality, as assessed by gene expression programs and
cell surface protein expression, is an early step in the generation of
tumor plasma cells.

When probing pathway level transcriptional changes in abnormal
cells, we found aberrant expression of Wnt pathway members
including overexpression of DKK1 in abnormal cells of precursor
myeloma (Supplementary Fig. 4c). DKK1 is secreted by myeloma cells
and is associated with the presence of osteolytic lesions through
inhibition of osteoblast differentiation51,52. Given that many cases of
MGUS also have osteoporosis and osteopenia, this may indicate that
Wnt dysregulation and DKK1 overexpression are associated with early
osteopenia in those patients and are potentially predictors of the
development of osteolytic lesions.

When investigating connections between the phenotype of PCs
and dynamics in the tumor immunemicroenvironment, wediscovered
that patients who exhibit upregulation of an IFN-inducible signature in
their tumor cells exhibit this same phenotype in their normal bone
marrow PCs, as well as in T cells and monocytes in their tumor
microenvironment. This suggests that interferon signaling inmyeloma
cells, which has been reported previously53, may be a response to a
common stimulus in the microenvironment that affects multiple cell
types, including normal plasma cells. Further work is needed to

Table 1 | 15geneexpression signaturesdiscoveredusingARD-
NMF (“patient-specific” and “single-gene” signatures are not
included; see Supplementary Table 8 for the full list of
signatures)

Signature Biological
description

Top genes

W3 t(11;14) associated CCND1, TSC22D3, RP5-887A10.1, RGS13

W4 HLA class II HLA-DRA, HLA-DRB1, HLA-DPA1,
HLA-DPB1

W5 Histones HIST1H1C, HIST1H2AC, HIST1H2BC,
KIAA0556

W8 t(14;20) associated ITGB7, AC233755.2, SPP1, CCND2

W9 Extracellular signaling LGALS1, VIM, ACTB, S100A6

W11 Proliferation HIST1H4C, STMN1, TUBA1B, HMGB2

W16 Normal plasma cell CD27, CD79A, TXNIP, JSRP1

W20 Protein synthesis HNRNPH1, PIM2, C16orf54, PHKG1

W24 Interferon inducible ISG15, MX1, TNFSF10, LY6E

W28 CXCR4 & regulators CXCR4, RGS1, RGS2, ICA1L

W1 Unknown JUNB, ZFP36, NFKBIA, IER2

W6 Unknown DUSP4, GADD45A, BTG2, LAMP5

W14 Unknown KLF6, TSC22D3, ANKRD28, KLF2

W26 Unknown HLA-A, ITM2C, PRR15, ACTB

W27 Unknown NEAT1, DDX17, ANKRD12, FOXO3
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Fig. 4 | IFN-inducible signature is correlated between CD138+ and micro-
environment cells, and gene signatures exhibit intratumor heterogeneity.
a Mean activity ± s.e.m. of CD138+ IFN-inducible signature across normal and
abnormal plasma cell populations. Both normal and abnormal plasma cells exhibit
significantly increased activity of the interferon-inducible signature in MM vs.
NBM (q = 5.2 × 10−3 and q = 3.2 × 10−4, resp.). Source data are provided as a Source
Data File. b Mean activity per sample of IFN-inducible signature discovered in
CD138+ cells (top), T cells (middle) and CD14+ monocytes (bottom). Mean
expression levels for the ten genes with the highest values in theWmatrix for each

signature are also shown. Expression of additional interferon-inducible genes IFI27
and IFI6 is shown forCD138+ samples (see Supplementary Note 2). CD138+ samples
from patients were limited to abnormal cells before calculating means. NMF sig-
nature results and expression data for T cells and monocytes were taken from
Zavidij et al.17. c Subpopulations within patient tumors heterogeneously express
gene signatures. Cells from a given MM sample were projected onto a UMAP plot
based on expression of highly variable genes, and colored by the activity level of
NMF signatures determined to be heterogeneously expressed in that sample (see
Methods).
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investigate the potential common mechanisms driving the upregula-
tion of interferon signaling across these cell types.

The single cell resolution of our data provides insight into the
heterogeneity of signatureswithin patient samples. For example, while
the proliferation signature has previously been reported in bulk stu-
dies as characterizing a distinct subset of patients41, our data reveal
that in fact, only a subset of cells from any given patient exhibit a
proliferative signature. In addition, these proliferating cells may be
found in patients that harbor the driver mutations previously used to
characterize patients that belong to the non-proliferative subtypes.

Finally, our within-patient DE analysis points to potential ther-
apeutic targets that are present in subsets of patients not only in MM,
but also in earlier disease stages, and which can be selected for func-
tional validation. We found that select patients exhibit upregulation of
genes associated with the proteasome, which may correlate with sen-
sitivity to bortezomib and antitumor immune response54. While certain
proteasome genes were identified in our general abnormal vs. normal
DE analysis (PSMB4, HSPB1), we discovered upregulation of additional
proteasome genes in select patients using our within-patient DE
approach (e.g. PSMA4, PSMD14, PSMD11, PSMC6, and PSMA1 in MGUS-3
and SMM-8), painting amuch fuller picture of proteasome-related gene
dysregulation in those samples. Additionally, this approach allowed us
todetect thatCD59, a complement inhibitorwhose expression has been
associated with resistance to daratumumab in myeloma55 and to anti-
CD20 therapies in B cellmalignancies56, was significantly upregulated in
five patients, including those with precursor conditions. In a similar
vein,wediscoveredupregulationofCD48, whichhasbeennominatedas
a drug target in MM57, in abnormal cells from MGUS and SMM. Our
identification of patient-specific transcriptional changes as early as
MGUS paves the way for future work exploring personalized treatment
approaches prior to malignant disease.

In summary, our work used single-cell RNA sequencing to over-
come the low fraction of abnormal plasma cells in early precursor
disease and uncover early-occurring transcriptional changes which
couldnot be accurately described in prior bulk sequencing studies.We
identified commonalities between MGUS and overt MM, such as the
loss of our reported normal plasma cell signature. We elucidated
patient-specific transcriptional changes, laying a foundation for the
development of precision medicine approaches for treating MM and
potentially intercepting precursor conditions prior to progression.

Methods
Patient samples and cell preparation
BM samples from patients with MGUS, SMM or MM, were collected as
approved by the Dana-Farber Cancer Institute Institutional Review
Board (protocols 14–174, 07–150, or 11–104). Informed consent was
obtained from all patients in accordance with the Declaration of Hel-
sinki protocol (fifth revision from2000withClarificationsofArticles 29,
30 (20022004), and the most recent iteration from 2013). MGUS and
SMM patient samples were collected for a clinical trial, clinicaltrial.gov
identifier NCT02269592. Samples from healthy donors were purchased
from the company AllCells. CD138+ BM cell fractions were isolated
using magnetic-activated cell sorting technology (Miltenyi Biotec).
Selected cellswere either viably cryopreserved indimethylsulfoxide at a
final concentration of 10% or used immediately for scRNA-seq.

Sequencing library construction using the 10x Genomics
platform
Frozen BM cells were rapidly thawed, washed, counted and resus-
pended in PBS and 0.04% bovine serum albumin to a final concentra-
tion of 1000 cells per µl. TheChromiumController (10xGenomics)was
used for parallel sample partitioning and molecular barcoding. To
generate a single-cell Gel Bead in Emulsion, cellular suspensions were
loaded on a Single Cell 3′ chip together with the Single Cell 3′ Gel
Beads, according to the manufacturer’s instructions (10x Genomics).

scRNA-seq libraries were prepared using the Chromium Single Cell 3′
Library Kit v.2 (10x Genomics). Fourteen cycles were used for the total
complementary DNA amplification reaction and for the total sample
index PCR. Generated libraries were combined according to Illumina
specifications and paired-end sequenced on HiSeq 2500/4000 plat-
forms with standard Illumina sequencing primers for both sequencing
and index reads; 100 cycles were used to sequence Read1 and Read2.

Preprocessing of scRNA-seq data
Sample demultiplexing, barcode processing, alignment to the human
genome (hg38) and single-cell 3′ gene counting was performed using
the Cell Ranger Single-Cell Software Suite v.2.0.1. Cells called by Cell
Ranger were further filtered to those with <15% mitochondrial
expression, >200 genes covered, <50,000 total unique molecular
identifiers (UMIs), and <4000 total genes detected. Log-normalized
expression values were calculated as:

eg,c = log
104

Nc
ng,c + 1

 !
ð1Þ

for a cell c with Nc total UMIs from genes (excluding genes that
accounted for >20% of UMIs in any cell), with ng,c UMIs mapping to
gene g. Except where noted, “expression” refers to log-normalized
expression.

Gene selection
For downstream analyses (PCA, UMAP, Leiden clustering, differential
expression, NMF), we removed genes located in IGH, IGL, or IGK loci
(based on the GRCh38 reference), since these are expected to be
upregulated and clonally expressed in abnormal cells, dominating
other transcriptional disease signatures of interest. Sex genes XIST and
RPS4Y1 (the two genes with the greateset absolute fold changes when
comparing gene expression in male vs. female samples in our cohort)
were also removed prior to PCA, UMAP, clustering, and NMF, so as not
to separate samples basedon the sex of thepatient but rather basedon
disease biology. Highly variable genes were selected based on log-
normalized expression data using the highly_variable_genes function
in Scanpy58 (version 1.7.1) with default parameters and max_mean= 4,
except where indicated otherwise.

Removing non-CD138+ cell populations
To remove cells incorrectly sorted during bead selection, we first
performed coarse clustering of all cells sorted as CD138+.We centered
and scaled the data, clipping the resulting values to a maximum of 10,
calculated highly variable genes, projected the expression of highly
variable genes onto its first 14 principal components, and computed
Leiden clusters (resolution = 1.5), all using the Scanpy58 (version 1.7.1)
package with default parameters except as specified. We chose this
high resolution for clustering as our goal was to find and remove even
small clusters of contaminating non-CD138+ cells. Using expression of
known cell type markers, we identified and removed clusters of cells
containing non-CD138+ immune cells, red blood cells, and cells from
the extracellular matrix.

Leiden clustering of CD138+ cells
After removing contaminating cell types, we reprocessed our data
prior to downstream analyses. Despite removing clusters of red blood
cells, we still detected ambient contamination of hemoglobin genes in
some samples, and thus we regressed out a "hemoglobin score,"
computed as the mean of log-normalized expression of hemoglobin
genes. We then recomputed highly variable genes, re-centered and
scaled the data, clipping the resulting values to a maximum of 10,
projected the expression of highly variable genes onto its first 14
principal components, and computed Leiden clusters (resolution =
1.5), all using the Scanpy package58 (version 1.7.1) with default
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parameters except as specified. Here, we again chose a high resolution
for clustering in order to detect even small clusters of unique cell
types.Wemerged seven clusters which were all determined to contain
healthy cells based on the majority of cells in these clusters coming
from NBM samples, their overexpression of genes such as CD27, and
their co-localization on a 2D UMAP embedding plot.

Bayesian model for sample purity estimation
We developed the following hierarchical Bayesian model to auto-
matically estimate ρ, the purity of a sample, based on the number of
cells expressing the kappa immunoglobulin gene and the total number
of cells in the sample. This model is based on the rationale that since
abnormal cells in a sample are descended from a single B-cell pro-
genitor with a specific V(D)J rearrangement, they will uniformly
express either kappa or lambda immunoglobulins. In contrast, the
normal plasma cells are a highly diverse group of cells with a ratio of
kappa versus lambda immunoglobulins reflective of the relative fre-
quencies of these rearrangements. By analyzing our NBM samples, we
observe that the fraction of normal cells with kappa rearrangements
are similar across individuals, albeit with some variance which we
model with a truncated normal distribution (between 0 and 1). The
measured frequencyof cellswith kappa vs. lambda rearrangements is a
function of the mixture of cells originating from these two distribu-
tions. We can therefore use the observed counts in each sample to
calculate the probability that a sample is composed of a given pro-
portion of normal and abnormal cells (i.e. estimate sample purity).

Specifically, we assume the following generative model,

κn ∼TruncatedNormalðμ,σ2,0,1Þ
κt ∼Bernoullið0:5Þ
ρ∼Betað1,1Þ
p= ρ � κt + ð1� ρÞ � κn

nκ ∼BinomialðN,pÞ

where κn is the proportion of kappa cells among normal cells in a
sample, κt is the proportion of kappa cells among abnormal cells in a
sample (either 0 or 1 due to clonality), ρ is sample purity (drawn from a
uniformdistribution), p is the proportion of kappa cells in a full sample
(i.e. after mixing normal and abnormal cells), N is the total number of
cells in a sample, and nκ is the total number of kappa cells in a sample.

κn, κt, and ρ are unobserved, p is a deterministic function of these,
and bothN and nκ are observed. Cells were defined as kappa or lambda
based on whether they have higher expression of IGKC or IGLC2,
respectively. µ and σ2 are empirically estimated from the NBM samples
in our cohort. Sincewedonot assumeprior knowledge about ρ, we use
an uninformative Beta(1,1) (i.e., uniform) prior. We assume that a
patient is equally likely to have a kappa or lambda myeloma (thus the
Bernoulli(0.5) distribution for κt).

Wecalculate theposterior probability of the samplepurity,ρ, given
the number of kappa cells and the total number of cells in the sample:

=P ρjnκ ,N
� � / P ρjNð ÞP nκ jρ,N

� � ð2Þ

= PðρjNÞ
X
κt20,1

Z 1

0
Pðnκ ,κn,κt jρ,NÞdκn ð3Þ

=PðρjNÞ
X
κt20,1

Z 1

0
Pðnκ jκn,κt ,ρ,NÞPðκn,κt jρ,NÞdκn ð4Þ

=PðρÞ
X
κt20,1

Z 1

0
Pðnκ jκn,κt ,ρ,NÞPðκnÞPðκtÞdκn ð5Þ

In the above set of equations, (2) is by Bayes’ rule, (3) is due to the
marginalization over κn and κt, (4) is simply the factorization of a joint
probability, and (5) uses the assumption that ρ, κn and κt are inde-
pendent of each other and of N.

In our implementation, we normalize this function numerically by
calculating the probability of 100 equally spaced values for ρ in [0,1].
We report the mode of P(ρ) as the purity estimate, along with 95%
confidence intervals, calculated as the values corresponding to 2.5%
and 97.5% of the cumulative distribution.

We include a schematic that visualizes the generative model in
Supplementary Fig. 5. A Python implementation of this purity model is
available on GitHub (see Code availability).

Sample clustering approach to labeling normal and abnormal
CD138+ cells
For each sample, we performed a cluster analysis of only the cells in
that sample. More specifically, we calculated variable genes based on
log normalized expression using the highly_variable_genes function
from Scanpy58 (version 1.7.1) with parameter min_disp=0.6, centered
and scaled the data, clipping the resulting values to amaximumof 10,
and ran PCA and Leiden clustering (determining the number of PCs to
input to Leiden clustering based on an elbow plot). We manually
inspected the resulting clusters for each sample to determine whe-
ther each cluster contained normal or abnormal cells. This determi-
nation was based on whether the cluster uniquely expressed the
clonal immunoglobulin for that tumor59 (since immunoglobulins
were removed from the highly variable gene list, they did not influ-
ence the clustering results), as well as each cluster’s expression of
certain oncogenes, such as CCND1 for t(11;14) tumors. All cells were
labeled in this way, except for 20 cells from sampleMGUS-2 that were
characterized by low expression of MALAT1 and were not obviously
similar to the normal or abnormal cells from that sample, and thus
were not classified andwere excluded fromdownstreamanalyses. See
Supplementary Fig. 3 for an example of this method applied to a
sample.

In addition to labeling each individual cell as normal or abnormal,
this approach allowed us to determine a tumor purity for each sample,
i.e. the fraction of cells labeled abnormal. To calculate confidence
intervals on this purity estimate, we assumed that our observed data
wasgenerated asn ~Binomial(N,p), whereN is the total sequenced cells
in a sample, n of whichwe labeled as abnormal, and p is the proportion
of abnormal cells in the patient sample (not just the ones we
sequenced). We further assume a uniform prior on p (p ~ Beta(1,1)),
thus the posterior distribution on p is p|n,N ~ Beta(n + 1,N − n + 1), by
conjugacy of the Beta and Binomial distributions. We derived 95%
confidence intervals on each sample’s purity estimate based on the
inverse cdf of its Beta-distributed posterior.

Abnormal vs. normal differential expression testing with limma
DEGs between abnormal and normal cells were derived using limma
version 3.42.2 with voom transformation22,23,60. Samples were split into
their abnormal and normal populations, and we refer to each of these
as a “pseudosample.” Counts across cells in a pseudosample were
summed and used as input to the limma-voom pipeline. Immunoglo-
bulin genes, genes with counts permillion (CPM) <5 in all samples, and
genes expressed in <5% of both abnormal and normal cells, respec-
tively, were removed prior to analysis, resulting in normalization and
DE testing of 6,521 genes. Pseudosamples were normalized using the
trimmed mean of M values (TMM) method61 and fold changes were
calculated as implemented in limma. We controlled for age, sex,
sample preparationbatch, andwhether the samplewas freshor frozen.
Age informationwasmissing for oneNBMsample, andwefilled it using
mean imputation based on the ages of the other NBM samples. DEGs
were those with a Benjamini-Hochberg FDR<0.1 and |log fold change|
> log(1.5).
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Within-patient differential expression testing
For each sample with both abnormal and normal cells detected, we
calculated DEGs between their abnormal and normal cell popula-
tions using a Wilcoxon rank sum test, correcting for multiple
hypothesis testing across genes tested for each patient. We calcu-
lated fold changes as implemented in Scanpy58 (version 1.7.1), but
replacing their offset term of 1 × 10−9 with half of theminimum (non-
zero) log-normalized expression value in our data (0.126), to avoid
inflating fold changes. Specifically, fold change was calculated as
the ratio of

exp
1
N

X
log-normalized expressionð Þ � 1

� �
+offset ð6Þ

in each group, where N denotes the number of cells in the group.
Differentially expressed genes were those with a Benjamini-Hochberg
FDR<0.1 and |log fold change| > log(1.5).

For visualizing DEGs uniquely found using this within-patient
DE approach (Fig. 2g), we first limited DEGs to those not found
using limma. Then, for each gene, we calculated a maximum
log2(q-value) as the maximum (BH-corrected) q-value reported
across patients, multiplied by the number of patients with DEGs
(10, in our data) to further correct for multiple hypothesis
testing across patients. This value was calculated separately for
upregulated and downregulated instances of DEGs, where
applicable.

Automatic relevance determination nonnegative matrix fac-
torization (ARD-NMF) gene expression signatures
We defined gene expression signatures using our SignatureAnalyzer-
GPU tool40 (see Code availability), which implements a previously
described ARD-NMF algorithm18. This method approximates the gene
expression profile of each cell (represented as a column in the genes-
by-cells input matrix, V) as an additive combination of latent gene
expression signatures (each column in the genes-by-signatures W-
matrix), each with an associated weight or ‘activity’ in each cell given
by the signatures-by-cells H-matrix:

V≈V̂ �WH ð7Þ

This Bayesian variant of NMF encourages sparse interpretable
solutions by imposing either exponential or half normal priors on
the weights of the W- and H-matrices and allows automatic dis-
covery of the number of signatures (K) required to explain the data.
It solves for the W and H matrices using maximum a posteriori
(MAP) estimation over P W,H,λ,j,Vð Þ, where λ is a vector of signature
relevance weights. Using a Poisson noise model for our data, an
exponential prior on W, and a half-norm prior on H, the objective
function for ARD-NMF described in equation 19 of the original
paper18 is given by:

log PðW,H,λjVÞ=DKLðVjW,HÞ

+
XK 0
k = 1

1
λk

XG
g = 1

wg,k +
XC
c = 1

h2
k,c

2
+b

 !

+ G+
C
2
+a+ 1

� �
log λk + cstða,bÞ

ð8Þ

where DKL is the Kullback–Leibler divergence, g represents a given
gene out ofG total genes, c represents a given cell out of C total cells,a
and b are hyperparameters (howwe chose a and b is described below),
λk is a learned relevance weight for signature k, w and h represent
elements from the W and H matrices respectively, and cst(a,b) is a
constant that depends only on a and b.

After signature discovery, the columns ofWwere normalized to a
sum of 1 and all the weight was shifted into the H-matrix:

wg,k  
wg,kPG
g 0=1wg 0,k

ð9Þ

hk,c  
XG
g=1

wg,k

 !
hk,c ð10Þ

for gene g (out of G total genes), signature k and cell c.
Our input data was UMI counts for 3883 highly variable genes

(dimensions of V = 3883 × 29,387), which were determined using the
highly_variable_genes function from Scanpy58 (version 1.7.1) with
min_disp=0.2, which we set to be lower than the default value in order
to include genes which may have relevance to plasma and myeloma
cell biology despite a modest dispersion value. In addition to other
default settings for the SignatureAnalyzer-GPU tool, we used a Poisson
objective with an L1 prior onW and an L2 prior onH, set the initial K to
50, the maximum number of iterations to 7000, and the tolerance to
1 × 10−5. Following the guidelines in the original ARD-NMFpaper18,40, we
set hyperparameter a = 10 (the default in SignatureAnalyzer-GPU) and
then calculated b as a function of a, as implemented by
SignatureAnalyzer-GPU. We held out 20% of cells as a validation set.
Since the ARD-NMF algorithm finds a local minimum each time it is
run, we ran the algorithm 100 times on our data in order to choose an
optimal solution. Over 100 runs, the algorithm returned solutions with
K between 24 and 30 with a mode of 28, and we chose the set of
signatureswith the lowest beta divergenceover the validation set from
among the solutions with K = 28 (dimensions of W = 3883 × 28;
H = 28 × 29,387). Before analyzing the signature results, we normalize
each column in H by that cell’s total counts.

A signature was classified as “patient-specific” if its mean activity
across cells in any one patient was >4 standard deviations higher than
in all other patients. Otherwise, a signature was classified as “single-
gene” if the weight of its most highly weighted gene based on the W
matrix was ≥0.5 more than the weight of its next highest weighted
gene. If a signature doesn’t meet either of these criteria, we describe it
according to its top genes, where signature genes are ranked by their
weight in W multiplied by their specificity to that signature, with
specificity s defined as:

sg,k =
H � 1½ �kwg,kPk0

k0 = 1 H � 1½ �k0wg,k0

� 	 ð11Þ

Signatures significantly altered between disease states were identified
by calculating themean signature activity for the abnormal andnormal
cell populations in each sample, respectively, and performing a
Kruskal–Wallis one-way analysis of variance and Dunn’s multiple
comparison test with Bonferroni correction to detect differences in
mean activities between the following groups: NBM, normal MGUS,
normal SMM, normal MM, abnormal MGUS, abnormal SMM, and
abnormal MM. Comparisons with family-wise error rate < 0.1 were
considered significant.

We additionally ran ARD-NMF on an external single cell dataset15

using the samemethods as above. We first limited the external data to
cell types and disease stages which are present in our data, retaining
only bone marrow PCs derived from healthy donors and patients with
MGUS, SMM or MM, and then limited the input features to hyper-
variable genes across these cells (4,669 genes).
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Testing to ensure that signature activity did not correlate with
batch variables
For our NMF analysis, we interrogated whether the activity level of any
signature is correlated with batch variables (age, sex, sample pre-
paration batch, and fresh/frozen storage). To do this, we limited our
data to normal plasma cells, for which we would not expect to find
significant differences in signature activity between samples, and then
tested for differences in distributions of signature activities between
samples from the different batch groups (testing each batch variable
separately; using a rank sum test for sex and fresh/frozen, a Kruskall
Wallis rank test for batch, and Pearson and Spearman correlations for
age). None of the batch variables were significantly correlated with
signature activity, using p <0.05 as the significance threshold. Given
that we did not observe batch-related differences in signature activity
in our normal plasma cells, we conclude that the differences that we
observed between abnormal samples at different disease stages are
indeed driven by the disease.

Estimating normal plasma cell signature activity in the MMRF
dataset
To estimate the activity of a gene expression signature for each sample
in the publicly available MMRF bulk RNA-sequencing dataset (https://
research.themmrf.org), we: calculated log-normalized transcripts per
million (tpm) on the MMRF counts data using the DESeq2 method for
size factors, where samples are normalized using the median, across
genes, of the ratios of gene counts to each gene’s geometric mean
across samples62. Then, for top signature genes (for our normal plasma
cell signature, these included CD27, CD79A, RNU12, JSRP1, SAT1, CTSH,
and HCST), we z-scored the log-tpm expression of each gene across
samples, and calculated the signature activity as the mean of z-scored
gene expression values.

Pseudobulking procedure
To pseudobulk samples, we summed the gene counts across cells,
calculated the total gene counts in the sample (ignoring genes that
accounted for >5%of counts), divided the summed count vector by the
total gene counts, and multiplied by one million.

Single sample GSEA (ssGSEA)
Samples were split into their abnormal and normal populations, and
we refer to each of these as a “pseudosample.” We calculated the
pseudobulk expression for each pseudosample and input this to the
ssGSEA module available on the GenePattern platform63,64 to calculate
enrichment scores for the hallmark gene sets provided by the Mole-
cular Signature Database (MSigDB)46. We removed pseudosamples
comprised of <20 cells from downstream analysis of ssGSEA results,
due to the high variance inherent in their gene expression. Differential
pathway activity between two groups of pseudosamples was calcu-
lated using a t-test, and pathways with BH FDR < 0.1 were reported.

Assessing intratumor heterogeneity for NMF signatures
For each sample, we limited our analysis to abnormal cells and used
Scanpy’s58 (version 1.7.1) built-in functions to compute highly variable
genes (min_mean=0.0125, max_mean= 3, min_disp=0.6; genes loca-
ted on immunoglobulin loci were removed), scale the data (max_va-
lue=10), compute the 10 first principal components, compute a
neighborhood graph (n_neighbors=15) and run Leiden clustering
(resolution =0.6). Parameters that differed from the Scanpy defaults
are shown in parentheses. This defined clusters for each sample. We
determined that a sample contained a heterogeneous population of
cells vis-a-vis a given signature if themean activity of that signature had
a coefficient of variation > 1 across clusters. Specifically, for a given
sample, we calculated the mean activity of a given signature in each
cluster, producing a vector ofmeansμwith length equal to the number
of clusters. We then considered a sample-signature pair to exhibit

intratumor heterogeneity if std μð Þ
mean μð Þ>1. Signature activities across

sample clusters are shown in Supplementary Fig. 11 for all signature-
sample pairs which passed this threshold. Our implementation of this
analysis is available on GitHub (see Code availability).

Statistical analysis
Kruskal–Wallis one-way analysis of variance and Dunn’s multiple
comparison test with Bonferroni corrections were used when three or
more independent groups were compared. When comparing two
independent groups, all parametric tests were two-tailed, and the
Benjamini-Hochberg (BH) method was used to correct for multiple
hypothesis testing where appropriate. P <0.05 or q < 0.1 (in cases of
multiple hypothesis correction) were considered statistically sig-
nificant. Error bars plotted on visualizations of mean signature activity
or gene expression in a sample represent the standard error of the
mean and were calculated as the standard deviation of the means of
10,000 bootstrapped versions of that sample.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The scRNA-seq data generated in this study have been deposited in the
NCBI Gene Expression Omnibus (GEO) database under accession
number GSE193531. To protect patient privacy, raw data have been
deposited in dbGaP under accession number phs001323.v3.p1. Data
access can be requested through the dbGaP portal in accordance with
their standard guidelines [https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?
page=login]. Thepublicly availableMSigDBgene sets used in this study
are available from the Molecular Signatures Database v7.5.1 [http://
www.gsea-msigdb.org/gsea/msigdb]. MMRF CoMMpass data used in
this study can be obtained from theMMRF Research Gateway [https://
research.themmrf.org]. Source data are provided with this paper.

Code availability
The single-cell RNA data was processed using cellranger version
2.0.1 [https://www.10xgenomics.com/] and analyzed with the
python package Scanpy version 1.7.1 [https://scanpy-tutorials.
readthedocs.io]. Gene expression signatures were extracted
using our SignatureAnalyzer algorithm available on GitHub
[https://github.com/broadinstitute/SignatureAnalyzer-GPU, com-
mit 4c54ff6690378a0e87bdd8da7041e50d5381443f]. Differential
expression testing between normal and neoplastic pseudobulk
samples was performed in R version 4.1.0 using the limma software
version 3.42.2 [https://bioconductor.org/packages/release/bioc/
html/limma.html]. Other analysis code is available at https://
github.com/getzlab/Boiarsky-etal-2022.
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