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The coupling of the hydrated proton to its
first solvation shell

Markus Schröder 1 , Fabien Gatti 2, David Lauvergnat 3,
Hans-Dieter Meyer1 & Oriol Vendrell 1

The Zundel (H5O
+
2 ) and Eigen (H9O

+
4 ) cations play an important role as

intermediate structures for proton transfer processes in liquidwater. In thegas
phase they exhibit radically different infrared (IR) spectra. The question arises:
is there a least common denominator structure that explains the IR spectra of
both, the Zundel and Eigen cations, and hence of the solvated proton? Full
dimensional quantum simulations of these protonated cations demonstrate
that two dynamical water molecules and an excess proton constitute this
fundamental subunit. Embedded in the static environment of the parent Eigen
cation, this subunit reproduces the positions and broadenings of its main
excess-proton bands. In isolation, its spectrum reverts to the well-known
Zundel ion. Hence, the dynamics of this subunit polarized by an environment
suffice to explain the spectral signatures and anharmonic couplings of the
solvated proton in its first solvation shell.

The transfer of a hydrated proton between water molecules in an
aqueous solution is accompanied by the large-scale structural reor-
ganization of the environment as the proton relocates, giving rise to
the Grotthus mechanism1.

Due to the complexity of the liquid phase, the infrared (IR)
spectroscopy of protonated water clusters in the gas phase opens a
unique window to characterize and understand the elusive structural
dynamics of these species. For example, the IR spectrumof the Zundel
cation (H5O

+
2 ) exhibits a prominent Fermi resonance in the ≈1000 cm−1

spectral region of the shared-proton mode due to its strong anhar-
monic coupling with a combination of the wagging (water pyr-
amidalization) and the oxygen–oxygen distance of the two flanking
water molecules2. This important feature, key to understanding the
strong coupling of the shared proton to its environment, could only be
unambiguously measured following the development of accurate
messenger spectroscopy (based on Neon tagging) of the gas-phase
cation3. The theoretical assignment of this featurewas a computational
tour de force only possible due to the availability of a high-quality
potential energy surface4 in combination with full-dimensional (15-
dimensional) quantum-dynamical calculations based on the multi-
configuration time-dependent Hartree (MCTDH) approach2,5–8.

Recent measurements of the IR spectrum of the Eigen cation
(H9O

+
4 ) reveal a strong coupling between the O–H stretch modes of

the central hydronium unit with the water molecules in its first solva-
tion shell. More importantly, they reveal strong shifts of the spectral
position of the core O–H stretch modes caused by the polarization
through the tagging agent in the second solvation shell9. The strong
couplingwith the first solvation shell leads to a large broadening of the
core O–H stretch band, now spanning about 500 cm−1 and markedly
blue-shifted toward 2600 cm−1 in comparison with the shared-proton
band of the Zundel cation. The unambiguous characterization of this
very broadband has remained a long-standing challenge9 Yu and
Bowman proved that the measured spectrum in ref. 9 can indeed be
attributed to the Eigen isomer. Furthermore, they showed that the
broad O–H stretch feature involves multiple states of the entire
hydronium core10 and that in addition the O–O stretching and O–H
bending motions play an important role in the broadening of the O–H
stretch band10,11.

In particular, our analysis shows that the ligand waggings play an
equally important role for the coupling of the excess proton to its
solvation shell, both in symmetrically shared Zundel configurations2

and in the Eigen-like form.
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These findings were supported by detailed calculations of the
linear absorption spectrum of the Eigen complex with different levels
of theory, most successfully using a combination of QCMD and VSCF/
VCI methods10–14. In this paper, we simulate the linear absorption
spectrum of the Eigen cation for the first time using full-dimensional
(33D) quantum-dynamical calculations using polyspherical coordi-
nates that are adapted to the Eigenmotif. These allow for the accurate
inclusion of correlations between low frequency, large amplitude dis-
placements, and the O–H stretch and other higher frequency modes.
Our spectra, based on the Yu–Bowman PES first published in ref. 12
that was also applied to clusters with up to 21 water molecules15, are in
excellent agreement with the available messenger-tagging spectra in
the full spectral range between 0 and 4000 cm−1 (see ref. 9). We
compare the full spectrum of the Eigen cation with those calculated
with frozen subsets of degrees of freedom all the way down to a
dynamical (polarized)H5O+

2 subunit embedded in the static scaffold of
the remaining Eigen cation. This analysis reveals that the underlying
couplingmechanismof the solvatedprotonwith its first solvation shell
is strikingly similar in both the Zundel and Eigen forms: a dynamical
subunit formed by two water molecules and a proton is the least
common denominator structure that reproduces the spectrum and
anharmonicmode couplings of the Zundel and Eigen formsdepending
on the conformation of its static environment. Along this analysis, we
confirmexisting assignments9–13,16 of various peaks in H9O

+
4 . Wewould

like to stress that theoretical absorption-band assignments have
already been reported in ref. 10 and are not the main focus of this
contribution. We contribute two assignments for hitherto unknown
features in the low-frequency region, where no experimental data is
currently available.

Results
IR spectrum of the Eigen cation
Figure 1 shows the calculated absorption spectrum of the Eigen cation
H9O+

4 in comparisonwith the experimental spectra from refs. 13 and 9.
The calculated IR spectra are based on a 33D quantum-mechanical
description of the Eigen cation. Such simulations could be achieved
only after the unique combination of recent developments in our
groups; They constitute the largest quantum wavepacket simulations
of a flexible molecular system using a general potential energy surface
and curvilinear coordinates reported to date. Details of the 33-
dimensional quantum-dynamical calculations, including the con-
struction of the kinetic17 and potential18 energy operators, and the
wavefunction propagations with the multilayer MCTDH method19–21,
are provided as supporting information.

The calculated spectrum is red-shifted by 70 cm−1 to match the
main features of the experimental spectrum. The shift originates from
the fact that weobtain the ground-state energy and the spectrum from
separate calculations. The ground-state wavefunction has a much
simpler structure than the time-evolved one and it is hence better
converged. This explains the global shift. The spectrum is obtained as
the average over the spectra corresponding to the three polarization
directions of light with respect to the molecular frame, thus con-
sidering the random orientation of the molecules in the experiment
(see “Methods” and extended data for details).

The overall agreement of calculated and experimental spectra is
very good although the resolution of the calculated spectrum is
∼30 cm−1 and limited by the 1 picosecond duration of the
dipole–dipole correlation function. The calculated peak positions are
listed in Supplementary Table 1 of the supporting material alongside
with experimental results and assignments. In particular, the sub-
structure of the broad core O–H stretch band and practically all fea-
tures of the spectrum are reproduced in comparison with the tagging-
agent IR measurement. Our simulations thus further support the
interpretation that (i) the spectra in refs. 9 and 13 correspond to the
triply-coordinated hydronium form of H9O

+
4 stoichiometry, and (ii)

that theD2 tagging agent negligibly alters the spectrumofH9O
+
4 ⋅D2

9,13

compared to H9O
+
4 .

Deconstructing the broad hydronium O–H stretch band
The key to understanding the anharmonic couplings of the core O–H
stretch modes to their first solvation shell lies in characterizing the
broadening and composition of the main core O–H stretch band in
pristine H9O+

4 : This feature carries most of the IR intensity related to
the coupled motions of the central proton stretching modes.

While studying the broad O–H stretch peak, Duong et al.11 found
that this band is characterized bymany highly entangled eigenstates in
termsof normal-mode excitations. In the theoretical part of their work,
Duong et al. used VSCF/VCI calculations involving the hydronium core
modes, O–O stretch and O–H bending modes to identify states con-
tributing to the broadening. Here, we take a different approach and
deconstruct the formation of this band by first freezing all modes of
the Eigen cation, except those of the hydronium core, to their expec-
tation values, and then by successively bringing back the environment.
The spectra obtained in this way are shown in Fig. 2. They correspond
to the z-component of the dipole moment (the polarization is aligned
with one of the hydronium hydrogen bonds), since this is the com-
ponent responsible for the largest response of the core O–H stretch
modes. Freezing specific coordinates is achieved by removing all dif-
ferential operators of a frozen coordinate from the Hamiltonian in a
Hermitian way and by fixing their position to the corresponding
expectation value in the ground vibrational state of the full-
dimensional system.

The IR spectrum of the hydronium core embedded in the frozen
environment (cf. Fig. 2a) has a very simple structure. The vibrational
eigenstates corresponding to the two sharp peaks near 2700 cm−1 were
obtained by full diagonalization explicitly: The dominant peak corre-
sponds to the hydronium core O–H stretchmode, whereas the smaller
structure corresponds to an out-of-plane excitation of the central

Fig. 1 | Absorption spectrumof the EigenCationH9O+
4 . a Experimental spectrum

from ref. 13. b Experimental spectrum from ref. 9. c Calculated spectrum (red-
shifted 70 cm−1 to match experimental line positions). Both experimental spectra
detected via photodissociation of D2 tagged clusters. The assignments of the peaks
follow the nomenclature of refs. 9, 13 and are discussed in Supplementary Table 1.
Source data are provided under https://doi.org/10.5281/zenodo.7064870.
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hydrogen atoms. The peaks near 1800 and 2300 cm−1 correspond to
other modes of the hydronium core also seen in the full spectrum and
agree with the assignments in refs. 9, 10, 12, 13.

Adding either wagging modes of the outer water molecules
(Fig. 2b), or O–O distances, (Fig. 2c), leads to the appearance of their
fundamental modes in the spectrum (Illustrated in Fig. 3). In the latter
case, some peaks on the low-energy shoulder of the main O–H stretch
peak gain some intensity. Moreover, with the inclusion of the O–O
stretching coordinates, two small peaks appear at 2300 cm−1 corre-
lating with a8 and a9 in the full-dimensional spectrum. Apart from this,
the overall structure of the spectrum changes only slightly. In parti-
cular, there is no significant broadening of the O–H stretch peak.

More complex spectral features emerge when adding both
solvation-shell water wagging modes and O–O distances together
(Fig. 2d). Now, the spectrum is not the simple sum of the previous two
panels and cannot be explained by the fundamental modes of the
involved coordinates alone. The broad hydronium core O–H stretch
band centered at 2700 cm−1 is now composed of at least four separate
contributions with significant intensity. (Here, we note that all spectra
are normalized to unity maximum height such that with the O–H
stretchpeak nowdecomposing intomultiple smaller peaks the relative
height of all other peaks increases.) Two of those peaks, contributing
to the low-energy shoulder of the central peak at ∼2600 cm−1, have
gained significant intensity. Finally, a peak slightly above 2500 cm−1

gains significant intensity as well. This structure coincides with the
spectral position of the low-energy shoulder of the broadband in the
full spectrum. Moreover, now the low-intensity background on the
high-energy shoulder at around 3000 cm−1 emerges. VSCF/VCI
analysis11,13 attributed this to a combination mode of hydronium O–H
stretch and O–O strecthing modes. This assignment is fortified in
Fig. 2c, where a peak at 3000 cm−1 appears while only the hydronium
core and the O–O stretches are modeled. Adding the ligand-wagging
modes then leads to the diffuse signal observed in the experimental
spectrum.

In the spectra in Fig. 2, panels a to d, the hydronium core retains
its full mobility. The question arises, whether only proton displace-
ments parallel to the hydrogen bonds are important, or whether dis-
placements perpendicular to the hydrogen bonds also contribute to
the main proton-transfer band. These perpendicular displacements
span the hydronium bending, wagging, and pyramidalization modes.
Freezing the perpendicular displacements of the hydronium protons
(panel e) has dramatic consequences. The spectrum is now dominated
solely by the proton-transfer peak. Peaks of the ligand wagging and
O–Ostretching fundamentals are again visiblewith low intensity at low
energies, as well as peaks at ~3000 cm−1 that are combinations of
hydronium core O–H stretch, ligandwagging, andO–O stretchmodes.
However, the inability of the three central protons to move perpen-
dicular to the hydrogen-bond directions has largely suppressed their
coupling with the first shell of ligand water molecules. Crucially, no
broadening of the O–H stretch peak is present, as opposed to the
spectrum in panel d). This leads to the conclusion that the vibrational
eigenstates spanning the broad hydronium core O–H stretch band
correspond to combinations and overtones of the central O–H stretch
modes with O–O stretch displacements, hydronium bending and
hydronium wagging, and ligand waggings, whereby none of those
coupled hydronium and environment modes can be removed. A full
characterization of the vibrational eigenstates in terms of quantum
numbers of some basis of uncoupled vibrational modes is currently
out of reach due to the very high density of vibrational states in the
spectral region of the band and the high dimensionality of the
problem.

The dynamical H5O+
2 subsystem

We have deconstructed the main hydronium O–H stretch band. It
originates from the anharmonic couplings of the center O–H stretch
modeswith perpendicularmodes of the central hydroniumandmodes
involving the O–O stretchings and waggings of the three surrounding
water ligands. The question now arises: are the three water molecules
in the first solvation shell of the Eigen cation necessarily involved in
explaining the coupling mechanism, spectral position, and width of

Fig. 3 | Illustration of ligand wagging, core O–H stretch and O–O stretching
motion of H9O+

4 exemplary in one of the three arms of the cation. Note that in
the ligand-wagging motion only the two hydrogen of the outer water molecules
move as indicated by the arrow. The coordinate system on the left indicates the
directions of components of the dipole moment surfaces (DMS).

Fig. 2 | Spectra obtained with the z-component of the dipole moment (cf. Eq.
(2)) for various reduced models. The dimensionality (9D, 12D etc.) denotes the
number of active coordinates. Other coordinates are frozen to their expectation
value positions for the vibrational ground state. Correlation time in a–e: 2000 fs,
(f): 1000 fs. Source data are provided under https://doi.org/10.5281/zenodo.
7064870.
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the main proton-transfer band? Alternatively, can a smaller dynamical
subunit completely account for the properties of the first solvation
shell of the solvated proton? The hydronium cation (H3O

+) can be
discarded as the least common denominator subunit by comparing
Fig. 2a and f. Even though the O–H stretch peak in Fig. 2a is in the
correct position, the broadening is not observed.

Instead, we consider oneH5O+
2 subunit, that can be understood as

a polarized Zundel cation (14 coordinates) and freeze all internal,
angular and relative coordinates of the twoother water ligands to their
corresponding expectation values positions (cf. Fig. 4), as well as the
two free-standing hydronium O–H stretches, as those do not interact
with their immediate environment dynamically any more. For com-
parison, we also consider a reduced version of theH5O+

2 @Eigen cation
where the rocking, relative water rotation and internal modes of the
externalwater are also frozen, thus yielding a nine-dimensional system
for which the lowest 250 eigenstates can be computed with the
improved relaxation algorithm (ticks in Fig. 4b)22,23.

The IR spectrum of the dynamical H5O+
2 @Eigen cation is strik-

ingly similar to the full Eigen cation spectrum, as seen in Fig. 1. The
main O–H stretch band presents a comparable broadening and is
centered at the same frequency. Other flanking peaks appear at the
correct positions as well. The analysis of 1D and 2D probability den-
sities of the calculated eigenstates of the nine-dimensional model
reveal that the vibrational states that participate in this band are
complex combinations and overtones of the same vibrational coor-
dinates previously found to contribute to the broadening of the core
O–H stretch band in the Eigen cation. Just pulling the external water
molecules by about 0.5Å away from the central hydronium, while
leaving them frozen, results in a shift of the O–H stretch band to the
red by about 600 cm−1 (cf. supportingmaterial) as well as a reduction
of the ground-state expectation value of the O–O distance by 0.1Å
and an increase of theO–Hdistance expectation value by0.06 Å. This
indicates the extreme sensitivity of the position of this band to the
polarization by the first solvation shell of watermolecules. This trend
has also been observed in similar studies on protonated water
clusters.24–28 Pulling the waters further to infinity leaves the bare

Zundel cation with its O–H stretch band red-shifted by about
1600 cm−1 compared to the Eigen cation2.

Based on these observations, we argue that two protonated water
molecules, nominally the polarized H5O+

2 /Zundel subunit, constitute
the dynamical least common denominator structure explaining the
anharmonic couplings and spectral signatures of the solvated proton
in its first solvation shell. This statement does not concern the relative
population of the Zundel and Eigen structures in solution, which has
been investigated separately by Marx et al. using path integral tech-
niques, cf. ref. 1.

In isolation, themain shared-protonpeaks in theZundel cation are
strongly red-shifted compared to the Eigen cation. The shared-proton
motion strongly couples to the wagging (pyramidalization) of the two
water molecules and to the O–O stretching mode, and results in the
well-characterized Fermi resonance doublet centered at about
1000 cm−1 5,6,29,30. Embedded in the potential of two flanking, frozen
water molecules, the polarized H5O+

2 @Eigen subsystem features its
O–H stretch band at the same spectral position as the full-dimensional
Eigen cation, i.e., blue-shifted to about 2600 cm−1 because the shared
proton is now much closer to the central water molecule. The broad-
ening of the core O–H stretch band in the polarized H5O+

2 @Eigen and
Eigen cations is strikingly similar. Our simulations demonstrate that
the same set of vibrational coordinates and corresponding combined
excitations are responsible for the strong coupling of the shared
proton to the rest of the scaffold in the Zundel5,6,29,30, polarized
H5O+

2 @Eigen, and Eigen cations. These effects are strongly coopera-
tive as opposed to additive. These relevant coordinates are the
hydronium O–H bending and wagging modes, the ligand water wag-
ging modes, and the O–O hydrogen-bond stretching mode.

Discussion
This work has provided a set of full-dimensional quantum simulations
of the Eigen cation basedon flexible, curvilinear coordinates and a very
accurate potential energy representation. The simulated IR spectra
cover the chemically relevant spectral range between 0 and 4000 cm−1

with one single time-propagation of a highly correlated multi-
configurational wavefunction. The spectra extend below the smallest
frequency accessible experimentally using ion tagging techniques and
reveal the signatures of very low-frequency, global vibrational modes.
Both the Zundel and Eigen cations feature very prominent spectral
features related to the anharmonic couplings of the hydrated proton
with its first solvation shell. In the Zundel cation, a strongly red-shifted
double peak6,30 originates from the fundamental vibration of the
equally shared proton at about 1000 cm−1. This doublet is a Fermi
resonance that involves the wagging modes of the flanking water
molecules as well as the hydrogen-bond O–O stretching. The isolated
Eigen cation, instead, features a very broad band at 2600 cm−1 with
little resemblance to the shape and position of the Zundel’s double
peak. Nonetheless, a careful analysis reveals that similar anharmonic
couplings compared to the Zundel form are involved in the broad
Eigen cation band, namely the hydronium and ligand waggings to the
largest extent, combined with hydrogen-bond stretchings. Indeed, the
hydronium waggings are crucial to the coupling mechanism: freezing
the central hydroniumwaggings in a flexible first solvation shell results
in a simpler IR spectrum than when considering a fully flexible
hydronium in a frozen environment (cf. Fig. 2a, e).

Based on these results and observations, we arrive at a key insight:
two dynamical water molecules and a proton, i.e., a H5O+

2 subunit
embedded in the remaining frozen scaffold of the Eigen cation, pre-
sent all anharmonic couplings and spectral signatures of the fully
flexible Eigen cation in the region of the main proton-transfer band.
Depending on its environment, the H5O+

2 subunit can describe both
the spectrum of the Zundel and Eigen cations. For this effect, it is
sufficient that two frozen, hydrogen-bond acceptor water molecules
polarize the dynamical H5O+

2 subunit that constitutes the proton’s first

Fig. 4 | Spectra for reduced H5O+
2 models. Spectra obtained with the

z-component of the dipolemoment surfaces for reducedH5O+
2 models by freezing

modes to positions corresponding to their expectation values for H9O+
4 a obtained

with a dipole–dipole-correlation function of 2000 fs using a 14Dmodel, b obtained
with a dipole–dipole-correlation function of 2000 fs using a 9D model (black
curve), and obtained as a stick spectrum using eigenstates (red lines). Source data
are provided under https://doi.org/10.5281/zenodo.7064870.
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solvation shell. This finding, backed by our full quantum-mechanical
approach, is suggestive of picturing the Eigen cation as three over-
lapping and strongly polarized H5O+

2 subunits in the spirit of the
classical “special pair dance” models of the solvated proton31–33.

The question of whether the proton forms an Eigen or Zundel
cation in aqueous acid solutions has given rise to many studies even
recently: some new experimental works34–36 have suggested that the
population of the Zundel cation is larger than previously thought. On
the other hand, new simulations33 have interpreted these experimental
findings in anopposing sensepointing to adynamic Eigen cation as the
most prevalent hydrated proton species. Our new results do not bring
information about the relative populations of the two structures but
stress that the difficulty to solve the problem may partly come from
the fact that the H5O+

2 subunit can exhibit very similar spectral sig-
natures compared to the Eigen cation when placed in a polarizing
environment. Establishing these structural and dynamical relations on
the basis of full-dimensional quantum dynamics is an important
direction for future work. The computational and theoretical devel-
opments reported in this work may be decisive when approaching
even larger and more complex systems.

Methods
High-dimensional quantum dynamics
The full-dimensional (33 vibrational degrees of freedom) quantum-
dynamical description of the IR spectrum of the Eigen cation requires
the combination of various technologies that have been developed
and integrated into the software packages maintained in our research
groups. These technologies relate to the three main obstacles that
stand on the way towards a full quantum-dynamical description of
anharmonically coupled, flexible, and high-dimensional vibrational
problems.

(i) Describing flexible and anharmonic systems, e.g., with several
equivalent minima in their potential energy surface (PES), requires
the use of chemically meaningful coordinates such as bond lengths,
bond angles, and dihedral angles. The use of adequate coordinates
enormously facilitates the numerical representation and con-
vergence of the vibrational wavefunctions in high dimensions. The
price to pay, though, is the very lengthy and complicated expression
for the corresponding kinetic energy operator (KEO). For the Eigen
cation, the exact, analytic KEO has a total of 4370 terms, and its
manual derivation becomes de facto intractable. Some of us and
others have therefore developed a completely systematic method to
set up the KEO for a specific family of internal molecular coordinates:
the polyspherical coordinates37–39. This method is implemented in
the TANA software, which provides analytic expressions of the
kinetic energy operator in a machine-readable format17,40,41. Very
importantly, TANA also provides numerical library routines to per-
form forward and backward transformations between the Cartesian
coordinates of the atoms and the internal coordinates of the mole-
cule, which are neededwhen setting up thepotential energyoperator
in these internal coordinates.

(ii) The second obstacle is the so-called “curse of dimensionality”
for representing and storing the wavefunction of the system: the
number of possible quantum states of the system (e.g., given as the
amplitudes on quadrature points in coordinate representation) grows
exponentially with the number of physical coordinates. Without an
efficient data reduction scheme one would be limited to model up to
about six internal degrees of freedom of amolecule, corresponding to
about four atoms (neglecting rotations). To overcome the curse of
dimensionality, the state vector needs to be stored and processed in a
very compact form. To this end, we employ the multilayer multi-
configuration time-dependent Hartree algorithm,19–21,42,43 which repre-
sents the wavefunction as a hierarchical Tucker tensor-tree44–46.

(iii) The solution of the time-dependent Schrödinger equation
within this tensor format requires that also the system Hamiltonian is

expressed in a matching form. This can be, e.g., a sum of products of
low-dimensional operators. The KEO in polyspherical coordinates
always consists of sums of products of elementary functions and
derivatives of single coordinates39 (this is one of the main advantages
of the polyspherical coordinates) and needs not be discussed further
here. A more challenging task is to express the PES and, if needed,
other surface-like operators such as dipolemoment surfaces (DMS), in
a matching format. The PES and DMS are usually made available as
separate software libraries, and are often defined in the Cartesian
coordinates of the atoms10,12,16. Most applications in our groups have
relied until recently on the transformation of the PES into a Tucker
format with the so-called Potfit algorithm47–49, and its hierarchical
multilayer variant50. This algorithm suffers from the curse of dimen-
sionality because ultimately it requires a full representation of the
primitive product grid in configuration space. Modifications of Potfit
have been developed over the years to partially overcome this
difficulty51–53, making it possible to work with about 9–15 coordinates.
This is clearly insufficient to approach a system of the size of the Eigen
cation. A more recent development in surface re-fitting uses the so-
called canonical tensor decomposition54 (CP), also called PARAFAC or
CANDECOMP in the literature55,56. Within the canonical format,
orthogonality restrictions on the basis functions are relaxed such that
a much more compact tensor representation can be achieved, at the
cost, however, that the fit is much harder to obtain. This is usually
achieved using an alternating least squares (ALS) algorithm that
iteratively improves an initial guess tensor. The ALS algorithm in the
original form requires to performhigh-dimensional integrals aswell. In
a recent publication18 Monte-Carlo integrations are used to perform
the integrals. This not only mitigates the curse of dimensionality but
also allows for importance sampling such that low-energy regions of
the potential (where the wavefunction resides) can be fitted with ele-
vated accuracy. This development has opened the path to obtain
global but compact surface fits in a tensor format of high-dimensional
potentials.

In essence, we developed and combined three technologies to be
able tackle such a high-dimensional problem as the 33-dimensional
Eigen cation: (1) the TANA software to obtain the KEO and to provide
the coordinate transformations for the PES fitting; (2) PES fitting into a
canonical tensor format using a Monte-Carlo version of the ALS algo-
rithm; and (3) the multilayer MCTDH algorithm to solve the time-
dependent Schrödinger equation. In the present contribution, we have
used the highly accurate, full-dimensional PES, and DMS provided by
Yu and Bowman10,12,16. The surfaces were re-fitted into a canonical
tensor format using 2048 terms for the PES and 1024 terms for each of
the three components of the DMS, respectively.

Calculation of IR spectra
The linear absorption spectra that are compared to the experimental
spectra are computed as averages of the spectra resulting from the
three dipole moment components for the x-, y-, and z-directions as

IðωÞ= 1
3
ðIxðωÞ+ IyðωÞ+ IzðωÞÞ: ð1Þ

The averaging mimics the random orientational distribution of
the molecule in the experiment. The single components also shown in
some figures below are calculated as6

IjðωÞ / ω Re
Z 1

0
dt Ψμj

∣Ψμj
ðtÞ

D E
expðiðω + E0=_ÞtÞ, j = x, y, z ð2Þ

where E0 is the ground-state energy and

∣Ψμj

E
= μj ∣Ψ0

�
j = x, y, z ð3Þ
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is the vibrational ground state ∣Ψ0

�
operated with μj, one component

of the dipole operator. The time-dependent state ∣Ψμj
ðtÞi is obtained

by solving the time-dependent Schrödinger equation with initial
value ∣Ψμj

i.

Assignments
To assignmodes to the peaks a number of test states that contain zero-
order excitations in selected modes have been created and cross-
correlated with the dipole-operated and propagated ground state.

The Fourier transform of the resulting cross-correlation shows
peaks only at frequencies where both, the test states and dipole-
operated ground states populate the same eigenstate. The cross-
correlation functions are defined as

Ci,X ðtÞ= ΨX ∣Ψμi
ðtÞ

D E
i= x, y, z ð4Þ

and ∣ΨX i=X ∣Ψ0i being the X-operated ground statewith anoperator X
as detailed below. The Fourier transformed of the cross-correlation is
given as

Fi,X ðωÞ= / Re
Z 1

0
dt ΨX ∣Ψμi

ðtÞ
D E

eiðω+ E0=_Þt i= x, y, z, ð5Þ

with E0 being the ground-state energy. Note that, other than for the
absorption spectra, no frequency prefactor w is multiplied to the
spectrum.

The test states ∣ΨX i=X ∣Ψ0i have been created by constructing
the operator X as linear combinations of position operators of specific
coordinates. This creates a linear combination of wavefunctions, with
nodes in the respective modes, hence resembling zero-order excita-
tions whichmimic the action of the dipolemoment surface but restrict
the action only to the aforementioned modes. We use the notation
q(+ + +), q(− + +) and q(0 − + ) for X in the test states. Here, the q indi-
cate physical coordinates and the string of signs in brackets identifies
one of the three orthogonal linear combinations of the coordinates q
in the three “arms” A, B, and C of the Eigen cation (cf. Supplementary
Fig. S8, extended data), where specifically

qð+ + + Þ : = qA +qB +qC ð6Þ

qð�+ + Þ : = �2qA +qB + qC ð7Þ

qð0� + Þ : = �qB + qC ð8Þ

(with the exception of label q = 'θ' = (qA = θ, qB =φAB, qC =φBC), and
q = 'b' describing the ligand O–H bending as a linear combination of
two Jacobi coordinates b{A,B,C} = −0.4 r1,{A,B,C} + 0.3 r2,{A,B,C}. Similarly,
the symmetric O–H stretching of the ligands is described by q = ’v(s)’
with ν

ðsÞ
fA,B,Cg =0.3 r1,{A,B,C} + 0.4 r2,{A,B,C}, while the asymmetric O–H

stretching ν
ðaÞ
fA,B,Cg = ν{A,B,C} is described by the Jacobi angle (cf. Sup-

plementary Table S1 of assignments and Supplementary Table S2 and
Supplementary Fig. S9 of coordinate definitions in the extended data
section).

Non-vanishing cross-correlations hence show the existence of
non-vanishing overlap of the dipole-operated state Ψμi

and the test
state characterized by a linear combination of singlemode excitations
of character Eq. (7).

Kinetic energy operator
As for the Zundel cation29, we adopted a mixture of Jacobi, Carte-
sian, and valence vectors. For each external molecule of water (in
blue in Supplementary Fig. S7, extended data), we use two Jacobi
vectors: one from one hydrogen atom to the other and one from the
middle of H2 to the oxygen atom. The central oxygen atom is linked

to the other oxygen atoms by three O–O valence vectors. The global
z Body-Fixed (BF) axis is parallel to RBF

1 , one of the O–O vectors. The
groups S1 and S2 are gathered into two subsystems so that they have
their own BF frame with the z axis parallel to RBF

2 or RBF
3 . The mole-

cule at the top of Supplementary Fig. S7 (extended data) is also
gathered in one subsystemwith the z axis parallel to the H–H vector.
The same is true for the other two molecules of water, except that
they define “subsubsystems” in S1 and S2. The three OH valence
coordinates starting from the central oxygen atom are re-expressed
in terms of Cartesian (and not spherical) coordinates to avoid sin-
gularities in the kinetic energy operator (KEO).

All the other vectors are parametrized by spherical coordinates in
their BF frame. The rotation of each BF frame is parametrized by Euler
angles. We follow the conventions of the general formulation for
polyspherical coordinates57 that is implemented in the TANA
software17,40. The correctness of the implementation has been checked
on many systems by comparing the KEOs with those obtained
numerically with the TNUM software41,58. We thus obtain an exact
operator. TANA provides the operator in an ASCII file that can be
directly read byMCTDH. One advantage of the family of polyspherical
coordinates is that it always leads to an operator in a sum of products
of one-dimensional operators. In the present case, with those coordi-
nates and their corresponding ranges, we avoid all the possible sin-
gularities in the KEO so that we do not need to use 2D DVRs that are
numerically less efficient than products of 1D DVRs.

Sum-of-products of potential and dipole moment surfaces
In the present case, the potential energy and dipole surfaces were
made available to us in the form of a numerical library in ref. 12. The
potential and dipole routines take a single coordinate vector as input
and return the respective energy value or three-component dipole
vector.

The Heidelberg MCTDH implementation42,47,59–62 relies on an
explicit numerical representation of the potential in terms of a sum of
products of one- or low-dimensional functions that are sampled on a
primitive grid. Hence, given a numerical library routine for the
potential (and dipoles), a preprocessing step is necessary that creates
the requirednumerical representationof thepotential from theoutput
of the library routines.

In the present case, the potential energy surface has been
decomposed into a sum-of-products of 2048 low-dimensional
terms, more precisely into a Canonical Polyadic Decomposition
form. The low-dimensional basis functions are defined on the
coordinates that correspond to those of the bottom layer of the
wavefunction tree, (cf. Supplementary Fig. S10, extended data).
Such a decomposition can be used within the Heidelberg MCTDH
package. The decomposition was created using a Monte-Carlo
variant18 of the alternating least squares algorithm that is often
employed to obtain canonical decompositions. In total, eight sym-
metries have been incorporated into the PES fit, all of them with
respect of rotations of the outer water ligands. Other symmetries
could not be implemented due to the mixing of coordinates. For
details about the algorithm, the reader is referred to ref. 18.

The surface fit needs to be performed in the internal dynamical
coordinates, the library routines usually require Cartesian coordinates
to calculate the respective potential energy such that here we inter-
linked the TANA program with the fitting program to be able to
transform between the two sets of coordinates.

Data availability
The raw data for Figs. 1, 2, and 4 as well as all necessary input files and
instructions compatible with the Heidelberg MCTDH package are
provided to reproduce the infrared spectrum of the Eigen cation.
These data are accessible under the URL https://doi.org/10.5281/
zenodo.706487063.
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Code availability
The TANA and MCTDH codes with their full documentation and any
further inputfiles needed to reproduceparticular results of the current
contribution are available upon request from the authors.
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