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Systematic Mendelian randomization using
the human plasma proteome to discover
potential therapeutic targets for stroke
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Stroke is the second leading cause of deathwith substantial unmet therapeutic
needs. To identify potential stroke therapeutic targets, we estimate the causal
effects of 308 plasma proteins on stroke outcomes in a two-sampleMendelian
randomization framework and assess mediation effects by stroke risk factors.
We find associations between genetically predicted plasma levels of six pro-
teins and stroke (P ≤ 1.62 × 10−4). The genetic associations with stroke colo-
calize (Posterior Probability >0.7) with the genetic associations of four
proteins (TFPI, TMPRSS5, CD6, CD40). Mendelian randomization supports
atrial fibrillation, body mass index, smoking, blood pressure, white matter
hyperintensities and type 2 diabetes as stroke risk factors (P ≤0.0071). Body
mass index, white matter hyperintensity and atrial fibrillation appear to
mediate the TFPI, IL6RA, TMPRSS5 associations with stroke. Furthermore,
thirty-six proteins are associated with one or more of these risk factors using
Mendelian randomization. Our results highlight causal pathways and potential
therapeutic targets for stroke.

Stroke is the second leading cause of death worldwide, estimated to
cause ~6.5million deaths annually, and is the leading cause of long-term
disability, with a growing burden on global health1. Therefore, there is a
need for new and improved treatments and prevention strategies for
stroke. While conventional risk factors, such as hypertension2, account
for ~50%of stroke risk, there remains a need to identify new risk factors,
biomarkers and therapies for stroke3. In 2017, ~75% of FDA-approved
drugs were targeted at human proteins4. Plasma proteins play a central
role in a range of biological processes frequently dysregulated in
diseases5–8, and represent a major source of therapeutic targets for
many indications4,9,10. In particular, plasma proteins are particularly
relevant for circulatory diseases such as stroke as they are in physical

contact with the blood vessels (compared to tissue-specific diseases,
e.g. inflammatory bowel disease11).

Genome-wide association studies (GWAS) ofplasmaprotein levels
have identified genetic variants that are associated with proteins,
usually referred to as ‘protein quantitative trait loci (pQTLs)’12–17,
offering an opportunity to test the causal effect of potential drug
targets on the human disease phenome using Mendelian randomisa-
tion (MR)18,19. Briefly, MR can be thought of as nature’s randomised
trial, by capitalising on the random allocation of genetic variants at
conception to separate individuals into subgroups (one equivalent to
placebo and the other to intervention in a randomized control trial,
RCT) and so allows testing of the potential causal association of risk
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factors (e.g. plasma proteins) with disease outcomes (e.g. stroke) as
confounders should also be randomised20.

Here, we perform a two-sample MR to estimate the causal
effects of plasma proteins on stroke, where we derived genetic
instrumental variables (IV) of 308 circulating plasma proteins from
4994 participants21 and obtained genetic associations of stroke
subtypes (any stroke (AS), any ischaemic stroke (IS), large artery
stroke (LAS), cardioembolic stroke (CES) and small vessel stroke
(SVS)) from the MEGASTROKE GWAS22. Then, to verify the robust-
ness of the proteins’ instrumental variables, we perform colocali-
zation analyses. We evaluate the causal relationship of plasma
proteins on stroke risk factors and assess the potential safety effects
of targeting the proteins for stroke therapy by performing a
phenome-wide MR in UK Biobank GWASs23.

Results
Identification of stroke-associated proteins
Three hundred and eight plasma proteins were tested for causal rela-
tionshipswith stroke outcomes (Fig. 1 and SupplementaryData 1, 2). As
cis-pQTLs were considered to have a more direct and specific biolo-
gical effect on the protein (compared to trans-pQTLs)24, we first per-
formedMRanalyses usingonly cis-pQTLs as instrumental variables and
identified six putatively causal proteins with at least one stroke out-
come (P ≤ 1.62 × 10−4 = 0.05/308 proteins; Figs. 2, 3 and Supplementary
Fig. 1): TFPI (tissue factor pathway inhibitor), TMPRSS5 (Transmem-
brane Serine Protease 5), CD40 (B Cell Surface Antigen CD40), MMP12
(Matrix Metallopeptidase 12), IL6RA (Interleukin 6 Receptor) and CD6
(T-Cell Differentiation Antigen CD6). TFPI, CD40, IL6RA and MMP12
were associated with a lower risk of any stroke and any ischaemic
stroke, while TMPRSS5 and CD6 was associated with a higher risk of
any stroke. Among the ischaemic stroke subtypes, genetic predis-
position to upregulated TMPRSS5 was associated with higher risk of
any ischaemic stroke (OR per-1-SD higher plasma protein level [95%
CI] = 1.059[1.038, 1.08]; P = 1.36 × 10−8) and cardioembolic stroke
(OR[95%CI] = 1.089[1.045, 1.134]; P = 5.33 × 10−5). Higher genetically
predicted levels of both MMP12 (OR[95%CI] = 0.793[0.73, 0.861];
P = 3.53 × 10−8) and CD40 (OR[95% CI] = 0.795[0.723, 0.874];
P = 2.09 × 10−6) were associated with lower risk of large artery stroke.
Higher genetically predicted soluble IL6RA (and lower IL6R
signalling25) was associated with lower risk of small vessel stroke
(OR[95% CI] = 0.939[0.909, 0.970]; P = 1.60 × 10−4).

We extended the MR analyses to include trans-pQTLs as instru-
mental variables and identified nine additional proteins associated
with at least one stroke outcome (P ≤ 1.62 × 10−4; Supplementary
Data 3). However, seven proteins (VSIG2, EPHB4, Gal4, ICAM2, LIFR,
SELE and vWF), included instrumental variables from the ABO locus,
which is well known to have pleiotropic effects. We note that the ABO
protein has previously been identified as a genetic risk factor for
stroke26. Interestingly, both Bone Morphogenetic Protein 6 (BMP6)
and Growth Differentiation Factor 2 (GDF2, also known as BMP9) were
instrumented by trans-pQTLs located in the genetic regions of KNG1
(Kininogen 1) and F11 (Coagulation Factor XI). Both genes are essential
for blood coagulation and the latter has previously been reported tobe
a causal risk factor for stroke27. GDF2 has also been found to have a
causal role in pulmonary artery hypertension (PAH)28. We, therefore,
focused further analyses on the proteins with cis-pQTLs only (i.e. TFPI,
TMPRSS5, CD40, MMP12, IL6RA, CD6), as these associations with
stroke are unlikely to be due to pleiotropy.

Results of sensitivity analyses confirmed the robustness of the
primary MR analyses. There was no evidence for heterogeneity in the
association of any of the six proteins in Supplementary Data 3 as
measured by Cochran Q statistics (PQ-stat > 0.05), and no indication
that the instrumental variables had horizontal pleiotropy as assessed
by MR-Egger intercept (PEgger-Intercept > 0.05) or MR-PRESSO global
pleiotropy test (PGlobalTest > 0.05). All MR causal effect estimates

adjusting for correlation of IVs were consistent with the primary ana-
lyses (SupplementaryData 4).Moreover,MRcausal estimates using IVs
derived from conditionally independent variants and credible sets of
variants from fine-mapping showed consistent results (Supplementary
Data 5, 6). There was no evidence of reverse causations (Supplemen-
tary Data 7).

Sharedgenetic associationswithprotein levels and riskof stroke
We formally tested whether the associations of the variant with the
protein levels used as IVs and the stroke outcome are shared for the
six proteins using statistical colocalization analysis. We applied a
Bayesian algorithm, Hypothesis Prioritisation in multi-trait Coloca-
lization (HyPrColoc), which allows for the assessment of colocali-
zation across multiple complex traits simultaneously (Methods), to
test whether the protein associations and stroke associations are
shared. The association of the genetic variants selected as instru-
mental variables for four proteins (TFPI, TMPRSS5, CD40 and CD6)
colocalized with the stroke associations (posterior probability (PP)
≥0.7) (Supplementary Data 8 and Supplementary Fig. 2) i.e. the
associations in these regions were likely due to the same underlying
causal variants. The colocalization suggested the genetic variants
associated with TFPI (pQTLs) were due to the same genetic variants
underlying the association with any stroke. Similarly, CD6 pQTLs
colocalized with any stroke genetic associations; CD40 pQTLs
colocalized with the genetic associations for any stroke, any
ischaemic stroke and large artery stroke; TMPRSS5 pQTLs coloca-
lized with any stroke, any ischaemic stroke and cardioembolic
stroke genetic associations. Notably, we found for TFPI, CD40 and
CD6 that >80% of the posterior probability of colocalization of the
primary genetic association with stroke and the respective protein
levels were explained by a single variant (rs67492154, rs4810485 and
rs2074227 for TFPI, CD40 and CD6, respectively). The colocalization
evidence at MMP12, was less strong than with the other proteins,
with colocalization PP >0.6 and there was no colocalization evidence
for IL6RA with stroke, which could be due to violation of the single
causal variant assumption of the HyprColoc method.

Identification of likely causal stroke risk factors
To understand potential causal mechanisms between plasma proteins
and stroke, we conducted two-step mediation MR analyses for con-
ventional stroke risk factors. First, we performed two-sample MR
analyses to characterise the causal relationship of the stroke risk fac-
torswith all stroke outcomes. Second,weassessed the causal effects of
the proteins on the highlighted risk factors.

For each of the seven stroke risk factors we considered (i.e., blood
pressure (BP), atrial fibrillation (AF), type 2 diabetes (T2D), white
matter hyperintensity (WMH), body mass index (BMI), smoking
behaviours and alcohol consumption), instrumental variables were
derived from published GWAS summary statistics restricted to Eur-
opean populations (Table 1 and Supplementary Data 9). AF, T2D,
smoking, increased systolic BP, diastolic BP, pulse pressure, WMH and
BMI increased the risk of any stroke (P ≤0.05/7 = 0.007, Bonferroni-
adjusted for seven risk factors; Fig. 4; Supplementary Data 10 and
Supplementary Fig. 3). As expected, systolic BP exhibited the strongest
effect of all the risk factors on any ischaemic stroke and LAS (OR per-1-
SD [95% CI] = 1.68[1.57, 1.80] and 2.58[2.21, 3.01], respectively) and AF
had a positive association with CES (OR[95% CI]: 2.04[1.92, 2.16];
P = 2.72 × 10−125). WMH increased risk of any stroke and SVS (1-SD
increased in WMH was associated with 49% higher odds for SVS
(OR[95% CI] = 1.49[1.17, 1.9]; P =0.00147). Both genetically determined
higher T2D risk and smoking initiation were associated with increased
risk of LAS and SVS; and genetically determined higher BMI was
associated with a higher risk of LAS. No association was observed
between alcohol consumption with any of the stroke out-
comes (P >0.05).
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Identification of stroke risk factors associated proteins
We performed MR of all 308 plasma proteins with the six highlighted
stroke risk factors (excluding alcohol consumption which was not
associated with increased stroke risk in the above MR analyses). After
multiple testing correction, 39 proteins instrumented with cis-pQTLs
were associated with at least one stroke risk factor (P ≤ 1.62 × 10−4): five
with systolic BP; seven with diastolic BP; seven with pulse pressure; six
with AF; four with T2D; nine with BMI; three withWMH; and eight with
smoking. There was no evidence of horizontal pleiotropy, and sensi-
tivity analyses yielded consistent causal effect estimates (Supplemen-
tary Data 11).

Among the six stroke-associated proteins, three proteins were
found to be associatedwith one ormore of the stroke risk factors (Fig. 5
and Supplementary Fig. 4). Of note, we found that genetically predicted
higher TFPI level was associated with lower WMH and lower BMI (a
0.06 SD lower WMH β[95% CI] =−0.06[−0.08, −0.04]; P= 7.15 × 10−10

Fig. 2 | Venn diagram of identified potential causal proteins for stroke sub-
types. * Indicates the according toprotein is instrumentedby cis-pQTLsonly. These
six proteins are taken for further analyses.

Fig. 1 | Overview of this MR study. Four O-link panels were used to measure
plasma proteins in a subset of ~5000 samples from the INTERVAL study. Genetic
variants associatedwith plasmaprotein levelswere identified based on results from
their corresponding GWAS. These genetic variants were then used as proxies for
the protein level to test their relationship with stroke using data from the MEGA-
STROKE consortium for stroke outcomes (Primary MR), and with conventional
stroke risk factors that were causally associated with stroke (Secondary MR).
Colocalization analyses were performed to test the shared genetic associations of

protein level, stroke outcomes and risk factors. Mediation analyses by two-stepMR
were performed for proteins that were potentially causally associated with both
risk factors and strokeoutcomes.We also tested the relationships of the potentially
causal stroke proteins with 784 phenotypes in the UK Biobank to test a broad
spectrumof potential effects of hypothetical therapeutic agents for stroke. #Stroke
outcomes: any stroke; any ischaemic stroke; large artery stroke; cardioembolic
stroke; small vessel stroke.
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and a 0.013 SD lower BMI β[95% CI] =−0.013[−0.019, −0.007];
P = 3.56 × 10−5 per-SD higher TFPI; Supplementary Data 12). Genetically
determined higher TMPRSS5 levels were associated with higher risk of
AF (OR[95% CI]: 1.03[1.016, 1.045]; P= 2.15 × 10−5). Genetically higher
IL6RA levels were associated with a 4.1% lower risk of AF (OR[95% CI]:
0.96[0.95, 0.97]; P= 2.55 × 10−18). All the effect directions of these
associations of proteins with risk factors were consistent with those of
the proteins with stroke, indicating that these risk factors may be
potential mediators of the protein-stroke associations.

Among the 39 proteins that were associated with at least one
stroke risk factor, 36 were found to be associated with the risk factors
but not stroke outcome (Supplementary Data 11). For example,
genetically determined Fibroblast Growth Factor 5 (FGF5) level was
associated with a higher risk of AF (OR = 1.056 per-SD higher FGF5);
each SD higher genetically determined Glypican 5 (GPC5) was asso-
ciated with a higher risk of T2D (OR = 1.02); each SD higher in geneti-
cally determined scavenger receptor class F member 2 (SCARF2) was
associated with a 0.062-SD higher WMH. We found that higher
genetically determined Alpha-L-Iduronidase (IDUA) and sialic acid-
binding Ig-like lectin 9 (SIGLEC9)wereboth associatedwith lower BMI.
Higher genetically determined serine protease 27 (PRSS27) was asso-
ciated with higher SBP, higher DBP and higher PP, while higher
genetically determined levels of Neurocan (NCAN) were associated
with lower risk of T2D (OR =0.76) and 0.07-SD lower SBP.

Mediation effect of proteins on stroke outcomes via risk factors
To investigate the indirect effect of proteins on stroke outcomes via
risk factors, we carried out a mediation analysis using the effect esti-
mates from two-step MR and the total effect from primary MR. This
analysis was restricted to three proteins, i.e. TFPI, TMPRSS5 and IL6RA,
that showed evidence of an effect in both MRs with risk factors and
stroke outcomes. We used the product method to estimate the indir-
ect effect and the delta method to estimate the standard errors (SE)
and confidential interval (CI) (Methods). The proportion of mediation
effect of TFPI via WMH is about one-fifth (20.8%), while the mediation
effect via BMI is modest (3.8%). The indirect effect of TMPRSS5 on the
risk of cardioembolic stroke via AF contributes to a quarter of the total
effect (24.7%). Similarly, the proportion of mediation effect of IL6RA
on stroke via AF is 27.6% (Fig. 6 and Supplementary Data 13).

Phenome-wide MR (Phe-MR) analysis of stroke-associated
proteins
To assess whether the six stroke-associated proteins have either ben-
eficial or deleterious effects on other indications, we performed a
broader MR screen of 784 diseases and traits in the UK Biobank
(Supplementary Data 14). Our Phe-MR results can be interpreted as a
per-SD increase in genetically determined plasma protein level that
leads to a higher or lower odds of a given disease or trait. If the effect
direction of the protein on the disease or trait is the same as on stroke,

Fig. 3 | Effects of six potential causal proteins on stroke outcomes.MR analyses
of the effect of proteins on stroke outcomes. The squares are the causal estimates
on the OR scale, and the whiskers represent the 95% confidence intervals for these
ORs. N_SNPs: number of SNPs used for the estimation of the causal effects in this
plot. P values were determined from the inverse-variance-weighted two-sampleMR

method. Statistical heterogeneity was assessed using the I2 statistic. OR odds ratio,
CD40 B cell surface antigen CD40, TFPI tissue factor pathway inhibitor, MMP12
matrix metallopeptidase 12, IL6RA interleukin 6 receptor subunit alpha, TMPRSS5
transmembrane serine protease 5, CD6 T-cell differentiation antigen CD6.
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the effect is considered 'beneficial' and 'deleterious' otherwise. Overall,
34 associations were identified (P ≤0.05/6/784 = 1.06 × 10−5), of which
21 (61.7%) were considered beneficial (Supplementary Data 15).

Notably, genetically higher levels of plasma TFPI were not only
associated with a lower risk of stroke, but also a lower risk of other
diseases involving the circulatory system (cerebrovascular disease,
other disorders of arteries), metabolic traits (hyperlipidemia and
hypercholesterolaemia, disorders of lipid metabolism) and digestive
system disorders (acute gastritis); however, they were also associated
with a higher risk of excessive or frequent menstruation. Genetically
higher levels of plasma TMPRSS5 were associated with a higher risk of
cardioembolic stroke, as well as protein−calorie malnutrition (meta-
bolic trait) (Fig. 7 and Supplementary Fig. 5). All the associations for
CD40, including haemoptysis and abnormal sputum (respiratory sys-
tem) were considered beneficial. Effects of IL6RA on the risk of dis-
eases on circulatory systemdisorders (ischaemic heart disease, cardiac
dysrhythmias, atrial fibrillation and flutter, coronary atherosclerosis,
angina pectoris, abdominal aortic aneurysm) and musculoskeletal
disease (other inflammatory spondylopathies) were considered bene-
ficial; but deleterious effects on dermatologic symptoms (e.g. cellulitis
and abscess of arm/foot), digestive system (e.g. cholelithiasis) and
chronic renal failure [CKD] (Supplementary Fig. 6). Genetically pre-
dicted CD6 was associated with alcoholic liver damage and degen-
eration of intervertebral disc (musculoskeletal system), which were
considered deleterious. Summary results of the primary and sensitivity
MR analyses for all the 784 phenotypes are provided in Supplementary
Data 15.

Discussion
Based on genetic data for 308 proteins involved in cardiovascular
disease, inflammation and neurological processes from ~5000
individuals21, our study provides robust evidence that six proteins
(TFPI, TMPRSS5, CD40, MMP12, IL6RA and CD6) are causally asso-
ciated with stroke and four of them showed genetic colocalization
evidence with stroke outcome(s). We showed that AF, systolic and
diastolic BP, BMI, T2D, WMH and smoking were causally associated
with risk of any stroke (and some ischaemic stroke subtypes),
demonstrating a key role of the risk factors in the pathogenesis of
stroke consistentwith classical epidemiological data29–37.We found the
associations of TFPI, IL6RA and TMPRSS5 with stroke were likely to be
mediated by one or more of these risk factors. In addition, we showed
that 36 additional proteins were causal for these risk factors. Finally,
the Phe-MR highlighted additional beneficial indications of ther-
apeutically targeting the six stroke-associated proteins and, impor-
tantly, indicated a few potential safety concerns. Although, asmany of
the phenotypes tested are not independent, the definition of sig-
nificance used heremight be too conservative (Bonferroni-corrected P
value adjusted for the number of proteins tested (six) and the total
number of phenotypes (784) (P =0.05/6/784= 1.06 × 10−5).

Tissue factor pathway inhibitor (TFPI) is primarily secreted by
endothelial cells and is an anticoagulant that acts on the clotting
cascade38. Observational studies showed that lower levels of free TFPI
were associated with a higher risk of ischaemic stroke39 and a higher
risk of first and recurrent venous thrombosis40, while inhibition of TFPI
showed to be an effective treatment of bleeding associated with

Table 1 | Data sources for the Mendelian Randomisation analysis in the current study

Phenotype Sample size # Imputation reference panel Ancestry Source

Olink protein levels

Inflammation panel (INF1) 4994 1000 Genomes Phase
3 +UK10K

European INTERVAL study (unpublished data)

Cardiovascular panels (CVD2 & 3)

Neurology panel (NEURO)

Primary outcomes

Any stroke 40,585/406,111 1000 Genomes phase 1 European 17 studies (Malik et al.)22

Ischaemic stroke 34,217/406,111

Large artery stroke 4373/406,111

Cardioembolic stroke 7193/406,111

Small vessel stroke 5386/406,111

Secondary outcomes

Atrial fibrillation 60,620/970,216 HRC European 6 Studies (Nielsen, et al.)76

Type 2 diabetes 74,124/824,006 HRC European 32 Studies (Mahajan, et al.)77

Body mass index 694,649 HRC European GIANT +UK Biobank (Pulit, et al.)79

Tobacco and alcohol use HRC European 29 Studies (Liu, et al.)80

AgeSmk 341,427

CigDay 337,334

SmkCes 547,219

SmkInit 1,232,091

DrnkWk 941,280

Blood pressure (BP) 445,415 HRC European UK Biobank (Surendran, et al.)75

Systolic BP

Diastolic BP

Pulse pressure

White Matter Hyperintensity 42,310 HRC Trans-ethnic, mainly
European

UK Biobank + CHARGE + stroke patients (Persyn
et al., 2020) 78

On-target side-effects evaluation

784 Phenotypes 408,961 HRC European UK Biobank (Zhou, et al.)91

# Sample size shown as a total number for quantitative traits and Cases/Controls for binary traits.
UK10K UK Biobank 10K reference, HRC the haplotype reference consortium, AgeSmk age of initiation of regular smoking, CigDay cigarettes per day, SmkCes smoking cessation, SmkInit smoking
initiation, DrnkWk drinks per week.
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haemophilia41. Consistent with this, we provided genetic evidence for
directionally consistent effects of TFPI on multiple ischaemic traits,
such as ischaemic stroke and ischaemic heart disease, and opposite
effects on haemorrhagic traits (e.g. gastrointestinal haemorrhage,
P = 5.23 × 10−5; excessive or frequent menstruation in females,
P = 2.70 × 10−10). We also showed that higher levels of TFPI were asso-
ciated with lower BMI and WMH (Fig. 5), and lower risk of hyperlipi-
demia, specifically hypercholesterolaemia (Fig. 7), suggesting that the
pathways through which TFPI influences stroke risk might go beyond
anticoagulation, e.g. inflammation or atherosclerotic changes. Animal
studies41,42 provide supporting evidence that TFPI has a role in
attenuating arterial thrombus formation and atherosclerosis devel-
opment. Future studies of TFPI in cardiovascular diseases focusing on
the role of TFPI activity anddifferent TFPI isoforms in the development
of atherogenesis could provide further insights.

TMPRSS5 (transmembrane protease serine 5, also known as Spi-
nesin) is a member of the Type II transmembrane serine protease
family (TTSPs)43. For example, TMPRSS10 (Corin), one member of the
TTSPs, has been reported to be involved in cardiac conduction and
myometrial relaxation and contraction pathways in regulating blood
pressure and promoting natriuresis, diuresis and vasodilation44. Unlike
Corin, the function of TMPRSS5 on cardiovascular systems is poorly
understood. Human TMPRSS5mRNA has been shown to be expressed

in the brain and the protein is predominantly expressed in neurons, in
their axons in the spinal cord45. A mousemodel with mutant TMPRSS5
had reduced proteolytic activity and suggested a role in hearing loss46.
We were unable to find other studies that implicate TMPRSS5 in car-
diovascular disease, both for any ischaemic stroke and cardioembolic
stroke, an effect thatmight bemediated by the risk of atrial fibrillation
(Fig. 4). Furthermore, Phe-MR analysis revealed suggestive additional
beneficial effects when targeted at TMPRSS5, e.g. reduced risk of
Parkinson’s disease (P = 2.15 × 10−5) and left bundle branch block
(P = 1.43 × 10−5). Taken together, TMPRSS5 represents a potentially
promising therapeutic target for atrial fibrillation and cardioembolic
stroke, and further research is warranted to decipher the mechanism
through which it protects against cardiovascular and neurological
diseases.

In addition, we have identified CD6, a lymphocyte surface recep-
tor, associated with an increased risk of any stroke. CD6 is a pan T-cell
marker47,48, and is involved in T-cell proliferation and activation
through its interaction with ALCAM (activated leucocyte cell adhesion
molecule)49. The interactionofCD6andALCAM is required topromote
an inflammatory T-cell response50. Interestingly, ref. 51 found that
acute ischaemic stroke patients with upregulated ALCAM at admission
had a significantly poorer survival rate (P <0.001). Given this interac-
tion and that the recruitment of leucocytes and platelets is widely

0.5 1 1.5 2 2.5

Estimated effect of risk factors on stroke
3 3.5 4

Fig. 4 | Causal effects of risk factors on stroke outcomes. MR analyses of the
effect of risk factors on stroke outcomes. The squares are the causal estimates on
the OR scale, and the whiskers represent the 95% confidence intervals for these
ORs. N_SNPs number of SNPs used for the estimation of the causal effects in this

plot. P values were determined from the inverse-variance-weighted two-sampleMR
method. Statistical heterogeneity was assessed using the I2 statistic. OR odds ratio,
SBP systolic bloodpressure, AFatrialfibrillation,WMHwhitematter hyperintensity,
T2D type 2 diabetes, BMI body mass index, Smoking smoking initiation.
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regarded as a pivotal step in the inflammatory response associated
with cerebral ischaemia52,53, together with our finding that CD6 is
associated with stroke, further investigation of CD6 in the context of
stroke is justified.

When comparingMR results using pQTLs derived from two partly
complementary techniques [the Olink (antibody-based assay, current
study) and the SomaScan (aptamer-based assay, measured in ~3000
participants from the INTERVAL study12)], we found that 257 proteins
(out of 357) weremeasured by both platforms. Of which, 99% (255 out
of 257) were found to have consistent results on stroke outcomes in
both platforms and TFPI and TMPRSS5 were unique to Olink (Sup-
plementary Data 16). Genetic variants in the IL6R region are associated
with the risk of inflammatory-related diseases25, coronary heart
disease54, stroke55, atrial fibrillation56 and rheumatoid arthritis57.
Moreover, IL6R is the target of an FDA-approved therapy (Tocilizu-
mab) for the treatment of several diseases, e.g. rheumatoid arthritis
and systemic juvenile idiopathic arthritis. Phase II clinical trials testing
tocilizumab for the therapy of non-ST elevation myocardial infarction
have reported promising results58 and a phase III clinical trial testing
Ziltivekimab in cardiovascular disease and chronic kidney disease has
recently started (NCT05021835).

To avoid violating the MR assumptions, we performed various
sensitivity analyses. We used LD clumping at R2 ≤ 0.1 for pQTLs with
P ≤ 5.0 × 10−8 to choose instruments for each plasma protein level.
However, concern59 has been raised about the independency of the
variants used as instrumental variables leading to violation of the
InSIDE (instrument strength independent of direct effect) assump-
tion of the MR-Egger method used. Therefore, we performed sev-
eral sensitivity analyses to validate the robustness of the
instrumental variables used in the MR analysis. Firstly, we per-
formed MR analyses adjusting for the correlation of the variants

used and obtained consistent and similar causal effect estimates to
those obtained without adjusting for the correlation (Supplemen-
tary Data 4). Secondly, we performed conditional analysis and fine-
mapping analysis to obtain instrumental variables for the six
potential causal proteins, and we obtained consistent MR results
(Supplementary Data 6 and Supplementary Fig. 7). Finally, coloca-
lization analyses across the genetic associations with protein levels
and stroke outcomes showed they were likely to have shared causal
variants across these traits, supporting the validity of instrumental
variables and the causal protein associations (Supplementary
Data 8). We acknowledge, where there is evidence that the pQTL
and the genetic variants associated with the outcome are shared,
strengthens the support for theMR findings. However, we recognise
that lack of colocalization evidence does not invalidate the findings
as there is a high false negative rate with colocalization methodol-
ogies (typically around 60%)60.

The Olink assay61 used in our study measures the bulk con-
centration of protein in plasma. However, because this assay cannot
distinguish free from bound protein or active from inactive, only
limited mechanistic insights can be made. Due to the limited cap-
ture of the human proteome (1.5% of all known proteins), we could
not evaluate the effects of all proteins within the same family or all
proteins encoded within the same genomic region. For instance, we
found that TMPRSS5 was a potential novel drug target for cardi-
oembolic stroke, while other proteins in the Type II transmembrane
serine protease family (TTSPs) that play crucial roles in cardiac
functions43,62 could not be evaluated. Thus, a targeted study of the
TTSP family is warranted to comprehensively evaluate their effects
on cardiovascular and neurological traits. We acknowledge there
are limitations regarding the current multiplex platform for protein
abundance measurements. For instance, IVs linking to a protein-
altering variant (PAV) can influence the measurement of the protein
binding affinity (‘abundance’), leading to disconnection of the
protein abundance and the function of themutant protein63. But cis-
eQTL (expression Quantitative Trait Loci) are less likely to influence
the protein abundances as measured by antibody-based Olink
assays compared to the Somalogic aptamer-based assays63. A recent
proteome study15 using Somalogic aptamer-based platform showed
that cis-eQTLwere less likely to affect the protein binding. Indeed, if
a significant pQTLs was in high LD with cis-eQTL, it was less likely to
lead to binding artefacts. To test whether the IV(s) for the six target
proteins were cis-eQTL for their protein-encoding gene, we sought
eQTL from GTEx V8 and identified that IV(s) for five of the proteins
(not MMP12) were significant eQTL in at least one tissue. The effect
direction of these variants on gene expression and protein levels
were consistent for TFPI, CD40, CD6 and TMPRSS5, except for IL6R.
The diverse effect direction of variant on IL6R gene expression and
IL6RA protein level is likely due to the measurement of IL6RA. The
Olink assay only captures the circulating free IL6RA while all iso-
forms of IL6R transcripts are captured collectively by the gene
expression measurements in tissues (blood and artery).

Our results highlight potential targets of future therapies for
stroke outcomes and illustrates the relevance of proteomics in iden-
tifying drug targets. Further research is necessary to assess the viability
of the six identified proteins as drug targets for stroke treatment.
Additional drug targets may be uncovered as more comprehensive
proteomics platforms become available and more diverse non-
European ancestry populations are increasingly studied. Finally,
there is an increasing need for similarly comprehensive proteomics
across different tissues and organs to evaluate tissue- or organ-specific
protein effects.

Methods
The overall study design is illustrated in Fig. 1. Details of the methods
and study participants are provided below.

Fig. 5 | Effect sizes (Z-score) of six potential causal proteins on stroke outcomes
and causal risk factors for stroke.MR analyses of the effect of proteins on stroke
and stroke risk factors. Colours in each lattice of the heatmap represent the effect
size (Z-score), with genetically predicted increased protein level associated with a
higher risk of outcomes coloured in brown and lower risk of outcomes coloured in
blue. The darker the colour the larger the effect size. *Indicates that the causal
association is significant, which passed Bonferroni correction of PcausalEstimate_IVW

≤0.05/308 = 1.61 × 10−4 and passed sensitivity tests with PQstat ≥0.05 and
PEggerIntercept ≥0.05.
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Fig. 6 |Mediationeffects ofproteinonstrokevia risk factors.Mediationanalyses
to quantify the effects of three proteins on stroke outcomes via risk factors. a TFPI
effect on stroke mediated by BMI. b TFPI effect on stroke mediated by WMH;
c TMPRSS5 effect on cardioembolic stroke mediated by AF; d IL6RA effect on

stroke mediated by AF. βEM effects of exposure on mediator, βMO effects of med-
iator onoutcome,βEO effects of exposureonoutcome.BMI bodymass index,WMH
white matter hyperintensity, AF atrial fibrillation.

Fig. 7 | Potential on-target effects of stroke-associated proteins. Forest plots
illustrating the potential on-target effects associated with causal proteins revealed
by Phe-MR analysis for TFPI (a) and TMPRSS5 (b). In general, results can be per-
ceived as the effects of per-SDhigher circulatingprotein level oneachphenotype. If
the effectdirectionof the targetproteinon thephenotype is consistentwith thaton
stroke outcomes, it represents 'beneficial' additional indications through the
intervention of circulating protein level. Conversely, opposing effect directions of
the target protein on the phenotype and stroke represents 'deleterious' side-

effects. For example, a higher level of TFPI is associated with a lower risk of
ischaemic stroke and so phenotypes with OR <1 represents 'beneficial effects', OR
>1 represents 'deleterious effects' when the hypothetical intervention increases
TFPI levels. Only significant associations that passed Bonferroni correction
(P ≤0.05/6/784= 1.06× 10−5) were plotted. See Supplementary Data 14 for more
clinical information on the ICD code phenotypes. The dots are the causal estimates
on the OR scale, and the whiskers represent the 95% confidence intervals for
these ORs.
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Proteomic profiling and quality control
A subset of 4994 blood donors at a mean age of 61 years (SD 6.7
years) enroled in the INTERVAL BioResource21, were processed for
proteomic profiling using the Olink Proseek® Multiplex platform by
four high-throughput, multiplex immunoassays: Inflammatory I
(INF1), Cardiovascular II (CVD2), Cardiovascular III (CVD3) and
Neurology I (NEURO) (Olink Bioscience, Uppsala, Sweden). Each
panel enables the simultaneous measurement of 92 proteins
through relative quantification using the proximity extension assay
(PEA) Technology61, in which each pair of oligonucleotide-labelled
antibodies ('probes') are allowed to bind to their respective target
present in the sample and trigger extension by DNA polymerase.
DNA barcodes unique to each protein are then amplified and
quantified using a standard real‐time polymerase chain reaction
(PCR). Default pre-processing of the proteomic data by Olink
included applying median centring normalisation between plates,
where the median is centred to the overall median for all plates,
followed by log2 transformation to provide normalised protein
expression (NPX) values. Further details on the Olink proteomic
data processing can be found at http://www.olink.com. Probes were
labelled using Uniprot identifiers, which we re-mapped to the HUGO
gene name nomenclature for the (cis-) gene encoding the relevant
protein. All protein names and descriptions are provided in Sup-
plementary Data 1.

Samples that failed standard Olink quality control metrics were
removed. 4902, 4947, 4987 and 4660 samples passed quality control
for the ‘INF1’, ‘CVD2’, ‘CVD3’ and ‘NEURO’ panels, respectively.
According to the manufacturer’s recommendation, we also removed
four proteins (HAGH, BDNF, GDNF andCSF3) in the ‘NEURO’ panel and
one protein (GDNF) in the ‘INF1’ panel due to high levels of
missingness.

Proteome GWAS
The INTERVAL study21 was genotyped using theUKBiobankAffymetrix
Axiom array (http://www.ukbiobank.ac.uk/scientists-3/uk-biobank-
axiom-array/), and imputed to 1000 Genomes Phase 3-UK10K com-
bined reference panel, employing the PBWT imputation algorithm64.
Genetic data for the ~5000 participants with Olink proteomic profiling
were extracted to test for the association of the genetic variants with
plasmaproteins.More details regarding the INTERVALgenetic dataQC
can be found here65. Within the ~5000 participant subset, we removed
six related individuals (those individuals with pairwise values of twice
the kinship coefficient (PI_HAT) > 0.1875 (removing the individuals
with the lowest call rate fromeach pair). The final imputed dataset was
additionally filtered for imputation quality (only retaining variantswith
an info score >0.4) and Hardy–Weinberg equilibrium (retaining var-
iants with PHWE > 1 × 10−4).

About 354 proteins (of 363) that passedquality control were taken
forward for the GWAS. Normalised protein levels (‘NPX’) were regres-
sed on sex, age, plate, time from blood draw to processing (in days),
season (as a categorical variable: ‘Spring’, ‘Summer’, ‘Autumn’, ‘Win-
ter’) andbatchwhen appropriate. The season is used as a covariate as it
is a determinant of the levels of some proteins66, so removing this non-
genetic source of variation will improve the power to detect genetic
association signals. The residuals were then rank-inverse normalised.
Linear regression of the rank-inversed normalise residuals on geno-
type was carried out in SNPTEST v.2.5.267, with the first three compo-
nents of multi-dimensional scaling as covariates to adjust for ancestry.
Only proteins with at least one SNP with an association P value passing
the genome-wide significant threshold (P ≤ 5.0 × 10−8) were kept,
resulting in 308 proteins for MR analyses.

Genetic variants associated with proteins
For each plasma protein, cis- and trans- pQTLs from its corre-
sponding GWAS were used as genetic instruments. We followed

these steps to select pQTLs instruments: (i) we obtained SNPs that
were also tested in the MEGASTROKE GWAS of stroke outcomes
(see below), (ii) we performed linkage disequilibrium (LD) clumping
using PLINK 1.90 (www.cog-genomics.org/plink/1.9/)68 to obtain
approximately independent SNPs for each protein. In brief, the LD
clumping algorithm groups SNPs in LD (r2 ≥ 0.1 in 4994 European
ancestry participants from the INTERVAL study21,65) within ±1 MB of
an index SNP (SNPs with association P ≤ 5 × 10−8). Analyses assessing
sensitivity to the r2 ≥ 0.1 LD threshold are detailed below. The
algorithm loops through all index SNPs, beginning with the smallest
P value and only allowing each SNP to appear in one clump. The final
output, therefore, contains the most significant protein-associated
SNPs for each LD-based clump across the genome. We split pQTLs
variants into cis-pQTLs (±1 MB window of the gene encoding the
target protein) and trans-pQTLs (outside the ±1 MB window). We
then performed MR in a two-step approach. Our primary analysis
was restricted to cis-pQTLs. Having performed MR restricted to cis-
pQTLs only as IVs, we broadened the analysis to consider the effects
of adding in trans-pQTLs as IVs. We estimated the variance of each
protein explained by its IVs by calculating the R269 and the strength
of each IV by the F-statistic70. Summary association statistics of all
the instrumental variables (IVs) for the 15 stroke-associated proteins
are provided in Supplementary Data 2.

To assess the robustness of the r2 ≥0.1 thresholds for IV selection,
we performed two additional sensitivity analyses (Supplementary
Data 5) for proteins of interest to verify the robustness of the MR
causal relationship: (1) we performed conditional analysis to derive
conditionally independent variants as IVs using the FINEMAP software
package71 with–cond flag; (2) we performed fine-mapping to obtain
variants in the 95% credible set as IVs using FINEMAP software
package71 with ---sss flag.

Genetic variants associated with stroke and its risk factors
Theprimary outcomeswere the risk of stroke and its subtypes. Genetic
association estimates for stroke outcomes were obtained from the
MEGASTROKE consortium, a large-scale international collaboration
launched by the International Stroke Genetics Consortium (ISGC). A
detailed description of the study design and characteristics of study
participants were provided in the original publication22. To reduce
confounding by population stratification, we extracted estimates for
the associations of the protein IVs with stroke and its subtypes
restricted to individuals of European ancestry (40,585 cases and
406,111 controls). The primary outcomes for this studywere any stroke
(including both ischaemic and haemorrhagic stroke; AS, Ncases =
40,585), any ischaemic stroke (IS, Ncases = 34,217) and the three aetio-
logic ischaemic stroke subtypes: large artery stroke (LAS, Ncases =
4373), cardioembolic stroke (CES, Ncases = 7193) and small vessel
stroke (SVS, Ncases = 5386). Summary-level data (beta coefficients and
standard errors) for the associations of the five stroke outcomes were
obtained from the MEGASTROKE GWAS http://www.megastroke.org/
index.html.

The secondary outcomes we considered were stroke risk fac-
tors, which were selected from a literature review1,72–74. We per-
formed a Pubmed search using the search terms, stroke, ischaemic
stroke, haemorrhage stroke, risk factors, that identified 1494
manuscripts. These were reduced to 90 by applying filters of: Full
text, Guideline, Meta-Analysis, Review and Systematic Review, in the
last 10 years. We also referred to the following stroke website:
https://www.stroke.org.uk/. We sought well-powered publicly
available GWAS summary statistics for these risk factors and
removed risk factors that did not have GWAS data, such as air pol-
lution. The remaining seven risk factors were considered for the two-
sample MR analyses, including blood pressure (BP)75, atrial fibrilla-
tion (AF)76, type 2 diabetes (T2D)77, white matter hyperintensity
(WMH)78, body mass index (BMI)79, alcohol consumption and
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smoking behaviour80. We used the same pQTLs as IVs for the sec-
ondary outcomes as for the primary outcomes. The SNP-outcome
effects for all the above risk factors were obtained from previously
published GWASs when available. Table 1 provides full details of the
data sources and sample size for these GWASs.

Systematic MR screening for causal proteins of stroke and
stroke risk factors
We used two-sample MR81–83 to estimate the associations between
genetically predicted protein levels and target outcomes (stroke,
stroke risk factors and potential adverse effects or additional indica-
tions). Two-sampleMR84 is where the genetic associations with the risk
factor are derived in one cohort (e.g. pQTLs from INTERVAL) and the
association of these genetic variants with the outcome is tested in a
second cohort (e.g. stroke GWAS from MEGASTROKE). Two-sample
MR allows the evaluation of causal effects using summary genetic
associationdata, negating the need for individual participant data. The
MR approach was based on the following assumptions: (i) the genetic
variants used as an instrumental variable (IV) are associatedwith target
exposure, i.e. protein levels; (ii) there are no unmeasured confounders
of the associations between genetic variants and outcome; (iii) the
genetic variants are associated with the outcome only through chan-
ges in the exposure, i.e. no pleiotropy.

After extracting the association estimates between the variants
and the exposures or the outcomes, we harmonised the direction of
estimates by effect alleles, and appliedWald’s ratiomethod to estimate
the causal effects when there was only one IV available for target
exposure. If more than one IV was available, we applied the inverse-
variance weighting (IVW) method, either in a fixed-effect framework
(IVs ≤3) or in a multiplicative random-effect meta-analysis framework
(IVs >3)81. We chose 3 as a cut-off for the random-effectsmodel, as with
>3 variants, there is potential for some heterogeneity within instru-
mental variables. (The multiplicative random-effects model allows for
heterogeneity between causal estimates targeted by the genetic var-
iants by allowing over-dispersion of the regression model.) Addition-
ally, MR-Egger was applied for causal estimation when there were ≥ 3
IVs available85. We also performed several sensitivity analyses to assess
the robustness of our results to potential violations of the MR
assumptions, given these analyses have different assumptions for
validity: (i) heterogeneity was estimated by the Cochran Q test;81 (ii)
horizontal pleiotropy was estimated using MR-Egger’s intercept;85 (iii)
influential outlier IVs due to pleiotropy were identified using MR
Pleiotropy Residual Sum and Outlier (MR-PRESSO)86; (iv) reverse MR
was used to eliminate spurious results due to reverse causation.
Additionally, the contamination mixture method87, which can expli-
citly model multiple potential causal estimates and therefore infer
multiple causal mechanisms associated with the same risk factor that
affects the outcome to different degrees, was alsoused to calculate the
MR estimates. Although these methods may have different assump-
tions and statistical power, the rationale for using them is that if they
give a similar conclusion, this provides greater certainty in inferring
that any positive results are unlikely to be driven by violation of theMR
assumptions.

We employed a two-sample MR framework incorporating the
sensitivity analyses for both primary MR (proteins → stroke out-
comes), two-step MR (Step-1 MR: stroke risk factors → stroke out-
comes; Step-2 MR: proteins → stroke risk factors) and Phe-MR
(proteins → PheWAS). The MR methods applied in each of the MR
settings depend on the number of IVs for each exposure. Effects on
binary outcomes (i.e. stroke, AF, T2D, smoking initiation/cessation)
are reported as odds ratios (ORs) with their 95% confidence inter-
vals (CIs) scaled to a one standard deviation (SD) higher plasma
protein level. Effects on quantitative outcomes (i.e. BP, WMH, BMI)
are reported as the effect size (95% CI) scaled to a 1-SD higher
plasma protein levels. All statistical tests were two-sided and

considered statistically significant at PCausalEstimate ≤ 1.62 × 10−4

(Bonferroni-adjusted for 308 proteins: 0.05/308 = 1.62 × 10−4),
PQ-stat ≥ 0.05, PEgger-Intercept ≥ 0.05 and PGlobalTest ≥ 0.05. The MR
analyses were conducted using MendelianRandomization (Version:
0.4.2)82, TwoSampleMR (Version: 0.4.22)83 andMR-PRESSO (Version:
1.0)86 packages in R 3.5.1 (R Foundation, www.R-project.org). Plots
were generated using various R packages including ggplot2 (Ver-
sion: 3.2.0), forestplot (Version: 1.9) and PheWAS (Version: 0.99.5-4).

Multi-trait colocalization analyses
As the instruments used in the current settingwere identified based on
their statistical associations with the protein level, we conducted
another sensitivity analysis—colocalization, to investigate whether the
genetic associations with both protein and phenotypes shared the
same causal variants. We conducted colocalization analysis for each of
the six proteins associatedwith one ormore of the stroke outcomes to
investigate whether the protein level and stroke outcome genetic
associations are due to the same causal variants. We estimated the
posterior probability (PP) of multiple traits sharing the same causal
SNP simultaneously using a multi-trait colocalization (HyPrColoc)
method88. We also applied HyPrColoc for three proteins that showed
causal relationships with stroke risk factors across multiple traits, i.e.
for TFPI, HyPrcoloc was applied to TFPI pQTLs and GWAS of stroke,
ischaemic stroke,WMHand BMI; for TMPRSS5,HyPrColocwas applied
to TMPRSS5 pQTLs and GWAS of stroke, ischaemic stroke, cardioem-
bolic stroke and AF; for IL6R, HyPrColoc was applied to IL6R pQTLs
and GWAS of stroke, ischaemic stroke, cardioembolic stroke and AF.
Furthermore, we extended HyPrColoc analyses to 39 proteins that
were associated with at least one stroke risk factor(s). HyPrColoc
extends the established coloc methodology89 by approximating the
true posterior probability of colocalization with the posterior prob-
ability of colocalization at a single causal variant and a small number of
related hypotheses. If all traits do not share a causal variant, HyPrColoc
employs a novel branch-and-bound selection algorithm to identify
subsets of traits that colocalize at distinct causal variants at the locus.
We used uniform priors for the primary analysis. We also performed a
sensitivity analysis with non-uniform priors to access the choice of
priors, which used a conservative trait-level prior structure with
P = 1 × 10−4 (prior probability of an SNP being associated with one trait)
and γ =0.98 (1-prior probability of an SNP being associated with an
additional trait given that the SNP is associated with at least one other
trait), i.e., 1 in 500,000 variants are expected to be causal for two traits.

Variants within a ±1Mb window around the pQTLs with the
smallest P value, with imputation (INFO)-score ≥0.8 and minor allele
frequency (MAF) ≥0.01, were included. All variants across each of the
datasets were harmonised to the same effect alleles prior to colocali-
zation analyses. We conducted the colocalization analysis using the
‘HyPrColoc’ R package88.

Mediation analysis
For proteins that causally associate with both stroke and risk factors,
we conducted a mediation analysis to quantify the effects of proteins
on stroke outcomes via risk factors. The 'total' effect of exposure on
outcome includes both 'direct' effect and any 'indirect' effect via one or
moremediators. In this study, the total effect is captured by a standard
univariable MR analysis—the primary MR. To decompose direct and
indirect effects, we used results from two-step MR and chose the
Product method to estimate the beta of indirect effect and the Delta
method to estimate the standard error (SE) and confidence inter-
val (CI)90.

Phenome-wide MR (Phe-MR) analysis of 784 phenotypes for
target proteins
We expanded the exploration of side-effects for the six stroke-
associated proteins to include non-stroke phenotypes by performing

Article https://doi.org/10.1038/s41467-022-33675-1

Nature Communications |         (2022) 13:6143 10

http://www.R-project.org


Phe-MR analyses for a range of diseases. We used summary statistics
for SNP-outcome effects calculated using the UK Biobank cohort
(N ≤ 408,961) by ref. 91, who performed GWAS using the Scalable
and Accurate Implementation of GEneralized mixed model (SAIGE
v.0.29) method91 to account for unbalanced case-control ratios.
They defined disease outcomes based on 'PheCodes', a system
developed to organise International Classification of Diseases and
Related Health Problems (ICD-9/−10) codes into phenotypic out-
comes suitable for systematic genetic analysis of numerous disease
traits23,91. Outcomes with fewer than 500 cases were excluded due to
statistical power, leaving 784 diseases for Phe-MR analyses (Sup-
plementary Data 14). SNP-outcome associations were downloaded
from SAIGE GWAS91 (https://www.leelabsg.org/resources). pQTLs
were derived from the same proteome GWAS as in the primary
analysis with stroke subtypes. Phe-MR findings can be interpreted as
the risk/protective effect per-SD increase in the plasma protein
level, same as with primary stroke outcomes. That is, if the effect
direction of the additional indication is consistent with the effect
direction in Stroke, the identified protein that is therapeutically
targeted for the treatment of stroke may also be 'beneficial' for the
additional indication, and vice versa. MR causal effects are con-
sidered statistically significant at P ≤ 1.06 × 10−5 (Bonferroni-adjus-
ted for six proteins and 784 phenotypes: 0.05/6/784).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Part of the INTERVAL Olink proteome GWAS summary statistics
have already been published as part of larger collaborative meta-
analyses from the SCALLOP Consortium (Folkersen 2020; https://
doi.org/10.5281/zenodo.2615265) and the others are the subject of
forthcoming GWAS discovery manuscripts and will be made avail-
able upon publication. Data were available upon request from the
corresponding author. URLs for GWAS summary statistics used for
Mendelian randomisation and colocalization analyses are available
as follows: stroke outcomes (Malik 2018; http://www.megastroke.
org/index.html), blood pressure (Surendran 2020; https://app.box.
com/s/1ev9iakptips70k8t4cm8j347if0ef2u), atrial fibrillation (Niel-
sen 2018; http://csg.sph.umich.edu/willer/public/afib2018), type 2
diabetes (Mahajan 2018; http://diagram-consortium.org/), white
matter hyperintensity (Persyn 2020; http://cerebrovascularportal.
org/informational/downloads), body mass index (Pulit 2019;
https://doi.org/10.5281/zenodo.1251813), alcohol consumption and
smoking behaviour (Liu 2019; https://genome.psych.umn.edu/
index.php/GSCAN), UK Biobank SAIGE GWAS (Zhou 2018, https://
www.leelabsg.org/resources). Table 1 provides further information
on the genetic data resources. All other data that support the
findings of this study are available in the Supplementary Data.

Code availability
We used publicly available software (URLs are listed below). PBWT
imputation algorithm, https://github.com/richarddurbin/pbwt/;
SNPTEST v.2.5.2, https://www.well.ox.ac.uk/~gav/snptest/; PLINK 1.90,
www.cog-genomics.org/plink/1.9/; FINEMAP v1.4, http://www.
christianbenner.com/; LDstore v2.0, http://www.christianbenner.
com/; HyPrColoc v1.0.0, https://doi.org/10.5281/zenodo.4293559.
Mendelian Randomisation with R packages ‘TwoSampleMR’ version
0.4.22, ‘MendelianRandomization’ version 0.4.1 and 'MR-PRESSO' ver-
sion 1.0. We used R (version 3.5.1) extensively to analyse data and
create plots. Code used to performMendelian randomisation analyses
is available at https://doi.org/10.5281/zenodo.7042044.
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