
Article https://doi.org/10.1038/s41467-022-33629-7

Experimentally validated memristive mem-
ory augmented neural network with efficient
hashing and similarity search

Ruibin Mao 1, Bo Wen 1, Arman Kazemi 2,3, Yahui Zhao1,
Ann Franchesca Laguna 3,6, Rui Lin1, Ngai Wong 1, Michael Niemier3,
X. Sharon Hu3, Xia Sheng2, Catherine E. Graves 2 ,
John Paul Strachan 4,5 & Can Li 1

Lifelongon-device learning is a key challenge formachine intelligence, and this
requires learning from few, often single, samples. Memory-augmented neural
networks have been proposed to achieve the goal, but the memory module
must be stored in off-chip memory, heavily limiting the practical use. In this
work, we experimentally validated that all different structures in the memory-
augmented neural network can be implemented in a fully integrated mem-
ristive crossbar platform with an accuracy that closely matches digital hard-
ware. The successful demonstration is supported by implementing new
functions in crossbars, including the crossbar-based content-addressable
memory and locality sensitive hashing exploiting the intrinsic stochasticity of
memristor devices. Simulations show that such an implementation can be
efficiently scaled up for one-shot learning on more complex tasks. The suc-
cessful demonstration paves the way for practical on-device lifelong learning
and opens possibilities for novel attention-based algorithms that were not
possible in conventional hardware.

Deep neural networks (DNNs) have achieved massive success in data-
intensive applications but fail to tackle tasks with a limited number of
examples. On the other hand, our biological brain can learn patterns
from rare classes at a rapid pace, which could relate to the fact that we
can recall information from an associative, or content-based addres-
sable, memory. Inspired by our brain, recent machine learningmodels
such as memory-augmented neural networks (MANN)1 have adopted a
similar concept, where explicit external memories are applied to store
and retrieve learned knowledge. While those models have shown the
ability to generalize from rare cases, they have struggled to “scale
up”2,3. This is because the entire external memorymodule needs to be
accessed from the memory to recall the learned knowledge, which
greatly increases the memory overhead. The performance in a

traditional von Neumann computing architecture4 is thus bot-
tlenecked in hardware by memory bandwidth and capacity issues5–7,
especially when they are deployed in edge devices, where energy
sources are limited.

Emerging non-volatile memories, e.g., memristors8, have been
proposed and demonstrated to solve the bandwidth and memory
capacity issues in various computing workloads, including DNNs9–14,
signal processing15,16, scientific computing17,18, solving optimization
problems19,20, andmore. Those solutions are based on thememristor’s
ability to directly process analog signals at the location where the
information is stored.Most existingdemonstrationsmentioned above,
however, mainly focus on executing matrix multiplications for accel-
erating DNNs with crossbar structures8–12,17,18,21, whose experience

Received: 21 March 2022

Accepted: 23 September 2022

Check for updates

1Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China. 2Hewlett Packard Labs, Hewlett Packard
Enterprise, Milpitas, CA, USA. 3Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA. 4Peter Grünberg Institut
(PGI-14), Forschungszentrum Jülich GmbH, Jülich, Germany. 5RWTH Aachen University, Aachen, Germany. 6Present address: Department of Computer
Technology, De La Salle University, Manila, Philippines. e-mail: catherine.graves@hpe.com; j.strachan@fz-juelich.de; canl@hku.hk

Nature Communications | (2022) 13:6284 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-6085-0486
http://orcid.org/0000-0001-6085-0486
http://orcid.org/0000-0001-6085-0486
http://orcid.org/0000-0001-6085-0486
http://orcid.org/0000-0001-6085-0486
http://orcid.org/0000-0002-6106-9509
http://orcid.org/0000-0002-6106-9509
http://orcid.org/0000-0002-6106-9509
http://orcid.org/0000-0002-6106-9509
http://orcid.org/0000-0002-6106-9509
http://orcid.org/0000-0002-2009-5516
http://orcid.org/0000-0002-2009-5516
http://orcid.org/0000-0002-2009-5516
http://orcid.org/0000-0002-2009-5516
http://orcid.org/0000-0002-2009-5516
http://orcid.org/0000-0001-8267-1040
http://orcid.org/0000-0001-8267-1040
http://orcid.org/0000-0001-8267-1040
http://orcid.org/0000-0001-8267-1040
http://orcid.org/0000-0001-8267-1040
http://orcid.org/0000-0002-3026-0108
http://orcid.org/0000-0002-3026-0108
http://orcid.org/0000-0002-3026-0108
http://orcid.org/0000-0002-3026-0108
http://orcid.org/0000-0002-3026-0108
http://orcid.org/0000-0002-0907-583X
http://orcid.org/0000-0002-0907-583X
http://orcid.org/0000-0002-0907-583X
http://orcid.org/0000-0002-0907-583X
http://orcid.org/0000-0002-0907-583X
http://orcid.org/0000-0002-1382-3677
http://orcid.org/0000-0002-1382-3677
http://orcid.org/0000-0002-1382-3677
http://orcid.org/0000-0002-1382-3677
http://orcid.org/0000-0002-1382-3677
http://orcid.org/0000-0003-3795-2008
http://orcid.org/0000-0003-3795-2008
http://orcid.org/0000-0003-3795-2008
http://orcid.org/0000-0003-3795-2008
http://orcid.org/0000-0003-3795-2008
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-33629-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-33629-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-33629-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-33629-7&domain=pdf
mailto:catherine.graves@hpe.com
mailto:j.strachan@fz-juelich.de
mailto:canl@hku.hk

cannot be directly applied to the models with explicit external mem-
ories in MANNs. Recently, several pioneering works aim to solve the
problemwithmemristor-based hardware. One promising solution is to
exploit the hyperdimensional computing paradigm22,23. A recent pro-
totype of this framework showcased few-shot image classification
using more than 256k phase change memristors in mixed software-
hardware experiments23, and more recently another prototype
demonstrated consecutive programming in-memory realization
of continual learning24. Another solution is to use ternary
content-addressable memories for distance functions in mature
attention-based models25–27. Ferroelectric device based ternary
content-addressable memories (TCAMs) have been proposed to be
used as the hardware to calculate the similarity directly in the
memory28,29, but it is only suitable for the degree of mismatch up to a
few bits. Besides, the locality sensitive hashing (LSH) function that
enables the estimation of cosine function was implemented in soft-
ware, and the experimental demonstrationwas limited to a 2 × 2 TCAM
array. More recently, a 2T-2R TCAM associative memory was used to
demonstrate few-shot learning by calculating L1 distance30. In this
work, a 2-bit readout scheme is employed (requiring64 cycles per row)
which incurs high energy and latency overheads, and feature extrac-
tion is again relegated to a digital processor. The key challenge in this
concept is the imperfections in the analog hardware, such as device
variation, fluctuation, state drift, and readout noise during the mas-
sivelyparallel operations in physical crossbaror TCAMarrays; all of the
above represent obstacles to viable, deployable, and efficient hard-
ware realizations of MANNs.

In this work, we experimentally demonstrate that different
structures in MANNs, including the CNN controller, hashing function,
and the degree ofmismatch calculation in TCAM, can be implemented
in our integrated memristor hardware for one- and few-shot learning.
To achieve this goal, we implement those different functionalities in
crossbars in addition to the widely reported matrix multiplication
operations, and design the peripheral circuit to support those func-
tionalities accordingly. One enabler is the locality sensitive hashing
(LSH) function in crossbars,wherewe exploit the intrinsic stochasticity
of memristor devices. This is different from crossbars for matrix
multiplications, where stochasticity needs to be minimized. Another
innovation is implementing search functions by using the crossbar as a
TCAM. In addition to what is possible with conventional TCAMs, the
proposed scheme can also measure the degree of mismatch reliably,
which is crucial for few-shot learning implementation. Since the
requirements for those functions are different from conventional
matrix multiplications, here we introduce several hardware-software
co-optimization methods, including the introduction of the wildcard
‘X’ bit in the crossbar-based LSH, and the careful choice of con-
ductance range according to the device statistics.

Finally, we are able to experimentally demonstrate the few-shot
learning with a complete MANN model for few-shot image classifica-
tion tasks with the standard Omniglot dataset. The model includes a
five-layer convolutional neural network (CNN), the hashing function,
and the similarity search. Given that the CNN has more parameters
(265,696) than what can be fit in our hardware (24,576 memristors in
six 64 × 64 arrays), the crossbars for CNNs are re-programmed when
needed. Taking into consideration all imperfections in the emerging
system, our hardware achieves 94.9% ± 3.7% accuracy in the 5-way 1-
shot task with the Omniglot dataset31, a popular benchmark for few-
shot image classification, and 74.9% ± 2.4% accuracy in the 25-way
1-shot task, which is close to the software baseline (95.2% ± 2.6% for
5-way 1-shot and 76.0% ± 2.7% for 25-way 1-shot). Our experimentally-
validatedmodel also shows that the proposedmethod is scalable with
a 58.7 % accuracy to recognize new classes (5-way 1-shot) for the Mini-
ImageNet dataset32, where each image is a color (RGB) image of size
84 × 84 pixels—nine times larger than the size of images in the Omni-
glot dataset (28 × 28 pixels). This accuracy is only 1.3% below the

software baseline. We estimate about 5.36μJ of energy consumption
per inference for the 5-way 1-shot on the Omniglot dataset with the
entire system, including the peripheral circuitry. One major portion
was consumed during the conductance iterative read-and-verify re-
programming. Still, the energy consumption is 257 × lower than that
(1.38mJ) with a general-purpose graphic processing unit (GPGPU)
(Nvidia Tesla P100). Future systems with the capability to accom-
modate the weights of the entire MANN are expected to have much
higher energy efficiency and scalability compared to the conventional
von Neumann processors.

Results
Memory augmented neural networks in crossbars
The MANN architecture commonly includes a controller, an explicit
memory, and a content-based attention mechanism between the two.
A controller is usually a traditional neural network structure such as a
CNN, a recurrent neural network (RNN), or a combination of different
neural networks. The explicit memory stores the extracted feature
vectors as the key-value pairs so that themodel can identify the values
based on the similarity or distances between the keys. The access of
the explicitmemory is the performancebottleneck formodels that run
on conventional hardware, such as the general-purpose graphic pro-
cessing unit (GPGPU). It is because the similarity search requires
accessing all the content in the memory; thus the repeated data
transfer process delays the readout process and consumes abundant
energy, especially when the memory needs to be placed in a
separate chip.

Figure 1a illustrates how we implement different components of
MANN in the crossbars. First, a regular crossbar-based CNN is used to
extract the real-valued feature vector, and the method implementing
this step has been widely reported previously11,33,34. After that, dis-
tances are calculated between the extracted feature vector and those
stored in a memory. Cosine distance (CD) is one of the most widely
used distance metrics in the explicit memory of various MANN
implementations, but it is not straightforward to implement with
memristor-based crossbars. However, the cosine distance between
two real-valued vectors can be well approximated by the Hamming
distance (HD) using locality sensitive hashing codes of the two
vectors25,28,35. Accordingly, in this work, instead of being stored in a
dynamic random-access memory (DRAM) for future distance calcula-
tions, the features are hashed into binary/ternary signatures in a
crossbar with randomly distributed conductance at each crosspoint
exploiting the stochasticity of memristor devices. Finally, those sig-
natures are then searched against those previously stored in another
crossbar that acts as a content-addressable memory enabled by a
newly proposed coding method, from which we can also calculate the
degree of mismatch that approximates the cosine distance of the
original real-valued vector. The three steps denoted above are
experimentally demonstrated here.

The idea is experimentally demonstrated in our integrated
memristor chip. One of the tiled 64 × 64 memristor crossbars in our
integrated chip thatweused to experimentally implement the network
is shown in Fig. 1b. The peripheral control circuits, including the
driving, sensing, analog-to-digital conversions, and the access tran-
sistors, are implemented with a commercial 180 nm technology inte-
grated chip (Fig. 1c). The 50nm× 50 nm Ta/TaOx/Pt memristors are
integrated with back-end-of-the-line (BEOL) processing on top of the
control peripheral circuits (Fig. 1d). The fabrication details, the device
characteristics and peripheral circuit designswere reported previously
elsewhere36,37, and the picture of our test chip and platform is shown in
Supplementary Figs. 1, 2.

Locality sensitive hashing in the crossbar array
Using crossbars for feature extraction has been implemented andwell-
discussed in prior works, therefore, we first discuss our proposals for

Article https://doi.org/10.1038/s41467-022-33629-7

Nature Communications | (2022) 13:6284 2

performing hashing operations in crossbar-based hardware, by
employing intrinsic stochasticity. We validate that the experimental
implementation in memristor crossbars can approximate cosine dis-
tance. LSH38–40 is a hashing scheme that generates the same hashing
bits with a high probability for the inputs that are close to each other.
One of the hashing functions among the LSH family is implemented by
random signed projections, i.e., applying a set of hyperplanes to divide
the Hilbert space into multiple parts such that similar inputs are pro-
jected to the same partition with a high probability (Fig. 2a). This
random projection is mathematically expressed by a dot product of
the input vector a and a random normal vector n, so that ‘1’ is gener-
ated if a ⋅n >0, or ‘0’ otherwise. Accordingly, LSH bits can be calcu-
lated by the equation below in a matrix form,

h=H aNð Þ ð1Þ

where the h is the binarized hashing vector, a the input real-valued
feature vector, N the random projection matrix with each column a
random vector, and H the Heaviside step function.

The random projection matrix can be constructed physically by
exploiting the stochastic programming dynamics of the memristor
devices or the initial randomness after the fabrication (Fig. 2b). But it is
still challenging to generate random vectors nwith a zero-mean value,
as required by the LSH algorithm, because the conductance of the
memristor device can only be positive values. Our solution is to
take the difference between devices in the adjacent columns41 in the
crossbar array. The devices from the columns, assuming no inter-
ference in between, are independent of each other. Therefore, the
distribution of the conductance difference will also be uncorrelated
and random. In this way, the random normal vector n in the original
equation can be represented by the difference of two conductance
vectors, i.e., n= g+ � g�ð Þ=k. The zero-mean value of the vector n is

XB 1 XB 2 XB 3 XB 4 XB 5

CNN controller

Real-valued
feature vectors

D
 d

im
en

si
on

s

0
0
1

1
0 X

0

0
1
1

1
0

0
0
11

X
0

0
1

0

0

0
1

1

Ternary key memory

M memory entries

K
-b

its
 te

rn
ar

y
ve

ct
or

R
ow

 m
ux

TIA, S&H, ADC

Write

Search

5-way 1-shot
Support set

Query image
Label?

Ternary signature
embeddings

Cat !

a

b c d

+ - + - + -

Hashing vector

R
ea

l-v
al

ue
d

ve
ct

or

Cat !

Gon

Goff

Number of
mismatches:

1
1

0

1
bit

2
bits

0
bit

2
bits

2
bits

XB: Memristor crossbar array

Analog Matrix Multiplication Locality Sensitive Hashing Nearest Neighbor Search

1 μm

NMOS
FEOL

Fab
BEOL

Memristor
BEOL

64
 ro

w
s

64 columns

20 μm 1 μm

Fig. 1 |Memory-augmented neural networks in crossbar arrays. aThe schematic
of a crossbar-based MANN architecture. The expensive data transfer in a von
Neumann architecture can be alleviated by performing analog matrix multi-
plication, locality sensitive hashing, and nearest neighbor searching directly in
memristor crossbars, where thedata is stored.bOptical imageof a 64 × 64 crossbar

array in a fully integrated memristor chip. c Top view of four 50nm× 50nm inte-
grated cross-point memristors. d Cross-section of the memristor chip, where
complementary metal-oxide-silicon (CMOS) circuits at the bottom, inter-
connection in the middle, and metal vias on the surface for memristor integration
with back-end processes. Animal figures in (a) are taken from www.flaticon.com.

Article https://doi.org/10.1038/s41467-022-33629-7

Nature Communications | (2022) 13:6284 3

http://www.flaticon.com

guaranteed as long as the distribution of the memristor conductance
vectors (g+, g−) have the same mean value. The notation k is a scaling
factor, which can be set as an arbitrary value because we only need to
determine if the output is larger than zero or otherwise.

Here, we experimentally program all devices in a crossbar array to
the same target conductance state. The programming process of
memristor devices is stochastic9 as the thinnest part of the conductive
filament can be only a few atoms wide42. Accordingly, the final con-
ductance values follow a random distribution with the mean roughly
matching the target conductance. To lower the output current and
thus the energy consumption, we reset all devices to the low con-
ductance state (the lowest conductancewasmeasured 17nS at the read
voltage of 0.2V) from arbitrary initial states using a few pulses (see
Methods for details). After programming, as expected, devices are
programmed to a low conductance state (Fig. 2c), and the difference
between devices fromadjacent columns follows a randomdistribution

with a zero mean value (Fig. 2d, e). Hashing bits for an input feature
vector are generated efficiently by performing multiplications with
the randomly configured memristor crossbar array. After converting
the real-valued input vector into the analog voltage vector, the dot
product operations are conducted by applying the voltage vectors to
the rowwires of the crossbar and reading the current from the column
wires. Thus, the hashing operation is completed by comparing the
current amplitude from the adjacent columns (Fig. 2b) in one step,
regardless of the vector dimension.

Imperfections in emerging memristive devices, such as con-
ductance relaxation and fluctuation, limit experimental performance.
This is mainly because the device conductance fluctuations incur
instability of hashing planes implemented as adjacent column pairs in
crossbar arrays. This causes hashing bits for input vectors that are
close to hyperplanes to flip between 0 and 1 over time (Supplementary
Fig. 5) and therefore leads to an inaccurate approximation of the

a b

c

f g

d

0 1

a
bc

LSH

0 X X 1

a
bc

TLSH

e

C
on

du
ct

an
ce

 d
iff

er
en

ce
 [μ

S]

10

-10

5

-5

0

1

1 64
64

32

128
Conductance [μS]

0
0

2 4

400

800

12001200

1600

6 8 10

μ = 2.933 μS
σ = 5.432 μS

C
ou

nt

μ = 0.017 μS
σ = 3.097 μS

Conductance difference [μS]

0

400

800

1200

1600

-10 105-5 0

C
ou

nt

μ = 0.017 μS
σ = 3.097 μS

25% - 75%
Range within 1.5 IQR
Median line

+ - + - + -

Hashing vector

R
ea

l-v
al

ue
d

ve
ct

or

(1) (2) (3) (N) (N+1)

software LSH
hardware TLSH
hardware LSH

8
0.4

0.5

0.6

0.7

0.8

0.9

16 32 64 128

Li
ne

ar
 c

or
re

la
tio

n
co

ef
fic

ie
nt

 b
et

w
ee

n
C

D
 a

nd
 H

D

of hashing bits

64
0.82

0.84

0.86

0.88

0.90

0.92

128

H
am

m
in

g
di

st
an

ce

Cosine distance Cosine distance Cosine distance

hardware TLSH hardware LSH software LSH

0 0.5 1.0 1.5 0 0.5 1.0 1.5 0 0.5 1.0 1.5
0

20

40

60

80

100

e

5
a

n

%
t

software LSH

hardware TLSH

hardware LSH

Random conductances

Fig. 2 | Robust ternary locality sensitive hashing in analog memristive cross-
bars. a Illustration of the Locality Sensitive Hashing (LSH) and the Ternary Locality
Sensitive Hashing (TLSH) concept. b The LSH or TLSH implemented in memristor
crossbars. Each adjacent column pair represents one hashing plane. Thus, cross-
bars with N + 1 columns can generate N hashing bits with this method. Greyscale
colors on thememristor symbol represent randomconductance states. cA random
memristor conductance distribution in a 64 × 129 crossbar after applying five
RESETpulses to each device. The intrinsic stochastic behavior inmemristor devices
results in a lognormal-like distribution near 0 μS. d The distribution of the mem-
ristor conductance difference for devices in adjacent columns. The differential

conductance distribution is randomwith zero-mean,matching the requirements of
our hashing scheme. e The conductance differencemap of size 64 × 128 (including
three crossbar arrays each of size 64 × 64). f The correlation between cosine dis-
tance andHamming distancewith different hashing representations shows that the
Hamming distancegeneratedbyboth hardware and software canwell approximate
the cosine distance. IQR interquartile range. g The linear correlation coefficient
betweenHamming distance and cosine distance increases with the number of total
hashing bits. The hardware TLSH approach shows a higher correlation coefficient
than the hardware LSH approach due to the reduced number of unstable bits, as
detailed in Supplementary Fig. 5. CD cosine distance, HD hamming distance.

Article https://doi.org/10.1038/s41467-022-33629-7

Nature Communications | (2022) 13:6284 4

cosine distance. It should be emphasized that this problem only
becomes apparent when performing matrix multiplication in arrays,
rather than multiplying with the readout conductances reported in
other works23.

To mitigate bit-flipping, we propose a software-hardware co-
optimized ternary locality sensitive hashing scheme (TLSH). The
scheme introduces a wildcard ‘X’ value to the hashing bits (Fig. 2a), in
addition to ‘0’ and ‘1’ in the original hashing scheme. As the name
implies, theHammingdistancebetween thewildcard ‘X’ and any values
will always be zero. The ‘X’ is generated when the absolute value of the
output current difference is smaller than a threshold value, i.e., Ith. The
value for Ith is chosen to be small and close to the transient analog
computing error from the crossbar, such that any bit-flipping mini-
mally impacts the similarity search. One peripheral circuit design to
realize said functionality is introduced in detail in the Supplementary
Note 2. It should be noted that the speed and energy efficiency for
hashing operations with the custom circuit is much higher than
crossbars for matrix multiplication mainly because of the lack of
analog-to-digital signal conversion.

Wevalidate theproposed approachbyconducting experiments in
our integrated memristor crossbars. The hashing outputs for 500 64-
dimensional real-valued random vectors are computed in our mem-
ristor crossbars for binary and ternary hashing vectors. The Ith repre-
senting the threshold of the ‘X’ wildcard is set to 4μA in the ternary
hashing implementation (TLSH). Figure 2f shows that the cosine dis-
tance is closely correlated with the Hamming distance between the
hashed vectorswith 128 hashing bits in total, regardless of whether the
hashing codes are generated by a 32-bit floating-point digital pro-
cessor (“software LSH” in Fig. 2f), the analog crossbar (“hardware
LSH”), or the proposed co-designed ternary hashing codes by the
crossbar (“hardware TLSH”). Note that the Hamming distance of
the ternary hashing codes is smaller than that of the binary codes
because the distance to a wild card ‘X’ is always zero. The effectiveness
of the method is evaluated quantitatively by the linear correlation
coefficient, as shown in Fig. 2g. The result shows that the proposed
ternary hashing narrows the already small gap between the digital
software approach and our analog hardware approach. The perfor-
mance improvement results from significantly reduced unstable bits,
which is experimentally demonstrated by the comparison shown in
Supplementary Fig. 5. The results demonstrate that crossbar arrays,
utilizing the proposed ternary scheme, can effectively and efficiently
performhashingoperations, taking advantageof intrinsic stochasticity
and massively parallel in-memory computing.

TCAM in crossbars with ability to output degree of mismatches
Following the LSH step, the binary or ternary hashing signatureswill be
searched against the hashed signatures previously stored in amemory
to calculate the similarity and thus find the k-closest matches. As
mentioned earlier, this is an extremely time- and energy-consuming
step on conventional hardware such as GPUs. Content-addressable
memories (CAM) or the ternary version (TCAM) are direct hardware
approaches that can find the exact match in the memory in one step.
Still, existing static random-accessmemory (SRAM) based CAM/TCAM
implementations limit the available memory capacity and incur high
power consumption. CAMs/TCAMs based on non-volatile memories
have been developed recently, including those based on memristor/
ReRAM (e.g., 2T-2R30,43, 2.5T-1R44), floating gate transistor (e.g.,
2Flash45), ferroelectric transistors (e.g., 2FeFET28,29), etc. Although
these studies demonstrated good energy efficiency, they are limited to
at most a few bits mismatches which have difficulties serving as
attentional memory modules for scaled-up MANNs28–30.

We implement the TCAM functionality directly in an analog
crossbar with the additional ability to output the degree of mismatch
based on the Hamming distance, rather than only a binary match/
mismatch. In contrast to conventional TCAM implementations which

sense a mismatch by a discharged match-line, our crossbar-based
TCAM searches through a simple encoding and a set of dot product
operations computed in the output currents. Fig. 3a shows a schematic
on how this schemeworks. First, the query signature is encoded to use
a pair of voltage inputs for 1-ternary-bit, so that one column wire is
driven to a high voltage (i.e., Vsearch), while the other is grounded. The
corresponding memristor conductances that store previous sig-
natures are encoded with one device set to a high conductance state
(i.e., Gon) and the other to the lowest conductance state (i.e., Goff ≈0).
In this way, for a “match” case, the high voltage will be applied to the
device in the low conductance state, and therefore, very little current is
added to the row wires. In a “mismatch” case, the high voltage applied
to the device in the high conductance state will contribute Vsearch × Gon

to the output current of the column wires. The wildcard ‘X’ in the
ternary implementation will be naturally encoded as two low voltages
as input or two low conductance devices so that they contribute zero
or very little current and thus always yield “match”. In this way, the
degree of mismatch, the Hamming distance, between the query sig-
nature and all words stored in the crossbar is computed in a constant
time step by sensing the column currents from the crossbar (see
Fig. 3b). To minimize the energy consumption, we custom-designed
two peripheral circuit approaches for the crossbar-based TCAM, as
detailed in Supplementary Note 3, significantly reducing the energy
consumed on memristors.

We have experimentally implemented the above TCAM for mea-
suring Hamming distance in memristive crossbars. First, eight differ-
ent binary signatures, each having eight bits but a different number of
‘1’s (from one ‘1’ to eight ‘1’s), are encoded into conductance values as
shown in Fig. 3c. The conductance values are then programmed to a
crossbar with an iterative write-and-verify method (see ref. 36 and
“Methods” for details), with the readout conductance matrix after
successful programming shown in Fig. 3b.We choose 150μS as theGon

for a higher on/off conductance ratio and minimal relaxation drift
(Supplementary Fig. 3). Figure 3d shows both the distribution of Gon

and Goff after programming.
After configuring the memory to store the previously generated

signatures, 100 ternary signature vectors as queries are randomly
chosen and the corresponding encoded voltages are applied to the
column wires of the crossbar (Fig. 3c), to perform the search opera-
tion. The search voltage (Vsearch) is chosen to be 0.2V in this work, so
each mismatched bit will contribute approximately 30μA
(=0.2V × 150μS) to the output current. In the experiment, however,
results are deteriorated by non-ideal factors. For example, the mem-
ristor in a low conductance state still contributes a small current
(Vsearch × Goff ≠0) in a “match” case, imperfect programming of Gon

results in deviations in output current for each “mismatch” case, etc.
Our device exhibits a large enough conductance on/off ratio36, but for
devices with a lower conductance on/off ratio, such as MRAM46, the
problemwould bemore significant. For such cases, we propose a 3-bit
encoding that is discussed in detail in Supplementary Fig. 6. Addi-
tionally, non-zero wire resistances cause a voltage drop along wires,
lowering the output current from what would be ideally expected.
Despite these factors, the output current in our experiments exhibits a
linear dependence on the number of mismatch bits, i.e., ternary
Hamming distance (Fig. 3e). Figure 3f shows separated distributions
where each distribution represents a distinct number ofmismatch bits
ranging from 0 to 8. We have thus experimentally demonstrated a
robust capability to store patterns, search patterns, and obtain the
degree of mismatch which will enable determining the closest match
that is stored in an array by simply comparing output currents.

One- and few-shot learning experiments fully implemented in
memristor hardware
We implemented the key components in a MANN to demonstrate the
feasibility of one- and few-shot learning in crossbars. To evaluate and

Article https://doi.org/10.1038/s41467-022-33629-7

Nature Communications | (2022) 13:6284 5

compare the performance of our method, we chose the Omniglot
dataset31, a commonly used benchmark for few-shot learning tasks. In
this dataset, there are 1623 different handwritten characters (classes)
from various alphabets. Each character contains 20 handwritten sam-
ples fromdifferent people. Samples from964 randomlychosen classes
areused to train theCNNcontroller and the remaining 659 areused for
one-shot and few-shot learning experiments. In an N-way K-shot
learning experiment, the model should be able to learn to classify new
samples from N different characters (classes) after being shown K
handwritten images from each character (support set). The accuracy is
evaluated by classifying an unseen sample (query set) after learning
from the limited number of samples (only one sample each for the
1-shot problem) from each class.

In our experiment, the memristor CNN controller first extracts
the feature vector from an image. Note that the weights in the CNN
do not need to be updated after the meta-training process which is

done in software offline. Our CNN consists of four convolutional
layers, two max-pooling layers, and one fully connected layer
(Fig. 4a). There are nearly 65,000 weights in convolutional layers
altogether that are represented by 130,000 memristors, with the
conductance difference of two memristors representing one weight
value. The weights of convolutional layers are flattened and con-
catenated first (see Supplementary Fig. 9 and “Methods” for details)
and then programmed to crossbar arrays with an iterative write-and-
verify method. Limited by the available array size, we divide larger
matrices into 64 × 64 tiles and reprogram the same arrays when
needed to accomplish all convolutional operations in the crossbar.
Experimental conductance maps (36 matrices of conductance
values) for the CNN layers after each programming of an array are
shown in Supplementary Fig. 10. The repeated programming of
memristor arrays demonstrated good reliability of the memristor
devices within crossbars. After programming the convolutional

b

a

c

fed

Degree of mismatches (Hamming distance)

C
ur

re
nt

 [μ
A]

0 1 2 3 4 5 6 7 8

25

20

50

75

100

125

150

175

200
25% - 75%
Range within 1.5 IQR
Median line
Mean

 1 bit
mismatch

 2 bits
mismatch

25 50 75 100 125 150 175 200

mismatch

i t h

0
0

10

20

30

40

50

60

70

80

Current [μA]

C
ou

nt

match

Gon

Goff

Conductance [μS]

C
ou

nt

0 20 40 60 80 100 120 140 160
0

5

10

15

20

25

30

Gon

Goff

1 0 X

match

1 bit mismatch

2 bits mismatch

Search vector

1

0

0

0

1 X

1

X 0

Stored key vectors

‘1’

Input: ‘1’

0
Match

‘1’

Input: ‘0’

 V×Gon

Mismatch ‘1’

Input: ‘X’

 0
Match

Conductance map in a crossbar as a TCAM

2 4 6 108 12 14 16

1
2
3
4
5
6
7
8

C
onductance [μS]

R
ow

 #

Col #

1 X 0

0 0 1

0 1 X

Fig. 3 | TCAM implemented in crossbar array capable of conducting Hamming
distance calculation. a Illustration of the basic principle for using dot product to
distinguish “match” and “mismatch” cases. b The schematic of calculating Ham-
ming distance in a crossbar. The figure shows three 3-dimensional ternary key
vectors stored in a 3 × 6 crossbar with a differential encoding. Differential voltages
representing ternary bits in search vectors are applied to the source line and the
output current from the bit line can represent the THD between the search vector

and keys stored in thememory. c The readout conductancemap after eight binary
vectors experimentally stored in the crossbar asmemory. In the experiment, we set
Gon as 150μS and Vsearch as 0.2V. d Distribution of Gon and Goff. e Ouput current
shows a linear relation with Hamming distance measuring the degree of mis-
matches. IQR interquartile range. f Current distributions are separated from each
other through which we can obtain the number of mismatch bits (i.e., Hamming
distance).

Article https://doi.org/10.1038/s41467-022-33629-7

Nature Communications | (2022) 13:6284 6

weights into the crossbar, the fully connected layer is retrained to
adapt to the hardware defects.

Before a few-shot learning task is performed, the explicit memory
stored in the crossbar-based TCAM is initialized with all ‘0’s. During
few-shot learning, the feature vectors, computed by the memristor
CNN, are first hashed into 128binary or ternary signatures and then the
signatures are searched against the entries in the crossbar-based

TCAM for the closest match, as described above. The label of the
closest match will be the classification result. If correct, the nearest
neighbor entry will be updated based on the new input query vector
(see “Methods”). Otherwise, the signature along with the label is writ-
ten to a new location in the TCAM using differential encoding. After
learning K images from the support set, The conductance map that is
stored in the crossbar-based TCAM is shown in Supplementary Fig. 11.

a

b c

d e

32x3x3 32x28x28

32x32x3x3 32x28x28 max
pooling

 max
pooling64x32x3x3 64x14x14

64x64x3x3 64x14x14

31
36

x1

R
et

ra
in

ed
 F

C
 la

ye
r

0 25 50

0 25 50 0 25 500 25 50

Conductance [μS]

Conductance [μS] Conductance [μS] Conductance [μS]

64
x1

5-way 1-shot 5-way 5-shot 25-way 1-shot 25-way 5-shot
C

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

 (%
)

0

20

40

80

60

100

Ac
cu

ra
cy

 (%
)

60

70

80

90

100

5-way 1-shot problem

TLSH + TCAM
LSH + TCAM

0.01 0.1 1
Conductance fluctuation [μS]

25-way 1-shot problem

Ac
cu

ra
cy

 (%
)

30

40

50

60

70

80

TLSH + TCAM
LSH + TCAM

0.01 0.1 1
Conductance fluctuation [μS]

Our device fluctuationOur device fluctuation

Cosine similarity
Software LSH
Crossbar TLSH + TCAM

Standard deviation
Max and Min bound
Experimental data point

Mismatch bits sensed in 25-way 1-shot

0
0

200

2 4 6 8

40 42 44 46 48

1400

1200
25% - 75%
Range within 1.5 IQR
Median line

C
ur

re
nt

 [μ
A]

mismatch bits
0 10 20 30 40 50 60 70 80

0

200

0 2 4 6 8

40 42 44 46 48

1400

1200

C
ur

re
nt

 [μ
A]

mismatch bits

Mismatch bits sensed in 25-way 5-shot

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80
0

500

1000

1500

2000

2500

Fig. 4 | Experimental demonstration of few-shot learning with memristive
crossbar arrays. a Schematic of CNN structure implemented in the memristor
crossbar array. The conductance shows the weight mapping of CNN kernels. The
format of dimension representations in the figure follows the Output channel (O),
Input channel (I), Height (H), and Width (W). The conductance maps representing
the whole CNN kernels are shown in Supplementary Fig. 10. b Linear relationship
between the sensing current from the crossbar-based TCAM and the number of
mismatch bits during the search operations. c Classification accuracy with cosine

similarity, software-based LSH with 128 bits, and end-to-end experimental results
on crossbar arrays. We provide 5 experimental data points for each task. Software
LSH shows experimental variation due to different initializations of the hashing
planes in each experiment. Simulations of classification accuracy of 5-way 1-shot
problem (d) and 25-way 1-shot problem (e) as a function of device fluctuations in
thememristor model for both TLSH and LSH. Fluctuations from nearly zero to 1μS
are shown. The actual experimental fluctuation level is shown with an arrow.

Article https://doi.org/10.1038/s41467-022-33629-7

Nature Communications | (2022) 13:6284 7

Note that the CNN controller stays the same across all four few-shot
learning tasks (5-way 1-shot, 5-way 5-shot, 25-way 1-shot, and 25-way 5-
shot) once trained on the entire dataset. Therefore, in a future system
with more crossbar tiles that can accommodate the CNN model, the
CNN controller would not need to be re-programmed, and accord-
ingly, the memory is the only part that needs to be updated during
lifelong learning. Moreover, even for the memory module, the update
is not frequent (1.3 times per bit for 20-shot) throughout the learning
process, as demonstrated in Supplementary Fig. 12.

Accuracy is evaluated experimentally in classifying new samples
after few-shot learning with four standard tasks: 5-way 1-shot, 5-way 5-
shot, 25-way 1-shot, and 25-way 5-shot, respectively. We find that the
experimental sensing currents during few-shot learning experiment are
highly linear with the number of mismatch bits, i.e., hamming distance,
as shown in Fig. 4b. This is partly enabled by the introducedwildcard ‘X’
from our TLSHmethod, as discussed in detail in Supplementary Fig. 16
and Supplementary Note 1. The classification results shown in Fig. 4c
demonstrate that for 5-way problems, our crossbar-based MANN
achieves an accuracy very close to the softwarebaseline implemented in
digital hardwarewith cosine similarity as thedistancemetric. For 25-way
problems, we find no difference between results from our analog
hardware and that from the digital hardware implementing the same
LSH plus Hamming distance algorithm. Though there exists some
accuracy drop compared to the cosine baseline, the performance can
be improved to match the baseline accuracy by increasing the number
of hashing bits from 128 to 512 (see Supplementary Fig. 7). The
experimental results on CNN, hashing, and similarity search demon-
strate that realizing parts of the MANN in crossbar arrays can achieve
similar accuracy as our software baseline and recently reported state-of-
the-art model, as compared in detail in Supplementary Note 5.

Device imperfections analysis
Accuracy can be affected by many non-idealities in emerging memory
devices, among which the two most prominent are conductance
fluctuations and relaxation. We notice that the conductance of mem-
ristor devices fluctuates up and down (see Supplementary Fig. 4a, b)
even within a very small period (at the scale of nanoseconds). The
fluctuation leads to frequent changes in convolutional kernels,
hyperplane locations in LSH operations, and stored signature values in
TCAMs, which negatively impact the accuracy. The data (shown in
Supplementary Fig. 4c)measured fromour integrated array shows that
the degree of device fluctuation increases with the conductance value.
This behavior is consistent with previous reports on single device
measurement36,47. In addition to the conductance fluctuations, the
programmed value may also change permanently (relaxation) over
time, which is characterized in detail in Supplementary Fig. 3c. From
these results, wefind that conductance relaxation is largerwhendevice
conductance is programmed to a certain range (from around 25 to
75μS). Therefore, in our implementation, we try to avoid this range as
much as possible to achieve the software equivalent accuracy. For
example, in the LSH part, we choose lower conductance levels to
minimize both conductance fluctuation and relaxation. In the TCAM
part, we chose 0μS and 150μS as the low and high conductance levels
tominimize the impact of conductance relaxation. In the CNNpart, we
observe that most weight values are very small (near zero), so with the
differential encodingmethod (details described in “Methods”), we can
guarantee that most memristor conductance values are below the
range with higher relaxation.

To analyze our software-competitive accuracy results and evalu-
ate if our method is scalable, we built an empirical model describing
experimental conductance-dependent fluctuation behavior and
deviation after programming48. With the experimental calibrated
model (see “Methods” and Supplementary Fig. 4c, d for more details),
we can match the simulation results with the experiments in few-shot
learning on Omniglot handwritten images. The detailed comparison is

shown in Supplementary Fig. 13a. The simulation also enables us to
analyze how different device fluctuations impact classification accu-
racy. We conducted simulations assuming the device conductance
fluctuation spanning from nearly no fluctuation to 1μS which is about
ten times larger than our device behavior. The results in Fig. 4e, f show
that with the experimental fluctuation value, the accuracy stays almost
the same as the software equivalent value, but the accuracywill sharply
drop if the fluctuation is more than three times larger than our
experimental value. The results also show that our proposed TLSH
method exhibits better performance compared to the conventional
LSH, especially for more significant device fluctuation scenarios
(Fig. 4e, f and Supplementary Fig. 14). In addition to the higher toler-
ance to the device fluctuation, the comparison shown in Supplemen-
tary Fig. 13b, c also demonstrates the TLSH’s advantages in search
energy. These simulations,with experimental calibration, elucidate the
experimentally observed defect tolerance and software-equivalent
accuracy. Though there exist other defects such as stuck-at-fault, I-V
nonlinearities for high resistance states, and device-to-device variation
in active conductance range, we find these have negligible impact on
the final performance. With this tool, we are able to analyze scaling up
to more complex real-world problems.

Scaled-up MANN for Mini-ImageNet
The methodology of crossbar-based TLSH and TCAM can be applied in
many fields of deep learning that require distance calculation and
attentionmechanisms.To show the scalability of ourproposedmethods
for crossbar-based MANN, we conducted simulations based on our
experimentally-calibrated model for one-shot learning using the Mini-
ImageNet dataset32. This dataset is derived from the ImageNet dataset
with 100 classes of 600 images of size 84× 84 color pixels per class. The
task is known to be much more difficult than that of the Omniglot
handwritten dataset. A more sophisticated ResNet-18 model is used as
the controller following the state-of-the-art structure in few-shot learn-
ing models49, which has more than 11 million weights, 44 times larger
than the controller used to classify images from the Omniglot dataset.

A challenge for this network is the required crossbar sizes (larger
than 512 in one dimension), and thus the voltage drops along the wire
would significantly reduce the computing accuracy. This is solved by
partitioning large arrays (for hyperplanes and memories) into smaller
256× 256 tiled crossbars (Fig. 5a) to accommodate the model. In the
simulation, we consider the experimental device fluctuations (see
Supplementary Table 2) and use the same threshold current (4μA) for
the TLSH approach as in the smaller Omniglot problem. The result in
Fig. 5b shows that the classification accuracy for the 5-way 1-shot
problem increases with the number of hashing bits, and reaches 58.7%
with 4096 hashing bits, only 1.3% smaller than themodel implemented
in digital hardware with cosine similarity as the distance metric. We
also explored the performancewith different partitioned array sizes in
Supplementary Fig. 15a, b, which achieves nearly equivalent perfor-
mance with arrays smaller than or equal to 256× 256, and drops
slightly with the 512 × 512 array. Encouragingly, the TLSH function can
be implemented with a larger array (512 × 512) because of lower con-
ductance and smaller voltage drops along the wires. From these
results, we can see that the performance of our crossbar-based MANN
can scale up effectively to at least Mini-ImageNet problems.

Discussion
Compared to conventional von Neumann based implementations, the
key advantage of crossbar-based MANNs is lower latency and higher
energy efficiency through co-located computing andmemory, energy-
efficient analog operations, and intrinsic stochasticity. To evaluate the
strength of the approach, we run the same 5-way 1-shot problem with
Omniglot and Mini-ImageNet datasets on a digital graphic processing
unit (GPU) (Nvidia Tesla P100). The time required to classify a single
image increases dramatically after the size of the MANN’s external

Article https://doi.org/10.1038/s41467-022-33629-7

Nature Communications | (2022) 13:6284 8

memory capacity reaches a certain threshold (only several MB)
because of the repeated off-chip data movement (see Fig. 5c). This
problem on conventional hardware has been the major bottleneck
preventing the widespread adoption of few-shot learning. The
approachofdirectly computing in thememory, or crossbar, provides a
plausible solution to address this bottleneck. In the crossbar-based
MANNs, the matrix multiplication in the convolutional layer, the
hashing in TLSH, and the searching operation in TCAM are all com-
puted with single-step current readout operations. With our current
proof-of-concept experimental system, readouts take about 100ns,
but in a future systemwithmore crossbar tiles that are fabricated with
amoreadvanced technology node, the readout timecanbe reduced to
10 ns. We also considered the time latency for the peripherals that
include but are not limited to the digital-to-analog converters (DACs),
TLSH sensing block, and the analogadder for summingup the voltages
in different tiled crossbar arrays. With these forecasts, we compared
the latency of the nearest neighbor search operation on aGPUwith our
analog in-memory hardware. The results shown in Fig. 5d indicate
latency improvements of (10,466 × for Omniglot and 26,002 × for
Mini-ImageNet) when the memory size (number of entries) is 8192.
Additionally, our approach also offers high energy efficiency of the
nearest neighbor search operation compared with the conventional
GPU (2857 × for Omniglot and 50,970 × for Mini-ImageNet) in the
forecasted system. Detailed analysis of the energy and latency esti-
mations can be found in Supplementary Note 4.

In summary, we have experimentally demonstrated the viability of
a complete MANN architecture, from the controller to distance cal-
culation, in an analog in-memory platform with proven high robust-
ness and scalability. We utilize the analog behavior of memristor

devices to perform convolution operations for CNNs and exploit the
inherent stochasticity of devices to performhashing functions. A novel
hardware-friendly hashing function (TLSH) is developed to provide
better analog computing error tolerance and lower power consump-
tion. In addition, a differential encoding method for a crossbar-based
TCAM is applied to adapt to the ternary Hamming distance calculation
requirements. In our experiments, all dot-product operations are
performed in physical crossbars, which exhibit experimental imper-
fections, such as device state fluctuations, device nonlinearities, vol-
tage drops due to wire resistance, and peripheral circuits. The
hardware-implemented CNN, hashing and similarity search function-
alities for MANN delivered similar accuracy compared to software on
few-shot learning with the widely used Omniglot dataset. Simulation
results onMini-ImageNet show the ability of crossbar-basedMANNs to
execute real-world tasks, with much-improved latency and energy
consumption. We demonstrate that analog in-memory computing
with memristive crossbars efficiently supports many different tasks,
including convolution, hashing, and content-based searching. The
successful demonstration of these functions opens possibilities with
other machine learning algorithms, such as attention-based algo-
rithms, or reaching scales that are currently prohibited by conven-
tional hardware (e.g., Fig. 5c). Additionally, there are many
opportunities for future software-hardware co-optimization to
improve the accuracy and efficiency results further.

Methods
Memristor integration
Thememristors are monolithically integrated on CMOS fabricated in
a commercial foundry in a 180 nm technology node. The integration

a

b c d

26 28 210 212 214 216 218 220 222

Memory size

Ex
ec

ut
io

n
tim

e
pe

r s
ea

rc
h

[m
s]

10-1

100

101

4MB

4MB
M

ini
-Im

ag
eN

et

O
m

ni
gl

ot

Differential
Coding

H
am

m
in

g
di

st
an

ce

Label

Feature vectors

Hashing matrix Memory matrix
H H

W W

1000
0

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

of hashing bits

Cosine similarity
TLSH + TCAM (256×256)

Ex
ec

ut
io

n
tim

e
pe

r s
ea

rc
h

[s
]

10-8

10-9

10-7

10-6

10-5

10-4

10-3

En
er

gy
 c

om
su

m
pt

io
n

pe
r s

ea
rc

h
[J

]

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

Omniglot Mini-ImageNet

GPU
Crossbar

Memory size = 8192

1.0x104

2.9x103

2.6x104 5.1x104

WL driver

+
-

+
-

+
-

TLSH sensing block Mux, S&H, ADCs

BL driver

WL driverWL driver

+
-

+
-

+
-

BL driverBL driver

Fig. 5 | Experiment validated simulation results ofMini-ImageNetdataset. aThe
architecture of TLSHandTCAM for the scaled-upMANN. Bothmatrices for hashing
and external memory are partitioned into H ×W memristor crossbar tiles, to miti-
gate the voltagedropproblem in large crossbars and to increase the utilization rate.
b The accuracy performance from our experiment-validated models on Mini-
ImageNet dataset. The error bar shows the 95% confidence interval among 100
repeated inference experiments. c The execution time of search operations per
inference on a GPU drastically increases when external memory size reaches a

threshold, confirming the operation is memory intensive. d The comparison of the
search latency and energy consumption for 5-way 1-shot learning on both the
Omniglot and Mini-ImageNet datasets. For GPU, the models for both datasets
stores the same number of entries (8192), butMini-ImageNet uses a largermemory
capacity due to the higher dimension (64 vs. 512) of feature vectors, leading to even
better improvement on latency and energy efficiency. The number of hashing bits
used in crossbar arrays is 128 and 4096 for Omniglot and Mini-ImageNet,
respectively.

Article https://doi.org/10.1038/s41467-022-33629-7

Nature Communications | (2022) 13:6284 9

starts with the removal of native oxide on the surface metal with
reactive ion etching (RIE) and a buffered oxide etch (BOE) dip.
Chromium and platinum are then sputtered and patterned with
e-beam lithography as the bottom electrode, followed by reactively
sputtered 2 nm tantalum oxide as the switching layer and sputtered
tantalum metal as the top electrode. The device stack is finalized by
sputtered platinum for passivation and improved electrical
conduction.

Iterative write-and-verify programming method
In this work, we use the iterative write-and-verify method to program
memristor devices to the target conductance value. First, we set a
target conductance matrix and the corresponding tolerant pro-
gramming error range. After that, successive SET and RESET pulses
are applied to the target devices followed by conductance readout
with READ pulses. If the device conductance is below the target
conductance minus the tolerant error, a SET pulse is applied. A
RESET pulse is applied for conductance above the tolerant
values, while the device has been programmed within the tolerant
values are skipped to pertain the state. For the crossbar-basedMANN
in this work, we apply the write-and-verify method to map the
weights of the CNN controller and memories in the TCAM structure.
During the programming process, we gradually increase the pro-
gramming voltage and gate voltage as shown in Supplementary
Table 1. The pulse width for both the SET and RESET process is 1 μs.
The tolerant range we set is 5 μS above or below the target
conductance value.

Adjacent connection matrix
We apply the Adjacent Connection Matrix (ACM)41 to map the con-
ductance of memristors in crossbar arrays to weights in hashing
planes. ACM subtracts the neighboring columns as shown in Fig. 2b to
generate the hash codes. Hence, for a crossbar array with N + 1 col-
umns, the output of differential encoding contains N values which
immensely saves the area. The mathematical representation is as fol-
lows: Provided that we get a random conductance map after pro-
gramming which is:

Gmap =

G1,1 G1,2 � � � G1,N

G2,1 G2,2 � � � G2,N

..

. ..
. . .

. ..
.

GN,1 GN,2 � � � GN,N

0
BBBBB@

1
CCCCCA

ð2Þ

then the ACM method is equivalent to multiplying Gmap by a trans-
formation matrix:

Ghash =Gmap ×

1 0 � � � 0 0

�1 1 � � � 0 0

0 �1 � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � �1 1

0 0 � � � 0 �1

0
BBBBBBBBB@

1
CCCCCCCCCA

=

G1,1 � G1,2 G1,2 � G1,3 � � � G1,N�1 � G1,N

G2,1 � G2,2 G2,2 � G2,3 � � � G2,N�1 � G2,N

..

. ..
. . .

. ..
.

GN,1 � GN,2 GN,2 � GN,3 � � � GN,N�1 � GN,N

0
BBBBB@

1
CCCCCA

ð3Þ

Memristor model and simulations
We build a memristor model to simulate the conductance fluctuation,
which is themost dominant non-ideality of our crossbar-basedMANN.
The behavior of conductance fluctuation is assumed to be a Gaussian

nature which is as follows:

G=G0 + σ �N ð0, 1Þ ð4Þ

where G0 is the conductance after programming, σ describes the
standard deviation of the fluctuation range. In the simulation, we
assume that the device only fluctuates for different VMM processes
since in the real experiment the execution time of one VMM is very
small (10 ns) which is negligible compared to time between successive
input vectors (1μs). After considering the device-to-device variations
and fitting the parameters (see Supplementary Table 2) to experi-
mental measurements (see Supplementary Fig. 4), Equation (4)
becomes:

G=G0 + expða � lnðG0Þ+ b+ s �N ð0, 1ÞÞ �N ð0, 1Þ ð5Þ

withN ðμ,σ2Þ being the normal distribution with mean μ and standard
deviation σ. In the simulation, we also consider the program error to
the initial conductance G0 which is shown as:

G0 =Gt +N ð0, ~G2
errÞ

where Gt is the target conductance we want to program to and ~Gerr is
the program error which we set to 5μS in the simulation.

To get the parameters of the memristor model in terms of the
effect of device fluctuation, we SET 4096 devices to 16 distinct analog
states and READ each device for 1000 times. The relation between the
mean value and standard deviation of 1000 reads is shown in Sup-
plementary Fig. 4a and b. We further analyze the standard deviation
distribution for each conductance state from 5 to 50μS, plot the dis-
tributions in logarithmic scale, and fit themwith Gaussian distribution.
The results are shown inSupplementary Fig. 4c.Themeanvalueof s for
each distribution gives us the parameter for themodel. In addition, we
fit a linear curve with conductance states and standard deviation in a
log-log regime of measurements (see Supplementary Fig. 4d). The
fitted parameters a and b are used in the simulation.

Ternary locality sensitive hashing
Ternary locality-sensitive hashing introduces a wildcard “X” to the
hashing vector to alleviate the analog computing error from nonideal
factors. We have demonstrated that this modified hashing scheme can
achieve software-equivalent performance (LSH with the same hashing
bits) on our crossbar arrays. The threshold current Ith applied in the
experiment should be carefully chosen according to the typical value
of the computing error caused by device fluctuation. The value we
chose throughout the experiment is 4 μA. We also show the depen-
dence of classification accuracy on different threshold currents in
Supplementary Fig. 8.

For the simulation results in Fig. 4d and e, where the device
fluctuation varies, we chose different threshold currents Ith according
to the fluctuation levels. Specifically, for our memristor model which
can be described by Eq. (4), we empirically set the threshold current to
be 5σ ⋅VinwhereVin is themaximum input voltage to the row linewhen
performing VMM. The Vin is chosen to be 0.2V in our experiments.

To generate randomhashingplanes in crossbar arrays (Fig. 2c),we
RESET the devices from an arbitrary high conductance state to near
0μS, where the conductance is ultimately decided by the intrinsic
stochastic switching process. Regardless of the initial states, we use 5
RESET pulses with an amplitude of 1.5V and awidth of 20 ns. The RESET
voltage is carefully controlled to protect memristor devices because
larger voltages may cause devices to be stuck at low conductance
states.

Article https://doi.org/10.1038/s41467-022-33629-7

Nature Communications | (2022) 13:6284 10

CNN architecture
The convolutional neural network (CNN) in crossbars is applied as the
controller in the MANN to extract features from incoming images.

The CNN structure for the Omniglot dataset is composed of:
• 2 convolutional layers, each with 32 channels of shape 3x3
• A 2x2 max-pooling layer
• 2 convolutional layers, each with 64 channels of shape 3x3
• A 2x2 max-pooling layer
• A fully connected layer with 64 outputs

Each convolutional layer is followed by a rectified linear unit
(ReLU) activation layer.

The ResNet-18 for the Mini-ImageNet dataset is composed of 8
residual blocks. Each residual block has two 3 × 3 convolutional layers
with size [output channel, input channel, 3, 3] and [output channel,
output channel, 3, 3], respectively. Each convolutional layer is followed
by a batch normalization layer and a ReLU layer. The overall archi-
tecture for ResNet-18 is:

• 1 convolutional layer with 64 channels of shape 3x3
• 2 residual blocks with 64 channels and stride 1
• 2 residual blocks with 128 channels and stride 2
• 2 residual blocks with 256 channels and stride 2
• 2 residual blocks with 512 channels and stride 2
• 1x1 adaptive average pooling layer

We map the weights of convolutional layers in the CNN to the
conductance of memristor devices using differential encoding33. To
elaborate, in a differential columnpair,weprogramthepositiveweight
to the left column and the absolute value of negative weights to the
right column, while keeping the other at the low conductance state.
The weight-to-conductance ratio we set in our experiment is 1:50μS.
The feature maps collected from the output current in Fig. 4a are
converted into voltages and then sent to another crossbar array cor-
responding to the subsequent convolutional layer. The fully connected
layer is retrained after mapping convolutional layers on crossbar
arrays and it is computed in the digital domain.

Memory update rules
In an N-way K-shot learning, the memory module is updated based on
the N ×K images in the support set. If the label of the new input image
label does not match the label of the nearest neighbor entry, we simply
find a new location in the memory and write the input image to that
location. Conversely, if the input image label matches, we need to
update the memory of the nearest neighbor. In the GPU, we assign
cosine distance as the metric to identify the label of input images and
update the real-valued vectors at the same location25. However, in this
work, we use ternaryHamming distance as ourmetric, andwe apply the
following rules to update the ternary vectors in the external memory:
We introduce a scoring vector to evaluate themajority of “1” and “0” for
each bit of each memory vector. An element-wise mapping function is
applied to each ternary vector stored in the memory module:

f : f1, 0, XgD ! f1,� 1, 0gD

where D is the dimension of storing vectors. For example, vector
(1, 0, 1, X, 0) ismapped to (1, − 1, 1, 0, − 1).We assume the scoring vector
for each storing vector as: si = f(ai), i = 1, 2, 3,…,M, where si is the
scoring vector, ai is the hashing vector stored in TCAM and M is the
total number of memory entries. When there is a match case hap-
pening at memory location k, we first update its scoring vector as
below:

s�k = sk � f ðvÞ ð6Þ

where s�k is the new scoring vector, v is the hashing vector of the new
image,⊕ is the element-wise add operation. Then we update the

memory at the same location using the following rules:

a�i = LðaiÞ; LðxÞ=
1 x > 0

X x =0

0 x < 0

8><
>:

ð7Þ

where a�i is the updated memory and L is an element-wise operator.
Therefore, bits of the memory stored in TCAM are decided by a
majority of “1” and “0” of incoming vectors which match the storing
vectors.

Omniglot training
The Omniglot dataset contains 1623 different handwritten characters
from 50 different alphabets. Each character was drawn online by 20
different people using Amazon’s Mechanical Turk. In the experiment,
we augment the 964 different characters in the training set to 3856
through rotation. The character types in the test set remainunchanged
at 659. There is nooverlapbetween the training set and the test set.We
use the episode training method during the training process. Episode
training is to select N ×M instances from the training set during each
training, where N represents different classes and M represents the
number of instances in each class. Thepurposeof episode training is to
enable the learned model to focus on the common parts, ignoring
tasks, so as to achieve the purpose of learning to learn. The specific
settings in the training process are as follows:memory size is 2048, the
batch size is 16, episode width is 5, episode length is 30; The length of
the output key is 64, and the validation set is used for verification every
20 times.

Mini-ImageNet training
The Mini-ImageNet dataset contains 100 classes randomly chosen
from the ImageNet dataset. We randomly split the dataset into a
training set, a validation set, and a test set containing 64, 16, and 20
classes, respectively. We take the pre-trainedmodel in ref. 49 and fine-
tuned it using cosine distance as the meta-training metric. Once the
meta-training process is done, theweights for the controllerwill not be
updated. We use the ResNet-18 model as the CNN controller and the
output feature vector of the CNN is 512-dimensional.

Data availability
The data supporting plots within this paper and other findings of this
study are available with reasonable requests made to the corre-
sponding author.

Code availability
The code used to train the model and perform the simulation on
crossbar arrays is publicly available in an online repository50.

References
1. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D. & Lillicrap, T.

Meta-learningwithmemory-augmented neural networks. In Balcan,
M. F. & Weinberger, K. Q. (eds.) Proceedings of The 33rd Interna-
tional Conference on Machine Learning, vol. 48 of Proceedings of
Machine Learning Research, 1842-1850 (PMLR, NewYork, NewYork,
USA, 2016). http://proceedings.mlr.press/v48/santoro16.html.

2. Stevens, J. R., Ranjan, A., Das, D., Kaul, B. & Raghunathan, A. Manna:
An accelerator for memory-augmented neural networks. In Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 794-806 (2019).

3. Rae, J. W. et al. Scaling memory-augmented neural networks with
sparse reads and writes (2016). 1610.09027.

4. Von Neumann, J. First draft of a report on the edvac. IEEE Annals
Hist. Comput. 15, 27–75 (1993).

5. Strubell, E., Ganesh, A. & McCallum, A. Energy and policy con-
siderations for deep learning in NLP. In Proceedings of the 57th

Article https://doi.org/10.1038/s41467-022-33629-7

Nature Communications | (2022) 13:6284 11

http://proceedings.mlr.press/v48/santoro16.html

Annual Meeting of the Association for Computational Linguistics,
3645-3650 (Association for Computational Linguistics, Florence,
Italy, 2019). https://www.aclweb.org/anthology/P19-1355.

6. Li, D., Chen, X., Becchi, M. & Zong, Z. Evaluating the energy effi-
ciency of deep convolutional neural networks on cpus and gpus. In
2016 IEEE international conferences on big data and cloud com-
puting (BDCloud), social computing and networking (SocialCom),
sustainable computing and communications (SustainCom)
(BDCloud-SocialCom-SustainCom), 477-484 (IEEE, 2016).

7. Ranjan, A. et al. X-MANN: A Crossbar based Architecture for Mem-
ory Augmented Neural Networks1-6 (2019).

8. Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuit
Theory 18, 507–519 (1971).

9. Xia, Q. & Yang, J. J. Memristive crossbar arrays for brain-inspired
computing. Nat. Mater. 18, 309–323 (2019).

10. Li, C. et al. Long short-term memory networks in memristor cross-
bar arrays. Nat. Mach. Intell. 1, 49–57 (2019).

11. Wang, Z. et al. In situ training of feed-forward and recurrent con-
volutional memristor networks.Nat. Mach. Intell. 1, 434–442 (2019).

12. Prezioso, M. et al. Training and operation of an integrated neuro-
morphic network based on metal-oxide memristors. Nature 521,
61–64 (2015). 1412.0611.

13. Ambrogio, S. et al. Equivalent-accuracy accelerated neural-
network training using analogue memory. Nature 558,
60–67 (2018).

14. Chen, W. H. et al. CMOS-integrated memristive non-volatile
computing-in-memory for AI edge processors. Nat. Electr. 2,
420–428 (2019).

15. Li, C. et al. Analogue signal and image processing with large
memristor crossbars. Nat. Electr. 1, 52–59 (2018).

16. Sheridan, P. M. et al. Sparse coding with memristor networks. Nat.
Nanotechnol. 12, 784–789 (2017).

17. Le Gallo, M. et al. Mixed-precision in-memory computing. Nat.
Electr. 1, 246–253 (2018).

18. Zidan, M. A. et al. A general memristor-based partial differential
equation solver. Nat. Electr. 1, 411–420 (2018).

19. Yang, K. et al. Transiently chaotic simulated annealing based on
intrinsic nonlinearity of memristors for efficient solution of optimi-
zation problems. Sci. Adv. 6, (2020).

20. Cai, F. et al. Power-efficient combinatorial optimization using
intrinsic noise inmemristor Hopfield neural networks.Nat. Electr. 3,
409–418 (2020).

21. Hu, M. et al. Dot-product engine for neuromorphic computing:
Programming 1t1m crossbar to accelerate matrix-vector multi-
plication. In 2016 53nd ACM/EDAC/IEEE Design Automation Con-
ference (DAC), 1-6 (IEEE, 2016).

22. Karunaratne,G. et al. In-memoryhyperdimensional computing.Nat.
Electr. 3 (2020). https://doi.org/10.1038/s41928-020-0410-3.
1906.01548.

23. Karunaratne, G. et al. Robust high-dimensional memory-aug-
mented neural networks. Nat. Commun. 12, 1–12 (2021).

24. Karunaratne, G. et al. In-memory realization of in-situ few-shot
continual learning with a dynamically evolving explicit memory.
arXiv preprint arXiv:2207.06810 (2022).

25. Kaiser, Ł., Nachum, O., Roy, A. & Bengio, S. Learning to remember
rare events. arXiv preprint arXiv:1703.03129 (2017).

26. Laguna, A. F., Kazemi, A., Niemier, M. & Hu, X. S. In-memory com-
puting based accelerator for transformer networks for long
sequences. In 2021 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), 1839-1844 (IEEE, 2021).

27. Kitaev, N., Kaiser, L. & Levskaya, A. Reformer: The efficient trans-
former. In International Conference on Learning Representations
(2020). https://openreview.net/forum?id=rkgNKkHtvB.

28. Ni, K. et al. Ferroelectric ternary content-addressable memory for
one-shot learning. Nat. Electr. 2, 521–529 (2019).

29. Laguna, A. F., Yin, X., Reis, D., Niemier, M. & Hu, X. S. Ferroelectric
FET based in-memory computing for few-shot learning. Proceed-
ings of the ACM Great Lakes Symposium on VLSI, GLSVLSI373-
378 (2019).

30. Li, H. et al. Sapiens: A 64-kb rram-based non-volatile associative
memory for one-shot learning and inference at the edge. IEEE
Transactions on Electron Devices (2021).

31. Lake, B., Salakhutdinov, R., Gross, J. & Tenenbaum, J. One shot
learning of simple visual concepts. In Proceedings of the annual
meeting of the cognitive science society, vol. 33 (2011).

32. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K. & Wierstra, D.
Matching networks for one shot learning. arXiv preprint
arXiv:1606.04080 (2016).

33. Yao, P. et al. Fully hardware-implementedmemristor convolutional
neural network. Nature 577, 641–646 (2020).

34. Shafiee, A. et al. Isaac: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars. ACM SIGARCH Comput.
Archit. News 44, 14–26 (2016).

35. Datar, M., Immorlica, N., Indyk, P. & Mirrokni, V. S. Locality-sensitive
hashing scheme based on p-stable distributions. In Proceedings
of the twentieth annual symposium on Computational geometry,
253-262 (2004).

36. Sheng, X. et al. Low-conductance and multilevel cmos-integrated
nanoscale oxide memristors. Adv. Electr. Mater. 5, 1800876 (2019).

37. Li, C. et al. CMOS-integrated nanoscale memristive crossbars for
CNN and optimization acceleration. 2020 IEEE International Mem-
ory Workshop, IMW 2020 - Proceedings 2, 1–4 (2020).

38. Gionis, A. et al. Similarity search in high dimensions via hashing. In
Vldb, vol. 99, 518-529 (1999).

39. Shinde, R., Goel, A., Gupta, P. & Dutta, D. Similarity search and
locality sensitive hashing using ternary content addressable mem-
ories. In Proceedings of the 2010 ACM SIGMOD International Con-
ference on Management of data, 375-386 (2010).

40. Huang, Q., Feng, J., Zhang, Y., Fang, Q. & Ng, W. Query-aware
locality-sensitive hashing for approximate nearest neighbor search.
Proceedings of the VLDB Endowment 9, 1–12 (2015).

41. Kazemi, A. et al. A device non-ideality resilient approach for map-
ping neural networks to crossbar arrays. In 2020 57th ACM/IEEE
Design Automation Conference (DAC), 1-6 (IEEE, 2020).

42. Niu, G. et al. Geometric conductive filament confinement by
nanotips for resistive switching of hfo 2-rram devices with high
performance. Sci. Rep. 6, 1–9 (2016).

43. Li, J., Montoye, R. K., Ishii, M. & Chang, L. 1 mb 0.41 μm2 2t-2r cell
nonvolatile tcam with two-bit encoding and clocked self-
referenced sensing. IEEE J. Solid-State Circuits 49, 896–907 (2013).

44. Lin, C.-C. et al. 7.4 a 256b-wordlength reram-based tcam with
1ns search-time and 14 × improvement in wordlength-
energyefficiency-density product using 2.5 t1r cell. In 2016 IEEE
International Solid-State Circuits Conference (ISSCC), 136-137
(IEEE, 2016).

45. Fedorov, V. V., Abusultan, M. & Khatri, S. P. An area-efficient ternary
cam design using floating gate transistors. In 2014 IEEE 32nd
International Conference on Computer Design (ICCD), 55-60
(IEEE, 2014).

46. Apalkov, D., Dieny, B. & Slaughter, J. Magnetoresistive random
access memory. Proc. IEEE 104, 1796–1830 (2016).

47. Ambrogio, S. et al. Statistical fluctuations in hfo x resistive-
switching memory: part i-set/reset variability. IEEE Trans Electron
Dev. 61, 2912–2919 (2014).

48. Mao, R.,Wen, B., Jiang,M., Chen, J. & Li, C. Experimentally-validated
crossbar model for defect-aware training of neural networks. IEEE
Trans. Circuits Syst. II: Expr. Briefs 69, 2468–2472 (2022).

49. Wang, Y., Chao, W.-L., Weinberger, K. Q. & van der Maaten, L.
Simpleshot: Revisiting nearest-neighbor classification for few-shot
learning. arXiv preprint arXiv:1911.04623 (2019).

Article https://doi.org/10.1038/s41467-022-33629-7

Nature Communications | (2022) 13:6284 12

https://www.aclweb.org/anthology/P19-1355
https://doi.org/10.1038/s41928-020-0410-3
https://openreview.net/forum?id=rkgNKkHtvB

50. Mao, R. et al. Experimentally validated memristive memory aug-
mented neural network with efficient hashing and similarity search.
TLSH_MANN: v1.0.0 (2022). https://doi.org/10.5281/zenodo.
7093390.

Acknowledgements
This work was supported in part by the Early Career Scheme (Grant No.
27210321) from the Research Grant Council of Hong Kong SAR, NSFC
Excellent Young Scientist Fund (HK&Macau) (Grant No. 62122005),
Mainland-Hong Kong Joint Funding Scheme (MHKJFS) Project MHP/
066/20, ACCESS - AI Chip Center for Emerging Smart Systems, spon-
sored by InnoHK funding, Hong Kong SAR, and Semiconductor
Research Corporation (SRC) via the ASCENT center—one of six research
centers in the Joint University Microelectronics Program (JUMP).

Author contributions
C.L., C.G., J.P.S. contributed to the conception of the idea. R.M. per-
formed the experiments and analyzed data under the supervision of C.L.
R.M., B.W., Y.H., A.K., A.L., performed simulations. X.S. integrated the
memristors. R.M., B.W., R.L., N.W., analyzed the performance compared
to the state-of-the-art algorithm. R.M., Y.H, A.K., M.N., X.H., and C.L.
wrote the manuscript with input from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-022-33629-7.

Correspondence and requests for materials should be addressed to
Catherine E. Graves, John Paul Strachan or Can Li.

Peer review information Nature Communications thanks Adnan Meho-
nic, and the other, anonymous, reviewers for their contribution to the
peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

Article https://doi.org/10.1038/s41467-022-33629-7

Nature Communications | (2022) 13:6284 13

https://doi.org/10.5281/zenodo.7093390
https://doi.org/10.5281/zenodo.7093390
https://doi.org/10.1038/s41467-022-33629-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Experimentally validated memristive memory augmented neural network with efficient hashing and similarity search
	Results
	Memory augmented neural networks in crossbars
	Locality sensitive hashing in the crossbar array
	TCAM in crossbars with ability to output degree of mismatches
	One- and few-shot learning experiments fully implemented in memristor hardware
	Device imperfections analysis
	Scaled-up MANN for Mini-ImageNet

	Discussion
	Methods
	Memristor integration
	Iterative write-and-verify programming method
	Adjacent connection matrix
	Memristor model and simulations
	Ternary locality sensitive hashing
	CNN architecture
	Memory update rules
	Omniglot training
	Mini-ImageNet training

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

