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Towards fully ab initio simulation of
atmospheric aerosol nucleation

Shuai Jiang 1 , Yi-Rong Liu 1, Teng Huang 2, Ya-Juan Feng 1,
Chun-Yu Wang 1, Zhong-Quan Wang2, Bin-Jing Ge 1, Quan-Sheng Liu 1,
Wei-Ran Guang 1 & Wei Huang 1,2,3

Atmospheric aerosol nucleation contributes to approximately half of the
worldwide cloud condensation nuclei. Despite the importance of climate,
detailed nucleation mechanisms are still poorly understood. Understanding
aerosol nucleation dynamics is hindered by the nonreactivity of force fields
(FFs) and high computational costs due to the rare event nature of aerosol
nucleation. Developing reactive FFs for nucleation systems is even more
challenging than developing covalently bondedmaterials because of the wide
size range and high dimensional characteristics of noncovalent hydrogen
bonding bridging clusters. Here, we propose a general workflow that is also
applicable to other systems to train an accurate reactive FF based on a deep
neural network (DNN) and further bridge DNN-FF-based molecular dynamics
(MD) with a cluster kinetics model based on Poisson distributions of reactive
events to overcome the high computational costs of direct MD.We found that
previously reported acid-base formation rates tend to be significantly under-
estimated, especially in polluted environments, emphasizing that acid-base
nucleation observed in multiple environments should be revisited.

The theoretical understanding of the nucleation mechanism largely
relies on classical nucleation theory (CNT)1, originally proposed in
1935, which gives a general mind map for nucleation thermodynamics
and kinetics2 even though the capillary assumption has been exten-
sively criticized3. The theoretical model Atmospheric Cluster Dynam-
ics Code (ACDC), which emerged4 in 2011 and was subsequently
broadly employed5–10, surmounts the drawbacks of CNT through
coupled quantum chemical thermodynamics11 with birth–death
equations2. In the framework of ACDC, collision rate constants and
evaporation rates are the two most critical parameters, determining
the accuracy of the prediction of macroparameters such as cluster
concentrations and formation rates that can be directly determined
with experiments for comparison5. Evaporation rates, derived from
detailed balance and ab initio thermodynamics, can be very accurately
obtained with sophisticated quantum chemical calculations12. How-
ever, collision rate constants, derived from a simple hard-sphere

collisionmodel, are still very rough, and the accuracy is far from thatof
ab initio-based evaporation rates. Moreover, determining accurate
collision rate constants is extremely important, especially for collision-
controlled systems such as sulfuric acid–dimethylamine systems, as
evaporation rates are close to zero13. Pioneering work14 investigated
the collisions between sulfuric acid monomers; however, the force
field (FF) utilized lacks reactivity, and the computational costs of
extending the method to more collisions among molecules and/or
clusters are enormous. Therefore, a highly accurate and inexpensive
reactive FF for flexible nucleation clusters is urgently needed to
simulate nucleation processes with full ab initio accuracy.

Here, we propose a general workflow to drive the aerosol
nucleation simulation toward becoming fully ab initio. In theworkflow,
comprehensive data sets are first prepared through metadynamics
coupled with active learning techniques. Then, a deep neural network-
based force field (DNN-FF) is trained so that robust nucleation
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molecular dynamics (MD) simulations can be performed to derive the
collision rate constants based on the Poisson distribution. Then, static
quantum chemical thermodynamics-based evaporation rates are
coupled with DNN-FF-basedMD-derived collision rate constants into a
cluster dynamics model to provide ab initio kinetics for simulating
atmospheric aerosol nucleation.

Results
A general workflow for fully ab initio simulation of aerosol
nucleation
Thekeymodules in theworkfloware shown in Fig. 1. The details in each
module canbe found in theMethods section, so here, themajor points
regarding the significance and correlation for each module are given.
The initial data set is first prepared by metadynamics sampling in
addition to subsequent screening and labeling. The screening is made
by farthest point sampling (FPS), while the force and energy labeling is
done by density function theory (DFT). Then, an active learning
strategy with two force thresholds is utilized to supplement the initial
data set to form the final data set to obtain the final force field. In each
active learning iteration, DNN-FF-based MD based on the previously
active learning iterations selected data set and metadynamics pre-
pared data set is conducted. Then, inaccurate structures satisfying the
threshold range are selected for labeling and added to the data set for

the next iteration. Therefore, after finalizing the data set, multiple
DNN-FF-based one nanosecond MD simulations can be performed.
Finally, based on the Poisson distribution, collision rate constants are
derived and combined with static quantum chemistry-based eva-
poration rates to obtain macroparameters such as the formation rate
by a cluster kinetics model. The cluster size sampled bymetadynamics
is based on the cluster stability characteristic of acid-base clusters
being mostly stable when the difference between an acid number and
the base number is less than or equal to one5. Active learning not only
supplements the structures for metadynamics sample size but also
points to the cluster compositions with high evaporation rates, e.g.,
(DMA)4, the cluster being composedof four dimethylaminemolecules,
as we can see from the active learning data set in Fig. 1c, which can
normally be ignored through sampling under predefined cluster
compositions. Notably, we will use (SA)m(DMA)n to represent the
cluster composed of m sulfuric acid molecules and n dimethylamine
molecules. Collision rate constants, derived from MD simulations
based on Poisson distribution reaction events (Fig. 1d), are essentially
independent of cluster concentrations, making high-concentration
MD simulations valuable for further cluster kinetics.

Due to the interpolative nature of DNNs, high accuracy could be
maintained for clusters up to (SA)10(DMA)10. The accuracy for clusters
beyond (SA)10(DMA)10 is unknown, but we expect a further decrease in
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Fig. 1 | A general workflow towards fully ab initio simulation of atmospheric
aerosol nucleation. It includes the steps to prepare the data set for training a deep
neural network-based forcefield (DNN-FF), to applyDNN-FFbymoleculardynamics
(MD), to derive collision rate constants from MD, and to couple collision rate
constants with cluster kinetics model for studying atmospheric aerosol nucleation.

a, b show the metadynamics and active learning techniques used to prepare a data
set for the deep neural network, respectively. c DNN-FF-driven MD. d Cluster
kinetics simulation based on MD-derived collision rate constants and static quan-
tum chemistry (QC) calculation-derived evaporation rates.
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accuracy. The ultimate goal of simulating atmospheric aerosol
nucleation is to conduct MD under ambient or laboratory conditions,
where the cluster size can easily go beyond the interpolation regime,
so how to apply the DNN model with size-limited accuracy to atmo-
spheric nucleation becomes a problem that needs to be addressed.We
bridge the gap between microparameters and macroparameters by
embedding MD-derived rate constants based on the Poisson dis-
tribution into a cluster kinetics model. These DNN-FF-based MD-
derived constants coupled with static quantum chemistry (QC)-
derived evaporation rates effectively drive the aerosol simulation
towards full ab initio calculations.

The benchmark of the DNN-FF
The dimer detachment curves in Fig. 2a–c provide a basic picture of
the performance of DNN-FFs significantly affected by long-range
interactions. Generally, DNN-FF with long-range interactions performs
very well on the investigated dimer systems, with the root mean
squared error (RMSE) of the relative energy being close to 1 kcal/mol,
the so-called chemical accuracy. Adding electrostatics and dispersion
corrections into the short-range DNN model not only decreases the
RMSE but also improves the curve smoothness. From the RMSE,
electrostatic interactions are clearly more important than dispersion.
Themaximumcluster sizewithin the training set is (SA)5(DMA)6, so the
energy and force RMSE values in the extrapolation regime are larger
than those in the interpolation regime, as expected. Even in the
extrapolation regime, the DNN model still yields an encouraging
accuracy close to that of a recently reported combustion reaction
DNN15. In summary, the DNN model’s superior performance in energy

and force descriptions, in addition to its distinguished size scalability,
lays a solid foundation for robust nucleation MD simulations.

Structural and energetic characteristics fromDNN-FF-basedMD
With the robust size scalability of the DNN model, nanosecond-scale
MD simulations for cluster collision and evaporation can be per-
formed, and a representative snapshot is shown in Fig. 3a. Further-
more, isolated clusters can be singled out to gain insights into their
structural evolution. Here, (SA)6(DMA)6 is chosen since it is the largest
cluster with the same number of acids and bases observed in the DNN-
FF-basedMD and is very close to the lowest experimentally detectable
cluster size (~1.7 nm)5. For the most stable isomer (Fig. 3b), the sulfuric
acid molecules are hydrogen bonded with each other, forming a shell
with the cluster center of mass (COM) inside, while all dimethylamine
molecules are protonated. The structural similarity can be seen
through the closely connected points in the energy basin (Fig. 3d). In
addition, here, the (SA)6(DMA)6 cluster emerges from the collision of
(SA)4(DMA)5 and (SA)2(DMA)1; the high-energy isomers during a col-
lision and subsequent rearrangement can also be seen in Fig. 3d
(semitransparent red points in the upper left corner). Interestingly,
none of the proton-transferred nitrogen-oxygen bonds break during
the simulation (Supplementary Fig. 5), indicating quite strong bonding
from proton transfer. Comparatively, we see that one of the two pro-
tons initially covalently bonded with the oxygen atom in the sulfuric
acid molecule transfers to one dimethylamine molecule, while the
other proton moves from one sulfuric acid molecule to another
(Supplementary Figs. 4, 6). After the collision, the molecules in the
cluster rearrange, finally making the proton number within sulfuric

a b

c d

Fig. 2 | Deep neural network-based force field (DNN-FF) benchmark. a–c show
the dimer detachment curves for (SA)1(DMA)1, (SA)2, and (DMA)2, respectively,
where SA and DMA represent sulfuric acid and dimethylamine molecules, respec-
tively. The relative energy is the isomer energyminus the energy of themost stable
isomer. DNN, DNN_elec, DNN_disp, and DNN_short represent the model with

electrostatics and dispersions, the model with electrostatics and without disper-
sions, the model without electrostatics and with dispersions, and the model with-
out electrostatics and dispersions, respectively. d Energy and force root mean
squared error (RMSE) values in the interpolation and extrapolation regimes of the
test set. Source data are provided as a Source Data file.
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acid molecule one (Supplementary Fig. 6). From the above analysis,
essential structural insights can be obtained by collecting clusterswith
the same composition from the MD trajectory.

Aerosol nucleation kinetics
DNN-FF-driven MD simulation of molecular cluster collisions and
evaporations follow a Poisson distribution16, so the so-called collision
enhancement factor (CEF) can be derived. This term is the quotient of
MD-derived collision rate constants divided by hard-sphere collision
model-derived collision rate constants. The CEF is typically more than
one due to long-range intermolecular forces14. However, for the colli-
sion between dimethylamine monomers, the CEF is below one at
300K, mainly because of the intermolecular repulsion of dimethyla-
mine molecules (Fig. 4a). From Supplementary Table 1, for the same
reaction, the CEF at 278 K is slightly larger than the CEF at 300K.
Replacing hard-sphere collision rate constants with MD-derived con-
stants in a cluster kinetics model paves the way for fully ab initio
simulation of aerosol nucleation. The derived formation rates divided
by those based on hard-sphere collision rate constants give the for-
mation rate enhancement factor (FREF) (Fig. 4c, d). In representative
clean (Fig. 4c) and polluted (Fig. 4d) environments, FREF has a strong
negative correlation with the DMA concentration and a weak negative
correlation with the SA concentration. Under the typical SA and DMA
concentrations with different CS values, FREF in the polluted envir-
onment is much larger than FREF in the clean environment (yellow
points in Fig. 4c, d). This indicates that aerosol particle formation in a
polluted environment is much more underestimated than that in a
clean environment. Generally, here, FREF ranges from one to several
hundreds; however, this is the lower bound value, as there are still

many collision rate constants that need to be replaced. Therefore,
obtaining larger formation rates than expected before challenges the
idea that SA-DMA nucleation is collision-limited with zero evaporation
rates17, providing the alternative scenario that collision rate constants
are underestimated when evaporation rates are low but not zero.
Further studies regarding this topic are definitely neededwhen fully ab
initio kinetics are available in the future.

Discussion
Currently, the coupling betweenmachine learning (ML) and chemistry
is on the rise, so training a DNN model with good performance on
training and test data sets is becoming increasingly routine18–26. How-
ever, training a DNNmodel with good size scalability and applicability
to reactive MD simulations, especially for flexible molecules, as in this
case, is still very challenging27. Here, robust MD simulations prove the
high quality of data sets given bymetadynamics and active learning, as
well as the excellent performance of descriptors combined with the
neural network framework and parameters. The workflow we propose
here works for strong acid and strong base nucleation systems, which
are the most significant systems in the aerosol nucleation field due to
their strong nucleation ability. However, for systems with apparent
barriers, such as the sulfuric acid-ammonia system, it is probably vital
to utilize the strategy28 to introduce transition state configurations to
obtain a uniformly accurate model.

Future work can be first conducted on how to produce a compact
data set, probably heavily relying on active learning. Another aspect
that should be investigated is improving the DNN model accuracy,
possibly through transfer learning29 or Δ-learning30. For nucleation
applications, more diverse box size and initial monomer spatial

a b

c d

(SA)1(DMA)2

(SA)1(DMA)1

(SA)2(DMA)1

(SA)6(DMA)6

Fig. 3 | Structural distribution for (SA)6(DMA)6 isomers derived from deep
neural network-based force field (DNN-FF)-based molecular dynamics (MD).
a shows a snapshot of MD at 1 ns. The cyan, white, red, blue, and yellow circles
representC,H,O,N, and S atoms, respectively. TheN andS atom radii are increased
threefold for clarity.bThemost stable isomer in the trajectory. cRadial distribution

function (RDF) between the cluster center of mass (COM) and the five elements.
d Kernel principal component analysis (KPCA)58 maps of isomers using a global
SmoothOverlap of Atomic Positions (SOAP)59 kernel. Source data are provided as a
Source Data file.
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distribution MD simulations need to be conducted to lower the
uncertainties16 to estimate collision rate constants. In addition, a larger
box-size simulation with more molecules inside is needed to include
more types of collisions so that the simulation can be fully ab initio.
Afterward, many ab initio-derived collision rates could tentatively be
predicted purely bymolecular physical chemistry properties to reduce
simulation time costs.

The complexity and variety of nucleation precursors in the
ambient environment, especially in polluted environments, necessi-
tate new theoretical methods in addition to static QC calculations to
unravel the complicated associated mechanisms. We believe the
workflow proposed here, with the introduction of the DNN-FF and the
bridging between MD-derived rate constants with cluster kinetics,
paves the way toward the full ab initio simulation of atmospheric
aerosol nucleation. The highly accurate formation rate derived here
can be further parametrized into a climate model to improve climate
prediction on global and local scales.

Methods
Metadynamics
Instead of being sampled by basin-hopping31, which has been widely
applied in atmospheric noncovalent interaction clusters32, the poten-
tial energy surfaces of nucleation clusters are sampled by metady-
namics (MetaMD)33,34 due to its remarkable ability to sample high-

energy isomers to prepare the initial data set for further active learning
iterations. The bump perturbation can be calculated as33

Vbump
~R
� �

=
X
α

λe�
P

ij
ðDij

~Rð Þ�Dα
ij Þ

2
=ð2σ2Þ ð1Þ

Here,~R represents the atomic coordinates;α sumsover snapshots
of geometries where the matrix of atomic distances at a given point
during the trajectory:Dij = 1=∣~rij ∣ is the collective variable, where ~rij are
the atomic distances; i and j loopover all the atoms in the frame;Dα

ij are
the previous distance matrices, which we accumulate every τ femto-
seconds (fs); the bumps with bump width σ and bump height λ are
applied to all elements of the contactmatrix. The bumpwidth σ, bump
height λ, and bump time τ are set to 2.0, 1.0, and 10, respectively, while
the MD temperature, time step, and thermostat for the NVT ensemble
are set to 600K, 0.5 fs, and Anderson, respectively. The cluster whose
size is within the range of (SA)m(DMA)n (m=0–4, n =0–4) is sampled
with MetaMD in the Tensormol35 package interfaced with the
PM7 semiempirical method in Gaussian1636. To save computational
costs, not all cluster sizes within the range are sampled. According to
the experimental and theoretical predictions, the sulfuric
acid–dimethylamine system tends to grow with a similar number of
molecules within the cluster5; therefore, for large clusters, those with a
differencebetween the number of acid andbasemolecules less thanor

Fig. 4 | Collision and formation rate enhancement factor (CEF and FREF).
a, b show the collision dependence of the CEF at 300 and 278K, respectively. The
reaction list can be found in Supplementary Table 1. The error bars shown in
a, b, which represent the upper and lower bound of CEF, result from a 95% con-
fidence level of Poisson-distributed reactions. Events c, d give the FREFs for
representative clean (T= 278K, CS = 2.6 × 10−3 s−1) and polluted environments
(T = 278K, CS = 2.7 × 10−2 s−1), respectively, where T and CS are the temperature and

the condensation sink coefficient, respectively. A temperatureof 300K is chosen to
resemble the conditions of standard temperature and pressure (STP), while 278K
represents typical spring-time conditions at the boreal forest site in Hyytiälä60, the
flagship observatory in the new particle formation field and winter-time conditions
for observation inBeijing61. Yellowpoints in c,d showFREFsunder typical clean and
polluted environments, respectively, where [SA] = 3.5 × 106 cm−3 and [DMA] = 1.8
ppt. Source data are provided as a Source Data file.
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equal to one are included. For each cluster size, ~50,000 structures are
sampled and subsequently selected by the farthest point sampling
(FPS) method based on the many-body tensor representation (MBTR)
descriptor37 for further DFT (ωB97XD/6–31 + +G(d,p)) energy and
force labeling. ωB97XD/6–31 + +G(d,p) is chosen because the sys-
tematic benchmark38 for aerosol nucleation clusters proves its good
balance between accuracy and cost. The detailed MetaMD sampling
and subsequent DFT calculation procedures are listed in Supplemen-
tary Table 2.

Active learning
Based on the initial data set prepared byMetaMD, an active learning or
an on-the-fly strategy39 is utilized. The MetaMD sampling subset after
screening is the initial data set to kick off the active learning iterations.
In each iteration, first, 400,000 steps of training with different seeds
are conducted to generate four DNN models. Then, the constant-
temperature, constant-volume ensemble (NVT) MD simulations are
performed in LAMMPS40 basedon trainedDNNmodels. During theMD
simulations, four DNN models are utilized to pinpoint the candidate
clusters whose error indicators satisfy the threshold range. The error
indicator is the maximal standard deviation of the atomic force pre-
dicted by the model ensemble. The upper and lower threshold values
are 0.50 and 0.35 eV/Å, respectively, indicating that those whose error
indicator is below 0.35 eV/Å are regarded as accurate and those whose
error indicator is above 0.50 eV/Å are regarded as physically unrea-
sonable. Finally, the energies and forces of the candidate clusters are
obtained by ωB97XD/6–31 + +G(d,p) in the Gaussian1636 package for
training in the next iteration. Notably, the candidate clusters are
carved out from the MD trajectory according to the interatomic dis-
tance cut-off of 3.5 Å. Here, the clusters are obtainedwhen the shortest
interatomic distance between molecules is shorter than the intera-
tomic distance cut-off value to maintain the integrity of the molecular
cluster, which is different from the strategy used in a similar work
conducted for combustion reactions15. The detailed iteration pro-
cesses are listed in Supplementary Table 3.

DNN model
The smooth version of the deep potential41,42 model is conducted in
active learning. In deep potential, the potential energy of a molecular
cluster is a sum of “atomic energies” E =∑iEi, where Ei is determined by
the local environment of atom i within a cut-off radius. The model
includes two networks: the embedding network and the fitting net-
work. The embedding network is of size (25, 50, 100) and the fitting
network is of size (240, 240, 240). The fitting network uses ResNet
architecture43. The cut-off radius is set to 6.0 Å and the descriptors
decay smoothly from 5.8 to 6.0 Å. The learning rate starts at 1.0 × 10−3

and exponentially decays every 2000 steps in 400,000 training steps
in each active learning iteration. The loss function is defined as a sum
of different mean square errors of the DNN predictions for energy and
force. The long-range DNNmodel, Physnet44, is utilized to train on the
final data set for 10,000,000 steps. DeePMD with strictly local
descriptors is integrated with LAMMPS, which guarantees high effi-
ciency of MD exploration, so DeePMD is utilized in the active learning
iterations. Despite the recent appearance of the long-range version
DeePMD (DPLR)45, we switched to Physnet for production, as prepar-
ing maximally localized Wannier centers for DPLR requires a large cell
where themolecular electron density decreases to zero on the faces of
the cell, which is computationally expensive. Because D3BJ instead of
D3 isfitted in Physnet, the final data set is further calculated at the level
of ωB97X-D3BJ/6–31 + +G(d,p) through ORCA 5.046 to label structures
with the energies and forces as well as the dipole moments. The width
of the neural network is controlled by setting the feature space
dimensionality and radial basis function number to 128 and 64,
respectively, while the neural network depth is controlled by setting
the stacked modular building blocks number, residual block number

for atom-wise refinements, residual block number for refinements of
proto-message and residual block number in output blocks to 5, 2, 3,
and 1, respectively. The cut-off radius for interactions in the neural
network is set to 10Å and long-range interactions are explicitly inclu-
ded by electrostatics and dispersion corrections.

Molecular dynamics
The collision and evaporation simulations of molecular clusters are
conducted under the NVT ensemble at 278 and 300K through the
Atomic Simulation Environment (ASE) with ten SA molecules and ten
DMAmolecules initially randomlyplaced in the cubic boxwith a length
of 85 Å. The randompositions are given by the packmol47 packagewith
the stable SA and DMA monomers being the input structures. In each
run, MD has performed 100 ps with the COM for each molecule being
fixed for equilibration and subsequently 1 ns for production. The
cluster positions in the production stage are recorded every 10 fs. The
snapshot in Fig. 3a is plotted by VMD48, while the structure in Fig. 3b is
plotted by Chemcraft49. The RDF and structural clustering analysis is
conducted by freud50 and ASAP51, respectively. The proton transfer
distance threshold between O and H is set to 1.23 Å. Collison rate
constants are derived according to the Poisson distribution feature of
the reactive (collision and evaporation) events16 using the Chem-
TraYzer software package52. The Poisson-based collision rate constant
k can be calculated according to

k =

P
jNj

V
P

j

PM
i Ci4ti

� �
j

ð2Þ

Here,Nj is the collision event number inMD run j, V is theMD box
volume, i is the subsimulation number in MD run j separated by
reactive events, C is the product of reactant concentrations, and Δt is
the interval between reactive events. The detailed derivation for rate
constants and confidence interval of Poisson-based reaction events
can be found in the literature16.

Cluster kinetics
Themolecular cluster kinetics simulations areperformedby thehome-
built Python version53 of the Atmospheric Cluster Dynamics Code
(ACDC)4 to solve the ordinary differential equations. The collision rate
constants are partially replaced by the MD-observed collision event-
derived constants, and the remaining collision rate constants are cal-
culated by a hard-sphere collision model. The evaporation rates are
calculated assuming a detailed balance based on quantum chemical
thermodynamics11 from the literature54. The condensation sink (CS) is
set to be 2.6 × 10−3 s−1 and 2.7 × 10−2 s−1 to mimic condensation under
clean55 and polluted56 environments, respectively. In ACDC, the for-
mation rate can be calculated by

J =
X4
i=0

X4
j =0

X4
k =0

X4
l =0

βik,jlcikcjlði+ j ≥4, k + l >4Þ ð3Þ

Here, i and j refer to the number of SA molecules in each binary
collision molecular cluster, and k and l refer to the number of DMA
molecules in each binary collision molecular cluster. The time evolu-
tion of the cluster concentration ci can be obtained by solving the birth
and death equations given by

dCi

dt
=
1
2

X
j<i

βj, i�jð Þcjci�j +
X
j

γ i+ jð Þ!ic i+ jð Þ �
X
j

βi,jcicj �
1
2

X
j<i

γi!jci +CS ð4Þ

Here, CS represents the condensation sink. βi,j represents the
collision rate constants obtained from the hard-sphere collisionmodel
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and is calculated by

βi,j =
3
4π

� �1=6 6kbT
mi

+
6kbT
mj

 !1=2

V 1=3
i +V 1=3

j

� �2 ð5Þ

Here, T represents the temperature, kb represents the Boltzmann
constant, and mi and Vi represent the mass and volume of cluster i,
respectively. The evaporation coefficient γ(i+j)→i is calculated by

γ i+ jð Þ!i,j =βi,j

cei c
e
j

cei+ j
=βi,jcref exp

4Gi + j �4Gi �4Gj

kbT

� �
ð6Þ

Here, i and j are the daughter clusters, βi,j is the collision rate
constant between i and j, cei is the equilibrium concentration of cluster
i, ΔGi is the free energy of formation of cluster i from the constituent
monomers, and cref is the monomer concentration of the reference
vapor for which the free energies were calculated.

Data availability
The training and test data set for DNN, the DNN-FF model, and mole-
cular dynamics trajectories based on DNN-FF are available on figshare
(https://doi.org/10.6084/m9.figshare.20968156.v1)57. Source data are
provided with this paper.

Code availability
The codes, including metadynamics sampling, active learning, DNN
training, molecular dynamics, and cluster kinetics, in addition to the
data and scripts to reproduce all the figures in the manuscript and
supplementary materials, are available on figshare (https://doi.org/10.
6084/m9.figshare.20968156.v1)57.
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