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Transcriptome-wide and stratified genomic
structural equation modeling identify
neurobiological pathways shared across
diverse cognitive traits

Andrew D. Grotzinger 1,2 , Javier de la Fuente3,4, Gail Davies 5,6,
Michel G. Nivard 7 & Elliot M. Tucker-Drob 3,4

Functional genomic methods are needed that consider multiple genetically
correlated traits. Here we develop and validate Transcriptome-wide Structural
Equation Modeling (T-SEM), a multivariate method for studying the effects of
tissue-specific gene expression across genetically overlapping traits. T-SEM
allows for modeling effects on broad dimensions spanning constellations of
traits, while safeguarding against false positives that can arise when effects of
gene expression are specific to a subset of traits.Weapply T-SEM to investigate
the biological mechanisms shared across seven distinct cognitive traits
(N = 11,263–331,679), as indexed by a general dimension of genetic sharing (g).
We identify 184 genes whose tissue-specific expression is associated with g,
including 10 genes not identified in univariate analysis for the individual
cognitive traits for any tissue type, and three genes whose expression
explained a significant portion of the genetic sharing across g and different
subclusters of psychiatric disorders.Wegoon to apply StratifiedGenomic SEM
to identify enrichment for g within 28 functional categories. This includes
categories indexing the intersection of protein-truncating variant intolerant
(PI) genes and specific neuronal cell types, which we also find to be enriched
for the genetic covariance between g and a psychotic disorders factor.

The finding that many diverse cognitive functions are positively
intercorrelated was discovered by Spearman in 1904 and has come to
be known as one of the most replicated results in psychology1.
Spearman speculated that the positive manifold of test intercorrela-
tions resulted from their mutual reliance on a common factor, which
he termed general intelligence, or g, but that each cognitive test also
relied on more-specific factors, s. Spearman developed factor analysis
in order to estimate the relative contributions of g and s factors to a
given test from empirical data. Current evidence indicates that g

accounts for between approximately 40% and 60%2 of variation in
cognitive test scores. In addition, the g-factor is associatedwith a range
of important life outcomes including income level3, educational
attainment4, social mobility5, health6, and longevity7. However, despite
over 100 years of debate regarding the nature and mechanisms of g,
the biological mechanisms shared across cognitive functions have
remained relatively elusive.

Family-based designs have long indicated that genetic sharing
across cognitive functionsmayunderly Spearman’s positivemanifold8.
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More recently, genome-wide association studies (GWAS) have identi-
fied specific genetic variants that are associated with the genetic
overlap across diverse cognitive traits9. A clear next step in this line of
research is to characterize the biological pathways implied by these
more recent GWAS results. Functional genomic approaches parsimo-
niously distill the genetic signal acrossmillions of genetic variants into
biologically meaningful mechanisms. For example, a recent study of
educational attainment (EA) determined that associated genetic var-
iants were enriched for genes involved in specific neurophysiological
functions, including synaptic plasticity, ion channel activation, and
neurotransmitter secretion10. However, existing functional genomic
approaches have been developed for univariate applications and, as
wedemonstrate via simulation, are ill-equipped to analyzemultivariate
genomic data without false positive inference.

The current study performs a multivariate functional genomic
analysis of g to both leverage the shared power across seven cognitive
traits for discovery and elucidate the biological pathways unique to,
and shared across these traits. We specifically apply two multivariate
methods. First, we introduce and validate transcriptome-wide struc-
tural equation modeling (T-SEM), a method that extends
transcriptome-wide association studies (TWAS) approaches to esti-
mate the effects of tissue-specific gene expression within a multi-
variate system of GWAS traits. Using data from UK Biobank, we apply
T-SEM to estimate relationships between gene expression and g in
order to identify biological mechanisms of sharing across seven cog-
nitive traits. We validate and employ a heterogeneity statistic (QGene)
within T-SEM that quantifies the extent to which the data deviate from
the hypothesis that gene expression affects the traits strictly via a
common factor, such as g. This allows us to identify tissue-specific
patterns of gene expression that are associated with only a subset of
cognitive traits, or one cognitive trait, such as reaction time. To
understandbroader biological pathways that transcend the expression
of individual genes, we go on to apply another recently developed
multivariate functional method, Stratified Genomic SEM11, to examine
genetic sharing and uniqueness within different classes of genetic
variants (e.g., variants associated with specific neuronal subtypes).
T-SEM and Stratified Genomic SEM are distinguishable with respect to
the biological substrate being examined—tissue-specific gene expres-
sion versus categories of genes, respectively—but are both applied
here with the shared end goal of elucidating the biology that is com-
mon and unique across cognitive domains.

Results
Overview of T-SEM
T-SEM is a method for examining the effect of tissue-specific gene
expression on any parameter within the general Genomic Structural
Equation Modeling (Genomic SEM) framework12. T-SEM follows a two-
stage approach. In Stage 1, univariate, summary-based TWAS is used to
perform summary-based transcriptomic imputation (TI) of tissue-
specific gene expression on the individual GWAS phenotypes to be
included in the model. The analytic pipeline outlined here, and the
corresponding open-source publicly available software, specifically
utilizes summary-based TWAS output from the FUSION software13.
Summary-based TWAS is estimated in FUSION as a weighted linear
combination of GWAS Z-statistics using what are referred to as func-
tional weights. These functional weights are typically pre-compiled
from smaller reference datasets containing both tissue-specific gene
expression and genotype data and can generally be described as
indexing the association between individual single nucleotide poly-
morphisms (SNPs) and gene expression. Given the costly and intensive
nature of obtaining gene expression data, particularly from tissue
types such as specific brain regions, summary-based TWAS then allows
for drawing inferences about patterns of gene expression associated
with complex traits for which only GWAS summary statistics are
available. Summary data from each univariate TWAS produced by

FUSION are then combined with one another and with the empirical
genetic covariance matrix for the GWAS phenotypes produced using
the multivariable version of LDSC14 within Genomic SEM to create a
complete genetic covariance matrix for imputed expression of each
gene and the GWAS phenotypes (SFull)12. An associated sampling cov-
ariance (VSFull) matrix is also constructed. VSFull includes squared
standard errors (SEs) on the diagonal, and sampling covariances on the
off-diagonal that quantify dependencies between sampling errors of
the estimates. These off-diagonal elements, which are empirically
estimated as part of multivariable LDSC, allow T-SEM to be performed
for traits with unknown levels of participant overlap across the
contributing GWAS.

In Stage 2, the user specifies an SEM in which gene expression is
associated with the multivariate system of heritable phenotypes via
regression or covariance relationships with components of the model.
In our empirical application, the SEM consists of a general factor
indexing genetic overlap across seven cognitive traits. We also pro-
duce a QGene statistic that indexes the extent to which there is a vio-
lation of the null hypothesis that imputed expression of a given gene
affects the individual traits strictly via the factor. LargerQGene statistics
occur when gene expression is highly specific to an individual trait or
when the gene expression effect is directionally opposing across traits.
Thus, we use T-SEM to both identify genes whose tissue-specific
expression has general effects on a system of diverse cognitive traits
and distill them from genes with more trait-specific effects.

Validation of T-SEM via simulation
Webeganby running two sets of simulations to validate the calibration
of T-SEM. The first set of simulations generated patterns of gene
expression across seven, population-generating conditions. For each
condition, separate datasetswere simulated for both a tophit and for a
gene from the 50th percentile of the p-value distribution in our
empirical analysis of the g-factor. All results reported below follow the
same pattern across conditions for both sets of population gene
expression effects, apart from the expected decrease in signal for the
50th percentile gene relative to the top hit (see the “Methods” section;
Supplementary Figs. 2–5; Supplementary Data 2). The population-
generating parameters for the first condition reflected those implied
by a model of gene expression operating entirely through a common
factor model of genetic g. This then reflects a scenario in which the
power to detect gene effects on the factor is expected to be high and
the signal for QGene is expected to conform to a null distribution.
Indeed, this is what we observe (Supplementary Data 2), indicating
power for discovery and appropriate Type I Error control. The
remaining conditionswere specified such that thepatternof effects for
a gene on the given traits in the population increasingly deviated from
the expectations of the common factor model. Results confirmed that
as the simulated effect shifts away from the expectation under a
common factormodel, the power to detect gene expression effects on
a common factor and forQGene decreased and increased, respectively.
Simulation results further revealed that T-SEM associations were not
merely a recapitulation of the associations for the most well-powered
univariate trait that loads on the factor, that there is a well-controlled
false positive rate (FPR) of <5% at α =0:05 when the gene expression
effects on the traits is 0 in the population, and that power to detect
effects for QGene is greatest when the gene effects on the individual
traits reflect amixture of heterogeneous associations that deviate from
the expectations of the factor model.

We went on to perform a second set of simulations designed to
compare the performance of TWAS of summary statistics from multi-
variate GWAS (conducted within Genomic SEM) relative to results
obtained using T-SEM. These simulations began by specifying popula-
tion effects at the SNP level that were weighted by the functional
weights from FUSION (see the “Methods” section for details). Simula-
tions were again conducted for scenarios that varied in the degree to
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which the population generating TWAS effects were reflective of a
model in which gene expression operates entirely via the common
factor.When the population generating effectswere consistentwith the
expectations implied by the common factor model, we observe 100%
power at a Bonferroni-corrected threshold for both TWAS of the com-
mon factor summary statistics and T-SEM of FUSION output (Supple-
mentaryData 3).QGene was alsowell-calibrated in this scenariowith a 5%
FPR at α =0.05. When the population SNP effects were set to 0, we
similarly observe a well-controlled FPR, with 4% and 3% of runs sig-
nificant atp <0.05 for TWAS andT-SEM, respectively, and 7% significant
for QGene. Finally, we find that when the population generating TWAS
effects strongly deviates from the factormodel, 100%of simulations for
both TWAS and T-SEM were significant at a Bonferroni-corrected
threshold. However, QGene estimated within the T-SEM framework also
showed 100% power, thereby safeguarding against the false inference
that the effects of gene expression operate at the level of the factor
underlying the individual GWAS traits, and appropriately identifying
gene expression patterns responsible for trait differentiation. Indeed,
TWAS of the common factor summary statistics and T-SEM of FUSION
output displayed strong concordance in estimates for the different
populationgenerating scenarios (Supplementary Fig. 6 for scatter plots;
Supplementary Fig. 7 forQQ-plots), but only T-SEMwas able to produce
the QGene statistic necessary to safeguard against false inference and
identify trait-specific pathways of TWAS effects.

T-SEM analysis of cognitive traits
We applied T-SEM to GWAS summary statistics for seven cognitive
traits (Supplementary Data 1) from UK Biobank (UKB): trail-making
tests-B, tower rearranging, verbal numerical reasoning (VNR), symbol
digit substitution, memory pairs-matching test, matrix pattern recog-
nition, and reaction time (RT). We employ the same common factor
model reported in de la Fuente et al.9, who identified a general
dimension of shared genetic liability in these same cognitive traits,
which they termed genetic g (Supplementary Fig. 1). These summary
statistics were paired with cis gene expression quantitative trait locus
(cis-eQTL) reference panel data for 13 brain-based tissue types from
GTEx15 and the two dorsolateral prefrontal cortex (dlPFC) datasets
from the Common Mind Consortium (CMC)16 to produce univariate
TWAS estimates in FUSION13 for 52,849 genes across tissues, which
were then used as input for T-SEM.

T-SEM analyses revealed 184 hits for tissue-specific gene expres-
sion associated with g that were significant at a Bonferroni corrected
threshold, and not significant for QGene, which explained, on average,
0.13% (range = 0.11–0.25%) of the total genetic variance in g (Fig. 1;
Table 1; Supplementary Data 4). As many genes are expressed across
multiple reference tissues, these 184 hits ultimately reflect 76 unique
genes, including 10 genes that were not significant for any of the uni-
variate TWAS analyses in any tissue type. Gene co-expression analyses
using these 76 unique gene IDs as input revealed a total of 59 sig-
nificant gene sets across three primary clusters (Supplementary
Data 6; Supplementary Fig. 10). This included several gene sets
implicated in transfer RNA (tRNA), neuron-specific chromatin reg-
ulatory BAF subunits (nBAFs), and G-protein-coupled receptors.

Using these 184 T-SEM hits for g that were independent of QGene

hits as input, joint analyses revealed 29 genes across 18 loci that
remained significant when conditioning on shared signal across the
hits. These 18 loci explained, on average, 81.1% of the variance of
nearby GWAS estimates for g (range = 58–100%; Supplementary
Data 5; Supplementary Fig. 9 for regional association plots). In addi-
tion, the conditional significance of the top SNP within these loci
dropped substantially fromanaveragep-valueof 1.84E−6 to0.153,with
none of the previous top SNPs within these loci remaining nominally
significant. This indicates that inferred gene expression patterns gen-
erally account for a large portion of nearby GWAS effects on g. As can
be visually observed in theMiami plot in Fig. 1, therewere sets of g hits

that were physically proximal to genes significant for both g and QGene

(e.g., on chromosome 3). With this in mind, we went on to rerun joint
analyses using the full set of 218 hits, including 34 additional genes
significant for g and QGene. We find that 20 of the 29 genes that were
significant from the 184 hit joint analyses remained significant (Sup-
plementary Data 5). Bayesian colocalization analyses were additionally
used to examine shared causal variants between hits for gene
expression and the g-factor, multivariate GWAS (see the “Methods”
section). These results revealed that a majority (58.2%) of the 184 g
T-SEM hits were supported by a model of colocalized gene expression
and GWAS associations (mean posterior probability = 0.568; Supple-
mentary Data 4), with a smaller subset (19.6%; mean posterior
probability = 0.223) likely characterized by independent associations.
Conservative permutation tests were also used to produce empirically
derived univariate TWAS p-values used as input for T-SEM (Supple-
mentary Data 4; see the “Methods” section). As is expected for the
permutation test, these results indicated an overall attenuation in
signal, but largely supported the current findings.

We went on to examine whether the three top hits for g (ZSCAN9,
PRSS16, ZNF184) explained a significant proportion of the genetic
overlap across g and its clinically relevant correlates.We focus here on
findings for an Internalizing disorders factor defined by GWAS sum-
mary statistics frommajor depressive disorder and anxiety disorders17

and a Psychotic disorders factor defined by bipolar disorder18 and
schizophrenia19 (see the “Methods” section for details and results for
additional traits). We confirm first that genetic g is significantly,
genetically correlated with both the Internalizing disorders factor
(rg = −0.17, SE = 0.03, p = 1.33E−8) and Psychotic disorders factor (rg =
−0.40, SE =0.03, p = 6.45E−51), that the three top gene expression hits
are significantly associated with the individual traits defining these
psychiatric factors (Supplementary Data 7), and that these are not
QGene hits for the psychiatric factors (Supplementary Data 8). Finally,
we find that all three hits explained a significant proportion of the
genetic overlap across g and these factors (Supplementary Data 8),
with the largest effect observed for ZSCAN9 for both the Internalizing
(% mediated rg = 1.39%, SE = 0.21, p = 3.25E−11) and Psychotic disorders
factor (% mediated rg = 1.14%, SE =0.14, p = 7.39E−16).

For QGene, we identified 156 hits reflecting 62 unique genes (Sup-
plementaryData 9). These hits reflect geneswhose inferred expression
is associated with the cognitive traits according to patterns that are
inconsistent with their operation on genetic g. Similar to g-factor hits,
Bayesian colocalization analyses supported a model of colocalized
associations for the majority of QGene hits (51.3%; mean posterior
probability = 0.506), while 22.4% of hits likely indexed independent
functional andGWAShits (meanposterior probability = 0.242). Among
the most significant QGene hits were four unique genes (NSFP1, NSF,
ARL17B, LRRC37A) in the 17q21.31 locus. This collection of QGene hits
consistently evinced a much stronger association with RT relative to
the remaining, six cognitive phenotypes (Supplementary Data 9;
Supplementary Fig. 12), indicating this region is more relevant to
cognitive speed than overall genetic g. Within particular tissues, we
observed a higher relative mean χ2 and density of hits for the g-factor
relative to QGene, including in the frontal cortex and hippocampus
(Supplementary Data 10). Consistent with conceptualizations of the
cerebellum as particularly relevant to broad cognitive function20, this
specific tissue showed the largest g-factor to QGene χ2 ratio (Supple-
mentary Fig. 13; Supplementary Data 10).

Wewent on to compare results obtained fromT-SEM to results for
a TWAS of the g-factor GWAS summary statistics. Consistent with
simulation results, TWAS and T-SEM estimates for g were highly cor-
related (r >0.99; Supplementary Fig. 14). For the TWAS of the g-factor
GWAS summary statistics, we then employed a QSNP filtering proce-
dure of removing any gene that had functional weights for a QSNP

variant, whereQSNP variants were themselves defined using the T-SEM
Bonferroni corrected p-value threshold (as opposed to the more
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stringent genome-wide significance threshold). Both of these deci-
sions err on the lax side of excludingmoreQSNP signals so as to prevent
such signals from contaminating the subsequent TWAS. This QSNP fil-
tering process failed to remove 23 of the 156 QGene hits identified by
T-SEM. Moreover, 2 of the 23 remaining QGene hits were identified as
TWAS hits for g and, given significant QGene findings, likely to be false
positives (Supplementary Fig. 14). We note that in an alternative fil-
tering process of removing QSNP variants from the g-factor, GWAS
summary statistics used as input to FUSION failed to remove any of the
156 QGene hits. This, in part, reflects the fact that FUSION performs the
imputation of missing GWAS Z-statistics when possible. Thus, even
under conditions selected to ensure that heterogeneous SNP effects
were removed, TWASof the g-factor GWAS summary statistics was less

effective than T-SEM at pruning out heterogeneous signals. In sum-
mary, findings from both simulations and application to real data
indicate that T-SEM is uniquely suited to guard against false positives
for effects of gene expression on general factors and to identify pat-
terns of gene expression that underly genetic divergence among
genetically correlated phenotypes.

Stratified genomic SEM analysis of cognitive traits
Stratified genomic SEM is a recently developed, multivariate corollary
of stratified LDSC20,21 that can be used to examine functional enrich-
ment of any model parameter estimated in Genomic SEM. Functional
enrichment is examined across different classes of genetic variants,
referred to as functional annotations, that are grouped according to
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Fig. 1 | g-factor T-SEM. PanelA depicts the genetic correlationmatrix as estimated
using LDSC for the seven, g-factor cognitive phenotypes. The size of the blue-
colored square is scaled according to the size of the genetic correlation point
estimate. PanelB depicts the results from the inferred tissue-specific expression of
the top gene, ZSCAN9 in the cerebellum, predicting the g-factor estimated using
T-SEM. Results are standardized with respect to the genetic variance in the seven
cognitive traits, whereas the variance in the genetic g-factor is 1+ the variance
explained by the individual gene (in this case: 1 + 0.052 = 1.0025). Standard errors
are shown inparentheses. PanelC depicts theMiami plot for g-factor T-SEM results.

The top half of the plots depict the −log10(p) values for TWAS effects on the g-
factor; the bottom half depicts the log10(p) values for the g-factor QGene effects.
The red dashed line marks the threshold for TWAS significance using a Bonferroni
corrected threshold for 52,849 tests. Black triangles denote g-factor TWAShits that
overlapped with hits from univariate analyses for one of the individual cognitive
traits. Larger red triangles denote TWAS g-factor hits that did not overlap with the
hits from univariate analyses of the individual cognitive traits or with hits forQGene.

Purple diamonds denote QGene hits.
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some shared characteristic. These shared characteristics can include,
for example, whether the variants tend to be conserved in mammals,
are associated with specific histone marks, or are implicated in neu-
ronal subtypes. A functional annotation is considered to be enriched,
indicating that it is of particular relevance for a given trait, when the
genetic variance within that annotation is greater than the propor-
tional size of that annotation. The proportional size of the annotation
reflects the number of SNPs in the annotation over the total number of
SNPs analyzed. By examining the enrichment of model parameters
within a multivariate system of genetically correlated traits, Stratified
Genomic SEM facilitates identifying categories for which pleiotropic
variation, as separable from trait-specific genetic variation, is enriched.

Using QC and analytic procedures outlined in the “Methods”
section, enrichment analyses were based on 155 binary annotations.
We observed 28 annotations thatwere significant for g at a Bonferroni-
corrected threshold for 155 tests (Fig. 2; Supplementary Data 11; Sup-
plementary Fig. 16; see Supplementary Method and Supplementary
Fig. 17 for enrichment results in standardized space). This included
conserved regions, the H3K9ac promoter, and the H3K27ac promoter
across different brain regions (e.g., dlPFC, middle hippocampus). Of
these 28 significant annotations, four reflected the intersection of PI
genes and the GABAergic and excitatory hippocampal and prefrontal
cortex neuronal subtypes (Fig. 2).

We observed several significant enrichment estimates for the
residual variancecomponents (SupplementaryData 11; Supplementary
Figs. 18 and 19), which reflect enrichment of trait-specific genetic
variation as separable fromgenetic g. Asmight beexpected, significant
estimateswere identified for the three cognitive traitswith the smallest
factor loadings, with 38 significant estimates observed for RT, 33 for
VNR, five for the memory pairs matching test, and no significant esti-
mates for the remaining four traits. Among these significant residual
estimates, it is perhaps most interesting to consider those that also
evinced a weak signal for g. This included enrichment for the residuals
of VNR and RT for the H3K9ac promoter in the dlPFC, which has been
previously associated with Alzheimer’s disease22, and enrichment of
the FANTOM5 enhancer for memory-pairs matching.

The PI enrichment findings for gwere notably similar to a pattern
of enrichment recently described for a psychotic disorders factor
defined by bipolar disorder and schizophrenia. As we also observed
the previously noted, sizeable, negative genetic correlation between
the g-factor and a psychotic disorders factor, we went on to examine
enrichment of the genetic sharing between these factors (Supple-
mentary Data 11). Results revealed significant enrichment of the factor

covariance for 15 annotations, eight of which were also significantly
enriched for g. The three top annotations enriched for overlap across g
and the psychotic disorders factor were PI genes, excitatory prefrontal
cortex neurons, and their intersection (Supplementary Fig. 20).

Discussion
Cognitive functions are characterized by positive intercorrelations at
both the observed and genetic levels of analysis. We have used mul-
tivariate functional genomic methods to identify both general and
trait-specificbiologicalmechanismsof variation across seven cognitive
functions. Using T-SEM, we identified 76 unique genes whose inferred
expression acts generally across all seven cognitive traits. Highlighting
the ability of multivariate methods to leverage shared power for dis-
covery, this included 10 genes that were not significant for univariate
TWAS of any of the individual cognitive traits. By aggregating across
the understood mechanistic functions of patterns of gene expression
associated with g, we identified gene sets implicated in transfer RNA
(tRNA), neuron-specific chromatin regulatory BAF subunits (nBAFs),
and G-protein-coupled receptors. All of these functions have been
previously associated with general neural development, cognitive
function, and neurodevelopmental disorder risk23–25. QGene, a measure
of heterogeneity, identified an additional 62 unique genes whose
expression affects individual cognitive traits not via g. This included a
set of genes on locus 17q21.31 that appear highly specific to cognitive
speed. This specific locus is known to be highly pleiotropic and has
been linked to frontotemporal dementia26 and autism27.

Applying stratified genomic SEM, we additionally identified 28
annotations significantly enriched for g. In line with prior univariate
functional findings for intelligence28 and cognitive function29, we
observe significant enrichment in genetic sharing within conserved
regions and the H3K9ac promoter. This indicates that these previous
univariate discoveries pertain generally to the genetic architecture
that is shared across multiple domains of cognitive function. We also
find that the H3K27ac promoter was enriched for genetic sharing
across several brain regions, including the dlPFC and middle hippo-
campus, and we observe that PI genes and the GABAergic and excita-
tory hippocampal and prefrontal cortex neuronal subtypes are highly
enriched. The absence of significant findings across all neuronal sub-
types points to an increasingly specific set of neurobiological
mechanisms that may underly general cognitive functioning. High-
lighting the multivariate capabilities of Stratified Genomic SEM, we
also identify a number of annotations that are unique to specific cog-
nitive functions, such as the FANTOM5 enhancer for memory pairs-

Table 1 | T-SEM results

TWAS target All tissues Unique gene IDs

Mean χ2(1) Hits Shared hits Unique hits Hits Shared hits Unique hits

g-factor 2.13 184 150 34 76 66 10

QGene 1.91 156 133 23 62 41 21

Matrix 1.09 1 0 (0) 1 (1) 1 0 (0) 1 (1)

Memory 1.50 17 1 (0) 16 (17) 12 1 (0) 11 (12)

Reaction time 1.95 119 3 (70) 116 (49) 49 2 (20) 47 (29)

Symbol Digit 1.39 3 2 (0) 1 (3) 3 2 (0) 1 (3)

TMTB 1.46 25 19 (3) 6 (22) 16 14 (2) 2 (14)

Tower 1.05 0 0 (0) 0 (0) 0 0 (0) 0 (0)

VNR 2.56 507 144 (67) 363 (440) 183 64 (24) 119 (159)

For the g-factor andQGene the Shared Hits column reports the number of hits that were overlappingwith univariate TWAS hits, while theUnique Hits column reports the number of hits that were not
identifiedbyunivariate TWAS. Total hits for the g-factor are reported for Bonferroni significant genes that were not significant forQGene.QGene indexeswhether a particular gene is unlikely to operate
through the identified g-factor structure, as will often be the case when a gene effect is highly specific to an individual trait. For the seven cognitive indicators, the Shared Hits column reports
univariate TWAS hits that were overlapping with the 184 g-factor hits along with values in parentheses reporting univariate hits overlapping with the 156 QGene hits. The Unique Hits column then
reports thoseunivariate hits that were not overlappingwith g, alongwith hits unique ofQGene again reported inparentheses. To facilitate comparison across TWAS targets,mean χ2 values reported in
each row were converted to χ2(1) statistics before taking their means. Unique gene IDs were defined as those genes that were significant across any tissue.
TMTB trail making test-b, VNR verbal numerical reasoning.

Article https://doi.org/10.1038/s41467-022-33724-9

Nature Communications |         (2022) 13:6280 5



B Glial Excitatory GABAergic

A

Fig. 2 | Multivariate enrichment. Panel A displays the 28 annotations for the g-
factor that were significant at Bonferroni corrected threshold for 155 tests. Dots are
ordered according to the size of the enrichment point estimate for the g-factor and
shaded to reflect the level of significance. Panel B depicts the PI × brain cell anno-
tations and orders the estimates by brain cell type, PI genes, and PI × brain cell type
interactions. Glial cells are depicted in orange, excitatory cells in blue, and
GABAergic cells in green. Dots that were significant at a Bonferroni-corrected

threshold for 155 tests are depicted with a *. In both panelsA and B, the red dashed
line reflects the null (enrichment = 1), the dots depict the enrichment point esti-
mates, the error bars depict 95% CIs, and the top half within each panel depicts
enrichment estimates for the g-factor and the bottom half enrichment
estimates for the genetic covariance between the g-factor and the psychotic dis-
orders factor.
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matching, an annotation that is also strongly linked to immunological
diseases21. While the exact biological pathways will need to be further
elucidated, the identification of the neurobiological building blocks of
both g and specific cognitive tests that define g reflects a critical next
step in our understanding of this construct.

Major depressive disorder30, anxiety disorders31, schizophrenia32,
and bipolar disorder33 have all been associated with lower cognitive
function. In addition, major depressive disorder34 and schizophrenia35

have been associated with two of the top g hits from the current
analyses: ZNF184 and PRSS16, respectively. As a natural extension of
these convergent findings, we find that top gene expression hits on g
explained a significant proportion of the genetic overlap across g and
thesepsychiatric traits. Building onpatterns of enrichment inneuronal
subtypes identified for g that mirrored recently described enrichment
across bipolar disorder and schizophrenia, we also find several anno-
tations that are enriched for the genetic covariance between g and
these two disorders. This included the intersection between PI genes
and both excitatory prefrontal cortex and GABAergic neurons. Col-
lectively, these may represent specific biological pathways underlying
the well-established association between cognitive impairment and
risk for different clusters of psychiatric conditions.

The positive manifold of intercorrelations across cognitive items
lends itself to a factor model of g. However, a long-standing source of
contention reflects whether g is merely a statistical artifact or, in fact,
reflects a useful psychological construct for understanding shared
sources of variation across cognitive abilities. Indeed, both
Thorndike36 and Thomson37 proposed early on that a positivemanifold
may arise when pairs of cognitive tests share a subset of biological
processes (which they termed bonds), even when no biological pro-
cesses are shared across all cognitive tests. In contrast to this predic-
tion, we identified a number of genes and gene categories that act
across all seven cognitive traits under investigation in a manner con-
sistent with their operation via g. In contrast, far fewer genes and
categories were found to evince patterns of associations inconsistent
with their operation via g. In combination with recent work identifying
30 individual genetic loci associated with g9, these results lend con-
siderable support to the utility of g at particularly fine (micro) and
intermediate (meso) levels of neurobiological resolution.

Future work will benefit from considering developmental aspects
of the functional genomics of genetic sharing. For example, processes
related to neurobiological organization may be more relevant in early
childhood development, whereas processes related to susceptibility
vs. resilience to neurodegeneration may be more relevant in late
adulthood. As the UK Biobank participants included here reflect indi-
viduals ranging in age from approximately 40–75 years of age, future
work might particularly focus on early childhood cohorts. Addition-
ally, summary statistics from GWAS of sufficient power to be included
in the current analyses were only available for individuals of European
ancestry. It will be critical to expand these investigations to more
diverse populations.

In summary, we have introduced and validated T-SEM, amethod
formultivariate TWAS.We applied T-SEM to distinguish genes whose
inferred expression operates across seven diverse cognitive func-
tions, as indexed by a genetic g-factor, from those whose inferred
expression operates more specifically on individual cognitive traits.
Wewent on to apply Stratified Genomic SEM to identify categories of
genes relevant to genetic sharing across cognitive traits and others
relevant to more specific cognitive traits. We also incorporate psy-
chiatric correlates of g for both types of analysis to identify neuro-
biological underpinnings shared across cognitive and psychiatric
traits. As with our current application to cognitive traits, imple-
mentation of the multivariate, functional methods described here
can begin to elucidate the biologicalmechanisms that are shared and
unique across genetically correlated quantitative traits and disease
phenotypes.

Methods
Multivariate TWAS in genomic SEM: T-SEM
Transcriptome-wide structural equation modeling (T-SEM) draws on
univariate, summary-based TWAS produced for multiple GWAS phe-
notypes. In practice, we specifically utilize the FUSION software13 to
perform univariate, summary-based TWAS, which imputes the rela-
tionship between gene expression and a trait using the linear combi-
nation of GWAS Z-statistics and a set of functional weights. For the
current analyses,weuse the precomputed functional weights available
directly from the FUSION website (http://gusevlab.org/projects/
fusion/) from cis gene expression quantitative trait locus (cis-eQTL)
reference panels (see “Univariate TWAS” section below for details of
our specific data sources). These weights are obtained in FUSION by
comparing the performance of five different penalized linear models:
best linear unbiased predictor (BLUP), Bayesian sparse linear model
(BSLMM), elastic-net regression (eNET), lasso regression (LASSO),
and single best eQTL (top1)13. For each gene, the weights are used
from the model that produces the largest R2 between the predicted
and observed expression models calculated using five-fold cross-
validation.

T-SEM estimation follows the general two-stage approach intro-
duced in the Genomic SEM framework12, with the goal of modeling
genetic covariance between various traits, and the genetically imputed
expression level of a gene. In Stage 1 of T-SEM, the genetic covariance
matrix and associated sampling covariance matrix across multiple
traits are estimated via joint analysis of the univariate GWAS summary
statistics for each phenotype in the model using multivariable LDSC.
This genetic covariance matrix, which we term SLDSC, contains SNP
heritabilities on the diagonal and genetic covariances on the off-
diagonal. The sampling covariance matrix, which we term VSLDSC, is a
symmetric matrix composed of the nonredundant elements in the
SLDSC matrix. The diagonal elements of VSLDSC are squared SEs of the
elements in SLDSC. The off-diagonal elements are sampling covariances
that index dependencies across estimation errors. These sampling
covariances are estimated using a block-jackknife procedure that
quantifies the extent to which the sampling distributions of different
elements in the SLDSC matrix covary with one another, as would be
expected when there is sample overlap across the included traits. The
combination of diagonal and off-diagonal elements is what allows
Genomic SEM to produce unbiased SEs in the context of the user-
specific structural models, even in the presence of unknown levels of
sample overlap. Univariate TWAS estimates are subsequently used as
input to expand both matrices.

In Stage 2, a model is specified in which gene expression is asso-
ciated with some other parameter in the model, such as a latent factor
defined by the genetic components of the included phenotypes. The
model itself can be broken into two parts. The first reflects the mea-
surement model, which parsimoniously describes the genetic rela-
tionships across k analyzed traits via a smaller subset of m latent
variables. This can be expressed as

Yg =Λη+U ð1Þ

whereYg is a k-length vector of the genetic component of the analyzed
traits, η is anm-length vector of latent variables, Λ is a k ×m matrix of
factor loadings, andU is a k-length vector of residual genetic variances
not accounted for by the latent variables. The number of latent vari-
ables containedwithin η, and the patterns of fixed and free parameters
contained withinΛ andU are specified by the user to reflect themodel
of interest.

In T-SEM, the structural model is then added on top of the
genomic measurement model in order to relate tissue-specific gene
expression to the latent variables, and the latent variables to one
another when >1 latent variable is estimated. The structural model in
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T-SEM can be expressed as

η=Bη+ Γx + E, ð2Þ

where η is again an m-length vector of latent variables, B is an m×m
matrix of regression coefficients that relate latent variables to one
another, Γ is anm-length vector of regression coefficients relating the
latent variables to tissue-specific gene expression, x is the tissue-
specific gene expression, and E is an m-length vector of the residual
variances of the latent variables. The terms in B, Γ , and E may include
both free parameters and fixed terms, as specified by the user to
represent the model of interest. We note that η appears on both the
left and right sides of the equation as we utilize all-y notation, which
does not distinguish between endogenous and exogenous latent
variables38. The B matrix of regression coefficients then prevents
specifying the regression of a latent variable predicting itself by fixing
those specific parameters to 0 for that cell of the matrix.

In the context of the current analyses, the g-factor measurement
model can be written according to the following system of linear
equations:

υgMatrices

υgMemory

υgRT
υgSD

υgTrails�B

υgTower
υgVNR

2
666666666664

3
777777777775

=

λMatrices

λMemory

λRT
λSD

λTrails�B

λTower
λVNR

2
66666666664

3
77777777775

g +

uMatrices

uMemory

uRT

uSD

uTrails�B

uTower
uVNR

2
66666666664

3
77777777775

, ð3Þ

where υg reflects the genetic component of each of the seven cognitive
phenotypes, the λ0s are the phenotype-specific factor loadings on g,
and the u’s denote the residual genetic variances of the phenotypes.
The effect of tissue-specific gene expression on g can then be
expressed as

g = γx + e, ð4Þ

where γ is the unstandardized regression coefficient of tissue-specific
gene expression on g, x is the tissue-specific gene expression, and e is
the residual variance of g.

To create the SFull matrix formultivariate TWAS within T-SEM, the
SLDSC matrix is expanded to include the (cis-) genetic covariance
between the inferred gene expression and phenotypes, g1 through gk,
by appending the vector SGene:

SFull =

σ2
Gene

σGene,g1 h2
1

σGene,g2 σg1,g2 h2
2

σGene,g3 σg1,g3 σg2,g3 h2
3

..

. ..
. ..

. ..
. . .

.

σGene,gk σg1,gk σg2,gk σg3,gk � � � h2
k

2
666666666664

3
777777777775

ð5Þ

The σ2
Genein first cell of the matrix above is the (cis-) heritability of

the expression of an individual gene, provided directly by FUSION.
The sampling covariance matrix, VSFull, associated with the

expanded SFull covariance matrix, consists of three blocks. The first
block is the VSLDSC matrix obtained from the multivariable LDSC out-
lined above. The second block, VSGene, is composed of the sampling
covariance matrix of the gene expression effects on the phenotypes.
The sampling covariances of the gene-genotype covariances with one
another are indexed using cross-trait LDSC intercepts. As these cross-
trait intercepts reflect sampling correlations (weighted by sample

overlap), they are rescaled relative to the sampling variances of the
corresponding gene-genotype covariances to be on the scale of sam-
pling covariances. We treat the sampling variance of σ2

Gene as fixed. In
practice, we set it to a very small value (1e−4) and set the sampling
covariance between the σ2

Gene and all other terms to 0. The third, and
final, block of the VSFull matrix reflects the sampling covariance of the
gene-genotype covariances from FUSION with the genetic variances
and genetic covariances from multivariable LDSC. These sampling
covariances are fixed to 0 as the gene-phenotype covariance will be
independent of the individual SNP effects in all LD blocks except those
which SNPs defining the gene occupy. As the sampling variance of the
elements of SLDSC reflects sampling variabilitywith SNP test statistics in
all LD blocks, their sampling covariance with the effect of a single gene
is expected to approach 0. Taking these three components together,
the VSFull matrix formultivariate TWAS can bewritten in compact form
as

VSFull
=

VSGene

0 VSLDSC

" #
ð6Þ

The SFull and VSFull matrices are constructed as many times as
there are shared gene expression IDs across univariate FUSION out-
puts for individual traits.

Scaling TWAS output for T-SEM
The output from univariate summary-based TWAS (as estimated with
FUSION13) is a predicted gene-trait Z-statistic that requires further
transformation to be added to the SFull matrix above. First, this Z-sta-
tistic is converted to a partially standardized regression coefficient and
its SE. For continuous traits, this follows the equations bGene,P =

Zffiffiffiffiffiffiffiffiffiffiffi
Nσ2

Gene

p

and SEbGene,P =
bGene,P

Z , where σ2
Gene reflects the heritability estimate for an

individual gene provided by FUSION. We highlight that this metric is
somewhat arbitrary as we treat the genetic variance captured by
FUSION imputation (σ2

Gene) as equivalent to the total cis-genetic varia-
tion, whereas in reality these numbers may depart substantially.
Importantly, the chosen metric for a gene will have the same effect on
themetric of its associationswith all phenotypes included in themodel,
such that the choice of scaling will neither bias the pattern of associa-
tions nor affect downstream T-SEM, such as QGene estimation and
associatedp-values.Other sensible choices of scaling include theout-of-
sample R2 reported in FUSION. While this choice would change the
metric of effect sizes, it will not affect the pattern of results or asso-
ciated p-values. For binary traits, unstandardized logistic regression
coefficients and SEs are first backed out from the FUSION Z-statistics as
blogit*Gene,P =

Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Neff=4σ

2
Gene

p and SE*blogitGene,P =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Neff=4σ
2
Gene

p , where Neff

reflects the sumof effective sample sizes across cohorts that contribute
to the GWAS meta-analysis. These logistic regression coefficients and
SEs are then partially standardized by dividing both byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
Gene × ðblogit*Gene,PÞ

2 + π2

3

q
,where π2

3 reflects the residual variance from

a logistic regression model. We refer to these as partially standardized
regression coefficients as they are standardized relative to the variance
in the outcome (i.e., the phenotype of interest), but not the predictor
(i.e., a given gene). These partially standardized coefficients are subse-
quently transformed into gene-phenotype covariances (σGene,P), as in
the SFull matrix above, bymultiplyingby the variance (heritability) of the
gene (σ2

Gene:)

QGene Test of heterogeneity
QGene indexes whether a given gene is more likely to operate through
an identified common factor or via the independent pathways of the
individual traits that define the factor. This metric helps to guard
against identifying genes as operating through the common factor
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when they are, in fact, highly specific to a trait or subset of traits. That
is, it formally tests the null hypothesis that the gene acts through a
given factor. QGene is calculated here using a two-step procedure that
mirrors the steps outlined for QSNP

9,12. In Step 1, a common pathway
model is fit where the gene effect on the common factor, the (residual)
genetic variances of the factor and the phenotypes that define the
factor, and all but one-factor loading that is scaled to unity for iden-
tification, are freely estimated. In Step 2, a common plus independent
pathways model is fit where the factor loadings and the gene effect on
the common factor are fixed from the parameter estimates in Step 1,
and the direct effects of the gene on the phenotypes and the residual
variances are freely estimated. Supplementary Figure 1b depicts this
two-step procedure, as applied to the g-factor model, with parameters
that are fixed in Step 2 depicted in red and those that are freely esti-
mated in Step 2depicted inblack. The same formula used for estimates
of model χ2 in Genomic SEM is used here to produce a χ2 distributed
QGene test statistic with degrees of freedom (df) equal to k−1, where k
reflects the number of included phenotypes. For comparative pur-
poses throughout the paper, we generally scale thisQGene test statistic
to be a χ2 statistic with df = 1.

Simulations of gene expression
Simulation procedure. As a first step in the simulation procedure, a
model implied genetic covariancematrixwas calculated for amodel in
which gene expression from real data analyses was specified to predict
the g-factor. This reflects a best-case scenario for a common factor
signal in T-SEM as the model implied matrix reflects a pattern of
relationships that operate entirely through the common factor. We
utilized two-model impliedmatrices, one fromgene expression results
from the top hit (ZSCAN9 expression in the cerebellum), and the other
from results for the gene with null signal reflecting the 50th percentile
real data results for the g-factor, T-SEM p-values (ZNF749 in the hip-
pocampus). Seven versions of these twomodel implied matrices were
subsequently used to construct population-generating covariance
matrices, from which 1000 genetic covariance matrices were then
sampled using rmvnorm in R for each of the seven scenarios (i.e.,
14,000 total simulated datasets). These seven scenarios consisted of:
Scenario 1, reflective of the alluded to best-case scenario where the
model implied matrix was unchanged; Scenario 2 in which the covar-
iancebetween the gene andRT (the phenotypewith the smallest factor
loading) was set to 0; Scenario 3 in which the covariance between the
gene and Trails-b (the phenotype with the largest factor loading) was
set to 0; Scenario 4 in which the covariance between the gene and all
cognitive phenotypes except trails-B was set to 0; Scenario 5 in which
the covariance between the gene and all phenotypes except RTwas set
to 0; Scenario 6 in which the covariance between the gene and all
phenotypes was set to 0; and Scenario 7 in which the directionality of
the covariance between the gene and matrices, memory, and RT
was reversed.

The observed sampling covariance matrix was used both to
sample from the population matrices for each condition and was
paired with each simulated genetic covariance matrix for the real data
analyses. This has the advantage of providing a set of simulations that
are both directly relevant to the interpretation of the current analyses
and, by definition, reflective of the types of real-data scenarios
where T-SEM might be applied. All simulations applied the same
Bonferroni corrected threshold for significance as used in the real-data
analysis.

Simulation results. These scenarios were selected to reflect a gradient
of deviations from the factor model, where Scenario 1 exactly matches
the common factor model and Scenario 7 reflects a strong departure
from the model wherein gene expression has directionally opposing
effects across the g-factor phenotypes. This allowed us to test whether
T-SEM appropriately down weights estimates of gene expression

effects on the common factor in a graded fashion as the generating
population gradually shifts further away from the common factor
structure. Results for Scenario 1, with population gene effects specified
to operate solely through the common factor, revealed hits on the
common factor for all but 1 run for the ZSCAN9 (top hit from real data)
simulations (i.e., 99.6% hits; Supplementary Data 2) and evinced the
strongest signal across scenarios (Supplementary Fig. 4). The signal
was slightly reduced for Scenario 2, in which the gene effect was set to
0 for the cognitive phenotype with the smallest loading (RT) andmore
attenuated for Scenario 3, in which the gene effect was set to 0 for the
phenotype with the largest loading (Trails-b; Supplementary Fig. 2). It
is also worth noting that Scenario 3 still produced hits for 82.7% of the
top hit simulations. As expected, the signal was greatly reduced rela-
tive to these first three scenarios for Scenario 4, in which the gene
effect was set to 0 for all but Trails-b, and further reduced for Scenario
5, in which the gene effect was set to 0 for all but RT, with no simu-
lations producing hits for either scenario. Taken together, this
demonstrates that phenotypes with larger factor loadings are appro-
priately weighted when estimating the effects of gene expression and
that the signal for the common factor is by no means a recapitulation
of the signal for the strongest phenotype. For Scenario 6, in which the
gene expression effect in the population was 0 across all phenotypes,
simulation results revealed a null signal, with a well-controlled FPR at
p <0.05 of 4.96% for the top hit simulations and 3.78% for the null
signal simulations. Finally, for Scenario 7, in which the directionality of
the gene effect was reversed for three of the phenotypes, 35.1% of the
runswere identified as significant for the common factor for the tophit
simulations. Importantly, all significant runs in this scenario were also
identified as hits for QGene, which we consider next.

The pattern of results of QGene was also consistent with expecta-
tions. For Scenario 1, there was null signal, with no simulations iden-
tified as QGene hits, and an FPR at p <0.05 of 3.90% for top hit
simulations and 6.70% for the null signal simulations. These Scenario 1
results are consistent with the fact that the population did not deviate
from the factor structure (Supplementary Figs. 3 and 5). The next
closest signal was for Scenario 6 in which all associations were set to 0
in the population, reflecting the fact that a pattern of null associations
across the phenotypes largely aligns with a common factor model for
highly correlated traits. Scenarios 2 and 5, in which the population
effect of the gene on RT and all phenotypes except RT were set to 0,
respectively, evinced a similar QGene signal that was slightly stronger
than Scenario 6 but did not produce any QGene hits. These results
reflect the relatively smaller influence of RT (the phenotype with the
smallest loading) on the overall factormodel. Scenarios 3, in which the
population effect of the gene on Trails-B was 0, evinced the next
highest signal, with 39.4% of runs producing QGene hits for the top hit
simulations, followed by Scenario 4, in which the gene effect on all
phenotypes except Trails-B was set to 0 in the population, with 46.1%
of top hit runs producing QGene hits. As expected, Scenario 7, which
deviated the strongest from the model with directionally opposing
gene effects on matrices, memory, and RT relative to the remaining
phenotypes, showed the strongest QGene signal by far, with 99.6% of
top hit simulations identifying aQGene hit. As would be expected, none
of the simulations produced factor or QGene hits at a Bonferroni cor-
rected threshold for the generating population that reflected the 50th
percentile of the real data, g-factor results. However, the patterning of
results across conditions mirrored that for the top hit simulation
results.

SNP-level simulations
Simulation procedure. Our next simulations sought to compare the
performance of TWAS of a common factor, GWAS summary statistics
generated usingGenomic SEM relative to results obtainedusing T-SEM
of FUSION output for the GWAS phenotypes that define the common
factor. These simulations began by generating 100 sets of genetic
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covariance and sampling covariancematrices following the procedure
described in de la Fuente et al. (2021)39 Data were simulated using
European population LD scores for 1,184,461 HapMap3 SNPs, exclud-
ing the MHC region, for five continuous traits. These traits were spe-
cified to be 20% heritable in the population, genetically and
phenotypically correlate at 0.7, and have minimal population stratifi-
cation (univariate LDSC intercept = 1.04). All traits had a sample size
of 150,000, with no sample overlap across the traits. These GWAS
summary statistics were simulated from the multivariable LDSC
equation as

Z 1j ,Z2j , . . .Z 5j

h i
~N 0,0, . . .0½ �,cov Z 1j ,Z2j , . . .Z5j

� �� �
ð7Þ

where,

covðZ1j,Z2j ,. . . Z 5jÞ=

N1
h2
1

M l jð Þ+ 1 +a1ffiffiffiffiffiffiffiffiffiffiffi
N1N2

p σg1,2

M l jð Þ+ ρ1,2Ns1,2ffiffiffiffiffiffiffiffi
N1N2

p N2
h2
2

M l jð Þ+ 1 +a2

..

. ..
. . .

.

ffiffiffiffiffiffiffiffiffiffiffi
N1N5

p σg1,5

M l jð Þ+ ρ1,10Ns1,5ffiffiffiffiffiffiffiffi
N1N5

p ffiffiffiffiffiffiffiffiffiffiffiffi
N2N5

p σg2,5

M l jð Þ+ ρ2,5Ns2,5ffiffiffiffiffiffiffiffiffi
N2N5

p � � � N5
h2
5

M l jð Þ+ 1 +a5

2
666666664

3
777777775

ð8Þ

and Z 1j ,Z2j , . . .Z5j

h i
reflects the Z-statistics for the five GWAS cohorts,

N is the sample size of the individual GWAS that was set to 150,000 for
all five phenotypes, Ns is the number of overlapping individuals (0 in
this case),M is the number of SNPs from the LD file (1,184,461), ρ is the
phenotypic correlation (set to 0.7 here, but inconsequential when
there is no sample overlap), ℓ(j) is the LD score of SNP j, and a + 1

reflects the univariate LDSC intercept indexing unmeasured con-
founds such as population stratification (1.04). The bivariate LDSC
intercept, expressed as ρ1,2Ns1,2ffiffiffiffiffiffiffiffi

N1N2

p for phenotypes 1 and 2, reduced to 0 for

all pairs of phenotypes as the sample overlap was 0. These simulated
GWAS summary statistics were then used as input to multivariable
LDSC to produce 100 sets of genetic covariance matrices and asso-
ciated sampling covariance matrices and subsequently paired with
simulated SNP effects for theGNL3gene forfive population-generating
scenarios.

The population-level SNP effects on the five phenotypes (bGWAS)
were computed using three, key population parameters: (i) the SNP
effect on gene expression (beQTL), (ii) the effect of gene expression on
the common factor (γ), and (iii) the effect of the common factor on the
phenotypes (i.e., the factor loadings; λi). Thepopulation SNPeffects on
gene expression were taken from the pre-compiled weights provided
by FUSION. We specifically use the top1 weights as this reflects the
best-performingmodel forGNL3 in the basal ganglia. The top1 weights
refer to the single best eQTL weights, where only the individual SNP
with the largest weight is used for TWAS, in this case, rs1108842. The
top1 weight is computed by FUSION as:

top1 =
GEffiffiffiffiffiffiffiffiffiffiffi
n� 1

p , ð9Þ

where G is a matrix of standardized genotypes, E is a vector of stan-
dardized gene expression from the same participant sample, and n is
the number of samples used to calculate theweights, whichwas 144 for
GNL3 expression in the basal ganglia. For the purposes of the current
simulations, the top1 weight was converted to a partially standardized,
population beQTL (i.e., standardized with respect to gene expression,
but not standardized with respect to the SNP variance). This was cal-
culated as:

beQTL =
top1

σSNP

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p , ð10Þ

where σSNP is the standard deviation of the SNP calculated from the
1000 Genomes Phase 3 European reference panel as 0.706 for
rs1108842. Thesecalculations then yielded apopulationbeQTLof0.442.
The true effect (γ) of tissue-specific gene expression on the common
factor was set to reflect the beta coefficient (scaled from amodel using
unit variance identification) from the real data T-SEM results of GNL3
for the g-factor (b= � 0:089), as this reflects a realistic point estimate.
The unstandardized population effect of the common factor on the
phenotypes (λi, also scaled using unit variance identification) was
0.374 using the population parameters described above. Putting these
pieces together, bGWAS,i for each trait, i, in the population was
calculated as

bGWAS,i =beQTL * γ * λi: ð11Þ

Observed SNP effects for each phenotype were then sampled
from the sampling distribution given as

Note that the off-diagonals of the sampling covariance matrix for
the betas were 0, as expected under conditions of 0 sample overlap
(otherwise, the off-diagonal elements are determined by the sampling
correlation, equal to the cross trait LDSC intercept, as given earlier,
rescaled to covariances using the corresponding sampling variances
that are on the diagonals). The population betas, and the corre-
sponding sampling distribution, were perturbed from their expecta-
tions above to reflect five population-generating scenarios. Scenario 1
reflected one in which gene expression operated entirely through the
common factor, such that the population betas were calculated as
described (i.e., no perturbation of population betas). Scenario 2
deviated from the factor model where the direction of the population
betas was reversed for three of the five phenotypes, and Scenario 3
deviated still further where the direction was reversed, and the
population effect doubled for three of the five phenotypes. For Sce-
nario 4 the population betas were set to 0 for three of the five phe-
notypes, and for Scenario 5 the population betas were set to 0 for all
phenotypes. We sampled 100 sets of SNP effects for each of the five
population-generating scenarios.

These simulated SNP-phenotype betas and their standard errors
were then used in analytic pipelines both for T-SEM and for an ad hoc
univariate TWAS of summary statistics from multivariate GWAS. The
T-SEM pipeline involved inputting the simulated SNP-phenotype Z-
statistics for each phenotype to FUSION, converting these phenotype-

ð12Þ
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level FUSION estimates to gene-phenotype covariances, and append-
ing these FUSION estimates to the simulated genetic covariance and
sampling covariancematrices. These matrices were then used as input
to T-SEM to produce both estimates of gene expression on the com-
mon factor and the QGene heterogeneity estimate. To produce ad hoc
TWAS estimates for the common factor, the SNP-phenotype betas
were converted to SNP-phenotype covariances so that they could be
appended to the 100 simulated genetic covariance and sampling
covariancematrices. Theseexpandedmatriceswere thenused as input
intoGenomic SEM toproduceestimates of SNPeffects on the common
factor, and the common factor GWAS summary statistics were then
used as input for univariate analysis in FUSION.

We rananadditional set of simulations that examined the effect of
sampling variation in estimates of the SNP effect on gene expression
(beQTL). The sampling variance (i.e., the squared standard error) of the
beQTL estimate is specifically given as

σ2
beQTL = ðSEbeQTLÞ2 =

1� σ2
SNPðb2

eQTLÞ
σ2
SNPðn� 1Þ : ð13Þ

For Scenario 1, where the generating population matched the
factor model, we then generated a set of 100 population beQTL esti-
mates using the rnorm function in R. These were subsequently used to
create a new set of populationbGWAS estimates for each simulation run,
the SNP effects (bGWAS) sampled from the sampling distribution given
above, and the remainder of the simulation pipeline conducted to
mirror the other SNP-level simulations. Importantly, the FUSION
weight for GNL3 was left unchanged, such that each simulation varied
in the degree of mismatch between the population beQTL and the
functional weight used to produce TWAS estimates.

Simulation results. Results for Scenario 1, for which the population
generating parameters perfectly matched a model of tissue-specific
gene expressionoperating through the common factor, revealed 100%
power for both TWAS of themultivariate GWAS summary statistics for
the common factor (TWASFactor) and T-SEM using a Bonferroni cor-
rected threshold of p < 9.46E−7 and, as would be expected, 0% posi-
tivity for QGene (Supplementary Data 3). For Scenario 2, characterized
by the population direction SNP effect reversed for three of the five
phenotypes, there was 0% positivity for TWASFactor and T-SEM and
100% power for QGene. Scenario 3 then deviated still further from the
factor model with the direction of SNP effects reversed and doubled
for three of the five phenotypes. In this instance, the heterogenous
population effects were large enough that we observe 100% positivity
for TWASFactor and 97%positivity for T-SEM. Critically, we find also that
QGene has 100% power. This scenario demonstrates the key advantage
of the T-SEM framework relative to performing a TWAS ofmultivariate
GWAS summary statistics produced from multivariate methods like
Genomic SEM. That is, while we observe strong concordance between
TWASFactor and T-SEM estimates (Supplementary Data 3; Supplemen-
tary Fig. 6), only T-SEM can employQGene as a means of both guarding
against false positives and identifying patterns of gene expression that
are specific to a trait or subset of traits. For Scenario 4 and 5 simulated
population betas of 0 for three and five of the phenotypes, respec-
tively, the signal was highly attenuated and did not evince observable
deviations from the null (Supplementary Fig. 7 for QQ-plots). We
observe 7%positivity for TWASFactor andT-SEM for Scenario 4,with 2of
the 7 T-SEM hits identified as significant for QGene, and 9% power
for QGene. Finally, for Scenario 5 we observe 0% positivity across
TWASFactor, T-SEM, and QGene.

We end by considering the false positive rate (FPR) at p <0.05 for
the two scenarios for which the population effects can be clearly
considered as reflective of a given null hypothesis. More specifically,
Scenario 1 which perfectly matches the common factor model reflects
the null for QGene, and in this case, we observe a 5% FPR. In addition,

Scenario 5 is reflective of the null for both the common factor signal
and QGene for our specific simulating parameters where the equal
factor loadings across the phenotypes mirror a pattern of population
betas of 0s across the phenotypes. Once again, we find a well-
controlled FPR, with 4% FPR for TWASFactor, 3% for T-SEM, and 7% for
QGene. In summary, SNP-level simulation results indicate that the
positivity rate (i.e., power) for TWASFactor and T-SEM appropriately
scales as a function of the size of population effects and the degree to
which the effects of gene expression on the individual traits corre-
spond to the expectations of the factor model, that FPR is well con-
trolled for population scenarios that reflect a given null, and that
TWASFactor and T-SEM yield a concordant set of association results,
with the critical exception that the QGene statistic estimated within
T-SEM guards against false positives and identifies sources of differ-
entiation of gene expression effects across traits.

Simulation results that included sampling variation in the beQTL

estimates are visually summarized in Supplementary Fig. 8. We find
that, as with the other simulation findings, there was a tight corre-
spondence between T-SEM estimates and those from TWASFactor, that
theseare bothwell-powered approacheswhen thepopulationmatches
the factor model with 93% of the simulation runs significantly at a
Bonferroni corrected threshold, and that QGene evinces a well-
controlled FPR of 5% at p <0.05. Finally, as would be expected, the
downstream consequence of including variation in the population
beQTL estimates was a wider sampling distribution of estimates relative
to the simulations that treated beQTL as a known value (Supplementary
Data 3). As with univariate TWAS, functional weights estimated from
finite samples will result in greater variation in estimates relative to the
population. As the gene expression samples used to train these func-
tional weights increase, imprecision of the TWAS weights will exert an
increasingly minimal influence on the precision of downstream
estimates.

Univariate TWAS
TheFUSIONsoftware13wasused toperform transcriptomic imputation
(TI)/summary-basedunivariate TWAS for the seven cognitive summary
statistics. Functional weights were used from eQTL reference panels
for 13 brain tissue panels from theGenotype-Tissue Expression project
v7 (GTEx; n = 753; https://gtexportal.org/home/datasets)15 and 2 dlPFC
panels from the CommonMind Consortium (CMC; n = 452)16. The
functionalweights utilized in the current study are all publicly available
on the FUSION website and were pre-computed using the package
defaults. These weights were coupled with LD information from the
1000 Genomes v3 European subsample to produce univariate TWAS
test statistics. The FUSION package quality control defaults were also
used for summary-based TWAS, including a minimum R2 imputation
accuracy of 0.7 per gene and amaximum of 50% of SNPs allowed to be
missing per gene. Using these defaults, results were not calculated for
233 genes, for a remainder of 52,849 genes across the 15 tissues. A
strict Bonferroni-corrected threshold was used for both the g-factor
T-SEM results and QGene test statistics using an FDR of 0.05
(0.05/52,849).

TWAS test statistics produced by FUSION are well-calibrated
under the null of no GWAS association but can become inflated as a
result of random quantitative trait loci (QTL) colocalization. This can
occur when a locus is both highly significant and characterized by
extensive LD. To guard against these instances, FUSION offers a per-
mutation test statistic that recomputes the TWAS test statistic condi-
tional on the GWAS effects at that locus after randomly reordering the
QTL weights. This permutation test asks whether the distribution of
QTL effect sizes is by itself sufficient for producing a significant TWAS
association. The output is an empirically derived p-value that indexes
the proportion of permutations that were more significant than the
observed TWAS p-value. For the current analyses, 100,000 permuta-
tions were run per gene for all genes. These univariate, empirical
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p-values were then used as input for a separate, multivariate TWAS of
the g-factor in Genomic SEM. It is important to note that these uni-
variate empirical p-values, and consequently the multivariate TWAS
results, are highly conservative such that genes that are truly causal in
the population may fail to reject the null when their QTLs are char-
acterized by extensive and complex patterns of LD. At the same time,
genes that remain significant for the permutation test can be inter-
preted as less likely to be colocalized due to chance.

T-SEM follow-up analyses
All follow-up analyses were computed at the level of the g-factor, as
opposed to at the level of the individual cognitive traits used as input
for the multivariate TWAS.

Conditional analyses. As many genes are present across tissue types,
and genes overlap in physical proximity, it can also be useful to con-
sider the conditional effect of each gene. Conditional analyses are
conducted in FUSION via an iterative procedure that adds predictors
to the model until no significant associations remain. Analyses were
conducted using the package default locuswindowof 100,000bp. It is
of note that genes that are estimated to be jointly significant are not
necessarily causal and those that are not jointly significant may still be
causal. This is due to the fact that the gene expression features in the
latter casemay simply be characterized by high correlationswith other
features. It is also useful to consider to what extent themodel explains
observed SNP effects by examining SNP effects conditional on TWAS
estimates. In this context, it is informative to examine both the level of
significance of the top SNP within a region before and after con-
ditioning on TWAS estimates along with the proportion of variance
explained in that region by corresponding TWAS results. If TWAS
estimates explain a small proportion of the GWAS variance in a region,
this suggests that TWAS estimates are tagging an independent causal
feature, with the inverse being truewhen large amounts of variance are
explained.

Colocalization analyses. Colocalization analyses can also be used to
examine the probability of a shared causal variant between gene
expression and the trait of interest (i.e., whether there are colocalized
functional and GWAS associations). This reflects an alternative
to a TWAS, which examines the evidence of a signification
association between imputed gene expression and the trait. Bayesian
colocalization analyses were conducted using the coloc R package40

run through FUSION. When implemented via FUSION, the coloc
package works by estimating the posterior probability of different
configurations of a single causal SNP for both gene expression and the
trait, along with the posterior probability that the gene expression and
trait share these configurations. The output is posterior probabilities
for five scenarios. Model 0 (PP0 in Supplementary Data 2) reflects a
situation in which there is no GWAS or functional association. Model 1
(PP1) examines the probability of a functional association only and
Model 2 (PP2) examines the probability of a GWAS association only.
Model 3 (PP3) examineswhether there are independent functional and
GWAS associations. Finally, Model 4 (PP4) examines the probability of
colocalized functional and GWAS associations. As the coloc software
assumes a single causal variant, and FUSION models assume multiple
eQTLs, a low posterior probability of Model 3, as opposed to a high
posterior probability ofModel 4, can also be taken as a good indication
of colocalization. These posterior probabilities were calculated using
the g-factor GWAS summary statistics and functional reference
weights across tissues as input.

Gene-set analyses. GeneNetwork v2.041 was used to estimate gene co-
expression networks in order to better characterize the multivariate
TWAS results for both the g-factor and QGene. Genes used as input for
the g-factor to create the co-expression network included those genes

that were significant at a Bonferroni corrected threshold for 52,849
tests and did not overlap with significant QGene hits for the same gene
and tissue type. These genes were restricted still further to those
unique gene IDs across tissue types for a total of 76 genes used as
input. There were 62 unique genes for QGene, among which 3 were not
present in the database, for a total of 59 gene IDs used as input.
Pathways were subsequently analyzed across 3,033 pathways
from the Reactome database and the three primary Gene Ontology
(GO) databases for biological processes, molecular functions, and
cellular components. A Bonferroni corrected threshold was used to
identify significant pathways for 3033 tests at an FDR of 0.05 (i.e.,
p < 1.65E−5).

Gene expression mediation of overlap with clinically relevant
correlates. Both g and the top gene expression hits for g have been
associated with several clinically relevant outcomes. This includes
previously described associations for Alzheimer’s disease and
ZSCAN942, for major depressive disorder (MDD)34 and Parkinson’s dis-
ease (PD)43 and ZNF184, and for schizophrenia (SCZ)35 and PRSS16.
Following up on this work, we examined whether these patterns of
gene expression explained a significant proportion of the genetic
overlap across g and these correlates of g by utilizing publicly available
GWAS summary statistics for ALZ44 PD45, MDD46, and SCZ19. In line with
themultivariate framework employed here, we examineMDD and SCZ
in conjunction with GWAS summary statistics for anxiety disorders
(ANX)17 and bipolar disorder (BIP)18, respectively, given high levels of
genetic overlap across these pairs of disorders. This was done by
specifying a two-phenotype Internalizingdisorders factor consistingof
MDD and ANX and a Psychotic disorders factor consisting of BIP and
SCZ; we note that the loadings on these two-phenotype factors were
constrained to equality so that the models were locally identified.

We confirmed three pieces of information prior to running the
final analysis. First, we applied univariate FUSION to examine whether
the top three g-factor T-SEM hits (ZSCAN9, PRSS16, ZNF184) were sig-
nificantly associated with the disorders (Supplementary Data 7). As PD
and ALZ were not significantly associated with any of the hits we did
not consider these two traits further. Second, we confirmed that
genetic gwas significantly, genetically correlatedwith the Internalizing
and Psychotic disorders factor, and third that these were not sig-
nificant QGene hits for either psychiatric factor. Finally, we examined
the proportion of genetic overlap across g and these psychiatric fac-
tors that were statistically mediated by gene expression for these top
three hits. This was calculated by first estimating separate models for
each of the two psychiatric factors and each of the three top hits (6
models in total) in which the gene predicted both g and the psychiatric
factor, and the residual covariance across these two factors was freely
estimated. To obtain a standard error on the estimate, the proportion
of genetic overlap mediated by gene expression was calculated as a
“ghost” parameter when estimating the model as:

% mediatedrg =
bGene,g ×σ

2
Gene ×bGene,Psych

bGene,g ×σ
2
Gene ×bGene,Psych + ru g,psychð Þ

, ð14Þ

wherebGene,g is the estimated effect of gene expressionon,σ2
Gene is the

variance of the gene provided by FUSION, bGene,Psych is the estimated
effect of gene expression on the psychiatric factor, and ru g,psychð Þis the
residual genetic covariance across g and the psychiatric factor. The
denominator of this equation then reflects the total genetic covariance
(rg) across g and the psychiatric factor.

Stratified Genomic SEM
Stratified Genomic SEM begins by estimating genetic correlation and
covariancematrices stratified across different gene sets and categories
(referred to as functional annotations) using a multivariable version of
Stratified LDSC11,21. The model of interest is then estimated for the
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functional annotation including all SNPs. In the context of the current
analyses—where the parameters of interest reflect the factor variance
of g, genetic overlap across g and the psychotic disorders factor, and
the residual variances of the phenotypes—the factor loadings are
subsequently fixed from the estimates obtained from the annotation
including all SNPs, and the remaining model parameters are freely
estimatedwithin each annotation. The freely estimated parameter and
sandwich corrected standard error within a given annotation are then
scaled relative to the estimate obtained for the annotation including all
SNPs, such that the estimate now reflects a proportion of the total,
genome-wide estimate. In the unstandardized case, the enrichment
“ratio of ratios” is then calculated by scaling this proportional estimate
by the number of SNPs in the corresponding annotation as a propor-
tion of the total SNPs examined. Enrichment is thenobservedwhen the
proportion of genome-wide variance observed in an annotation is
greater than the proportional size of the annotation.

Zero-order, stratifiedgenetic covariance, and correlationmatrices
were estimated using the s_ldsc function in Genomic SEM. This inclu-
ded 97 functional annotations from the 1000 Genomes Phase 3 Base-
lineLD Version 2.2 provided by the original S-LDSC authors21, tissue-
specific histone marks from the Roadmap Epigenetics Project47, and
tissue-specific gene expression from GTEx15 and DEPICT48. For tissue-
specific gene expression and histone/chromatin marks, we utilized
only brain and endocrine relevant regions in addition to 5 randomly
selected control regions from each (i.e., 10 controls total). We addi-
tionally utilized 29 functional annotations created using data from
GenomeAggregation Database (gnomAD)49 and GTEx15 to examine the
interaction between protein-truncating variant (PTV)-intolerant (PI)
genes and human hippocampal and prefrontal brain cells. Details on
parameters used to create these 29 annotations can be found in
Grotzinger et al. (2022)11.

Enrichmentwas not estimated for continuousorflankingwindow/
control annotations, yielding a total of 168 binary annotations. We
further remove 13 annotations that were non-positive definite and
required smoothing the stratified covariance matrix such that any
point estimate in the matrix produced a Z-statistic discrepancy >1.96
pre- and post-smoothing. For a Bonferroni correction at <0.05 this
corresponds to a significance threshold of p < 3.22E−4 across the 155
remaining functional annotations. Analyses examining enrichment of
the genetic overlap across a g-factor with a psychotic disorder factor
largely mirrored those for the enrichment of the g-factor. When
pruning based on the Z-statistic discrepancy for smoothing, a total of
16 annotations were removed for this analysis; however, we use the
same Bonferroni corrected threshold for 155 tests for comparative
purposes.

We additionally estimate enrichment for g using stratified genetic
correlation (as opposed to covariance) matrices, which can be used to
identify annotations for which enrichment of pleiotropic and trait-
specific signals are disproportionate. Estimation of enrichment in
standardized space (e.g., when using stratified correlation matrices as
input) does not require dividing the enrichment estimate by the pro-
portional size of the annotation, as all annotations (including the
genome-wide annotation) are on the same scale. We did not observe
any significantly enriched annotations for these stratified correlation
analyses (Supplementary Data 11; Supplementary Fig. 17). We also did
not observe any significant enrichment of the genetic correlation
between g and the psychotic disorders factors (Supplementary
Data 11). We note that these analyses are likely underpowered as sig-
nificant enrichment in a standardized space requires an annotation
that indexes genetic overlap across traits far above and beyondwhat is
observed at the genome-wide level. Therefore, we would characterize
our results as reflecting clear genetic risk-sharing within a number of
annotations, but inconclusive as to whether these annotations are
relevant to both pleiotropic and trait-specific signals.

Quality control procedures
We refer the reader to the original article describing genetic g for
details about sample ascertainment, quality control, and related pro-
cedures for the seven cognitive tests9, in addition to the corresponding
articles for the analyzed external traits (Supplementary Data 7 for
details and references). Default quality control (QC) procedures were
used for the munge function in Genomic SEM prior to running either
LDSC or S-LDSC. This included removing SNPs with an MAF < 1%,
information scores (INFO) < 0.9 andfiltering SNPs toHapMap3. The LD
scores used for the overall LDSC model were estimated from the
European sample of 1000 Genomes and excluded theMHC region. LD
scores used as input for both LDSC and S-LDSC were also restricted to
HapMap3 SNPs as these tend to bewell-imputed andproduce accurate
estimates of heritability. For the analyzed binary traits, the heritability
estimates from LDSC were converted to the liability scale prior to
running analyses using the same population prevalence employed
by the corresponding univariate GWAS for comparative purposes
(Supplementary Data 7). We also input a sample prevalence of 0.5
and the sum of effective sample sizes across cohorts contributing to
the meta-analytic GWAS for a given trait as we have shown this to
produce an unbiased estimate of liability scale heritability in the
population50.

Prior to running FUSION, alleles were aligned across univariate
summary statistics to the 1000 Genomes Phase 3 LD reference panel,
restricted to SNPS with an MAF > 1%, SNPs with an INFO score > 0.6,
and restricted to those SNPs that were present across all seven cog-
nitive tests. Using these QC steps, there were 7,857,346 SNPS present
across all tests, of which 1,157,709 SNPs were present in the LD refer-
ence panel data and subsequently used by FUSION to produce uni-
variate TWAS estimates. Univariate FUSION summary statistics were
subsequently standardized with respect to the total variance in the
outcome using the read_fusion function in GenomicSEM. Standard
errorswere also corrected for genomic inflationusing the conservative
approach of multiplying the standard errors by the univariate LDSC
intercept when the intercept was above 1.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are all publicly avail-
able or can be requested for access. Specific download links for various
datasets are directly below. Summary statistics for the g-factor and the
seven, individual cognitive traits are available from: https://datashare.
is.ed.ac.uk/handle/10283/3756. Summary statistics for bipolardisorder
data can be found here: https://figshare.com/articles/dataset/PGC3_
bipolar_disorder_GWAS_summary_statistics/14102594. Summary sta-
tistics for schizophrenia can be found here: https://figshare.com/
articles/dataset/scz2022/19426775. Summary statistics for the major
depressive disorder can be found here: https://datashare.ed.ac.uk/
handle/10283/3203. Summary statistics for anxiety canbedownloaded
here: https://drive.google.com/drive/folders/1fguHvz7l2G45sbMI9h_
veQun4aXNTy1v. Summary statistics for Alzheimer’s disease can be
easily requested here: https://www.niagads.org/datasets/ng00075.
Summary statistics for Parkinson’s disease can be downloaded here:
https://drive.google.com/drive/folders/10bGj6HfAXgl-JslpI9ZJIL_
JIgZyktxn.Data fromgnomADused to identify PI genes for the creation
of annotations can be downloaded here: https://storage.googleapis.
com/gnomad-public/release/2.1.1/constraint/gnomad.v2.1.1.lof_
metrics.by_gene.txt.bgz. Gene count data per cell for creation of
annotations were obtained from: https://storage.googleapis.com/
gtex_additional_datasets/single_cell_data/GTEx_droncseq_hip_pcf.tar.
Data which maps individual cells to cell types (e.g. neuron, astrocyte,
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etc.) were obtained from: https://static-content.springer.com/esm/art
%3A10.1038%2Fnmeth.4407/MediaObjects/41592_2017_
BFnmeth4407_MOESM10_ESM.xlsx. Links to the LD-scores, reference
panel data, and the code used to produce the current results can all be
found at: https://github.com/GenomicSEM/GenomicSEM/wiki. Links
to the BaselineLD v2.2 annotations can be found here: https://data.
broadinstitute.org/alkesgroup/LDSCORE/. Links to the reference
weights used for FUSION from GTEx and CMC can be found here:
http://gusevlab.org/projects/fusion/.

Code availability
GenomicSEM software (which now includes the T-SEM and Stratified
GenomicSEMextensions), is anRpackage that is available fromGitHub
at the following URL: https://github.com/GenomicSEM/GenomicSEM.
Directions for installing the GenomicSEM R package can be found at:
https://github.com/GenomicSEM/GenomicSEM/wiki. The specific
code release used for these analyses can be found here: https://
zenodo.org/badge/latestdoi/456633204.
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