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Flexible learning of quantum states with
generative query neural networks

Yan Zhu 1,6, Ya-Dong Wu 1,6 , Ge Bai 1, Dong-Sheng Wang2,
Yuexuan Wang1,3 & Giulio Chiribella 1,4,5

Deep neural networks are a powerful tool for characterizing quantum states.
Existing networks are typically trained with experimental data gathered from
the quantum state that needs to be characterized. But is it possible to train a
neural network offline, on a different set of states? Here we introduce a net-
work that can be trained with classically simulated data from a fiducial set of
states and measurements, and can later be used to characterize quantum
states that share structural similarities with the fiducial states. With little gui-
dance of quantum physics, the network builds its own data-driven repre-
sentation of a quantum state, and then uses it to predict the outcome statistics
of quantum measurements that have not been performed yet. The state
representations produced by the network can also be used for tasks beyond
the prediction of outcome statistics, including clustering of quantum states
and identification of different phases of matter.

Accurate characterization of quantum hardware is crucial for the
development, certification, and benchmarking of new quantum
technologies1. Accordingly, major efforts have been invested into
developing suitable techniques for characterizing quantum states,
including quantum state tomography2–6, classical shadow
estimation7,8, partial state characterization9,10, and quantum state
learning11–14. Recently, the dramatic development of artificial intelli-
gence inspired new approaches on machine learning methods15. In
particular, a sequence of works explored applications of neural net-
works to various state characterization tasks16–26.

In the existing quantum applications, neural networks are typi-
cally trained using experimental data generated from the specific
quantum state that needs to be characterized. As a consequence, the
information learnt in the training phase cannot be directly transferred
to other states: for a new quantum state, a new training procedure
must be carried out. This structural limitation affects the learning
efficiency in applications involving multiple quantum states, including
important tasks such as quantum state clustering27, quantum state
classification28, and quantum cross-platform verification29.

In this paper, we develop a flexible model of neural network that
can be trained offline using simulated data from a fiducial set of states
andmeasurements, and is capable of learningmultiple quantum states
that share structural similarities with the fiducial states, such as being
ground states in the same phase of a quantum manybody system.

Results
Quantum state learning framework
In this work we adopt a learning framework inspired by the task of
“pretty good tomography”11. An experimenter has a source that pro-
duces quantum systems in some unknown quantum state ρ. The
experimenter’s goal is to characterize ρ, becoming able to make pre-
dictions on the outcome statistics of a set ofmeasurements of interest,
denoted by M. Each measurement M 2 M corresponds to a positive
operator-valued measure (POVM), that is, a set of positive operators
M := ðMjÞno

j = 1
acting on the system’s Hilbert space and satisfying the

normalization condition
Pno

j = 1 Mj =1 (without loss of generality, we
assume that all the measurements in M have the same number of
outcomes, denoted by no).
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To characterize the state ρ, the experimenter performs a finite
number of measurements Mi, i∈ {1,…, s}, picked at random from M.
This random subset of measurements will be denoted by S = fM igsi = 1.
Note that in general both M and S may not be informationally
complete.

Each measurement in S is performed multiple times on indepen-
dent copies of the quantum state ρ, obtaining a vector of experimental
frequencies pi . Using this data, the experimenter attempts to predict
the outcome statistics of a new, randomly chosen measurement
M 0 2 M n S. For this purpose, the experimenter uses the assistance of
an automated learning system (e.g. a neural network), hereafter called
the learner. For each measurement M i 2 S, the experimenter provides
the learner with a pair (mi,pi), where mi is a parametrization of the
measurement Mi, and pi is the vector of experimental frequencies for
the measurement Mi. Here the parametrization mi could be the full
description of the POVM Mi, or a lower-dimensional parametrization
valid only for measurements in the set M. For example, if M contains
measurements of linear polarization, a measurement in M could be
parametrized by the angle θ of the corresponding polarizer. The para-
metrization could also be encrypted, so that the actual description of
the quantum hardware in the experimenter’s laboratory is concealed
from the learner. In the following, we denote by enc the function
mapping a POVM M 2 M into its parametrization enc(M). With this
notation, we have mi= enc(Mi) for every i∈ {1,…, s}.

To obtain a prediction for a new, randomly chosen measurement
M 0 2 M n S, the experimenter sends its parametrizationm0 := encðM 0Þ
to the learner. The learner’s task is to predict the correct outcome
probabilities p0

true = ðtrðρM 0
jÞÞno

j = 1
. This task includes as special case

quantum state reconstruction, corresponding to the situation where
the subset S is informationally complete.

Note that, a priori, the learner may have no knowledge about
quantum physics whatsoever. The ability to make reliable predictions
about the statistics of quantum measurements can be gained auto-
matically through a training phase, where the learner is presentedwith
data and adjusts its internal parameters in a data-driven way. In pre-
vious works16,17,19,20,24,26, the training was based on experimental data
gathered from the same state ρ that needs to be characterized. In the
following, we will provide a model of learner that can be trained with
data from a fiducial set of quantum states that share some common
structure with ρ, but can generally be different from ρ. The density
matrices of the fiducial states can be completely unknown to the
learner. In fact, the learner does not even need to be provided a
parametrization of the fiducial states: the only piece of information
that the learner needs to know iswhichmeasurement data correspond
to the same state.

The GQNQ network
Our model of learner, GQNQ, is a neural network composed of two
main parts: a representation network30, producing a data-driven
representation of quantum states, and a generation network31, mak-
ing predictions about the outcome probabilities of quantum mea-
surements that have not been performed yet. The combination of a
representation network and a generation network is called a gen-
erative query network32. This type of neural network was originally
developed for the classical task of learning 3D scenes from 2D snap-
shots taken from different viewpoints. The intuition for adapting this
model to the quantum domain is that the statistics of a fixed quantum
measurement can be regarded as a lower-dimensional projection of a
higher-dimensional object (the quantum state), in a way that is ana-
logous to a 2D projection of a 3D scene. The numerical experiments
reported in this paper indicate that this intuition is indeed correct, and
that GQNQ works well even in the presence of errors in the measure-
ment data and fluctuations due to finite statistics.

The structure of GQNQ is illustrated in Fig. 1. The first step is to
produce a representation r of the unknown quantum state ρ. In GQNQ,

this step is carried out by a representation network, which computes a
function fξ depending on parameters ξ that are fixed after the training
phase (see Methods for details). The representation network receives
as input the parametrization of all measurements in S and their out-
come statistics on the specific state ρ that needs to be characterized.
For each pair (mi,pi), the representation network produces a vector
ri = fξ(mi, pi ). The vectors corresponding to different pairs are then
combined into a single vector r by an aggregate function A. Here, we
take the aggregate function to be the average, namely r := 1

s

Ps
i= 1 ri.

When GQNQ is used to characterize multiple quantum states
ρ(j), j∈ {1,…, K}, the above procedure is repeated for each state ρ(j).
To characterize the state ρ(j), GQNQ uses measurement data gen-
erated from a subset of s measurements SðjÞ � M, which in general
we allow to depend on j. For the the i-th measurement in SðjÞ,
denoted by M ðjÞ

i , GQNQ produces a representation vector
rðjÞi := f ξ ðmðjÞ

i ,pðjÞ
i Þ, wheremðjÞ

i := encðM ðjÞ
i Þ is the parametrization of the

measurementM ðjÞ
i and pðjÞ

i is the measurement statistics obtained by
performing M ðjÞ

i on the state ρ(j). The representation vectors rðjÞi are
then combined into a a single vector rðjÞ :=

Ps
i = 1 r

ðjÞ
i =s, which serves

as a representation of the state ρ(j). Note that the vectors rðjÞi , and
therefore the state representation r(j), depend only on the outcome
statistics of measurements performed on the state ρ(j), and on
parameters ξ that are fixed after the training phase. As a con-
sequence, the state representation r(j) does not depend on mea-
surement data associated to states ρ(l) with l ≠ j.

Once a state representationhasbeenproduced, the next step is to
predict the outcome statistics for a new quantum measurement on
that state. In quantum tomography, the prediction is generated by
applying the Born rule on the estimated density matrix. In GQNQ, the
task is achieved by a generation network32, which computes a function
gη depending on some parameters η that are fixed after the training
phase. Tomake predictions about the state ρ(j), the network receives as
input the state representation r(j) and the parametrization m0 of the
desired measurement M 0 2 M n SðjÞ. The output of the generation
network is a vector p0 := gηðrðjÞ,m0Þ that approximates the outcome
statistics of the measurement M 0 on the state ρ(j).

Crucially, GQNQ does not need any parametrization of the
quantum states ρðjÞ� �K

j = 1, neither it needs the states to be sorted into
different classes. For example, if the states correspond to different
phases of matter, GQNQ does not need to be told which state belongs
to which phase. This feature will be important for the applications to
state clustering and classification illustrated later in this paper.

The exact form of the functions fξ and gη is determined by the
internal structure of the representation and generation networks, pro-
vided in Supplementary Note 1. The purpose of the training phase is to
choose appropriate values of the parameters ξ and η. In the training
phase, GQNQstarts from some randomly chosen initial values ξ= ξ0 and
η =η0, and then updates the values of ξ and η through a gradient des-
cent procedure (seeMethods for details). To implement this procedure,
GQNQ is provided with pairs (m,p) consisting of the measurement
parametrization/measurement statistics for a fiducial set of measure-
ments M* � M, performed on a fiducial set of quantum states Q*. In
the numerical experiments provided in the Results section, we choose
M* =M, that is, we provide the network with the statistics of all the
measurement in M. In the typical scenario, the fiducial states and
measurements are known, and the training can be done offline, using
computer simulated data rather than actual experimental data.

We stress that the parameters ξ and η depend only on the fiducial
sets M* and Q* and on the corresponding measurement data, but do
not depend on the unknown quantum states ρðjÞ� �K

j = 1 that will be
characterized later, nor on the subsets of measurements ðSðjÞÞKj = 1 that
will beperformedon these states.Hence, the networkdoesnot need to
be re-trained when it is used to characterize a new quantum state ρ( j),
nor to be re-trained when one changes the subset of performed
measurements SðjÞ.
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It is useful to contrast GQNQ with quantum tomography. While
tomographic protocols strive to find the density matrix that fits the
measurement data, GQNQ is not constrained to a specific choice of
state representation. This additional freedom enables the network to
construct lower-dimensional representations of quantum states with
sufficiently regular structure, such as ground states in well-defined
phases of matter, and to make predictions for states that did not
appear in the training phase. Notice also that the tomographic
reconstruction of the density matrix using statistical estimators, such
as maximum likelihood and maximum entropy33, is generally more
time-consuming than the evaluation of the function fξ, due to the
computational complexity of the estimation procedure.

Another differencewith quantum tomography is that GQNQ does
not require a specific representation of quantum measurements in
terms of POVM operators. Instead, a measurement parametrization is
sufficient for GQNQ to make its predictions, and the parametrization
can even be provided in an encrypted form. Since GQNQ does not
require the description of the devices to be provided in clear, it can be
used to perform data analysis on a public server, without revealing
properties of the quantum hardware, such as the dimension of the
underlying quantum system.

Summarizing, the main structural features of GQNQ are
• Offline, multi-purpose training: training can be done offline

using computer generated data. Once the training has been
concluded, the network can be used to characterize and
compare multiple states.

• Measurement flexibility: after the training has been completed,
the experimenter can freely choose which subset of measure-
ments S � M is performed on the unknown quantum states.

• Learner-blindness: the parametrization of the measurements
can beprovided in an encrypted form.Noparametrization of the
states is needed.

Later in the paper, we will show that GQNQ can be adapted to an
online version of the state learning task13, thus achieving the additional
feature of

• Online prediction: predictions can be updated as new mea-
surement data become available.

Quantum state learning in spin systems
A natural test bed for our neural network model is provided by
quantum spin systems34,35. In the following, we consider ground states
of the one-dimensional transverse-field Ising model and of the XXZ
model, both of which are significant for many-body quantum
simulations36–38. These two models correspond to the Hamiltonians

H = �
XL�2

i =0

Jiσ
z
i σ

z
i+ 1 +

XL�1

j =0

σx
j

 !
, ð1Þ
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respectively. In the Ising Hamiltonian (1), positive (negative) coupling
parameters Ji correspond to ferromagnetic (antiferromagnetic) inter-
actions. For the XXZ Hamiltonian (2), the ferromagnetic phase corre-
sponds to coupling parameters Δi in the interval (−1, 1). If instead the

a

b

⋮

State
Representation

⋮

Requested Measurement

Prediction

Density Matrix
Statistical 
Estimator

Born
Rule

⋮

Prediction 

Requested Measurement

Fig. 1 | Structure of GQNQ and comparisonwith quantum state tomography. In
GQNQ (a), a representation network receives as input the raw measurement data
fðmi,piÞgsi= 1 andproduces as output s vectors ri = fξ(mi,pi), that are combined into a
single vector r by an aggregate function A. The vector r serves as a concise
representation of the quantum state, and is sent to a generation network gη, which
predicts the outcome statistics p0 of any desired measurement m0 in the set of

measurements of interest. In quantum tomography (b), the rawmeasurement data
are fed into a statistical estimator (such asmaximum likelihood), which produces a
guess for the density matrix ρ. Then, the density matrix is used to predict the
outcome probabilities of unperformed quantum measurements via the Born rule.
Both GQNQ and quantum tomography use data to infer a representation of the
quantum state.
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coupling parameters fall in the region (−∞, −1)∪ (1,∞), the Hamiltonian
is said to be in the XY phase39.

We start by considering a system of six qubits as example. For the
ground states of the Ising model (1), we choose each coupling para-
meter Ji at random following a Gaussian distribution with standard
deviation σ = 0.1 and mean J. For J >0 (J < 0), this random procedure
has a bias towards ferromagnetic (antiferromagnetic) interactions. For
J = 0, ferromagnetic and antiferromagnetic interactions are equally
likely. Similarly, for the ground states of the XXZmodel (2), we choose
each parameter Δi at random following a Gaussian distribution with
standard deviation 0.1 and mean value Δ. When Δ is in the interval
(−1, 1) ((−∞, − 1)∪ (1,∞)), this random procedure has a bias towards
interactions of the ferromagnetic (XY) type.

In addition to the above ground states, we also consider locally
rotated GHZ states, of the form �6

i= 1Ui∣GHZi with
∣GHZi= 1ffiffi

2
p ð∣000000i+ ∣111111iÞ and locally rotated W states, of the

form �6
i= 1Ui∣Wi with ∣Wi= 1ffiffi

6
p ð∣100000i+ � � � + ∣000001iÞ, where

ðUiÞ6i = 1 are unitary matrices of the form Ui = exp½�iθi,zσi,z �
exp½�iθi,yσi,y� exp½�iθi,xσi,x �, where the angles θi,x, θi,y, θi,z∈ [0,π/10]
are chosen independently and uniformly at random for every i.

For the set of all possible measurementsM, we chose the 729 six-
qubit measurements consisting of local Pauli measurements on each
qubit. Toparameterize themeasurements inM, weprovide the entries
in the corresponding Pauli matrix at each qubit, arranging the entries
in a 48-dimensional real vector. The dimension of state representation
r is set to be 32, which is half of the Hilbert space dimension. In Sup-
plementaryNote 2wediscusshow the choice of dimensionof r and the
other parameters of the network affect the performance of GQNQ.

GQNQ is trained using measurement data frommeasurements in
M on states of the above four types (see Methods for a discussion of
the data generation techniques). We consider both the scenarios
where all training data come from states of the same type, and where
states of different types are used. In the latter case, we do not provide
the network with any label of the state type. After training, we test
GQNQ on states of the four types described above. To evaluate the
performance of the network, we compute the classical fidelities
between the predicted probability distributions and the correct dis-
tributions computed from the true states andmeasurements. For each
test state, the classical fidelity is averaged over all possible measure-
ments inM n S, whereS is a random subset of 30 Paulimeasurements.
Then, we average the fidelity over all possible test states.

The results are summarized in Table 1. Each row shows the per-
formances of one particular trained GQNQ when tested using the
measurement data from (i) 150 ground states of Ising model with
J∈ {0.1,…, 1.5}, (ii) 150 ground states of Ising model with
J∈ {−1.5, −1.4,…, −0.1}, where 10 test states are generatedper value of J,

(iii) 10 ground states of Isingmodel with J =0, (iv) 190 ground states of
XXZmodel with Δ∈ {−0.9, −0.8,…, 0.9}, (v) 100 ground states of XXZ
model with Δ∈ {−1.5, −1.4,…, −1.1}∪ {1.1, 1.2,…, 1.5}, where 10 test
states are generated per value ofΔ, (vi) all the states from (i) to (v), (vii)
200 locally rotated GHZ states (viii) 200 locally rotated W states (vii),
(ix) all the states from (i) to (v), together with (vii) and (viii). In the
second column, the input data given to GQNQ is the true probability
distribution computedwith the Born rule, while in the third and fourth
columns, the input data given to GQNQ during test is the finite sta-
tistics obtained by sampling the true outcome probability distribution
50 times and 10 times, respectively.

The results shown in Table 1 indicate that the performance with
finite statistics is only slightly lower than the performance in the ideal
case. It is also worth noting that GQNQ maintains a high fidelity even
when used on multiple types of states.

Recall that the results in Table 1 refer to the scenario where GQNQ
is trained with the full set of six-qubit Pauli measurements, which is
informationally complete. An interesting question is whether the
learning performance would still be good if the training used a non-
informationally complete set of measurements. In Supplementary
Note 4, we show that fairly accurate predictions canbemade even ifM
consists only of 72 randomly chosen Pauli measurements.

While GQNQ makes accurate predictions for state families with
sufficient structure, it should not be expected to work universally well
on all possible quantum states. In Supplementary Note 3, we con-
sidered the case where the network is trained and tested on arbitrary
six-qubit states, finding that the performance of GQNQ drops drasti-
cally. In SupplementaryNote 5,we also provide numerical experiments
on the scenario where some types of states are overrepresented in the
training phase, potentially causing overfitting when GQNQ is used to
characterize unknown states of an underrepresented type.

We now consider multiqubit states with 10, 20, and 50 qubits,
choosing the measurement set M to consist of all two-qubit Pauli
measurements on nearest-neighbor qubits and S a subset containing
s = 30measurements randomlychosen fromM. Here thedimensionof
state representation r is chosen to be 24, which guarantees a good
performance in our numerical experiments.

For the Ising model, we choose the coupling between each
nearest-neighbor pair of spins to be either consistently ferromagnetic
for J ≥0or consistently antiferromagnetic for J < 0: for J ≥0we replace
each coupling Ji in Eq. (1) by ∣Ji∣, and for J < 0 we replace Ji by−∣Ji∣. The
results are illustrated in Fig. 2. The figure shows that the average
classicalfidelities inboth ferromagnetic and antiferromagnetic regions
are close to one, with small drops around the phase transition point
J = 0. The case where both ferromagnetic and anti-ferromagnetic
interactions are present is studied in Supplementary Note 6, where we
observe that the learning performance is less satisfactory in this
scenario.

For XXZmodel, the average classical fidelities in the XY phase are
lower than those in the ferromagnetic interaction region, which is
reasonable due to higher quantum fluctuations in the XY phase35. At
the phase transition points Δ = ± 1, the average classical fidelities drop
more significantly, partly because the abrupt changes of ground state
properties at the critical points make the quantum state less pre-
dictable, and partly because the states at phase transition points are
less represented in the training data set.

Quantum state learning on a harmonic oscillator
We now test GQNQ on states encoded in harmonic oscillators, i.e.
continuous-variable quantum states, including single-mode Gaussian
states, as well as non-Gaussian states such as cat states and GKP
states40, both of which are important for fault-tolerant quantum
computing40,41. For the measurement set M, we choose 300 homo-
dyne measurements, that is, 300 projective measurements associated
to quadrature operators of the form ðeiθ ây + e�iθ âÞ=2, where ây and â

Table 1 | Average classical fidelities between the predictions
of GQNQs and the ground truths with respect to different
types of six-qubit states

Types of states for training and test Noiseless 50 shots 10 shots

(i) Ising ground states with
ferromagnetic bias

0.9870 0.9869 0.9862

(ii) Ising ground states with
antiferromagnetic bias

0.9869 0.9867 0.9849

(iii) Ising ground states with no bias 0.9895 0.9894 0.9894

(iv) XXZ ground states with
ferromagnetic bias

0.9809 0.9802 0.9787

(v) XXZ ground states with XY phase bias 0.9601 0.9548 0.9516

(vi) (i)-(v) together 0.9567 0.9547 0.9429

(vii) GHZ state with local rotations 0.9744 0.9744 0.9742

(viii) W state with local rotations 0.9828 0.9826 0.9821

(ix) (i)–(v), (vii) and (viii) together 0.9561 0.9543 0.9402
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arebosonic creation and annihilation operators, respectively, and θ is a
uniformly distributed phase in the interval [0,π). For the subset S, we
pick 10 random quadratures. For the parametization of the measure-
ments, we simply choose the corresponding phase θ. Since the
homodyne measurements have an unbounded and continuous set of
outcomes, here we truncate the outcomes into a finite interval (spe-
cifically, at ± 6) and discretize them, dividing the interval into 100 bins
of equal width. The dimension of the representation vector r is chosen
to be 16.

In Table 2 we illustrate the performance of GQNQ on (i)
200 squeezed thermal states with thermal variance V∈ [1, 2] and
squeezing parameter s satisfying ∣s∣∈ [0, 0.5], argðsÞ 2 ½0,π�, (ii) 200
cat states corresponding to superpositions of coherent states with
opposite amplitudes ∣α,ϕ

�
cat :=

1ffiffiffiffi
N

p ð∣αi+ eiϕ∣� αiÞ, where
N =2ð1 + e�∣α∣2 cosϕÞ, ∣α∣∈ [1, 3] and ϕ 2 f0, π8 , . . . ,πg, (iii) 200
GKP states that are superpositions of displaced squeezed states

∣ϵ,θ,ϕ
�
gkp := e�ϵn̂ðcosθ∣0igkp + eiϕ sin θ∣1igkpÞ where n̂= âyâ is the pho-

ton number operator, ϵ∈ [0.05, 0.2], θ∈ [0, 2π), ϕ∈ [0,π], and ∣0igkp
and ∣1igkp are ideal GKP states, and (iv) all the states from (i), (ii),
and (iii).

For each type of states, we provide the network with measure-
ment data from s = 10 random homodyne measurements, considering
both the casewhere the data is noiseless and the case where it is noisy.
The noiseless case is shown in the second and third columns of Table 2,
which show the classical fidelity in the average and worst-case sce-
nario, respectively. In the noisy case, we consider both noise due to
finite statistics, and noise due to an inexact specification of the mea-
surements in the test set. The effects of finite statistics aremodeled by
adding Gaussian noise to each of the outcome probabilities of the
measurements in the test. The inexact specification of the test mea-
surements is modeled by rotating each quadrature by a random angle
θi, chosen independently for each measurement according to a

Table 2 | Performances of GQNQ on continuous-variable quantum states

Type of states for training and test i. noiseless worst case for i ii. σ(noise) = 0.05 worst case for ii iii. σ(θ) = 0.05 worst case for iii

(i) Squeezed thermal states 0.9973 0.9890 0.9964 0.9870 0.9972 0.9889

(ii) Cat states 0.9827 0.9512 0.9674 0.9053 0.9822 0.9461

(iii) GKP states 0.9762 0.9405 0.9746 0.9359 0.9758 0.9405

(iv) (i)–(iii) together 0.9658 0.9077 0.9264 0.8387 0.9643 0.9030
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Fig. 2 | Performance of GQNQs on Ising model ground states and XXZ model
ground states visualized by boxplots49. Figure a shows the average classical
fidelities of predictions given by three GQNQs for ten-, twenty- and fifty-qubit
ground states of Ising model (1), respectively, with respect to different values of
J∈ {−1.5,−1.4,…, 1.5}. Figure b shows the performance of another three GQNQs for

ten-, twenty- or fifty-qubit ground states of XXZ model (2), respectively, with
respect to different values of Δ∈ { − 1.5,− 1.4,…, 1.5}. Given outcome probability
distributions for all m 2 S, each box shows the average classical fidelities of pre-
dicted outcome probabilities, averaged over all measurements in M n S, for 10
instances.
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Gaussian distribution. The fourth and the fifth columns of Table 2
illustrate the effects offinite statistics, showing the classicalfidelities in
the presence of Gaussian added noise with variance 0.05. In the sixth
and seventh columns, we include the effect of an inexact specification
of the homodyne measurements, introducing Gaussian noise with
variance 0.05. In all cases, the classical fidelity of predictions are
computed with respect to the ideal noiseless probability distributions.

In Supplementary Note 6 we also provide a more detailed com-
parison between the predictions and the corresponding ground truths
in terms of actual probability distributions, instead of their classical
fidelities.

Application to online learning
After GQNQ has been trained, it can be used for the task of online
quantum state learning13. In this task, the various pieces of data are
provided to the learner at different time steps. At the t-th time step,
with t∈ {1,…, n}, the experimenter performs a measurement Mt,
obtaining the outcome statistics pt. The pair (mt,pt) is then provided
to the learner, who is asked to predict the measurement outcome
probabilities for all measurements in the setM n St with St := fM jgj ≤ t .

Online learning with GQNQ can be achieved with the following
procedure. Initially, the state representation vector is set to
r(0) = (0,…, 0). At the t-th time step, GQNQ computes the vector rt =
fξ(mt,pt) and updates the state representation to r(t) = [(t − 1) r(t−1) + rt]/t.
The updated state representation is then fed into the generation net-
work,whichproduces the requiredpredictions. Note that updating the
state representation does not require time-consuming operations,
such as a maximum likelihood analysis. It is also worth noting that
GQNQdoes not need to store all themeasurement data received in the
past: it only needs to store the state representation r(t) fromone step to
the next.

A numerical experiment on online learning of cat states is pro-
vided in Fig. 3. The figure shows the average classical fidelity at
15 subsequent time steps corresponding to 15 different homodyne
measurements performed on copies of unknown cat states. The fide-
lity increases over time, confirming the intuitive expectation that the
learning performance should improve when more measurement data
are provided.

Application to state clustering and classification
The state representation constructed by GQNQ can also be used to
perform tasks other than predicting the outcome statistics of
unmeasuredPOVMs.One such task is state clustering,where the goal is
to group the representations of different quantum states intomultiple
disjoint sets in suchaway that quantumstates of the same type fall into
the same set.

We now show that clusters naturally emerge from the state
representations produced by GQNQ. To visualize the clusters, we
feed the state representation vectors into a t-distributed stochastic
neighbor embedding (t-SNE) algorithm42, which produces a map-
ping of the representation vectors into a two-dimensional plane,
according to their similarities. We performed numerical experi-
ments using the types of six-qubit states in Table 1 and the types of
continuous-variable states in Table 2. For simplicity, we restricted
the analysis to state representation vectors constructed from
noiseless input data.

The results of our experiments are shown in Fig. 4. The figure
shows that states with significantly different physical properties cor-
respond to distant points in the two-dimensional embedding, while
states with similar properties naturally appear in clusters. For example,
the ground states of the ferromagnetic XXZ model and the ground
states in the gapless XY phase are clearly separated in Fig. 4a, in
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agreement with the fact that there is an abrupt change of quantum
properties at the phase transition point. On the other hand, in Fig. 4a,
the ferromagnetic region of the Ising model is next to the anti-
ferromagnetic region, both of which are gapped and short-range cor-
related. The ferromagnetic region of the Ising model appears to have
some overlap with the region of GHZ states with local rotations, in
agreement with the fact that the GHZ state is approximately a ground
state of the ferromagnetic Ising model in the large J limit.

The visible clusters in the two-dimensional embedding suggest
that any unsupervised clustering algorithm could effectively cluster
the states according to their representation vectors. To confirm this
intuition, we applied a Gaussian mixture model43 to the state repre-
sentation vectors and chose the number of clusters to be equal to the
actual number of state types (six for the six-qubit states, and three for
the continuous-variable states). The portion of states whose types
match the clusters is 94.67% for the six-qubit states, and 100% for the
continuous-variable states.

The state representation produced by GQNQ can also be used to
predict physical properties in a supervised model where an additional
neural network is providedwith labeled examples of stateswith a given
property. In this setting, supervision can enable a more refined clas-
sification of quantum states, compared to the unsupervised clustering
discussed before.

To illustrate the idea, we considered the problem of distinguish-
ing between two different regimes in the Isingmodel, namely a regime
where ferromagnetic interactions dominate (J > 1), and a regime both
ferromagnetic and antiferromagnetic interactions are present
(0 < J < 1). For convenience, we refer to these two regimes as to the
pure and mixed ferromagnetic regimes, respectively. We use an
additional neuralnetwork to learnwhether a ground state corresponds
to aHamiltonian in the pure ferromagnetic regimeor in themixedone,
using the state representation r of Ising ground states with ferro-
magnetic bias obtained from noiseless measurement data. The pre-
diction reaches a success rate of 100%, 100%, and 99% for ten-qubit,
twenty-qubit, and fifty-qubit ground states in our test sets, respec-
tively. These high values can be contrasted with the clustering results
in Fig. 4, where the pure ferromagnetic regime and the mixed one
appear close to each other in the two-dimensional embedding.

Discussion
Many works have explored the use of generative models for quantum
state characterization16,17,19–21, and an approach based on representation

learning was recently proposed by Iten et al44. The key difference
between GQNQ and previous approaches concerns the training phase.
In most previous works, the neural network is trained to reconstruct a
single quantum state from experimental data. While this procedure can
in principle be applied to learn any state, the training is state-specific,
and the information learnt by the network through training on a given
state cannot be automatically transferred to the reconstruction of a
different quantum state, even if that state is of the same type. In con-
trast, the training of GQNQ works for multiple quantum states and for
states of multiple types, thus enabling a variety of tasks, such as quan-
tum state clustering and classification.

Another difference with previous works is that the training phase
for GQNQ can use classically simulated data, rather than actual
experimental data. In other words, the training can be carried out in an
offline mode, before the quantum states that need to be characterized
become available. By moving the training to offline mode, GQNQ can
be significantly faster than other data-driven approaches that need to
be trained with experimental data from unknown quantum states. The
flip side of this advantage, however, is that offline training requires a
partial supervision, which is not required in other state reconstruction
approaches 16,17,19. Indeed, the training of GQNQ requires quantum
states in the same family as the tested state, and in order to implement
the training offline one needs a good guess for the type of quantum
state that will need to be characterized.

The situation is different if the training is done online, with
actual experimental data provided from the quantum state to be
characterized. In this setting, GQNQ behaves as a completely unsu-
pervised learner that predicts the outcome statistics of unperformed
measurements using measurement data obtained solely from the
quantum state under consideration. Note that in this case the set of
fiducial measurements M* coincides with the set of performed
measurements S � M. The details of the training procedure are
provided in Supplementary Note 7. We performed numerical
experiments in which GQNQ was trained with data from a single cat
state, using data from 10 or 50 homodyne measurements. After the
training, GQNQ was asked to predict the outcome statistics of a new
randomly chosen homodyne measurement. The results are sum-
marized in Table 3, where we show both the average classical fide-
lities averaged over all query measurements and worst-case classical
fidelities over all query measurements.

Finally, we point out that our learning model shares some con-
ceptual similarity with Aaronson’s "pretty good tomography”11, which
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Fig. 4 | Two-dimensional embeddings of multiqubit and continuous-variable
states. Subfigure a shows two-dimensional embeddings of state representation
vectors produced by GQNQ on Ising model (ferromagnetic and antiferromagnetic)
ground states, XXZ model (ferromagnetic and XY phase) ground states, locally
rotated GHZ and W states. Subfigure b shows two-dimensional embeddings of the

state representation vectors of squeezed thermal states, cat states and GKP states.
In both subfigures, shaded areas are added to help visualize the various type of
states. Note that the representation vectors generated by GQNQ of states of the
same type are near to each other in the two-dimensional embeddings.
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aims at producing a hypothesis state that accurately predicts the
outcome probabilities of measurements in a given set. While in pretty
good tomography the hypothesis state is a density matrix, the form of
the state representation in GQNQ is determined by the network itself.
Theflexibility in the choice of state representation allowsGQNQ tofind
more compact descriptions for sufficiently regular sets of states. On
the other hand, pretty good tomography is in principle guaranteed to
work accurately for arbitrary quantum states, whereas the perfor-
mance of GQNQ can be more or less accurate depending on the set of
states, as indicated by our numerical experiments. An important
direction of future research is to find criteria to determine a priori
which quantum state families can be learnt effectively by GQNQ. This
problem is expected to be challenging, as similar criteria are still
lacking even in theoriginal applicationof generative querynetworks to
classical image processing.

Methods
Data generation procedures
Herewediscuss the training/test dataset generation procedures. In the
numerical experiments for ground states of Ising models and XXZ
models, the training set is composed of 40 different states for each
value of J andΔ, while the test set is composed of 10 different states for
each value of J and Δ. For GHZ and W states with local rotations, we
generate 800 states for training and 200 states for testing.

In the continuous-variable experiments, we randomly generate
10000 different states for each of the three families of squeezed
thermal states, cat states, and GKP states. We then split the generated
states into a training set and testing set, with a ratio of 4 : 1.

In the testing stage, the noiselessprobability distributions for one-
dimensional Ising models and XXZ models are generated by solving
the ground state problem, either exactly (in the six qubit case) or
approximately by density-matrix renormalization group (DMRG)
algorithm45 (for 10, 20, and 50qubits). The data of continuous-variable
quantum states are generated by simulation tools provided by Straw-
berry Fields46.

Network training
The training data set of GQNQ includes measurement data obtained
from a fiducial set of quantum measurements M* performed on a
fiducial set of quantum states Q* = fðσðkÞÞgNk = 1. The fiducial states are
divided into N/B batches of B states each. For each state in the b-th
batch, a subset of fiducial measurements MðbÞ

train � M* is randomly
picked, and the network is providedwith all the pairs (m,p(k)), wherem
is the parametrization of a measurement in MðbÞ

train and p(k) is the cor-
responding vector of outcome probabilities on the state σ(k). The net-
work is then asked to make predictions on the outcome probabilities
of the rest of the measurements in M* nMðbÞ

train, and the loss is com-
puted from the difference between the real outcome probabilities
(computed with the Born rule) and GQNQ’s predictions (see Supple-
mentary Note 1 for the specific expression of the loss function). For
each batch, we optimize the parameters ξ and η of GQNQ by updating
them along the opposite direction of the gradient of the loss function
with respect to ξ and η, using Adam optimizer47 and batch gradient
descent. The pseudocode for the training algorithm is also provided in
Supplementary Note 1.

The training is repeated for E epochs. In each epochof the training
phase, we iterate the above procedure over theN/B batches of training
data. For the numerical experiments in this paper, we typically choose
B = 30 and E = 200.

Network testing
After training, the parameters ξ and η arefixed. Then, the performance
of GQNQ is tested on a set of test states ρðjÞ� �K

j = 1. For each test state ρ(j),
we randomly select an s-element subset SðjÞ from the setM of possible
POVM measurements. We then input the measurement data to the
trained representation network, generate the state representation r(j),
and feed r(j) into the trained generation network, asking it to predict
the outcome probabilities for all the measurements in M n SðjÞ. Then
we calculate the classical fidelity between each output prediction and
the corresponding ground truth, and we average the fidelity over all
possible measurements inM n SðjÞ.

Hardware
Our neural networks are implemented by the pytorch48 framework and
trained on four NVIDIA GeForce GTX 1080 Ti GPUs.

Data availability
The training and test data generated in this study have been deposited
in the Figshare database, which can be accessed by https://doi.org/10.
6084/m9.figshare.21211283.v2.

Code availability
The codes that support the findings of this study are available in
https://github.com/yzhuqici/GQNQ.
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