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Simulating groundstate and dynamical
quantum phase transitions on a super-
conducting quantum computer

James Dborin 1, Vinul Wimalaweera1, F. Barratt2, Eric Ostby3,
Thomas E. O’Brien3 & A. G. Green 1

The phenomena of quantum criticality underlie many novel collective phe-
nomena found in condensed matter systems. They present a challenge for
classical and quantum simulation, in part because of diverging correlation
lengths and consequently strongfinite-size effects. Tensor network techniques
that work directly in the thermodynamic limit can negotiate some of these
difficulties. Here, we optimise a translationally invariant, sequential quantum
circuit on a superconducting quantum device to simulate the groundstate of
the quantum Ising model through its quantum critical point. We further
demonstrate how the dynamical quantum critical point found in quenches of
this model across its quantum critical point can be simulated. Our approach
avoids finite-size scaling effects by using sequential quantum circuits inspired
by infinite matrix product states. We provide efficient circuits and a variety of
error mitigation strategies to implement, optimise and time-evolve these
states.

The simulation of chemical reactions andmaterials properties, and the
discovery of new pharmaceutical compounds are anticipated to be
major applications of quantum computers. The rapid development of
various approaches to constructing NISQ devices brings simple mod-
els of these use cases within the realm of possibility. Finding challen-
ging but feasible problems that can be implemented on current
devices is crucial. As well as demonstrating the progress that has been
made, these serve to highlight required improvements and, ideally,
have the possibility of quantum advantage when suitably powerful
quantumcomputers are developed.Many problems that fit this bill are
to be found in condensed matter. They can be scaled to fit current
machines while retaining scientific and technological relevance.

Strongly correlated condensedmatter systems are amongst those
most likely to yield a quantum advantage1–6. These are systems in
which the underlying spins or electrons are strongly renormalised and
whose quantum properties are beyond the reach of standard pertur-
bative or density functional type approaches. Quantum criticality7–9 is
one of the few collective organising principles that has been able to
make sense of a large class of strongly correlated phenomena. The

term—first coined byHertz10—refers to systems in the vicinity of a zero-
temperature phase transition driven by quantum fluctuations. Such
systems display universal spatial and temporal correlations that are
not seen in purely classical problems and can underpin the formation
of entirely new quantum phases. Diverging correlation lengths near
the quantum critical pointmake these states challenging for numerics,
driving the development of state-of-the-art tools such as dynamical
mean field theory11 (to deal with the Mott transition), singlet Monte
Carlo12 (to deal with deconfined quantum criticality) and tensor net-
works amongst many others.

As well as providing the best classical numerical approach for
many spin systems, tensor networkmethods can be directly translated
to quantum circuits13–17. Doing so has potential quantum advantage
over the classical implementations16, and tensor networks allow initi-
alisation and improvement of quantum circuits in a way that can cir-
cumvent the barren plateaux that potentially plague quantum circuits.
There are particular advantages in applying thesemethods to describe
quantum critical systems. Diverging correlation lengths lead to strong
finite-size effects which can be avoided with tensor networks by
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working directly in the thermodynamic limit. Theremay be advantages
in combining tensor networkmethods withmachine learning tools18–20

to extract simulation results as used recently in classical numerics.
Moreover, there is potentially excellent fit between tensor network
simulation methods and matrix product operator-based error
mitigation21,22. While we focus on one-dimensional matrix product
states (MPS), reflecting the limitations of current devices, translations
of these methods to higher dimensions have been proposed23,24.

Here we demonstrate that translationally invariant MPS (iMPS)
can be used to simulate quantum critical systems, in the thermo-
dynamic limit, on Google’s Rainbow device—a quantum device that
shares the Sycamore architecture25. We focus upon the quantum Ising
model which has a quantum phase transition in its groundstate
properties7,9 and in its dynamics26–29. We show that—with appropriate
error mitigation—the groundstate of the quantum Ising model can be
found with high accuracy even at the quantum critical point. We also
demonstrate a cost-function that, by balancing analytical approxima-
tions and error mitigation strategies, faithfully tracks time-evolution
through the dynamical quantum phase transition. The resulting cir-
cuits are considerably simpler than the previous proposals17.

Results
We begin discussion of our results by introducing the quantum Ising
model and its key features.We then showhow translationally invariant,
quantum circuit iMPS, together with suitable error-mitigation strate-
gies, can be used to determine its groundstate properties. We report
the result of applying these methods on Rainbow. Next, we introduce
circuits that can be used to simulate the quantum dynamics, and the
balance of analytical approximations and error mitigation that permit
them to be implemented on the Rainbow device.

Quantum phase transitions
The quantum or transverse field Ising model is one of the best
understood models that exhibits quantum critical phenomena. Its
Hamiltonian is given by

H=
X

i

JẐ iẐ i+ 1 + gX̂ i

h i
, ð1Þ

where Ẑ and X̂ are Pauli operators, J is the exchange coupling and g the
transverse field. This model has a groundstate quantum phase transi-
tion at g/J = 1 and a dynamical quantum phase transition when a
groundstate prepared on one side of the critical point (say g/J > 1) is
evolved with a Hamiltonian on the opposite side (say g/J < 1). Though
an exact solution can be obtained using a Jordan–Wigner transfor-
mation, much remains to be understood and its dynamical and ther-
malisation properties are the subject of current research interest30–32.
In the following, we demonstrate that the groundstate and dynamical
properties of this model may be fruitfully investigated on current
quantum devices using quantum circuit MPS.

Groundstate optimisation
We approach this problemusing one-dimensional sequential quantum
circuits23 inspired by matrix product states15–17,33–35. Figure 1 illustrates
the structure of these states and their representation on Rainbow. In
this work we focus on bond order D = 233–35 described by a staircase of
two-qubit unitaries, U. Higher bond orders can be achieved with an
efficient shallow circuit representation15,17. A crucial feature of these
circuits is that although the fully translationally invariant state is infi-
nitely deep and infinitelywide, local observables can bemeasured on a
finite-depth, finite-width circuit with an additional unitary V ≡V(U)
describing the effect of distant parts of the system on the local
observables. This additional unitary is determined by a set of auxillary
equations—discussed in theMethods section and shown in Fig. 6—that
we solve on chip. We optimise this fixed-point equation together with

measurement of terms in the Hamiltonian in order to find the
groundstate of the quantum Ising model. The parametrizations of U
and V are indicated in Fig. 1.

Error mitigation is essential for these algorithms. We deploy a
number of strategies. Foremost amongst these is choosing the best
qubits. Individual qubit and gate noise can vary dramatically on cur-
rent devices. In our energy optimisation experiments, we run all of the
circuits shown in Fig. 1 in parallel on an optimally chosen set of qubits
on Rainbow. Next, we account for measurement errors and biases
using a confusion matrix deduced frommeasurements on each of our
chosen qubits. Finally, we utilise a Loschmidt echo to account for
depolarisation, by implementing a circuit and its Hermitian conjugate
to deduce the rescaling that depolarisation induces1,36.

We optimise the sum of the measured quantum Ising Hamiltonian
given by the circuits in Fig. 1a, and the circuits in Fig. 1b that impose
consistency between the unitary U defining the quantum state and the
unitary V(U) describing the effect of the rest of of the system on local
measurements. The full cost function then is hHi+Trðρ̂L � ρ̂RÞ2, where
the second term is the trace distance between the left- and right-hand
sides of the fixed-point equation first reported in ref. 17 and shown in
Fig. 6 inMethods.Wecarryout this optimisationusing the simultaneous
perturbation stochastic approximation (SPSA)37. This optimisation
strategy works well deep in either phase of the quantum Isingmodel. In
order to approach the quantum critical point, we use a quasi-adiabatic
method gradually changing the Hamiltonian parameters toward those
at the quantum critical point in steps, using the optimised ansatz
parameters at the preceding step to start the optimisation.

The results of applying these methods on Rainbow are shown in
Fig. 2. These results demonstrate that, with appropriate rescaling to
allow fordepolarisationerrors, themeasuredandoptimisedenergies are
close to the exact value for our ansatz even at the quantumcritical point.
The deviations from the analytically exact results arise primarily because
we have used a reduced parameterisation of our two qubit unitaries.
Figure 2b shows a typical optimisation curve. A marked oscillation of
unknown origin on a time-period of about half an hourwas present in all
of our experiments. It was particularlymarked at g=0.4 (see Fig. 2c) and
is likely responsible for the larger error in energy at this value.

For the quantum Ising model, D = 2 does remarkably well and the
improvement in going to D = 4 is below the resolution of our experi-
ments. Othermodels such as the antiferromagnetic Heisenbergmodel
show a larger improvement in optimised energies by increasing bond
order and are within the resolution of future experiments.

Calculating and optimising overlaps
Before turning to quantum dynamics, we first discuss a key building
block—the overlap of translationally invariant states. For states para-
metrised by circuit unitaries UA and UB this overlap is given by an
infinitely wide and deep version of the circuit shown in Fig. 3a. It is
formally zero. However, the distance between states can be quantified
by the rate at which this overlap tends to zero as the length of the
system,N, is taken to infinity. This occurs as λN, where λ is the principal
eigenvalue of the transfer matrix, EUA ,UB

, indicated by the part of the
circuit contained between the dashed red lines in Fig. 3a.

Several methods can be used to determine λ. ref. 17 uses a varia-
tional representation of the bottom and top eigenvectors B and T of
the transfer matrix. These correspond to the left and right eigenvec-
tors in the usual MPS notation, were the circuit is conventionally
rotated 90 deg clockwise. This involves solving fixed-point equations
for B and T akin to those used in to calculate the expectations of the
Hamiltonian in ‘Groundstate Optimisation’. Here, we use a different
approach invoking the power method. λ is given by

λ= lim
n!1

~B �En
UA ,UB

� ~T
~B � En�1

UA ,UB
� ~T

= lim
n!1

CnðUA, UBÞ
Cn�1ðUA,UBÞ

, ð2Þ
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for approximations, ~B and ~T , to the eigenvectors of the transfermatrix,
This result converges exponentially quickly with n, and can be parti-
cularly accurate when a good starting approximations to ~B and ~T are
chosen. Indeed, when either ~B or ~T are exact, then Eq. (2) converges at
n = 1. Figure 3a corresponds to n = 6 and the choices ~B= I
and ~T = ∣0i 0h ∣.

The results of calculating the overlaps on Rainbow in this way are
shown in Fig. 3b, c. In order to correct for depolarisation errors, we
divideCn(UA,UB) by a Loschmidt echo Cn(UA,UA), whose value is one in
the depolarisation-free case. Figure 3c shows Cn(UA,UB) and Cn(UA,UA)
calculated for different n. The depolarisation effects become larger as
the order n, and consequentially depth of circuit, increases. Figure 3b
shows how the Loschmidt-corrected results converge to λ with n. By
n = 4 the estimate for λ has converged to within error bars (aside from
n = 6 which appears to arise due to an overestimate of the Loschmidt
echo. Correcting for this with an interpolated value of the Loschmidt

echobrings the estimatewithin errors). Theoptimumbalancebetween
convergence of the powermethod and increasing circuit errors occurs
at n = 4 or 5. Finally, Fig. 3d shows the result of optimising the overlap
by varying the parameters of UB using SPSA.

Quantum dynamics
This method of computing overlaps can be used to time-evolve a
quantum state ∣ψ UðtÞð �

parametrised by U(t) at time t to time t + dt
according to refs. 16, 17, 38, 39

Uðt +dtÞ= arg max
W

∣ ψðW Þ�
∣eiHdt ∣ψðUðtÞÞ�: ð3Þ

As in the case of direct overlaps between states, the overlap in Eq.
(3) decays exponentially with the system size according to the princi-
ple eigenvalue of the transfer matrix. We identify circuits that

Fig. 1 | Translationally Invariant Circuit Matrix Product States for groundstate
optimisation. a iMPS circuits to calculate the three terms in the Ising Hamiltonian.
The blue boxes indicate realisations of the state unitary U with its factorisation to
the Rainbow gate set. The red boxes highlight the environment tensor V. Ry gates
refer to the Pauli-Y rotation gates, RyðθÞ= expð�iσyθÞwhere σy is the Pauli-Ymatrix.
The W gate is an arbitrary single qubit unitary with three free parameters. Para-
meters are shared across the blue tensors to enforce translational invariance. There
are eight free parameters in total, four from the environment (red) and four from

the state tensor (blue). b Example of the Ising circuits laid out on the Rainbow
device. The best performing qubits were chosen on each day of experiment. c iMPS
Circuits to determine V ≡V(U). The three elements shown comprise the three ele-
ments required to compute the trace distance between the left- and right-hand
sides of the fixed-point equations shown in Fig. 6. The gates needed to perform the
required swap test are highlighted in green.d Example of the trace distance circuits
laid out on the rainbow device.
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approximate this principle eigenvalue as cost-functions for time-
evolution.

Just as for finding groundstates, the key to operating time
evolution algorithms on NISQ devices is the management and
mitigation of errors. A balance must be found between the theo-
retical, error-free accuracy and the effect of errors incurred on a
real device. We introduce time-evolution circuits for quantum
iMPS (dramatically simplified compared to previous proposals17)
that permit careful tradeoffs in implementation to enable quan-
tum dynamics to be faithfully tracked.

The first such trade-off concerns the time-evolution operator,
whichmust be expanded using a Trotterisation procedure40–42. Higher
order Trotterizations improve the scaling of errors with the time-step
dt, but require deeper circuits that aremore exposed to gate infidelity.
Moreover, errors incurred in stochastic optimisation may favour a
larger time-step, offsetting increased resolution of the cost function
against an increase in Trotter errors. In practice, the time-evolution
operator is the deepest part of our circuit. In order to minimise this
depth, we use a first order Trotterisation and a trick appropriate to
translationally invariant states evolving with nearest-neighbour,
translationally-invariant Hamiltonians. The circuit Fig. 4a uses just the
even-bonds of the Hamiltonian, but by dint of the projection back to
translationally invariant states incurs errors at higher order in dt than
expectedwith a naive accounting of Trotter errors. This can be seen by
noting that the time-dependent variational principle equations for
evolving a translationally invariant state with just the even- or odd-
bond parts of the Hamiltonian are identical to evolving using the full
Hamiltonian divided by two43.

The transfer matrix is indicated by the part of the circuit in Fig. 4a
between the red dashed lines. Time-evolution cost functions can be
obtained using the power method to approximate the principal
eigenvalue of this transfermatrix. The circuit shown in Fig. 4a contains
two powers of the transfer matrix, together with an approximation to
the bottom fixed-point of the transfer matrix equal to the identity and
of the topfixedpoint constructed froma contractionofUwithU 0y with
post-selection over the top two qubits. These approximations to the
top and bottom fixed points are accurate to O(dt2) so that overall — in
the absence of errors—the circuit Fig. 4a gives an approximation to the

square of the eigenvector of the transfer matrix to O(dt2). Cost func-
tions constructed at different orders of the power method and with
different approximations to the fixed points are discussed in Supple-
mentary Note 2.

In addition to these strategies for managing errors and making a
good choice of qubits, we also require a degree of errormitigation.We
average of the results obtained from four copies of the time evolution
circuits: running two circuits in parallel and repeating to a total of four
circuits. A Loschmidt echo is used to tomitigate depolarisation errors;
we deduce a rescaling by taking the circuit in Fig. 4a setting U 0 =U and
including time-evolution unitaries with a negligible time step in com-
parison to dt. In this way, the circuit has similar structure to our target
circuit, but has a theoretical close to unity.

The results of simulation with the circuit Fig. 4a are shown in
Fig. 5a, b. These results comprise two parts: (a) a demonstration that
circuit Fig. 4a captures the true dynamics when run in the absence of
noise; and (b)measurement of the time-evolution cost-function on the
Rainbow chip. Crucially the optimum value of the measured cost
function—measured for each time-step in the evolution along a linear
interpolation from the initial parameters through the optimum—is in
the correct place. In this sense, the time-evolution shown in Fig. 5a is
the output that would be obtained by full stochastic optimisation on
the Rainbow chip.

The dynamical quantum phase transition studied in Fig. 5a is a
stringent test of our time-evolution algorithm. Starting with the para-
metrised groundstate at g = 1.5 and evolvingwith g = 0.2, the logarithm
of the overlap of the initial state with the time evolved state,
� log ∣hψð0Þ∣ψðtÞi∣, shows periodic partial revivals (corresponding to
the minima in the plot in Fig. 5a and dynamical quantum phase tran-
sitions (corresponding to the cusps in the plot in Fig. 5a. Observing
these features requires a delicate cancellation of phase coherences in
the wavefunction. Our results demonstrate that the Rainbow device is
capable of accurately capturing the subtle features of quantum time-
evolution.

Discussion
We have demonstrated that tensor network methods endow NISQ
devices with the power to simulate the groundstate and dynamics

Fig. 2 | Optimisation of groundstates of the quantum Ising model. a The blue
curve gives the exact energy of the quantum Ising model optimised over bond
orderD = 2MPSwithin the ansatz class usedon thedevice. Thedashedpurple curve
gives the analytically exact groundstate energy calculated analytically in the ther-
modynamic limit55,56. The green and orange curves show energies of the optimised
on the Rainbow device with and without Loschmidt rescaling to allow for depo-
larisation, respectively.Measurement errors are corrected using a confusionmatrix
in both cases. Except for the anomalous point at g =0.4 affected by anuncontrolled
oscillation on the device (see c), the rescaled results are within 2.2% of the exact-in-
ansatz values. This is true even at the quantum critical point, g = 1. The inset shows
the log-deviation in measured energy compared to the exact value for the circuit

ansatz. Jhasbeen rescaled to 1 in these plots. Thedeviation between the analytically
exact and exact-in-ansatz energies at large g is due to the reduced parametrisation
used for the circuit unitaries, U. b A typical optimisation curve showing the mea-
sured Hamiltonian and the trace-distance. The latter is defined in the main text. A
value of zero value for it indicates that U and V consistently describe the local
properties of translationally invariant state. Optimisation is carried out using the
simultaneous perturbation stochastic approximation (SPSA) and a quasi-adiabatic
change in the value of the transverse field g. The optimisation is made in stages
changing g by discrete amounts and allowing the optimisation to stabilise before
incrementing further. The vertical dashed lines indicate junctures when the trans-
verse field g is altered. c Oscillations in measured energy found around g =0.4.
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of quantum critical systems. Such systems pose amongst the
greatest challenge for classical simulation techniques and provide
a forum with genuine potential for quantum advantage. Our
algorithms operate directly in the thermodynamic limit - avoiding

difficulties of finite-size scaling near criticality. We demonstrate
that translationally-invariant variational approximations to the
groundstate can be optimised on current devices to good accuracy
even at the quantum critical point, and present a cost function for
time-evolution—a significant simplification over previous propo-
sals—that can faithfully track dynamics when implemented on the
Rainbow device.

An explicit, stochastic optimisation of this cost function remains a
subject for future study. There are many different schemes available
for such optimisations and choosing an appropriate one is an impor-
tant task. Moreover, sampling costs of the combined measurement of
overlaps and stochastic optimisation of the updated state ansatz must
be kept to realistic levels. Offsetting the accuracy with which the
overlap of anyparticular trial update is determined against the number
of potential updates that are tested provides a further space for opti-
misation. The quantum circuit effectively provides stochastic correc-
tions to a classical model guiding the choice of test updates and poses
an interesting problem in quantum control44–46. Ultimately, the task is
one of performing tomography of the updated state to an MPS
approximation47.

Effective error mitigation is crucial in using NISQ devices for
quantum many-body simulation, and form a central part of our
discussion. Tensor networks permit a systematic tradeoff between
the error-free accuracy of circuits, and the errors incurred due to
circuit infidelity. For example, the time-evolution circuits present
a suite of refinement parameters—such as bond-order, Trotterisa-
tion order and timestep, order of power method—that can be
chosen to optimise performance on a given device together with a
confusion matrix to correct for measurement errors and a Losch-
midt echos to correct for depolarisation. Other strategies can be
deployed as the accuracy of simulations improves. Perhaps the
most exciting follow the structure of the tensor networks them-
selves; averaging over the gauge freedom intrinsic to the auxilliary
space of the tensor network states is natural first step. Combining
with the matrix product operator encoding of errors discussed in
ref. 21 has potentially only constant overhead in circuit depth if the

Fig. 3 | Calculating state overlaps. a The overlap of two translationally invariant
states parametrised by U and U 0 is given by lim

n!1
Cn ! λn, where λ is the principle

eigenvalue of the transfermatrix delimitedby the reddotted line.Cn is evaluated on
circuit by measuring the probability of ∣0i�ðn + 1Þ at the output. In order to correct
for depolarisation errors, we divide by the Loschmidt echo obtained by evaluating
the circuit atU 0 =U.bOverlapsCn(UA,UB) and Loschmidt echoCn(UA,UA) evaluated
on Rainbow as a function of the order of power method n. c The ratio Cn+1/Cn

obtained from the data in (b). The overlap begins to converge as the circuit depth—

measured by n—rises. By n = 4 the measured value overlaps within error bars with
the exact value of the principal eigenvalue of the transfer matrix (aside from the
outlier at n = 6 which occurs due to an error in the estimate of the Loschmidt echo.
This is corrected by the interpolation shown in (b). The circuit depth increases with
n leading to increased error bars. However, the result is still within errors sug-
gesting that useful information can be extracted even from these deeper circuits.
d A demonstration that stochastic optimisation of UB using SPSA converges
to UB =UA.

Fig. 4 | Time-evolution circuits. a Time-evolution circuit: The probability of
measuring ∣0i�N at the output, after post-selecting on the top two qubits on the
right-hand side, gives an approximation to λ2—the square of the principal eigen-
value of the transfermatrix (indicatedby thedashed red lines). This circuitprovides
a cost function whose optimisation over U 0 gives the state at time t + dt after
starting at time t with the state parametrised by U. b Factorisation of the MPS and
Time-evolution unitaries: The unitary U describing the iMPS quantum state of the
system is parametrised on the circuit as shown. This is reduced from the full
parametrisation of a twoqubit unitary in order to enable shallower circuits. There is
an additional redundancy of the first z-rotation on the reference qubit state ∣0i and
two further angles contained in the parametrisation do not change through the
dynamical quantum phase transition that we study. c Factorisation of the time-
evolution unitary: The two-site time-evolution unitary is factorised to the Rainbow
gate set as shown. This is one of the more costly parts of the simulation in terms of
circuit-depth.
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staircase of state and MPO unitaries are aligned (in a similar
manner to the interferometric measurement of topological string
order parameters in ref. 15).

Extensions include using higher bond order to refine simula-
tion accuracy. High bond order quantum matrix product states
can be generated with low depth (OðlogðDÞÞ) circuits. Such circuits
have previously been shown to effectively capture states gener-
ated during time evolution, and show potential to achieve quan-
tum advantage in finding ground states compared to classical
tensor network simulations48,49 (classical algorithms scale poly-
nomially with D yielding an advantage for the quantum circuit that
is exponential in D). In the present case, improvements expected
from increasing the bond order fall below the resolution of our
experiments. Other problems (such as the antiferromagnetic
Heisenberg model) show a greater improvement with bond order
and may be feasible. Finite circuit fidelity is currently the main
barrier to realising quantum advantage. However, incremental
increases in fidelity can have dramatic impact due to the expo-
nential quantum advantage. Though rastering one-dimensional
MPS algorithms over a higher-dimensional system is competitive
in classical applications, in the quantum setting, it may be
favourable to take more direct advantage of the connectivity of
the quantum device. Our code can be modified to accommodate
the two-dimensional sequential circuits proposed in ref. 23, and
the isometric two-dimensional algorithms of ref. 24 are another
promising avenue.

The use of machine learning in many-body quantum physics is
intriguing recent development18,50–52. One use has been identifying
phases in classical simulation (e.g., monte carlo simulations) of many-
body quantum systems, thereby potentially enhancing the ability of
these established approaches to reveal new physics. In its quantum
application, such an approach might simultaneously mitigate intrinsic
errors in the simulation and errors due to the infidelity of the device22.
Combining with tensor network realisation of the machine learning
components19,20 may enable a compact realisation of these combined
aims. Indeed, combining themethods of ref. 21with our schemewould
constitute precisely this.

Tensor networks provide a systematic way to structure
quantum simulations on NISQ devices. Our results show how they
can be used to analyse quantum critical systems in the thermo-
dynamic limit. There are many promising ways in which their
application can be extended.

Methods
Fixed-point equations
A translationally-invariant MPS formally requires an infinitely
wide, infinitely deep quantum circuit to represent it (see Fig. 6a).
As demonstrated in ref. 17, local observables of this translationally
invariant state can be measured on a finite circuit by introducing
the environment tensor V which summarises the effects of distant
parts of the quantum state on the local measurement (see Fig. 6b).
This tensor is determined as a function of the state unitary, U, by
solving the fixed point equations shown in Fig. 6c). The circuits
implemented in Fig. 1 correspond to the terms involved in the trace
distance between circuits on the left- and right-hand side of the
fixed point equation, Fig. 6c: Trðρ̂L � ρ̂RÞ2. There are three terms
corresponding to the trace norm of each side of the equation and
the cross terms between them. In practice, when optimising the
energy, the cost-function for the fixed-point equations and the
various contributions to the energy are optimised simultaneously
using SPSA.

SPSA is used to optimise a cost function given by

Cð θ!Þ= hψð θ!Þ∣H∣ψð θ!Þi+Tr½ρ2
R� � 2Tr½ρLρR�+Tr½ρ2

L� ð4Þ

where the first term gives the expected energy of the state, and the
latter three terms penalise inconsistencies between the state and
environment tensors. The energy term is calculated using the three
circuits in Fig. 1a, and the three consistency terms using the circuits in
Fig. 1c ordered from top to bottom. The last three terms are zerowhen
the environment satisfies the fixed point equation in Fig. 6c. This cost
function is minimised by the translationally invariant ground state of
the given Hamiltonian.

Error mitigation strategies
Wedeploy a number of errormitigation strategy in order to obtain our
results, summarised as follows:

The measured single and two qubit gate fidelity vary across
the Rainbow device, and vary over time on each qubit. We can
reduce the error in circuit executions by picking connected sets of
qubits that have the lowest error rates. This is best done empiri-
cally by running a reference circuit across the target qubits and
choosing the qubits that have the highest fidelity with the known
target state. To best capture the effects of noise on the circuits that
we are using, we apply an MPS circuit and then the Hermitian

Fig. 5 | Time-evolution results. a Dynamical Quantum Phase Transition in the
Quantum Ising Model: The dynamics of the transverse field Ising model can be
obtained analytically and form a good basis for the comparison with our quantum
circuits. These are shown in blue and compared with dynamics obtained from
numerically exact optimisation of the principal eigenvalue of the transfer matrix
within our ansatz shown in orange, and the numerical optimisation of the circuits
shown in Fig. 4 in the absence of noise shown in green. The results show that the
circuit cost function can faithfully track the dynamics.bCost-function evaluated on

Rainbow: The cost function evaluated along a linear interpolation in the eight
parameters from U and extending through the exact update is shown for each of
the indicated time-steps in (a). The cost-function is rescaled by a Loschmidt echo
obtained by overlapping the left hand of the circuit in (a), including the time-
evolution operator, with its Hermitian conjugate. The optimum value of the
rescaled circuit coincides with that calculated in a classical simulation
without error.
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conjugate of the same MPS circuit. We measure the probability of
returning to the initial all-zeros state after N applications of this
Loschmidt echo circuit and use this to determine the best qubit
sequences to use. We also employed qubit averaging where the
same circuit was run on multiple non-intersecting sets of qubits in
parallel and the results averaged.

The readout of quantum states on the Rainbow device can be
biased towards certain bit strings. To correct for this we learn how
the readout is biased by measuring states that produce fixed bit-
string outputs. We encode any deviations in the known bit strings
by a confusion matrix. This can be inverted and used to correct the
measurement bias. The size of the confusion matrix is 2M where M
is the number of measured qubits. For all circuits in this work
where this error mitigation strategy is applied the number of
measured qubits is only two. In principle, this method may not be
scalable for quantum MPS methods. The size of the confusion
matrix needed to correct the fixed point calculation circuits grows
polynomially with the bond dimension of the MPS, and can
potentially erode any performance benefits from running MPS
simulations on a quantum device. However, where we are inter-
ested in the relative rather than absolute values of measured cir-
cuits—such as in our time-evolution and fixed-point circuits—this
bias can be neglected without adversely affecting results.

Depolarisation is a major source of error in the measured
outputs of our quantum circuits. We correct for this using a
Loschmidt echo in two different forms for our energy optimisation
and time-evolution circuits1,36. In the case of optimisation of the
energy of the Ising model, we know the energy of the ground state
when the coefficient of the interacting term is set to 1 and the
single site terms are set to 0. We also know the parameters in our
ansatz corresponding to the ground state with these parameters.
Wemeasure the energy of this state on the device to get a rescaling
and correct all future interacting terms measured on the device
with this value. For time-evolution circuits, we use the fact that the
overlap of a circuit with its Hermitian conjugate should always be 1.

We choose a test circuit that is representative of the complexity of
our target circuits and measure its overlap with its Hermitian
conjugate. Target circuits are divided by this value to allow for
depolarisation. In order to reflect the complexity of the time-
evolution circuits in Fig. 5, we use a circuit MPS state and apply the
time evolution unitary with a negligible time step compared to dt,
before finally overlapping with the Hermitian conjugate of the
circuit MPS state.

Floquet calibration1,53 has been developed to correct the
angles on the native Rainbow two qubit gate so that desired two
qubit unitaries can be appliedmore accurately. Floquet calibration
proceeds by repeating a two qubit gate multiple times on the chip
to amplify small discrepancies in the angles that are being applied.
The measured deviations can then be compensated to increase the
fidelity of the implemented circuit with the intended circuit. This
method was found to have only a small impact on the energy
measurements, and was not as effective as the confusion matrix
and Loschmidt rescaling techniques. For this reason, we did not
apply Floquet calibration to our final calculations of energy or time
evolution circuits.

Data availability
The sampled data used in this work are available in a Zenodo reposi-
tory at the https://zenodo.org/badge/latestdoi/52116574154.

Code availability
Code used for the data analysis and circuit construction are avail-
able at https://github.com/jamesdborin/qmps_syc, https://zenodo.
org/badge/latestdoi/52116574154.
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