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Functional genomics of complex cancer
genomes
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Cancer functional genomics is the study of how
genetic, epigenetic, and transcriptional altera-
tions affect cancer phenotypes, such as growth
and therapeutic response. Here, we comment on
how, taking advantage of next generation
sequencing, functional genomics, often com-
bined with systems biology approaches, has
revealed novel cancer vulnerabilities beyond the
original paradigm of one gene-one phenotype.

One gene, one phenotype, one drug
For several decades our understanding of the relationship between
cancer DNA and cancer biologywas based on a finite number of strong
cancer genes, whose alterations would lead to the activation of a pro-
tumorigenic cellular pathway. The identification of these potent dri-
vers of cellular transformation guided the successful development of
the first targeted therapies to antagonize their pro-tumorigenic effect
and eventually led to significant improvements in clinical outcomes for
cancer patients. Prominent examples of this paradigm are the devel-
opment of imatinib, a monoclonal antibody targeting the BCR-ABL
fusion protein in chronic myelogenous leukemia1, of trastuzumab to
target HER-2 over-expressing breast cancer patients2, and the use of
BRAF andMEK inhibitors for the treatment ofBRAF-mutantmelanoma3

and of EGFR inhibitors for EGFR-mutant lung cancers4. Despite these
clinical successes, we are approaching a limit to the number of single
druggable targets that have clinical efficacy. Not only have we dis-
covered most key drivers for which there are demonstrated tumor
dependencies, but most of the cancers treated with single driver
therapeutics readily develop drug resistance. Our inability to make
further progress in the targeting of individual cancer genes can be
attributed to the genomic complexity characterizing most cancers, a
complexity that underscores how the concerted activity of multiple
genic alterations in a genetically fluid condition orchestrates cancer
phenotypic outputs that evolve over time. The relatively modest
number of de facto cancer drivers with a potential for targeted therapy
has been dwarfed by the ever-growing collection of genomic and
epigeneticmodifications affectingbothgenes and regulatory elements
that, while individually have small to negligible effects, collectively can
change the physiology of a cancer through amultitude of paths. Thus,
even with actionable mutations, the presence of other activated sig-
naling pathways easily counteracts the effects of targeted interven-
tions (e.g., differences in the impact of BRAF V600E mutations in
colorectal carcinoma vs. in melanoma5). This perspective will focus on
our current understanding of how the genome as a whole affects
cancer biology, from the description of genome-wide mutational

signatures, to GWAS studies that uncover new cancer risk factors, to
cellular screening protocols paired with network analysis and systems
biology approaches that deconvolutewhole genomecomplexities into
specific and actionable cancer dependencies, to the recent discovery
of cytosolic fragmented DNA as a pro-inflammatory molecule.

Interpreting complex genomic profiles
Over the past few years, efforts have been focused on discerning
patterns of mutations, i.e., mutational signatures, that accumulate
throughout the genome during the process of tumorigenesis. The
concept of mutational processes was introduced less than a decade
ago, with the identification of specific patterns of somatic single base
substitutions across a range of cancer types, which were suggestive of
common mechanisms of mutagenesis and potentially ascribable to
specific cellularor geneticmechanisms, such as aging, APOBECactivity
and homologous recombination deficiency (e.g., mutations in BRCA1,
BRCA2, PALB2, ATR, ATM, RAD51, etc.); or environmental exposure,
including UV light and tobacco6,7. For example, UV exposure is asso-
ciated with mutations at TT dimers, and mutations in DNA mismatch
repair genes that underlie Lynch Syndrome (e.g., MSH2 and MLH1)
generate InDels inmicrosatellite repeat tracts throughout the genome.
Thus, unlike an individual RAS gene mutation that generates a cellular
signal that directly affects a cancer phenotype, mutations in these
genomic instability drivers induce cancer through subsequent muta-
tions in multiple cancer genes.

Building on these original concepts, subsequent studies aimed to
explain how some of the divergent and complex mutational land-
scapes observed in cancer could have developed from a single initi-
ating event. This led to the discovery of additional forms ofmutational
signatures and/or genomic scars, including complex rearrangement
events such as chromothripsis, chromoplexy and chromoanasynth-
esis, as well as rearrangement signatures (reviewed in ref. 8). Our own
work on the Tandem Duplicator Phenotype (TDP) uncovered a family
of genomic instability profiles characterized by hundreds of somatic
head-to-tail tandem duplications homogenously dispersed across the
chromosomes, many of which systematical perturb combinations of
classical oncogenes and tumor suppressors that conjointly drive and
sustain tumorigenesis9.

The deconvolution of these instability syndromes (e.g., APOBEC,
single base substitution signatures, microsatellite instability, TDP)
function, in the first instance, as forensic tools for the genomic
archeologyof cancer. Singlebase substitution signatures correlatewell
with specific carcinogen exposures andhave led to the identificationof
a bacterial genotoxin, colibactin, in the mutagenesis of colorectal
cancers10. Type 1 TDP emerges following conjoint deficiencies in
BRCA1 and TP53, microsatellite instability results from the genetic
disruption of specificmismatch repair genes (e.g.,MLH1,MSH2,MSH6,
and PMS2). More recently, the utility of these mutational profiles has
extended to therapeutics: germline deficiencies in DNA mismatch
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repair or polymerase proofreading enzymes (such as POLD1 and POLE)
give rise to cancers with high tumor mutational burden and that are
responsive to immune checkpoint inhibitors (ICIs)11. Theprimary cause
of this sensitivity is the generation of neoantigens that render cancer
cells more immunogenic than cancers with low mutation rates. This
was also found in prostate cancers with disruptive CDK12 mutations
(i.e., TDP group 2/3 mix) that generate fusion neoantigens rendering
this otherwise “immunologically cold” cancer type remarkably sensi-
tive to ICI treatment12. In these cases, it is no longer mutations in
specific genes, but the number and types of codingmutations inmany
genes that is most critical for therapeutic success.

Another area of genomic complexity is in the germline variations
in humanpopulations that can affect cancer risk and cancer outcomes.
Although the most dramatic hereditable elements in cancer biology
involve actual germline mutations in single susceptibility genes as
noted above, GWAS studies have uncovered a number of SNPs asso-
ciated with increased risk of cancers (reviewed in ref. 13). While these
risk factors individually are not useful in clinical predictions, attempts
have been made to develop polygenic risk scores (PRS) to aggregate
the combinatorial effects of these risk alleles.While it is clear that PRSs
correlate with family history, the ability to quantify risk based on the
PRS only slightly improves the ability to assess increased risk for can-
cer. For example, the lifetime risk of developing breast and prostate
cancer for individuals assigned to the top 5% of PRS for these diseases
increases only from ~12% (i.e., baseline risk) to 19%, and from 13 to 22%,
respectively14. Two further challenges with PRSs are that, first, the
composite risk assessments are based on an additive model and spe-
cifically do not take into account gene-gene interactions15, or causal
proteomicmediators16. Therefore, the systems interactions are simply
inferred with no knowledge of the contributing components. More-
over, PRSs are ‘tuned’ for the specific populations from which the
original GWAS data was derived and are less- or even non-predictive
when ported over to other populations17. Therefore, while polygenic
risk scores estimate whole genome effects, they do not provide the
gene-based specificity that other functional and systems genomics
approaches have.

A functional genomic approach to resolve cancer genome
dependencies
Agreat part of gene-based targeted therapeutics is based on exploiting
the dependencies of a cancer from specific pathways that drive cell
survival and proliferation. However, most cancers present with multi-
plemutations that result in either overlapping dependencies or bypass
mechanisms to overcome these vulnerabilities. With this appreciation
of cancer genome complexity, several screening programs have been
recently initiated that map cancer cell drug sensitivities to genomic,
epigenetic, and transcriptional profiles. Large in scale with respect to
both the number of targets/compounds screened and the cancer
systems examined, these approaches aim at capturing the high degree
of heterogeneity underlying human cancer and to exploit it in an
unsupervised manner to uncover specific cancer vulnerabilities that
would not be predicted by our current knowledge of cancer biology.

One such initiative is the Cancer Dependency Map (DepMap), an
ongoing effort to systematically identify genetic and molecular vul-
nerabilities across multiple cancer types by integrating CRISPR/Cas9
and shRNA-based genome-wide loss of function screens, small mole-
cule compound screens, and the genomic and transcriptional specifi-
cities of hundreds of cancer cell lines18. Several cancer cell
dependencies have successfully been identified using this approach.

For example, Bondeson et al. discovered how overexpression of the
phosphate importer SLC34A2, frequently observed in ovarian carci-
noma, associates with increased sensitivity to disruption of the XPR1-
KIDINS220-dependent mechanism of phosphate efflux, which results
in the toxic intracellular accumulation of phosphate and represents a
previously unknown therapeutic vulnerability in ovarian carcinoma19.
The Genomics of Drug Sensitivity in Cancer Project (GDSCP) seeks to
identify optimal interventions for specific cancer genetic features by
assessing the sensitivity profile of over 1000 genomically and tran-
scriptionally characterized cancer cell lines to a large panel of che-
motherapeutic agents and targeted therapies20. The NIH library of
integrated network-based cellular signatures (LINCS) program focuses
on how different genetic and environmental stressors (e.g., growth
factors and cytokines) may impact cancer cell pathways and induce
cells to switch from a pathogenic to a more physiological state21. In
each case, these programs integrate the complex somatic genetics of
cancers with compendia of interventions or perturbations. Again, the
power of the analytical output resides not on the one-to-one rela-
tionship between intervention and genomic alterations, but on the
discovery of underlying principles of function to craft predictive
models.

Beyond canonical targeted therapeutics: systems biology to
unravel complex cancer genome-transcriptome-phenotype
associations
We have ascertained that cancer phenotypes are rarely dictated by
individual genetic alterations but most commonly by combinations of
genomic perturbations. These combinations are complex not only by
virtue of numbers, but also because of the heterogeneity of the
genetic/transcriptional perturbations: truncating or activating muta-
tions, chimeric fusions, expression changes, splice variants, mutations
in regulatory regions, proteomic changes and more. The current
challenge is integrating this multitude of changes into cogent,
mechanism-based models that can be used to predict biological vul-
nerabilities and therapeutic possibilities.

The community of systems biologists are addressing these issues
of combinatorial complexity by developing new approaches for map-
ping andmodeling cancer pathways through the generation of protein
andgene interaction networks (reviewed inKuenzi et al.22).While these
approaches differ with respect to how they define functional interac-
tions between proteins and genes (e.g., transcriptional regulation vs.
protein-protein interaction), the type of datasets that are integrated
and summarized (e.g., gene expression vs. genomics), and the mole-
cular and mechanistic assumptions that they implement (e.g., tran-
scriptional master regulators vs. flux balance), their shared goal is to
estimate how specific genomic, epigenetic, transcriptional and/or
post-transcriptional contexts translate into differential pathway out-
puts and ultimately dictate cancer phenotypes and clinical outcomes.
To generate meaningful molecular networks, systems biology
approaches rely on the availability of large datasets of genomic and
functional associations, similar to the ones described above.

More recently, systems biology has been successfully integrated
with machine learning approaches to predict precise therapeutic
response dependencies. Przedborski et al. described a multi-
disciplinary approach combining a well characterized systems biol-
ogy model of anti-PD-1 immunotherapy to generate simulated clinical
trials and aneural network-based classificationalgorithm that classifies
patients based on their therapeutic response23. This combined
approach allowed to identify biomarkers of anti-PD-1 immunotherapy
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response in real patients and to speculate on potential mechanisms of
drug resistance.

With better genomic datasets arising from comprehensive
experimental screening programs, sophisticated systems biology
approaches that integrate and interpret them, and structured clinical
trials, the two fundamental goals of modern functional genomics—
assessing molecular networks, and associating them with specific
therapeutic response beyond the canonical targeted therapy candi-
dates—may be achieved simultaneously.

DNA instability and biochemical response
We have long been working on the premise that DNA mutations
contribute to the cancer phenotype because of direct downstream
changes in gene activity or protein levels. However, evidence is
emerging that defects in homologous recombination deficiency
generate cytoplasmic DNA that activates the cGAS/STING
pathway leading to production of type 1 interferons and other
cytokines24. This establishes a pro-inflammatory microenvironment
that enhances immune infiltration, and increased sensitivity to TNF-
alpha induced cytotoxicity25,26. Here, mutations in specific genes are
not the inciting factors nor mutations that increase the neoantigen
burden, but rather the general increased levels of fragmented DNA
from a genomic source.

The future of functional genomics: challenges and
opportunities
The functional genomics of cancer, as we have defined it here, rests
either on (1) the complex combinatorial effects of codingmutations
in relevant genes that alter cancer phenotypes, (2) the transcrip-
tional cassettes that generate alterations in critical pathways, (3)
whole genome mutational signatures that serve as forensic tools to
ascertain the origins of a cancer, or (4) whole genome disruption
that activate an immune response either by enhancing the neoan-
tigenic load, or activating the cGAS/STING pathway. An emerging
complication not discussed thus far is the effect of tumor evolution
over time. The ability to evolve and the range of robustness of each
cancer progeny against anti-cancer forces also determines whether
a tumor can be cured27,28. Assessment of such plasticity will need be
calculated to complete the full picture of a cancer through its
clinical life cycle. Though this has been pursued experimentally29

the field is still quite nascent, awaiting more robust methodologies.
However, early simulations are already providing a theoretical fra-
mework for the evolutionary “steering” of a heterogeneous tumor
towards inducing collateral drug sensitivities30. Intriguingly, the
monitoring of tumor evolutionary dynamics to inform the timing of
on/off treatment cycles of anti-androgens in prostate cancer has
been applied in the clinic with interesting preliminary results31.
Therefore, the future is hopeful. Ultimately, it is conceivable that
once all regulatory and structural mutations can be detected in a
cancer genome with their functions assigned, and the measure of
genomic instability ascribed, future computational approaches
could better predict the responsiveness and potential curability of
cancers even with complex genomes. Equally intriguing is whether
targeting the mechanisms that sustain elevated genomic instability
may act to limit tumor heterogeneity and to limit the subsequent
development of new mutations. Indeed, this may be a new form of
adjunctive cancer therapeutics to enhance the curability of
genetically complex malignancies.
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