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Causaldeep learning reveals thecomparative
effectiveness of antihyperglycemic
treatments in poorly controlled diabetes

Chinmay Belthangady1,2, Stefanos Giampanis1,2, Ivana Jankovic1,2, Will Stedden1,
Paula Alves1, Stephanie Chong1, Charlotte Knott1 & Beau Norgeot1

Type-2 diabetes is associatedwith severe healthoutcomes, the effects ofwhich
are responsible for approximately 1/4th of the total healthcare spending in the
United States (US). Current treatment guidelines endorse amassive number of
potential anti-hyperglycemic treatment options in various combinations.
Strategies for optimizing treatment selection are lacking. Real-world data from
a nationwide population of over one million high-risk diabetic patients
(HbA1c ≥ 9%) in the US is analyzed to evaluate the comparative effectiveness
for HbA1c reduction in this population of more than 80 different treatment
strategies ranging frommonotherapy up to combinations of five concomitant
classes of drugs across each of 10 clinical cohorts defined by age, insulin
dependence, and a number of other chronic conditions. A causal deep learning
approach developed on such data allows for more personalized evaluation of
treatment selection. An average confounder-adjusted reduction in HbA1c of
0.69% [−0.75, −0.65] is observed between patients receiving high vs low
ranked treatments across cohorts forwhich the differencewas significant. This
method can be extended to explore treatment optimization for other chronic
conditions.

Recent data from the Centers for Disease Control and Prevention
estimates that ~13%of the adult populationof theUnited States (US), or
about 34 million people, have been diagnosed with diabetes mellitus1.
When insufficiently managed, diabetes leads to complications includ-
ing cardiovascular disease, kidney disease, neuropathy, and blindness,
any of which can dramatically impair an individual’s quality of life. The
high prevalence of diabetes and concomitant complications put a
major burden on the US healthcare system in terms of care utilization
and costs, with one recent report estimating that one of every four
healthcare spending dollars in the US can be directly attributed to
diabetes2.

Diabetes is typically managed by a combination of lifestyle inter-
ventions and pharmacological treatments. For the latter, current
guidelines stipulate that unless otherwise contraindicated, initial
therapy for type-2 diabetes mellitus (T2DM) should be metformin3. If

this first-line therapy is insufficient, combination therapy with anti-
hyperglycemic drugs from two ormore classes is suggested. There are
multiple second-line choices with various risks and benefits, and a
clinician may therefore need to attempt multiple treatment combina-
tions before finding one that works for their patient. There have been
efforts to determine sequential treatment of diabetes, both with data-
driven informatics methods4 and with expert-curated guidelines;5

however, both of these approaches take into account a few patient-
specific characteristics and can be ambiguous in suggesting the next
best option for an individual patient. Even when glycemic control is
achieved, there is currently no simple way to knowwhether a different
combinationmight be superior for a given patient, either by providing
greater glycemic control, by simultaneously managing comorbidities,
or by providing equivalent control at a lower cost, or with fewer total
drugs or with fewer side effects. Indeed, the enormous heterogeneity
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of treatment decisions observed in daily clinical practice is indicative
that optimal treatment regimens have not been identified6. Given the
complexity of diabetes treatment, patients can often benefit from
focused subspecialist insights, such as referral to an endocrinologist7.
However, subspecialist care is resource-intensive and the current
shortage of endocrinologists is only projected to grow8, thus offering
an opportunity for a data-driven understanding of the real-world
comparative effectiveness of pharmacological diabetes treatment
strategies to help guide T2DM management.

Research on the comparative efficacy and effectiveness of anti-
hyperglycemic drugs has been expanding. The ADOPT trial examined
the relative efficacies of three monotherapies using a randomized,
double-blind study examining the time to monotherapy failure over
multiple years on 4,360 relatively healthy patients between the ages of
30 and 759. Causal analysismethods, such as the frameworks developed
by Rosenbaum and Rubin10 for observational data are now robust and
widespread in clinical research. Meta-analysis11 and Network Meta-
Analysis12 have made it possible to combine results frommultiple trials
to respectively gain effect insights from a combined pool of patients
and leverage both direct and indirect comparisons between treatment
arms to reducemeasurement uncertainty. These approaches have been
applied to a growing body of literature on the effects of T2DM phar-
macological interventions, for example to randomized controlled trials
(RCTs) and real-world data4,13. Although such studies have contributed
substantially to clinical knowledge, a comprehensive understanding
that reflects the realities of daily practice including diverse patients who
may be on more than two classes of antihyperglycemics is still missing.

In recent years, there has been a rapid trend toward digitization in
the healthcare industry. Patient medical histories are increasingly
recorded in electronic format and claim adjudication systems have
become streamlined and more automated. This digitization has led to
an explosion in the amount of medical data available to learn from.
Concurrently, there have been major advances in the fields of artificial
intelligence and machine learning14, allowing algorithms to extract
complex signals from increasingly larger amounts of data. Inmedicine,
artificial intelligence models have demonstrated human-level perfor-
mance in interpreting dermatology15 and ophthalmology16 images.
Deep neural networks trained on electronic health records (EHR) have
been used to estimate the risk of disease onset17, the risk of hospital
readmissions18, and to forecast the future health state of individuals
with complex diseases19. It is now possible to use artificial intelligence
to extract meaningful insights from large-scale observational studies,
which can be extended to potentially infer causal relationships.

Here, an approach is demonstrated that combines deep learning,
causal inference, and network meta-analysis12 (NMA) to estimate the
real-word comparative effectiveness of combination therapies for
T2DM in clinically stratified high-risk sub-populations. Using the
change in levels of glycated hemoglobin (HbA1c) as the primary out-
come of interest, effectiveness was measured by estimating
confounder-adjusted average treatment effects (ATE) of each treat-
ment strategy relative to other treatments, at the level of drug classes,
observed using a nationwide cohort of patients with poorly controlled
T2DM. This work departs from previous research in several important
ways: (i) it is, to our knowledge, the first study to extend beyond single
or dual therapies and compares all treatment regimens observed in the
data without imposing restrictions on the number of drug classes;
results on combinations of up to five drug classes are reported here;
(ii) the analysis was performed on 10 cohorts stratified based on clin-
ical variables to make the rankings more personalized; (iii) a recently
developed deep-learning-based propensity score model was used for
causal analysis that scales well to large multi-arm observational stu-
dies; and (iv) a sensitivity analysis was performed on held-out test data
in order to assess the extent to which the comparative effectiveness
rankings were meaningful and broadly generalizable. With further
development and prospective validation, these rankings for

combination therapies could form the basis of a tool to complement/
enhance guideline-based practice and help clinicians make persona-
lized data-driven decisions when deciding the next step in treatment
for their high-risk patients.

Results
Inclusion criteria
The data for this study came from health insurance claims of 56.4
million individuals collected over a 5-year period (see Methods).
The claims contain records of diagnoses made during doctor visits,
procedures performed in in-patient or out-patient medical centers,
lab tests ordered and their results, and drug prescriptions including
dosage and refill information. The set of claims for an individual,
therefore, serves as a succinct historical record of that individual’s
state of health. Clinical filters (Fig. 1a) were used to identify a sub-
population of 1.2 million patients with T2DM. Temporal “snapshots”
(Fig. 1b) of patient health histories, beginning with a given HbA1c
event and ending with the next subsequent HbA1c labmeasurement
for each pair of HbA1c events in a patient’s timeline, were generated
for each person in this subpopulation from their available history of
medications, diagnoses, procedures, and relevant laboratory values
to assess the treatment strategies and resulting causal effect cal-
culations (Fig. 1). The combinations of medications, at the level of
drug class, that a patient was filling during the time of interest was
considered a treatment. We evaluated changes in HbA1c regardless
of whether the treatment regimen changed during the snapshot. If a
regimen did change during a snapshot, the change in A1c was
attributed to the new regimen. Snapshots were filtered for those
with an initial HbA1c ≥9% to target high-risk patients who were
clearly above goal20 and couldmost benefit from treatment insights.
Causal inference analyses were conducted on a final study popula-
tion of 141,625 patient snapshots.

Clinical cohort definition
Because target HbA1c varies by a patient’s age and health status20,
patient snapshots were assigned to 1 of 10 clinical cohorts on the basis
of each patient’s age and a number of additional chronic health con-
ditions at the time of the HbA1c index event, as well as by insulin status
at the time of the index HbA1c. Cohorts by age/comorbidities were
chosen to prevent the algorithm from inappropriately optimizing low
HbA1c in groups for which sub-target HbA1c may be due to dangerous
hypoglycemia, and cohorts by insulin status at the time of indexHbA1c
were chosen as a proxy for hypoinsulinemia, which would be danger-
ous to misclassify but is not otherwise well-captured in the available
data. The number of snapshots present as well as the number of
treatment strategies that cohorts were exposed to tended to decrease
with age and disease burden (Table 1) though these trends did not
decrease monotonically. There were 81 unique treatment regimens
identified across all clinical cohorts. The number of distinct treatment
strategies observed in a cohortwascorrelated to thenumber of patient
snapshots present; the larger the population, the more unique treat-
ment strategies were observed.

Characteristics of the study population
Table S1 summarizes variable values for the study population at the
snapshot level.

The snapshot population had amean age of 55 years, with baseline
HbA1c, estimated glomerular filtration rate (EGFR), and creatinine lab
values of 10.5%, 94mL/min/1.72m2, and 0.9mg/dL respectively. Data on
race and ethnicity was available for only 28% and 16% of the patients,
respectively, and no income data was available. Since these variables
can act as confounders, information on the racial makeup and income
levels in the patient’s zip code tabulation area (ZCTA) were used as
proxies. This demographic data came from the 2017 American Com-
munity Survey published by the US Census Bureau21. Neighborhood
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median incomes ranged significantly with a median value of fifty-five
thousand dollars annually. White, Black, and Asian populations were
well represented withWhites being in the majority. As expected, within
a population of patients with significantly elevated blood sugar, a wide
range of comorbid conditions were present, with obesity, heart disease,
COPD, and renal disease being most prevalent. For model training and
validation purposes, patient snapshots were divided into training (80%)
and test (20%) sets that matched statistically on all variables.

Causal modeling of optimized treatment ranking by
subpopulation
A schematic of themodeling approach to generate treatment rankings
is shown in Fig. 2 and described in Methods. Significant differences
existed in the underlying covariate distributions between treatment
and comparator arms in the observational data but were successfully
balanced through the BCAUS22 methodology (Supplementary Fig. 1).
The confounder-adjusted causal relative effect (see Supplement) of

each treatment strategy compared to other treatments was calculated
independently for each cohort (Fig. 2). Network Meta-Analysis was
performed and treatment strategies were ranked based on network-
synthesized causal reduction in HbA1c.

The top-10 most effective treatment strategies for each cohort
(Supplementary Tables 4 and 5), revealed that the highest-ranked
treatment strategy was unique to each cohort (see Supplementary
Fig. 14). Note that a change in treatments that occurs between the two
HbA1c lab events is attributed to the new regimen (at the time of the
terminal HbA1c) and not to the prior one (from the time of the index
HbA1c), which is why non-insulin regimens may appear in the insulin-
using groups (which are defined by insulin status at the time of index
HbA1c). Also note that these rankings are by point estimates, which
may have overlapping uncertainty intervals (Supplementary
Figs. 2–11). GLP-1s andmetformin, both known to be highly efficacious
for blood glucose control23, are the only classes to appear as mono-
therapies in any group’s top ten ranked treatments, though they only

Fig. 1 | Study cohort definition and data preparation. a Clinical filters were
designed to identify patients with T2DM (1.2 million individuals) and retain only
those with well-established, high-risk disease. b Each patient’s health history was
split into a series of temporal snapshots, determined by an HbA1c ≥9% lab mea-
surement and ending at the subsequent HbA1c for each patient. A snapshot con-
sisted of a pair of HbA1c lab events. The first of these is referred to as the index
HbA1c lab event and the period between the two lab events is the observation
period. Only snapshots where the duration between the lab pairs was between 90
and 365 days were retained and the rest were excluded, resulting in a final study

population of 141,625 patient snapshots. All further analyses were conducted at the
level of patient snapshots. c A patient was considered to have been treated by a
particular antihyperglycemic drug at the time of a given HbA1c lab event if it was
prescribedprior to the lab and if the numberofdays’ supply (blue arrows) extended
past the lab date. Whenmultiple such drugs existed, the individual was considered
treatedby the combinationof these drugs. Prior treatmentwas the regimen used to
treat the individual in the period prior to the observation window between the
two labs.
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appear for half of the cohorts and never higher than position five. A
complete listing of the rankings for all treatment strategies across all
cohorts can be found in the Supplement (Supplementary Fig. 12) as
well as the measured causal effects, confidence intervals, and sample
sizes for all treatment strategies in each cohort (Supplementary
Figs. 2–21).

Causal effect of treatment rankings on HbA1c reduction
Significant differences in patient outcomes were observed between
the top-three treatments (representing 2.4% of all snapshots) and all
other choices (Fig. 3), with an average confounder-adjusted reduction
in HbA1c across cohorts of 0.69%. The differences were significant
clinically as well as statistically, persisted even after controlling for
differences between patients that received highly ranked choices
versus others, and generalized extraordinarily well to the test cohorts.
A sensitivity analysis revealed a consistent relationship between top
three, ranks 4–10, and 11 and below treatment strategies (Supple-
mentary Fig. 13).

Ranking group prescription patterns in real-world observa-
tional data
The distribution of high-ranked treatment strategies provided to
patients in each clinical cohort in the study population of patients with
poorly controlled diabetes (Supplementary Table 2) was evaluated.
Across all cohorts, the average treatment rank per snapshot was 28.
The lowest rates of concordancewere observed among the younger or
relatively healthier cohorts. In 62% of cases where a single patient had
multiple associated snapshots, differences in treatment strategies
were analyzed between consecutive snapshots. The overall incidence
of these patients switching treatments between snapshots was 35
percent. When patients switched treatments, 51 percent of those
switches led to a new treatment with a better rank (with an average
improvement of 13 positions of rank), while 49 percent of switches led
to treatments with a worse rank for the patient (with an average
decrease in rank of 12). The mean change in treatment rank across all
changes was an improvement of 1 position.

Discussion
In this study, antihyperglycemic treatment strategies for patients with
an HbA1c ≥9% were examined over a five-year period in a nationwide
cohort of US patients with T2DM. Over 80 different strategies of drug
class combination were observed, ranging from monotherapy to
combinations of five distinct drug classes. This enormous hetero-
geneity persisted even after accounting for age, a number of comor-
bidities, and status of insulin dependence. A network meta-analysis
using deep causal models was performed on the cohort’s observa-
tional data to rank treatment strategies for ten clinical cohorts based

on effectiveness in lowering HbA1C in the high-risk population. The
rankings differed between each of the cohorts and they generalized
well to snapshots in the held-out test set. Top-three ranked treatments
were clinically and statistically better at lowering HbA1c than other
choices for most cohorts. There were considerable differences
between which treatments were best for each of the clinical cohorts
(Supplementary Fig. 14), though the specific class and combination
were cohort dependent. Therapeutic classes known to provide sec-
ondary cardioprotective benefits, such as SGLT2’s and GLP-1’s, feature
prominently in the top ten choices for each cohort. Although cardio-
protection was not evaluated in this study, this finding may indicate
that there is no need for a trade-off between glucose control and
cardioprotection. Additionally, although nomonotherapywas the top-
ranked treatment for any cohort, the rankings clearly show that simply
addingmore drug classes24 to a patient’s regimen is not uniformly best
for HbA1c reduction, consistent with prior literature showing
decreasing adherence and worse outcomes with the increasing com-
plexity of medication regimens25,26, as well as the lack of association
between polypharmacy (>4 drugs) and improved A1c control27,28 in
patients with diabetes. In our data, treatment switches, when they
occurred,moved patients into lower-ranked strategies as often as they
resulted in higher-ranked strategies. Interestingly, in the insulin non-
user groups, insulin-containing regimens tend to rank poorly, sug-
gesting poor real-world effectiveness29 of a medication known to have
high efficacy in Randomized Controlled Trials20.

That treatment strategies for T2DM are massively heterogeneous
is well known. While Hripcsak et al.6 observed that 10% of diabetic
patients in their international study had treatment pathways that were
unique specifically to that individual, the authors hazard that the
variability was not a sign of personalization but rather that “it may
point to a failure of the field to converge on an effective treatment”. To
our knowledge, this is the first study to examine comparative effec-
tiveness between all observed treatment strategies in multiple
clinically-relevant real-world cohorts. The monotherapy9 and dual-
therapy30 results found in this work are reasonably consistent with
prior published results, which were limited to those two options.
However, differences in cohort sizes and inclusion criteria make direct
comparisons difficult. For example, the ADOPT trial9 contained fewer
than 5,000 participants and excluded patients with more advanced
diseases that would not be eligible for monotherapy. Mearns et al.30.
combined all patients from dual-therapy trials, regardless of age, dis-
ease severity, or comorbid conditions,making it impossible to directly
compare results to the clinically stratified cohorts examined here.
Rosenstock et al.31. evaluated the effectiveness of linagliptin vs glime-
piride as second or third-line therapy in achieving goal HbA1c as a
secondary outcomeof a randomized trial, but the othermedications in
the combination were not evaluated.

Table 1 | Definitions and characteristics of T2DM patient cohorts

Cohort Insulin status Age CCI Number of snapshots Number of patients Number of treatments

A Non-user <65 years ≤2 54415 42676 69

B Non-user <65 years >2 & <5 21342 16570 50

C Non-user <65 years ≥5 9164 7121 37

D Non-user ≥65 years <5 8971 7163 30

E Non-user ≥65 years ≥5 4339 3504 18

F User <65 years ≤2 13422 7025 43

G User <65 years >2 & <5 13057 9356 43

H User <65 years ≥5 8973 5878 35

I User ≥65 years <5 3661 2681 15

J User ≥65 years ≥5 4281 3018 19

CCI (unweighted) Charleson Comorbidity Index; Snapshots divided into cohorts by the patient’s history at the time of the index HbA1c laboratory event as defined in Fig. 1b. Number of treatments
refers to the number of unique treatment strategies (including combinations of drugs) observed in the cohort as detailed in Fig. 1c. Also shown is the number of patients in each cohort. Bolding of
cohort names and headers for clarity.
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Although no treatments were censored, no treatment strategies
were found to be in violation of current standard-of-care guidelines32.
While it is reassuring that guidelines are generally followed, it also
reinforces the concern that guidelines may be insufficient at guiding
treatment choices for blood sugar reduction. Instead of contradicting
current best practices, the findings provide clarity on which strategies
may be best when the guidelines allow many to choose from. It is
perhaps not surprising that few patients were on a treatment thatmay
bemost effective for them. Patients with highly elevated HbA1c are, by

definition, those who have not yet found a treatment strategy that
works within their circumstances to control their blood sugar. Addi-
tionally, since the current guidelines unilaterally suggest a progressive
approach from mono to dual therapy, followed by experimentation
within dual-therapy before adding more drug classes, there is a diffu-
sion effect that necessitates a long time until sufficient experimenta-
tion has occurred to identify a good strategy for many patients.

Importantly, the results of networkmeta analyses (NMA) must be
interpreted with care. Mbaugbaw et al.33. specifically review common

Fig. 2 | Schematic of ranking generation and analysis. Snapshots were split into
training (80%) and test (20%) datasets. Snapshots were stratified into 10 clinical
cohorts based on age, number of comorbidities, and prior insulin use (Supple-
mentary Table 1). For each clinical cohort, all treatments with cohort size >35 were
selected and case-comparator observational studies were performed comparing
every treatment with every other treatment using BCAUS, a neural-network-based
propensity score model for causal inference. A densely connected network graph
was constructed with treatments as nodes and edges connecting treatments via
measured Average Treatment Effect (ATE) values. Bayesian NetworkMeta-Analysis
(NMA) was performed to compute network-synthesized ATEs compared against a

baseline treatment which was set to Metformin (the first-line therapy for T2DM).
Treatments were sorted by their Surface Under the Cumulative RAnking curve
(SUCRA) scores42 to generate a ranked list of treatment strategies for the cohort. To
gauge the effectiveness of the ranking procedure, each cohort in the test set was
divided into a concordant group consisting of patient snapshots where the pre-
scribed treatment was one of the top-three ranked treatments and a non-
concordant group where the prescribed treatment did not match any of the top-
three ranked treatments. The difference in HbA1c between the concordant group
and the non-concordant group was used to estimate the confounder-adjusted ATE
of the comparative effectiveness treatment rankings.
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pitfalls with the clinical interpretation of NMA results, especially
SUCRA rankings. For example, they note the tendency to interpret a
ranked list of treatments as a definitive hierarchy of best options,
without contextualizing the quality of the underlying data, the inher-
ent uncertainty surrounding each rank position, or that the NMA
evaluates treatments only based on one component of an often mul-
tifaceted treatment decision. In our study, our major clinical finding is
that the average treatment effect of a top-three treatment choice is
significantly greater than a lower-ranked treatment choice in multiple
cohorts. The absolute rankings by point estimate are provided for
examination in Supplementary Table 4, with contextual uncertainty
metrics for each treatment by cohort additionally provided in the
supplement. As notedbyMgbaugbawet al.33, ourNMA is limited toone
component of treatment decisions- the potential change in A1c- and
does not evaluate other aspects of clinical treatment decisions such as
side effects, secondary benefits, or patient preferences; the rankings
provided here should not be interpreted as definitive treatment
recommendations.

Although this work has potentially significant clinical value for
developing a clinical decision support tool, and may even provide the
signal necessary for the field to identify effective treatments that
Hripcsak et al. have called for8, there are several important limitations.
As with any observational trial, unobserved confounding may affect
results and so the results will need to be validated prospectively. Also,
the inverse probability weighting method creates pseudo-populations
in case and comparator arms that are balanced in observed con-
founders. While this method decouples case-comparator observa-
tional studies that (prior to weight adjustment) may share a common
cohort, it is possible that residual correlations exist and the variances
in the network-synthesized ATEs are underestimated. Additionally,
effectiveness was defined exclusively on the grounds of HbA1c
reduction. This choice is reasonable given that HbA1c as a surrogate
endpoint is themost usedoutcome for clinical trials and that our study
population is comprised of patients with highly elevated blood sugar,
however, there are additional clinical endpoints, particularly those
related to cardiovascular outcomes, that are relevant for patients with
diabetes. For example, the low concordance with a top-ranked

treatment could potentially be due to physicians prioritizing cardio-
protective or nephroprotectivemedications at the expense of glucose-
lowering medications. However, the strong presence of treatments
with secondary protective effects (i.e., SGLT2 inhibitors, GLP-1 ago-
nists) in the top-ranked choices may indicate that while the effects on
cardiovascular and renal outcomes are not captured here, the treat-
ment choices that are most effective for glycemic control are top
choices for secondary protective effects as well. Nonetheless, conclu-
sions about how treatment protocols that utilized the rankings derived
herewould impact these endpoints cannot be drawn from this work. A
second limitation is that impact on HbA1c was only calculated at the
follow-up measurement after treatment was assigned (a 6-month
median window). This time period is sufficient to see the effects of
medication changes considering the half-life of hemoglobin, including
the slower-acting thiazolidinediones20, but may not be perfectly indi-
cative of long-term trends and tolerability. We also do not consider
treatments prior to the time period surrounding a given snapshot.
Given the length of time it takes for diabetes-related complications to
develop, causal attribution to specific treatment strategies is clouded
by themany patient-related factors that can change over such a length
of time, such as the course of treatment. However, a longer study
period that tracks clinical endpoints as well as laboratory endpoints is
desirable and could be feasible as datasets such as this growover time.
Future studies could leverage ourmethodology to define effectiveness
by distance from a specified HbA1c value for each clinical subpopula-
tion, instead of absolute HbA1c reduction. Alternatively, maximal risk
reduction formicrovascular ormacrovascular outcomes couldbeused
as the endpoint instead of HbA1c. However, such investigations would
bemost robustly served by a prospective study tracking the impact on
multiple clinical endpoints from prescribing high-ranked treatment
strategies to achieving cohort-specific targets.

We envision that thiswork canbe the basis for the developmentof
a clinical decision-support tool for choosing or augmenting diabetes
treatments in patients with T2DM. Although the treatment rankings
presented in this work are fixed to the clinical population defined
above, the method used to identify top treatment regimens could be
applied in validated populations to supplement guidelines to support
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Fig. 3 | Causal effect of treatment rankings on HbA1c reduction. Evaluations for
concordant (blue) and non-concordant (red) groups for all clinical cohorts. An
individual is considered concordant if their current treatment matches one of the
top-three recommendations for their clinical cohort and non-concordant other-
wise. Training and test set results are shown. The * denotes that the confounder-
adjusted Average Treatment Effect (ATE) of the comparative effectiveness

treatment rankings between concordant and non-concordant groups is statistically
significant (p <0.05) by independent two-sample t test (see Ranking Validation
Procedure section of the Methods). Diamonds show ATE values for cases that are
statistically significant (asterisk). Error bars represent 95% confidence intervals.
Numbers on the bars denote the number of patient snapshots in each group. CCI
(unweighted) Charlson Comorbidity Index.
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many different approaches to decision-making. For example, based on
patient needs and clinician preferences, some may choose not to
prescribe the highest-ranked treatment but instead the highest-ranked
option that involves the smallest change from the current regimen.
Alternatively, for patients for whom compliance may be a concern,
selecting a treatment that optimizes the rank with the fewest number
of total drugs would be an option. Findings could also be filtered to
avoid contraindications (e.g., based on most recent EGFR, hypogly-
cemia risk, or patient allergies),minimize costs, or avoid injections. For
every highly ranked strategy in our study that contained many differ-
ent drug classes, there was usually a simpler combination with nearby
rank. Additionally, clinicians likely have access to information that the
model does not, such as BMI or duration of diabetes, and thus a non-
prescriptive, filterable decision support tool will allow them to over-
come this limitation. The enormous variety of ways in which these
comparative effectiveness rankings could be utilized may be best
leveraged by software with a performant, intuitive user interface to
return the optimized results for a given patient target. Such software
could also provide additional metrics captured in this study, like the
number of patients observed on each treatment strategy and the
clinical and demographic parameters associated with each person,
which are not possible to display in the context of individual patients
within a manuscript like this. Additional convenience functions, such
as the removal of contraindicated treatments from the rankings list for
each individual patient may be desired. As with any clinical decision
support tool, evaluation and optimization will be an ongoing process
to ensure no undesirable effects34.

Taken together, these findings have important implications for
personalizing care for chronic health conditions. The approach out-
lined here represents a concrete step towards a functional learning
healthcare system, and it is immediately extensible to other conditions
beyond diabetes mellitus that have complex pharmacological treat-
ment patterns such as hypertension, asthma, chronic obstructive
pulmonary disease, depression, and congestive heart failure. By fore-
stalling adverse events that arise from unmanaged chronic diseases,
such learning systems could greatly reduce patient suffering and lead
to significant reductions in healthcare costs.

Methods
Study cohort definition and data preparation
This manuscript reports findings that were obtained as a part of
healthcare operations quality improvement using only aggregated
results of the analysis; no individually identifiable information (pro-
tected health information or otherwise) was used in the development
of the manuscript and the work was deemed not human subjects
research by the Anthem Office of General Counsel (OGC). Electronic
health records were analyzed for 56.4 million members from a
healthcare plan population between 1 December 2014 and 1 January
2020 to determine the average treatment effect of diabetes medica-
tions on HbA1c. The records included approximately five billion
insurance claims (fordiagnoses, procedures, anddrugprescriptions or
refills) as well as lab test results for the associated patients. Not all
patient records spanned the entire five years. Clinical filters were
designed to distinguish between major sub-types of diabetes, and
patients with Type I diabetes, anyone under 18 years of age, or gesta-
tional diabetes were excluded from the study (Fig. 1a). Individuals with
histories of diabetes ketoacidosis, cystic fibrosis, or solid-organ
transplants were also excluded as a safety precaution because they
are highly complex patients who would clearly benefit from sub-
specialist care and the rankings developed herein are targeted towards
PCPs managing typical patients with T2DM. Snapshots with HbA1c’s
below 9% at the initial HbA1c were also removed to focus on high-risk
patientswhowere clearly eligible for treatment strategies beyond first-
line based on the Center for Medicare and Medicaid Services
definition35 of poor glycemic control as well as because an HbA1c > 9%

is clearly above goal for almost all patients20. This filtering resulted in a
study population of 104,992 unique individuals.

The health status of any individual evolves with time. Since the
study period in our work spanned several years, to properly account
for this evolution, each individual’s health historywas split into a series
of temporal snapshots as shown in Fig. 1b. Each snapshot was deter-
mined by an index HbA1c ≥9% lab measurement and terminated at the
subsequent HbA1c for each patient, with a lookback period to the
patient’s first healthcare event on record. The timeperiod between the
two labs was considered the observation period. The age of the indi-
vidual in a particular snapshot and any clinical covariates that were
treated as confounders were measured as of the date of the first lab of
the pair. Individualswith only a single HbA1c lab reportwere excluded.
Only snapshots where the observation period was between 90 and
365 days were retained, and the rest were excluded, resulting in a final
study population of 141,625 patient snapshots, with each patient
contributing on average 1.3 snapshots for analysis. Snapshot duration
was not otherwise considered in the model. As shown in Fig. 1c, an
individual was considered as treated by a particular antihyperglycemic
drug at the time of anHbA1c lab event if it was prescribed prior to that
lab and if the number of days of supply plus a grace period of 30 days
(for non-adherence) extended past the lab date. If a regimen changed
during a snapshot, the change in HbA1c was attributed to the new
regimen. Because HbA1c reflects glycemic control over a period of
approximately 90 days36 and the half-lives of anti glycemic medica-
tions are on the order of hours to days37, only current treatments were
considered in the model. Given that metformin is the consensus first-
line therapy and as our goal was to compare efficacy between treat-
ment regimens, patients on no treatment were excluded. Medications
taken prior to the pre-snapshot periodwere not included in themodel.
Whenmultiple drugs existed within the inclusive dates, treatment was
considered the combination of these drugs. Diabetes drugs were
identified only by their class names (e.g., SGLT2 inhibitors, sulfony-
lureas, etc.) and non-diabetes drugs were excluded. All further analysis
was performed on the pseudo-population of patient snapshots.

Many clinical and social factors are known to be associated with
diabetic treatment selection and HbA1c outcomes. For example, kid-
ney function as well as the presence of various comorbid conditions
may result in contraindications for certain antihyperglycemic drug
classes and may also influence the HbA1c value that the prescribing
clinician targets for an individual. Additionally, social determinants of
health (SDoH) such as patient race, income, and location are known to
influence both treatment selection and health outcomes. In order to
control for these confounding factors so that an accurate estimate of
the causal effect of treatment strategies could be obtained, all
comorbidities present in the history of each patient were included
using diagnostic definitions defined by the Charlson Comorbidity
Index (CCI)38, as well as the most recent EGFR and creatinine values at
the time of each snapshot. Race is known to be reported at very low
levels both within EHRs and claims data. Accordingly, census-derived
data on the racial and economic profiles of each patient’s neighbor-
hood using zip codes was used. These are weak surrogates for true
SDoH markers, but we believe that including them is still significantly
better than ignoring SDoH completely from large-scale clinical studies.
Missing data were imputed to the mean (Supplementary Table 3); no
age or sex data were missing. Supplementary Table 1 provides the
summary statistics of all covariates that were treated as confounders
for causal inference.

Causal inference modeling. Several methods for the causal inference
analysis were considered for use. Because there are multiple possible
combinations of treatments, the number of head-to-head comparisons
that need to be performed is extremely large. Propensity score
matching11 or weighting39 methods are widely used for observational
studies but are considered “do-it-yourself,”40 in that the propensity
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scoremodelmust be checked for correct specification after it is trained,
and, when incorrectly specified, it has to be retrained by modifying
model parametrizationor feature engineering. Automatedmethods like
Bayesian Additive Regression Trees41 have yielded good performance
on benchmark datasets40, but rely on Monte Carlo sampling and are
therefore prohibitively slow for the number of comparisons necessary
in this study. Recently, a technique was introduced22 called BCAUS
(Balancing Covariates Automatically Using Supervision) that scales well
to massive multi-arm studies. BCAUS consists of a neural-network
propensity model that is trained using a joint loss given by

LTOTAL = LBCE + νμLBIAS:

The first term, LBCE , is a binary cross-entropy loss which penalizes
incorrect treatment prediction, while the second, LBIAS, is a loss term
which explicitly tries to minimize imbalance between inverse prob-
ability weighted covariates. Details of the training process are descri-
bed in SupplementaryMaterials and a comparison with other state-of-
the-art neural-network-based methods on benchmark datasets has
been described elsewhere22. For each pairwise comparison between
diabetes treatments, a separate BCAUS model was trained. The pro-
pensity score outputs of trainedmodelswere used to estimate average
treatment effects using Inverse Probability of Treatment Weighting
(IPTW). A bootstrapping procedure was used to compute standard
errors and confidence intervals (see Supplement). The input data for
NMA consisted of the estimated ATEs and standard errors.

Network meta-analysis. An ATE value measured via a direct causal
comparison between two treatments has to be consistent with values
that are indirectly estimated by comparing each treatment of the pair
with intermediary treatments and then computing differences. Sepa-
rate networkgraphswere constructed for the 10 clinical cohorts where
every treatment nodewas connectedwith every other treatment node.
Edges representing observational studies where all confounding cov-
ariates were not balanced were trimmed and Bayesian NMA was per-
formed over the resultant graph. We used a random-effects model, set
uninformative priors, and used a Markov Chain Monte Carlo (MCMC)
sampling procedure to construct posterior distributions of ATE values
for all treatment pairs. To determine relative ranks, samples were
drawn from the posterior predictive distributions of ATE values of all
treatments compared againstmetformin, whichwas set as the baseline
treatment. For each draw, treatments were ranked in ascending order
of ATE values (i.e., higher ranks for more negative values), and a mean
rank was computed for each treatment across all draws. This mean
rank was normalized to compute the Surface Under the Cumulative
RAnking curve (SUCRA) score42. Treatments were ranked in descend-
ing order of SUCRA scores such that the treatment that reducedHbA1c
by the largest amount relative tometformin had the highest rank. This
ranked list of treatments applies to all members of a given cohort;
within-cohort treatment heterogeneity is not further accounted for by
the model. Further details of the training procedure are available in
Supplementary Materials.

Ranking validation procedure. To investigate the degree towhich the
rankings generalized to new patients while generating an estimate of
the improvement to HbA1c over existing practices if rankings were
used to guide treatment decisions, outcomes between patients whose
physicians happened to have prescribed a top-3 ranked treatment
choice for them versus selecting any other treatment option were
compared retrospectively. Snapshots in each clinical cohort were
divided into concordant cohorts (where the actual prescribed treat-
ment matched one of the top-3 recommendations) and non-
concordant cohorts (where a patient was provided any treatment
ranked four or lower). Differences in the mean change in HbA1c
between the concordant and non-concordant groups were calculated

for all cohorts for both training and test datasets. If the difference in
means was found to be statistically significant (using an independent
two-sample t test), an additional confounder-adjusted case-compara-
tor study was performed between the cohorts tomeasure whether the
differences in means were directly attributable to the differences in
treatment strategy ranks.

To further investigate if the rankings demonstrate an internally
consistent effect, a sensitivity analysis was performed by splitting
patient snapshots of each cohort in the training dataset into three
concordance cohorts: (i) the “top” cohort is concordant with treat-
ments ranked 1–3; (ii) the “middle” cohort is concordant with treat-
ments ranked 4–10, and (iii) the “bottom” cohort is concordant with
treatments ranked 11 and below. Confounder-adjusted ATE values
were estimated, comparing the top versus bottom groups and the
middle versus bottom groups. If the ranks are internally consistent, an
effect where-in the top outperforms the middle and the middle out-
performs the bottom would be expected. The ranks were internally
consistent as shown in Supplementary Fig. 13.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw data are protected and are not available due to data privacy
laws and commercial interests. Investigators with an academic affilia-
tion may contact the corresponding author for data access for the
purposes of validating the above findings. Requests will be processed
within 60 days.

Code availability
The code for themethod used in this study is freely available at https://
github.com/gstef80/bcaus_nma.
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