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Elucidating tumor heterogeneity from
spatially resolved transcriptomics data
by multi-view graph collaborative learning

Chunman Zuo 1,2 , Yijian Zhang3, Chen Cao4, Jinwang Feng5, Mingqi Jiao6 &
Luonan Chen2,6,7,8

Spatially resolved transcriptomics (SRT) technology enables us to gain novel
insights into tissue architecture and cell development, especially in tumors.
However, lacking computational exploitation of biological contexts andmulti-
view features severely hinders the elucidation of tissue heterogeneity. Here,
we propose stMVC, a multi-view graph collaborative-learning model that
integrates histology, gene expression, spatial location, and biological contexts
in analyzing SRT data by attention. Specifically, stMVC adopting semi-
supervised graph attention autoencoder separately learns view-specific
representations of histological-similarity-graph or spatial-location-graph, and
then simultaneously integrates two-view graphs for robust representations
through attention under semi-supervision of biological contexts. stMVC out-
performs other tools in detecting tissue structure, inferring trajectory rela-
tionships, and denoising on benchmark slices of human cortex. Particularly,
stMVC identifies disease-related cell-states and their transition cell-states in
breast cancer study, which are further validated by the functional and survival
analysis of independent clinical data. Those results demonstrate clinical and
prognostic applications from SRT data.

The recent technological innovation of SRT platform, including
sequencing-based technology (e.g., 10X Genomics Visium and Stereo-
seq) and imaging-based technology (e.g., STARmap)1–3 allows profiling
gene expression patterns in the spatial contexts of tissue4. These
resulting multiple types of profiles: histology, spatial location, and
gene expression, provide novel insights into the organization of cells
and developmental biology, especially for the evolution of the
tumor5–7. However, SRT data analysis for biology discovery remains

challenging due to its low throughput, little sensitive, much sparse,
and noisy8,9.

Recently, several computational methods have been designed to
analyze SRT data8. For example, Giotto uses a similar processing
strategy to single-cell RNA-seq (scRNA-seq), for feature selection,
dimension reduction, and unsupervised clustering10. BayesSpace uti-
lizes a fully Bayesian statistical method to enhance the spatial mea-
surement via spatial neighborhood structure for clustering analysis9.
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SpaGCN adopting a graph convolutional network (GCN) approach
integrates gene expression, spatial location, and histology to identify
spatial domains and spatially variable genes (SVGs)11. stLearn inte-
grates features of histology with spatial location to normalize gene
expression data, and followed by clustering12. Squidpy brings together
omics and image analysis tools to enable scalable description of spatial
transcriptomics and proteomics data13. ClusterMap incorporates phy-
sical location and gene identity of RNAs to identify biologically
meaningful structures from image-based in situ transcriptomics data14.
DR-SC15 and SC-MEB16 utilizing latent hidden Markov random field
model integrates gene expression and spatial location for spatial
clustering. STAGATE17 combines gene expression and spatial infor-
mation to detect spatial domains via graph attention auto-encoder
framework. While these methods have many interesting findings, the
lack of visual features that can be effectively and globally extracted
from histology, efficient multi-view information fusion, and the bio-
logical contexts such as global positional information within a tissue,
limits their disentangling capabilities in developmental biology.

On the other hand, GCN-basedmodels have appeared as powerful
tools to learn the representations of scRNA-seq data (i.e., by scGNN)18

and SRTdata (i.e., by SpaGCN)11, however, thesemethods usually study
networks with a single type of proximity between nodes, namely
single-view network. Although SpaGCN proposes an RGB color space
averaging strategy to convert histological data into the same mea-
surement space as 2D space in the tissue slice as a third dimension
before calculating the similarity between any two spots, to a certain
extent, this strategy discards the texture features in each spot, i.e., the
strategy extracts the color features from color space without fully
utilizing the spatial distribution of gray tone variations within a spe-
cified area namely texture features19. Besides, in SRT studies,K-nearest
spots that are physically closest to the central spot are not necessarily
the same as those that are the most histologically similar to the spot,
and the distance evaluation metrics between multi-view data are also
not the same, thus yielding networks with multiple views. Moreover,
the contributions of neighboring spots to determine the cell type to
which the central spot belongs are not identical, which is consistent
with the assumption of graph attention network (GAT)20,21. More
importantly, the quality of the information in different views may be
different, hence, it would be preferable that one novelmodel can learn
the representations for each view by GAT, and meanwhile collabora-
tively integrate multiple networks to learn robust representations by
automatically training the weights of different views22.

We reason that (i) cells belonging to the same cell type but dis-
tributed in different areas and interacting with different cell types in
the tissuemay have different cell-states8; (ii) the determination of each
cell type (or cell-state) to which each cell belongs, is related to its size,
shape, and arrangement (i.e., tightness or looseness), hence the tex-
ture data of histology has rich information to characterize cell type or
cell-state23; and (iii) the colors of the antibodies on the immuno-
fluorescence staining of the tumor sample can roughlymark the tumor
position in the tissue, yielding region segmentation indicating biolo-
gical contexts related to the tumor development.

In this work, we introduce stMVC (Spatial Transcriptomics data
analysis by Multiple View Collaborative-learning), a framework that
integrates four-layer information to elucidate tissue heterogeneity by
attention-basedmulti-viewgraph collaborative learning, i.e., histology,
gene expression data, spatial location, and region segmentation (e.g.,
tumor position) indicating biological contexts. The features of stMVC
are as follows: (i) for each spot, globally learning efficient visual fea-
tures while removing artifacts from histology by data augmentations
and contrastive learning; (ii) learning robust representations for each
spot by training the weights of multi-view graphs including
histological-similarity-graph (HSG) by visual features and spatial-
location-graph (SLG) by physical coordinates, via attention-based
collaborative learning strategy, under semi-supervision of region

segmentation; (iii) for samples of human ovarian endometrial adeno-
carcinoma (OEAD) and breast invasive ductal carcinoma (IDC), iden-
tifying cancer-related cell-states (i.e., stemness, migration, and
metastasis) missed by competing methods, and also transition cell-
states, which are further validated by clinical data from other inde-
pendent studies, demonstrating potential clinical and prognostic
applications from SRT data; and (iv) for sample of mouse primary
visual cortex, enabling us to detect layer-specific inhibitory neurons. In
particular, such a multi-view graph collaborative learning method is a
flexible framework that is able to integrate not only SRT data from
multi-sources or spatial multi-omics data but also spatial epigenomics
or proteomics data.

Results
Overview of stMVC model
stMVC collaboratively integrates histological image (I), spatial loca-
tions (S), and gene expression data (X), through the semi-supervision
learning from biological contexts (i.e., region segmentation, Y , see
Manual region segmentation) within a tissue, to clarify tissue hetero-
geneity (Fig. 1a–d). Specifically, we (1) learned the visual features (hi)
for each spot image (ii) by ResNet-50 model24 (an efficient computer
vision framework) that was trained by maximizing the agreement
between differently augmented views of the same histological spot
image, and then constructed HSG based on hi (Fig. 1b); and (2) cap-
tured the spot proximities encoded in either histology or spatial
location, as well as the low-dimensional features (zi) from gene
expression data by autoencoder (AE) (see Supplementary Methods),
and then simultaneously integrated these two graphs for the robust
representations (ri) by automatically learning the weight of view-
specific representations (pi

1 and pi
2) from two graphs via attention,

under semi-supervision of region segmentation (Fig. 1c). Hence, R is a
low-dimensional feature representing the variation of these four-layer
profiles, which is used to represent each spot as a point in the low-
dimensional space, for spatial clustering and visualization, where each
cluster is considered as a spatial domain. Subsequently, for each spot,
we denoised gene expression data by its 15 nearest neighboring spots
that are calculated based on the distance of robust representations,
and then identified SVGs that are over-expressed in a domain by dif-
ferential expression analysis (Fig. 1d).

To emphasize the advantages of stMVC, we designed several
comparative methods in our experiments: (i) the mean of all view-
specific representations was used as a comparison to assess the effi-
ciency of the attention-based multi-view integration strategy enabling
the network to focus on the key features for characterizing tissue
structure, which is named stMVC-M; (ii) the single-view graph repre-
sentations by semi-supervised graph attention autoencoder (SGATE)
for either SLG (SGATE-SLG) or HSG (SGATE-HSG) were utilized to
assess the effectiveness of the robust representations by multi-view
graphs; (iii) the naïve HSG (SGATE-HSG-N) constructed based on the
visual features by the ResNet-50 model (pre-trained by ImageNet25)
was used to evaluate the quality of the visual features by our ResNet-50
model trained by histological images; and (iv) the low-dimensional
representations encoded fromgene expression data, via AE or semi-AE
extended from AE through adding a classifier on bottleneck layer
(see Supplementary Methods), were used to check if or not the com-
ponents of semi-supervised learning and graph attention mechanism
usedby SGATE-SLG are responsible for capturing complex structure of
SRT data.

stMVC reveals the trajectory relationship between different
spatial domains
The most important feature of the stMVC model is that the learned
low-dimensional representations can reveal the trajectory relation-
ship between different spatial domains through semi-supervised
biological contexts. To assess the performance of stMVC, we applied
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it to process 12 slices of the human dorsolateral prefrontal cortex
(DLPFC) dataset, each of which was manually annotated with six
layers and white matter (WM), and the spatial adjacency and
chronological order among these layers areWM→ Layer6→ Layer5 →
Layer4 → Layer3 → Layer2 → Layer1 (Fig. 2a)26,27. By default, through
the semi-supervised learning of 70% of the annotation (Supple-
mentary Fig. 1, Evaluation of proportion of labels for model training
in Supplementary Note 1), stMVC, stMVC-M, and the three SGATE-
based single-view models extracted 10-dimensional features from
the input. For comparison, we also applied six recently developed
methods including BayesSpace, Giotto, stLearn, Squidpy, DR-SC,
and STAGATE for spatial clustering or visualization with the default
parameters. Subsequently, we predicted cell clusters by the Louvain
algorithm, evaluated clustering accuracy including ROGUE28 and
average silhouette width (ASW)29 by calculating the similarity of the
transcriptome and multi-view joint features between spots within
each predicted cell cluster, respectively, and then visualized these
low-dimensional features by mapping them into two uniform
manifold approximation and projection (UMAP) spaces.

In summary (Fig. 2b–d and Supplementary Figs. 2–4), we found
that (i) the clustering accuracy of stMVC is higher than that of the
three SGATE-based single-view models, AE, semi-AE, BayesSpace,
Giotto, stLearn, Squidpy, DR-SC, and STAGATE, among which ASW
for the joint features is the highest while ROGUE for the tran-
scriptomics is similar to other tools, indicating that our multi-view
graph collaborative learning model did capture more useful infor-
mation beyond transcriptomics data than that from single-view
graphmodel; (ii) stMVC performs better than stMVC-M, especially in
detecting the precise structure, e.g., Layer4 and Layer6 on slice
151673, demonstrating that the attention-based multi-view

integration strategy enables the network to capture critical features
for clarifying tissue structure, compared to those by themean-based
strategy; (iii) SGATE-HSG performs better than SGATE-HSG-N, which
indicates that our trained visual features extraction model adopted
from ResNet-50 by data augmentations and contrastive learning did
learn more rich visual features than those from naïve ResNet-50
model pre-trained by ImageNet; (iv) SGATE-SLG performs better
than semi-AE and AE, while AE performs worst, indicating that semi-
supervised learning and graph attention mechanism are considered
responsible for capturing data structure; and (v) each spatial domain
is assigned almost by different feature embeddings from stMVC,
stMVC-M, and SGATE-SLG model, compared to Giotto, stLearn,
Squidpy, DR-SC, STAGATE, AE, semi-AE, and the two HSG-based
models, and the distance between different domains of stMVC can
reflect the trajectory of chronological order, which shows that
stMVC can clarify the complex relationship between different spatial
domains.

We further assessed the quality of the denoised data from stMVC
by our defined Gini-index (GI) scores based on how far the expression
distribution of layer-specific genes deviated from a totally equal dis-
tribution, where the higher the GI score, the more layer-specific the
distribution of gene expression (see Evaluation of denoising of gene
expression data). Overall, we observed that stMVC, stMVC-M, and
SGATE-SLG have comparable performance, and those three methods
perform better than BayesSpace, STAGATE and the two HSG-based
models, while stLearn performsworst. For instance, some known layer
marker genes such as PCP4, PVALB, ENC1, CCK, KRT17, andMOBP26 are
more specifically expressed in their corresponding spatial location on
slice 15,1673, compared with those by BayesSpace and STAGATE
(Fig. 2e, f and Supplementary Fig. 5).

Fig. 1 | Overview of stMVC model. a Given each SRT data with four-layer profiles:
histological images (I), spatial locations (S), gene expression (X), andmanual region
segmentation (Y ) as the input, stMVC integrates them to disentangle tissue het-
erogeneity, particularly for the tumor. b stMVC adopts SimCLRmodel with feature
extraction framework from ResNet-50 to efficiently learn visual features (hi) for
each spot (vi) by maximizing agreement between differently augmented views of
the same spot image (ii) via a contrastive loss in the latent space (li), and then
constructs HSG by the learned visual features hi. c stMVC model adopting SGATE
model learns view-specific representations (pi

1 and pi
2) for each of two graphs

including HSG and SLG, as well as the latent feature from gene expression data by
the autoencoder-based frameworkas a featurematrix,where a SGATE for each view
is trained under weak supervision of the region segmentation to capture its effi-
cient low-dimensional manifold structure, and simultaneously integrates two-view
graphs for robust representations (ri) by learning weights of different views via
attention mechanism. d Robust representations R can be used for elucidating
tumor heterogeneity: detecting spatial domains, visualizing the relationship dis-
tance between different domains, and further denoising data.
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stMVC contributes to detecting cell-statesmissed by competing
methods
To illustrate that stMVC is able to clarify cancer cells that are dis-
tributed at different positions in the tissue, we further analyzed ovar-
ian cancer (i.e., OEAD) and breast cancer (i.e., IDC) publicly published
by 10X Genomics. We separately annotated 18 and 16 regions for
ovarian andbreast cancer basedonour segmentation strategydetailed
in Manual region segmentation, where for breast cancer, 15 tumor

regions were classified into three different types: invasive carcinoma,
carcinoma in situ, and benign hyperplasia by the previous study9

(Fig. 3a, h and Supplementary Figs. 6a and 8a). We treated the anno-
tated regions as rough labels, and randomly selected 70% of them to
supervise the training of the stMVC. stMVC, stMVC-M, and the three
SGATE-based single-view models extracted 18- and 16- dimensional
features from ovarian and breast cancer, respectively. Subsequently,
we predicted cell clusters by the Louvain algorithm and visualized

Fig. 2 | stMVC is able to detect spatial domains, visualize the relationship
distance between different domains, and denoise data on the DLPFC dataset.
a Annotation of seven DLPFC layers in slice 151673 by the previous study26, and the
spatial adjacency and chronological order between these layers areWM→ Layer6→

Layer5 → Layer4 → Layer3 → Layer2 → Layer1. b Boxplot of clustering accuracy in
terms of average silhouette width (ASW) for assessing the closeness of multi-view
joint features of same cluster compared to the other clusters, on all n = 12 samples.
In the boxplot, the center line, box limits and whiskers separately indicate the
median, upper and lower quartiles and 1.5 × interquartile range. c Spatial domains
detected by BayesSpace, Giotto, stLearn, Squidpy, DR-SC, STAGATE, AE, semi-AE,
the three SGATE-based single-view models, stMVC-M, and stMVC on slice 151673.
d Scatter plot of the two-dimensional UMAP extracted from the latent features by
Giotto, stLearn, Squidpy, DR-SC, STAGATE, AE, semi-AE, three SGATE-based single-

viewmodels, stMVC-M, and stMVConslice 151673.Note that the trajectorybetween
seven layers or domains is consistent with (a), and for each method, the predicted
clusters and their colors are the same as (c). Note that subplot b–d BayesSpace
cannot calculate ASW and visualized using UMAP. e Boxplot of the Gini-index (GI)
score of gene expression data denoised by stLearn, BayesSpace, STAGATE, the
three SGATE-based single-view models, stMVC-M, and stMVC for n = 12 samples.
The higher GI score, the better the denoised data. In the boxplot, the center line,
box limits and whiskers indicate the median, upper and lower quartiles and 1.5 ×
interquartile range, respectively. f Spatial expressionof layer-specific genes:26 PCP4,
PVALB, ENC1, CCK, KRT17, and MOBP for slice 151673 data denoised by stMVC,
where we also provide raw data as a comparison. Source data are provided as a
Source Data file.
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these low-dimensional features by mapping them into two-
dimensional UMAP. For comparison, we also applied Giotto, DR-SC,
Squidpy, stLearn, BayesSpace, and STAGATE for spatial clustering or
visualization.

We found that stMVC facilitates detectingmore domains enriched
for the cancer regions, compared to those by all other computational
methods (Fig. 3b–d, i–k and Supplementary Figs. 6b, c, 7, 8b, c and 9).
Particularly for the regions outlined with black color on the ovarian
cancer, we noted that stMVC detects four domains while other meth-
ods detect one or two domains, and also for the regions marked in
black on the breast cancer, stMVC detects five regions while other
methods detect at most three regions. Additionally, the feature
embeddings extracted by stMVC are better separated between those
different domains than those by Squidpy, Giotto, DR-SC, stLearn, and

STAGATE, and each domain has its specific signature genes
named SVGs.

To further support the accuracy of detecting cell-statesmissed by
othermethods, e.g., four domains of ovarian cancer, we adopted three
independent ways. Specifically, we found that (i) the domains 11 and 12
cells are enriched in different cell populations that are not clearly
separated in the scRNA-seq data of 4081 epithelial cells of one addi-
tional ovarian cancer sample from previous research30, by evaluating
whether or not the average expression levels of the signature genes
between two domains are different or not correlated (Fisher’s exact
test, p=0:2377, Fig. 3e, see Supplementary Methods), indicating that
these cells exist in ovarian cancer, as well as the advantage of SRT data
over scRNA-seq data in terms of visualization of the gene expression
levels in the context of tissue; (ii) four domains have different

Fig. 3 | stMVC enables the detection of cell-states distributed in different spa-
tial domains onovarian and breast cancers. a Immunofluorescent staining of the
tissue section and 17 manually segmented tumor regions. The intensity of DAPI,
cytokeratin, and CD45 is shown in blue, green, and yellow. b Spatial clustering by
DR-SC, Squidpy, stLearn, BayesSpace, STAGATE, and stMVC. c UMAP visualization
of latent features by stMVC. Eachdomain is outlined by the region it belongs to, i.e.,
tumor or non-tumor. d Heatmap of average gene expression of signature genes
from 16 domains by stMVC. Rows and columns indicate genes and domains.
e UMAP plot of average expression of signature genes for domains 11 and 12 in
scRNA-seq data of 4081 epithelial cells from one independent ovarian cancer.
f Enrichment of infiltrating stromal and immune cells in each domain compared to
the total distribution of those in four domains. The ratio is calculated by chi-square
test85. The larger the ratio, the more cells are enriched in the domain. g Total sur-
vival rate of patients with the high (> median value) or low (low < median value)

expression level of 11 signature genes fordomains 10 and 11 in gene expressiondata
of ovarian cancer from TCGA by GEPIA286 (Supplementary Table 1). h Immuno-
fluorescent staining of the tissue section and 15 manually segmented tumor
regions,where those regions are outlined by their histological annotations: invasive
carcinoma (red), carcinoma in situ (yellow), and benign hyperplasia (green). The
intensity of DAPI, fiducial frame, and anti-CD3 is shown in green, blue, and yellow.
i Spatial clustering by DR-SC, Squidpy, stLearn, BayesSpace, STAGATE, and stMVC.
j UMAP visualization of latent features by stMVC. Domains are outlined by their
histological annotations. k Heatmap of gene expression of signature genes from
five domains enriched in the carcinoma in situ region by stMVC. Rows and columns
indicate genes and domains. l Spatial expression of classical marker genes for
stromal and immune cells, including PTPRC, CD14, IGCL2, IGHG3, MS4A1, MYLK,
HLA-DRB1, CD4, CD8A, ENG, FABP4, and FCGR3B for data denoised by stMVC.
Source data are provided as a Source Data file.
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functions, which may be influenced by the infiltrating stromal and
immune cells (Fig. 3f and Supplementary Fig. 10a, b, Estimation of cell
populations for each spot by SpatialDecon31 in Supplementary Meth-
ods), i.e., domain 10 cells are involved in TNF-α by infiltrating immune
cells such as CD8+ T cell32 to elevate NF-kB activity for increasing the
risk of cancer, andmodulating IL-6/STAT3 signaling to create apositive
feedback loop for cell proliferation and cancer initiation;33 domain
11 cells are related to HIF-1 signaling pathway induced by infiltrating
cancer-associated fibroblasts (CAFs)34, and NRF2 pathway for tumor
adaptation to microenvironmental hypoxia35; domain 12 cells show
overexpression of matrix metalloproteinases genes36, and TGF-beta
secreted by infiltrating macrophages37, for promoting ovarian cancer
metastasis andmigration; and domain 13 cells aremediated by VEGFA/
VEGFR2 signaling pathway serving a vital function in the angiogenesis
of ovarian cancer;38 and (iii) the expression of signature genes of
domains 10 (p=0:036) and 11 (p=0:032) with more enriched CAFs is
significantly correlated with shorter overall survival, which was eval-
uated by an independent ovarian cancer dataset from the TCGA
database (Fig. 3g and signature genes in Supplementary Table 1). The
conclusion is consistentwith theprevious research that theproportion
of CAF in ovarian cancer is associated with a poor prognosis39. In
addition, we noted that domain 13 cells exhibit over-expression of
NEDD9which is associated with the progression of and an unfavorable
prognosis in ovarian cancer40.

In addition to infiltrating stromal and immune cells, we found that
distinct cell-states are surrounded by different microenvironments.
For example, among thefive domains in the regionof carcinoma in situ
of breast cancer (Fig. 3i–l and Supplementary Fig. 8d, e), we noted that
domains 13 and 14 are surrounded by more immune cells such as
macrophage (CD14), dendritic cell (HLA-DRB1), and T cell (CD4 and
CD8A); domains 11, 15, and 16 are mostly surrounded by plasma B cell
(IGCL2 and IGHG3) and two types of endothelial cell (FABP4 for endo-
thelial cell_DCN,VWF and ENG for endothelial cell_VWF) defined by our
previous study;41 and domain 15 cells are also surrounded by myofi-
broblast (MYLK) and follicular B cell (MS4A1).

Another interesting feature of stMVC is able to distinguish normal
cells and cancer cells, by utilizing the histological features where
normal cells and cancer cells have different texture features in termsof
size and shape. To clarify this, we designed a tumor suppressor gene-
and oncogene-based statistical model to detect normal cells (see
“Statistical model for detecting normal cells”). For example, in ovarian
cancer, we observed that normal cells with over-expression of sup-
pressor genes (i.e., TP53 and BRCA2)42 and lower-expression of onco-
genes (i.e.,MYC andNME1)43 aremainly enriched in domains 4, 5, 8, and
9, and normal and cancer cells are separated at the UMAP space
(Supplementary Fig. 10c–e).

In short, stMVC is more conductive to clarify tissue heterogeneity
in terms of detecting normal cells and tumor cells related to cell pro-
liferation and migration in different spatial regions, which has the
potential for clinical and prognostic applications.

stMVC enables us to identify transited cell-states
To further demonstrate the application power of stMVC, we analyzed
the result of breast cancer by stMVC to elucidate its intratumoral
heterogeneity and infer possible trajectories in cancer development.
The elevated expression of human epidermal growth factor receptor
(HER)2 and estrogen receptor (ER) throughout the tumor regions and
minimal expression of progesterone receptor (PR) for the data from
stMVC, which is in line with the clinical report of Luminal B (Supple-
mentaryFig. 11).More interestingly,weobserved that stMVC(i) detects
four domains in the ER+ invasive carcinoma region outlined with red
color, and the detected domains 10 and 3 are very different from DR-
SC, Squidpy, stLearn, BayesSpace, and Giotto; (ii) predicts a possible
trajectory between three domains, i.e., domain 6 → domain 10 →
domain 3, where the trajectory is also detected by DR-SC, Squidpy and

stLearn, and the inferred trajectories by those four computational
methods can be further validated by trajectory algorithm PAGA44; and
(iii) similar to stMVC, STAGATE can detect domain 10 cells, however,
the trajectory detected by it is very distinct from that by other meth-
ods, i.e., there is no direct trajectory betweendomains 10 and 3 (Figs. 3i
and 4a and Supplementary Figs. 8b and 12a).

We validated our predictions by the following several indepen-
dent ways. Specifically, we noted that (i) four domains have different
functions, i.e., domain 6 cells show the high expression levels of genes
such as LUCAT1 and PDZK1IP1 for regulating breast cancer cell
stemness45,46; domain 10 cells show overexpression of NUAK1 and
TOP2A correlated with the differentiation and stage or grade of the
carcinoma47,48; domain 3 cells expressing ARMT1 and RMND1 within
breast cancer susceptibility locus affect cell proliferation49; and
domain 5 cells with overexpression of MMP1 and MMP11 mediate cell
invasion and apoptotic process50 (Fig. 4b and Supplementary Figs. 12a
and 13); (ii) by re-analyzing an independent scRNA-seq data of 24,489
epithelial cells from20breast cancer samples, the higher expression of
ARMT1 and RMND1 is in scRNA-seq data from ER+ patients, compared
with those from ER− patients (Supplementary Fig. 12b), which is con-
sistent with the previous conclusion: ER, ARMT1, and RMND1 are co-
expressed51, as well as domains 10 and 3 cells existing in breast cancer;
(iii) there is a trajectory between three clusters identified from inde-
pendent scRNA-seq data of 2352 epithelial cells of CID4067 (a repre-
sentative luminal B patient, Supplementary Fig. 12b) by Monocle 252,
and with the estimated pseudo-time, the expression of KCNK6 and
PDZK1IP1 for domain 6 decreases, ARMT1 for domains 10 and 3
increases, and especially PGK1 for domain 10 is highly expressed at the
middle state, supporting our trajectory inference between domains 6,
10, and 3 (Fig. 4c); and (iv) the average expression of three repre-
sentative signature genes for domain 10 (i.e., TOP2A,NUAK1, and PGK1,
p=0:022) and 3 (i.e., ARMT1, RMND1, and TTLL12, p=0:05) is sig-
nificantly correlated with shorter overall survival, which was evaluated
by independent breast cancer patients from TCGA database (Fig. 4d).
Hence, these results indicate that there is possible cell development
from cancer stem cells to malignant cells.

Taken together, stMVC can identify cancer-related cell-states and
transited cell-states while supporting clinical and prognostic cancer
applications from SRT data.

stMVC improves the results for detecting layer-specific inhibi-
tory neurons in mouse brain
In addition to cancer data from the Visium platform, we further
demonstrated stMVC on the mouse primary visual cortex (V1) 1020-
gene dataset from the STARmap platform3, to detect cell-states from
functionally distinct layers. We downloaded RNA clusters per cell
predicted by ClusterMap, annotated seven distinct layers (or regions)
from raw fluorescence data based on our segmentation strategy (Fig.
5a, b), randomly selected 70% of manual regions to supervise the
training of the stMVC, and visualized 10-dimensional features from
stMVC by mapping them into two-dimensional UMAP. Subsequently,
for each of the seven layers, we predicted cell clusters by the Louvain
algorithm to identify excitatory and inhibitory neurons by checking
the distribution of their classical marker genes53 (Supplementary
Fig. 14). For comparison, we also applied ClusterMap for spatial clus-
tering and visualization.

We found that (i) each cortex layer is assigned almost by different
feature embeddings from stMVC, compared to ClusterMap, and the
excitatory (Slc17a7) and inhibitory (Gad1) neurons are distributed in
the L2/3, L4, L5, and L6 canonical layers (Fig. 5c, d); (ii) stMVC and
ClusterMap can accurately detect the layer-specific distribution of
excitatory neurons in the L2-6 layers, i.e., layer-specific genes such as
Nov, Rorb, Cplx1, and Pcp4 are highly expressed in L2/3, L4, L5, and L6,
respectively3 (Fig. 5e, f). However, stMVC is also able to detect a layer-
specific patternof inhibitoryneurons, i.e., Sst+ and Pvalb+ neurons tend
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to be enriched in L5-6 layers while Vip+ neuron tends to be enriched in
L2-4 layers (Fig. 5e, g), which is consistent with the previous study53.
The application of the brain dataset further illustrated that stMVC is
able to find cell-states related to the distinct functional regions.

Discussion
In this work, we proposed stMVC for analyzing SRT data to disentangle
the heterogeneity of tissue, especially for the tumor, which integrates
four-layer profiles: histological image data, spatial location, gene
expression, and region segmentation (i.e., global position) indicating
biological contexts, by attention-based multi-view graph collaborative
learning. Such tumor position information in the tissue structure used
by stMVC can help us to elucidate intratumoral heterogeneity. Different
from previous methods that integrate histology and spatial location
data by a user-defined weight, for example, SpaGCN manually adjusts
theweight of histology in gene expression smoothing, stMVC adopts an
attention-based strategy to automatically learn weights of different
views for robust representations. Besides, our feature extraction fra-
mework from the ResNet-50 model trained for histological image data
by data augmentations and contrastive learning did help stMVC to learn
more efficient visual features, compared with those from the pre-
trained ResNet-50 mode by ImageNet, which was used by stLearn (see

the comparison results between SGATE-HSG and SGATE-HSG-N
detailed at Fig. 2b–e and Supplementary Figs. 1–6 and 8). The evalua-
tions on two real cancer datasets demonstrated the advantages of
stMVC described above, which are able to detect cell-states related to
cell stemness, migration, and metastasis distributed in different spatial
domains, providing biological insights into tumor heterogeneity. In
particular, for the breast cancer dataset, we demonstrated potential
clinical and prognostic applications from SRT data, by identifying
cancer-related cell-states and also transition cell-states missed by
competing methods, which were further validated by clinical data.

By comparing stMVC with the three SGATE-based single-view
models, we found that stMVC has a better performance in terms of
clustering, inference of trajectory, and denoising, which is mainly
attributed to the collaborative learning of multi-view graphs. Besides,
we observed that SGATE-based spatial-location-graphmodel performs
better than SGATE-based histological-similarity-graph model, how-
ever, SGATE-based histological-similarity-graph model is able to cap-
ture some rich boundary information as a complementary to
SGATE-based spatial-location-graph model. Hence, we believed that
the perspective of modeling SRT data by multi-view graphs enables a
better understanding of the tissue heterogeneity, compared with that
by single-view graph.

Fig. 4 | stMVC is able to identify tumor-related cell-states and their transition
cell-states from the invasive carcinoma region in the breast cancer sample.
a UMAP visualization and PAGA graph generated by the low-dimensional features
by stMVC, Squidpy, stLearn, DR-SC, and STAGATE, respectively. The predicted
clusters for eachmethod are the same as in Fig. 3i. bGene expression levels of nine
marker genes for three different cell-states on the PAGA graph by the low-
dimensional features of stMVC. c Visualization of the clustering and trajectory
inference from 2352 epithelial cells of CID4067 (an independent luminal B patient),
and pseudo-time-dependent changes in expression levels of KCNK6, PDZK1IP1,

KGK1, and ARMT1. Each color indicates one cluster. d Total survival rate of patients
with the high or low expression level of three representative signature genes of
domain 10 (i.e., TOP2A, NUAK1, and PGK1, p =0:022) and domain 3 (i.e., ARMT1,
RMND1, and TTLL12, p=0:05) in the RNA-seq data of breast cancer from TCGA
database. The logrank test was used for the survival analysis. These breast cancer
patients were classified into two groups based on their expression (high >30%
value, low <70% value) for comparison of survival. Note that 794 samples with
Luminal A, Luminal B, and Her2 subtypes by PAM50 were used in our survival
analysis. Source data are provided as a Source Data file.
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In addition, by comparingwith themean-based strategy stMVC-M,
we noted that stMVC achieves better and comparable performance.
Specifically, (i) regarding histology without rich texture information,
such as DLPFC and ovarian cancer samples, stMVC-M is more vulner-
able to the noise signals from the histological visual features while

stMVC is easier to capture the finer structure by automatically learning
theweight of each ofmultiple graphs; (ii) regarding histologywith rich
tissue anatomical structure, like breast cancer sample, both models
have a similar result. Hence, we also implemented the mean-based
strategy in stMVC model as an option for users to select.

Fig. 5 | stMVC enables the identification of layer-specific excitatory and inhi-
bitory neurons in the mouse primary visual cortex (V1) dataset. a Raw DAPI
image of the V1 tissue annotated with seven functionally distinct layers (up panel).
Seven representative cells from different layers (bottom panel). b Tissue region
map predicted by stMVC and ClusterMap. c UMAP visualization of the latent fea-
tures by stMVCandClusterMap. The layer annotation and color for each cell are the
same with (b). d UMAP visualization (by stMVC) of the marker genes Slc17a7 and

Gad1 for excitatory and inhibitory neurons, respectively. e The spatial map of
excitatory and inhibitory neurons predicted by stMVC and ClusterMap, respec-
tively. Eachcolor indicatesone cluster. fHeatmapof theaveragegene expressionof
signature genes for four domains of excitatory neurons in L2-6 by stMVC. Rows and
columns indicate genes and different layers, respectively. g Dot plot showing the
expression levels of marker genes for different subtypes of inhibitory neurons in
L2-6 by stMVC. Source data are provided as a Source Data file.
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As of now, developing models for integrating SRT data from
multiple samples are facing several challenges, for example, the batch
effect of gene expression data from multiple sources, as well as their
sparsity and noise; constructing the association between spots from
different physical metric spaces; and removing the artifacts of histol-
ogy while creating the relationship between multiple samples54,55.
However, we believed that (i) the visual feature extraction model by
data augmentations and contrastive learning provides a solution to
construct the association of spots between different samples; and (ii)
themulti-view graph collaborative learningmodel can provide a novel
perspective to integrate multiple SRT datasets by combining multi-
layer profiles data. Besides, stMVC is easily scalable to process spatially
resolved chromatin accessibility (ATAC-seq) or proteomics data56,57, by
replacing the feature matrix from gene expression data with that from
ATAC-seq or proteomics data. Furthermore, with the advance of spa-
tialmulti-omics technology58, stMVC canbe easily adjusted to adapt by
either adding more graphs created by different omics data or sub-
stituting the feature matrix from single-omics data with that from
multi-omics data fusion59,60. Similar to single-view GATmodels such as
STAGATE, stMVC can be applied to analyze the SRT data of other
sequencing-based technologies such as Slide-seq61 and Slide-seqV262.
Additionally, by exploiting spatiotemporal information derived from
stMVC, we can calculate spatial (dynamic) network biomarkers63–66 or
metabolic states67,68 for accurately and reliably quantifying biological
systems and further predicting their complex dynamics/behaviors.

We benchmarked the running time of stMVC on the simulated
datasets by subsampling spots from the human DLPFC datasets. We
observed that stMVC is fast, and takes 38min toprocess the SRTdataset
with 20K spots. In particular, the running time is approximately linearly
related to the number of input spots (Supplementary Fig. 15), which is
considered as an advantage of stMVC for processing a bigger dataset. In
our futurework,wewill further improve the scalability of stMVC, e.g., by
introducing a subgraph sampling training strategy.

Some limitations still are found in stMVC: (i) compared with the
visual features extraction framework from the ResNet-50 model pre-
trained by the ImageNet, the preprocessed step for training SimCLR
needs more computational resources and times; and (ii) region seg-
mentation for tumor position is manually annotated based on the
staining density of antibodies. With the exploration of deep learning
frameworks of generalizable segmentation tools69,70, we will further
investigate creating a more efficient stMVC model with a more auto-
matic architecture in the future study.

Methods
stMVC model
stMVC is a multi-view graph collaborative learning model, which
integrates four-layer profiles: gene expression (X 2 Rm×n), spatial
location (S= s1, . . . ,sn

� � 2 Rn× 2,si = ðsix ,siyÞ), histological image data
(I = i1, . . . ,in

� �
), and manual region segmentation

(Y = ðy1, . . . ,ynÞT 2 Rn× 1,yi 2 f1, . . . ,Kg), where m, n, and K are the
number of genes, spots, and spatial domains (manual segmentation),
to elucidate tumor heterogeneity (Fig. 1a–d). Specifically, we (1)
learned visual features (hi 2 R2048 × 1) for each spot (or cell) image (ii)
by feature extraction network of the ResNet-50model thatwas trained
by SimCLR framework71, and then constructed HSG based on the
similarity of the learned visual features (hi) (Fig. 1b); (2) separately
learned view-specific representations (Pm =

�
p1

m,…, pn
m
� 2 Rd ×n,

where d is the number of latent features, m 2 1,2f g indicating mth
graph) by SGATE for each of two-view graphs: HSG and SLG, as well as
low-dimensional feature of X by an autoencoder as a feature matrix
(Z 2 Rb×n, where the default value of b is 50, indicating the dimension
of latent features), andmeanwhile automatically learned theweights of
two graphs for robust representations (R = ðr1,::,rnÞ 2 Rd ×n) by atten-
tion mechanism, in a semi-supervision manner from region segmen-
tation (Fig. 1c).

Learning visual features by contrastive learning to con-
struct HSG
To remove the noise from histology staining and extract morpholo-
gical information from histological image data, we adopted SimCLR
model to efficiently learn visual features for each spot by maximizing
agreement between differently augmented views of the same spot
image via a contrastive loss in the latent space (Fig. 1b). For a spot vi
from the Visium platform, the physical location of which in the tissue
slice is represented by ðsix ,siyÞ, a square containing 40×40 pixels
centered on ðsix ,siyÞ is regarded as its image ii; and for a cell vi from the
STARmap platform, a minimum enclosing bounding rectangle for a
cell determined by its RNA locations is treated as its image ii. The
specific model is described as follows:
(1) For each image ii, we applied a stochastic data augmentation

module to randomly transform it into two correlated views for the
same image ii, denoted as im

0 and in
0, and considered these two

views as a positive pair. In this work, we sequentially apply two
simple augmentations: random cropping followed by resizing
back to the original size; and random color distortions including
randomly changing the brightness, contrast, saturation, and hue
of an image71.

(2) We adopted the ResNet-50 framework24 as a base encoder f ð�Þ to
extract features (hm and hn) from two augmented views (im

0 and
in

0), where hm,hn 2 R2048× 1 is the output after average
pooling layer.

(3) We used a Multilayer Perceptron (MLP) with one hidden layer to
obtain latent features lm = g hm

� �
=W 2ð Þσ W 1ð Þhm

� �
where σ is a

‘relu’ function, the first and second layers are set as 512 and 128,
respectively, and lm is used to define contrastive loss.

(4) Given a set ik
0� �

including a positive pair of examples im
0 and in

0,
the contrastive prediction task aims to identify in

0 in ik
0� �

k≠m for a
given im

0. The loss function for a positive pair of samples ðim 0,in
0Þ is

defined as:

li,j = � log
expðsimðlm,lnÞ=τÞP2N

k = 1I½k≠m� expðsimðlm,lnÞ=τÞ
ð1Þ

where sim lm,ln
� �

= lm
Tln

∣∣lm ∣∣∣∣ln ∣∣
, I k≠m½ � 2 f0,1g is an indicator function eval-

uating to 1 if k≠m, τ denotes a temperature parameter, andN indicates
batch size.

For each SRT data, we randomly selected 85% of the spots as the
training sets to train the SimCLR model, and the remaining 15% of the
spots as the testing set to test it. Adam optimizer with both a 1e�6

weight decay and a 1e�4 learning rate is used to minimize the above
loss function. We trained the SimCLR model until 500 iterations, and
then calculated the histological similarity between any two spots by
calculating the Cosine similarity between learned features hu and hv

from spots u and v as follows: cos hu,hv

� �
= hu�hv

∣∣hu ∣∣∣∣hv ∣∣
. A Six-nearest

neighbor graph for each spot is kept for constructing the HSG
G1 = ðV ,E1Þ, where each vertex v 2 V indicates a spot, and every two
vertices in V are connected by an edge e 2 E1. As a comparison, we
used the same strategy to construct naïve HSG G1 0 = ðV ,E1 0Þ by the
feature extracted by feature extraction framework of ResNet-50 pre-
trained by ImageNet to validate the effectiveness of our trained visual
feature extraction model.

Learning robust representations by multiple view graph colla-
borative learning
We used SGATEs for learning view-specific representations in stMVC,
where a SGATE for each view was trained under weak supervision of
the region segmentation to capture its efficient low-dimensional
manifold structureby integrating gene expressionwith eitherHSG (G1)
or SLG, (G2 = ðV ,E2Þ) which is constructed by a six-nearest neighbor
graph for each spot based on the Euclidean distance of their physical
location in the tissue slice72, and meanwhile collaboratively integrated
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them to learn robust representations for each spot (Fig. 1c). In this
work, two graphs (G1 and G2) have the same vertex (spot) set but
different edges.

stMVC for learning view-specific representations. For each view
graph, a SGATEmodel aims to learn accurate low-dimensional features
with the following inputs: an adjacency matrix (Am 2 Rn×n) repre-
sentingmth graph Gm, wherem 2 1,2f g, cell labels indicated by region
segmentation (Y ), and feature matrix Z learned from gene expression
(X ) by autoencoder-based framework (see SupplementaryMethods). A
GAT can be built by stacking multiple multi-head graph attention
layers73. Specifically, each layer is defined as:

hi
ðl + 1Þ = σ

1
Q

XQ
q= 1

X
j2Ni

αij
qWqhj

l

0
@

1
A ð2Þ

αij
q =

expðLeakyReLUððaqÞT ½Wqhi
l ∣∣Wqhj

l �ÞÞP
o2Ni

expðLeakyReLUððaqÞT ½Wqhi
l ∣∣Wqho

l �ÞÞ
ð3Þ

where Q indicates the number of head attention and the default value
is two, αij

q is normalized attention coefficients computed by the qth
attention mechanism (aq), Wq is the corresponding input linear
transformation’s weight matrix, Ni is the neighborhood of spot (vi) in
the graph, hj

l is the input feature of node j of the lth layer, and k is the
concatenation operation.

The encoder of each GATE model is composed of two layers of
GAT, the output dimensions of the first and second layers are set at 25
and 10, 36 and 18, and 32 and 16, for humanDLPFC, ovarian, and breast
cancer datasets, respectively. The graph embedding for each graph is
represented by Pm. The decoder of each GATE model is defined as an
inner product between the embedding:

Am 0 = sigmoidðPmPmT Þ ð4Þ

where Am 0 is the reconstructed adjacency matrix of Am. The goal of
learning each GATE model is to minimize the cross-entropy between
the input adjacency matrix Am and Am 0:

Lrecon-m = � 1
n ×n

Xn
i = 1

Xn
j = 1

ðaij
m × logðaij

m0Þ+ ð1� aij
mÞ× logð1� aij

m0ÞÞ

ð5Þ
where aij

m and aij
m 0 are the elements of the adjacency matrix Am and

Am 0 in the ith row and the jth column of mth graph, respectively.
To capture biological contexts in the tissue, we further extended

the use of the GATE model to do spot class prediction
Ym 0 = softmaxðWm

ð1ÞPmÞ in a semi-supervision manner from region
segmentation, and the loss function ofwhich is summarized as follows:

Lpre-m =
1
S

XS
l = 1

�
XK
i= 1

yi logðyim0Þ
 !

ð6Þ

where S is the number of labeled spots, K is the number of classes, and
yi and yi

m 0 are the label vector of spot vi from the region segmentation
and the prediction of the mth graph, respectively.

Taken together, the loss function of each SGATE model is sum-
marized as:

LSGATE-m = Lrecon-m +βLpre-m ð7Þ

whereβ is a parameter used to control theweight of two loss functions,
and the default value is eight.

stMVC for multi-view graph collaborative learning. After learning
view-specific representations pi

m for a spot (vi) by the mth SGATE
model, we applied the collaborative learning model to integrate dif-
ferent view graphs for its robust representations (ri). The contribution
of each view to ri is unavailable, hence, we proposed the attention-
based strategy to learn the weight of each graph for the final repre-
sentations by the following function:

ri =
XM
m= 1

γi
mpi

m ð8Þ

where M is the number of views. Inspired by attention-based models
emphasizing on capturingmore critical information to the current task
from abundant information22,74, we defined the weight of one view for
node vi using the following function:

γi
m =

expðam � pi
CÞPM

o= 1 expðao � pi
CÞ ð9Þ

where pi
C 2 R2d × 1 is the concatenation of all view-specific representa-

tions of spot vi, and am 2 R2d × 1 is feature vector of the mth view,
describing what kinds of spots will consider the mth view as
informative. If pi

C and am have a large dot product, meaning spot vi
believes that the mth view is an informative view, and vice versa.

To collaboratively integrate different views into the same
semantic space60, we further leveraged robust representations to fine-
tune the learning of each view graph by transferring knowledge from
robust representations to each view-specific representations, aswell as
optimizing the parameters of am

� �M
m= 1 in semi-supervised manner

through a MLP with one hidden layer to do spot class prediction
YCL 0 = softmaxðW 2ð ÞσðW 1ð ÞRÞÞ. The corresponding loss functions are
defined as follows:

Ltransfer =
Xn
i = 1

XM
m= 1

γi
mðri � pi

mÞ2 ð10Þ

Lpre-CL =
1
S

XS
l = 1

�
XK
i = 1

yi logðyiCL0Þ
 !

ð11Þ

In summary, the total loss function for robust representations by
collaboratively integrating multiple views is summarized as follows:

LMVC =
XM
m= 1

Lrecon-m + β0XM
m= 1

Lpre-m + δLtransfer +φLpre-CL ð12Þ

where β0, δ and φ are used to control the weights of these regular-
ization terms, and the default values of them are 10, 0.0005, and 100,
respectively.

Overall, the objective function of our stMVC model can be effec-
tively optimized with the following iterations, specifically, for each
iteration, we (i) optimized the parameters of each SGATE model to
learn the view-specific representations based on Eq. (7), as well as Eq.
(10) when the robust representations (R) has been inferred by the Eq.
(8), and followed by inferring R via Eq. (8); and (ii) optimized the
parameters of all SGATE models and the parameter vectors of all
graphs based on Eq. (12), and then inferred R based on the optimized
stMVC model. We trained the stMVC model until convergence, and
then applied R for the spatial clustering, visualization, and denoising
(Fig. 1d).
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Datasets and preprocessing
SRT data. In our study, human DLPFC, ovarian, and breast cancer
datasets with paired gene expression and histology were publicly
available from the 10X Genomics website. Specifically, (i) DLPFC
dataset with 12 slices each is manually annotated with the six cortical
layers and WM by the previous study, where the number of spots
ranging from 3460 to 4789 with a median of 384426. Besides, for each
slice, we randomly selected manual annotation with the proportion
ranging from0.1 to 0.9 by 0.1, thus generating ninemanual annotation
sets, which were used to check if or not stMVC can capture the inner
structure of tissue by few labels; (ii) ovarian cancer sample with
matching gene expression (3493 spots) and immunofluorescence
staining with an anti-human CD45 antibody and DAPI; and (iii) breast
cancer sample with paired gene expression data (4727 spots) and
immunofluorescence staining with an anti-human CD3 antibody and
DAPI. In addition, amouseprimary visual cortex (V1) 1020-gene sample
with matching gene expression (1365 cells predicted by ClusterMap)
and raw immunofluorescence staining with DAPI was available from
STARmap platform3.

scRNA-seq and bulk RNA-seq data. To validate our predictions for
the sample of ovarian cancer, we extracted 4081 epithelial cells from
one ovarian cancer patient from a previous study30. Besides, 24,489
epithelial cells were retrieved from 20 breast cancer patients from
previous research, including five luminal B, three Luminal A, three
HER2+, seven triple-negative breast cancers (TNBCs), one HER2+ and
ER+, and one normal75, to support our findings, and the subtypes
are determined by their clinical reports and predictions. Furthermore,
the bulk RNA-seq and clinical data of breast cancer in TCGA database
were downloaded from the Xena platform for survival analysis76, and
the PAM50 subtype classifications of breast cancer of TCGA were
downloaded from previous research77.

Preprocessing. The top 2000 highly variable genes by the ‘vst’
method of Seurat78 for each gene expression data from the Visium
platform, and all 1020 genes of the mouse primary visual cortex
dataset from the STARmap platform, were used to comprehensively
compare each computational method. Besides, to efficiently capture
the information within gene expression data, we mapped each data
into 50-dimensional latent features based on our designed
autoencoder-based framework (see Supplementary Methods), and
took them as the input of stMVC.

Manual region segmentation
We designed a strategy to define biological contexts in each tumor
tissue based on the following assumptions: (1) the colors of the
antibodies on the immunofluorescence staining of the tumor his-
tology can roughly define the tumor region; (2) cells belonging to
the same cell type but are separated by other cells such as immune
or other mesenchymal cells may have different cell-states; and (3)
the majority of cells in the tumor region are tumors while a few are
normal epithelial and infiltrating stromal or immune cells, and the
tumor purity was larger than 70%, which was estimated by over
9300 tumors of 21 cancer types from the TCGA database79 (Sup-
plementary Fig. 16). After annotating different regions in the his-
tology image by labelme software80, we further applied the OpenCV
package81 to determine the region (or context) to which each spot
(vi) belongs, by calculating the proportion between area of the
intersection between a square (IRi) containing 40×40 pixels cen-
tered on ðsix ,siyÞ and a region (Rj), compared to the square. The
function is defined as follows:

Proportion=
IntersectionðIRi,RjÞ

IRi
ð13Þ

By setting Proportion≥0:5, for the ovarian cancer sample,
1658 spots were separately classified into 17 different regions in the
tumor, and the remaining 1835 spots in the non-tumor region were
treated as the 18th region (Supplementary Fig. 6a); and for the breast
cancer sample, 2091 spots were classified into 15 different regions in
the tumor, and the remaining 2636 spots were regarded as the 16th
region (Supplementary Fig. 8a).

In addition, we further extended the protocol to process imaging-
based SRTdata. Specifically, wepredicted RNA clusters for each cell by
ClusterMap; for each cell vi, treated a minimum enclosing bounding
rectangle containing the cell determined by its RNA’s physical loca-
tions as IRi; and adopted Eq. (7) to predict the region to which the cell
belongs. By computing, for the mouse V1 sample, 1365 cells were
classified into seven regions (Fig. 5b).

Evaluation of denoising of gene expression data
We adopted a GI-based measure60 to quantify the quality of denoised
gene expression data by estimating a degree of inequality in the dis-
tribution of known layer-specific gene expression levels. Specifically,
for each domain of the ground truth, the average expression of each
marker gene was calculated; and then the GI for each gene calculated
by the ‘gini’ function from reldist package was used to evaluate the
specific level of the marker gene82. The higher the GI score, the better
the denoised data. The marker genes used in DLPFC dataset were
downloaded from the previous study26 (Supplementary Table 2).

Statistical model for detecting normal cells
To clarify that stMVC is able to distinguish normal cells from cancer
cells by integrating the histological features, we further designed a
statistical-based measure to detect normal cells from SRT data. Spe-
cifically, we reasoned that (1) normal cells tend to be with a higher
expression of tumor suppressor geneswhile cancer cells tend to have a
higher expression of oncogenes; and (2) the expression levels between
the tumor suppressor genes and the oncogenes are different or not
correlated, which were calculated by Fisher’s exact test (see Supple-
mentaryMethods).Hence, cells with a higher expression of suppressor
genes but a lower expression of oncogenes were regarded as the
normal cells, noting that the expressions of suppressor genes and the
oncogenes are not correlated (p-value > 0.05).

Clustering and visualization
After applying stMVC in analyzing SRT data, we learned the accurate
low-dimensional representations (R) representing the relationship
between any two spots. To further clarify tissue heterogeneity, given R
as the input, we adopted ‘FindNeighbors’ and ‘FindClusters’ function
with default parameters from the Seurat package to determine
k-nearest neighbors (KNNs) for each spot, construct the shared near-
est neighbor graph, predict the cell clusters by the Louvain algorithm,
and each cluster is considered as a spatial domain.

We utilized the UMAP algorithm to map the low-dimensional
features from each computational method to two-dimension, visua-
lized the distance of cell embeddings between different cell popula-
tions by ‘Dimplot’ function, and visualized the clusterings and gene
expression patterns at the spatial level by ‘SpatialDimPlot’ and ‘Spa-
tialFeaturePlot’ function, respectively.

Evaluation of the clustering
We adopted two different metrics to evaluate the clustering by cal-
culating the similarity of features between spots within the predicted
cell clusters. Specifically, ROGUE28, an entropy-based statistic to
quantify the homogeneity of identified cell clusters based on tran-
scriptome similarity between spots within each cluster, and the higher
the value, the better the clustering; silhouette width29, a measure of
how similar a spot is to its predicted cluster compared to other clus-
ters, and thehigher the value, the spotwell belongs to its cluster,which
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is calculated as follows:

SWðiÞ= cðiÞ � dðiÞ
max fcðiÞ,dðiÞg ð14Þ

where dðiÞ, and c ið Þ indicate the average Euclidean distance of the
learned low-dimensional joint features between a spot (i) and other
spots in the same cluster, and the spot (i) to all spots in the nearest
cluster where i does not belongs, respectively. The average of
silhouette width of all spots as the final metrics (ASW) to evaluate
clustering performance.

Identification of SVGs
We constructed KNN graph for each spot based on the learned low-
dimensional representations (R), and adopted the KNN-smoothing
algorithm toaggregate information from15nearest spots for each spot
to denoise the gene expression data. Then, we identified SVGs from
2000 highly variable genes among different spatial domains from the
stMVC model by ‘FindAllMarkers’ from Seurat package.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw count matrix, histological image, and spatial location data for
bothhumanovarian andbreast cancer samples are publicly available at
the 10X GenomicsWebsite (https://support.10xgenomics.com/spatial-
gene-expression/datasets). The raw count matrix, image, and spatial
location data for 12 slices of human DLPFC dataset are available from
the package spatialLIBD (http://spatial.libd.org/spatialLIBD/)26. The
DAPI image and RNA clusters per cell for mouse primary visual cortex
1020-gene sample are publicly available from GitHub link of Clus-
terMap (https://github.com/wanglab-broad/ClusterMap). The addi-
tional scRNA-seq data of 20 human breast cancers and one human
ovarian cancer are publicly available from Gene Expression Omnibus
database under accession code GSE176078 and EMBL-EBI database
under accession code E-MTAB-8859, respectively. The bulk RNA-seq
and clinical data from the TCGA database are at the Xena platform
(https://xenabrowser.net/datapages/). The functional gene sets are at
MSigDB database (https://www.gsea-msigdb.org/gsea/msigdb/).
Source data are available at figshare83. Source data are provided with
this paper.

Code availability
stMVC is implemented based onpython 3.6.12 and R 4.0.0. Other tools
and packages used in the data analysis include: numpy 1.19.2, pandas
1.1.5, scipy 1.5.2, scikit-learn 0.23.3, torch 1.6.0, tqdm 4.55.0, scanpy
1.6.0, PIL 9.1.0, seaborn 0.11.2, sklearn 1.0.2, matplotlib 3.5.2, glob2,
anndata 0.8.0, argparse 1.1, json 2.0.9, R 4.0.0, Seurat v4, ggplot2 3.3.5,
monocle 2.10.1, SpatialDecon 1.6.0, DR-SC 2.9, STAGATE 1.0.1, cv2
(OpenCV) 4.5.5, labelme 5.0.1, ClusterMap 0.0.1, Squidpy 1.2.2, stLearn
0.3.1, BayesSpace 1.1.4, and Giotto 1.0.4. The codes are available at
Zenodo https://zenodo.org/record/605260284. The stMVC tool will be
maintained and updated at https://github.com/cmzuo11/stMVC.

References
1. Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse

organogenesis using DNA nanoball-patterned arrays. Cell 185,
1777–1792 (2022).

2. Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat.
Methods 19, 534–546 (2022).

3. Wang, X. et al. Three-dimensional intact-tissue sequencing of
single-cell transcriptional states. Science 361, eaat5691 (2018).

4. Ståhl, P. L. et al. Visualization and analysis of gene expression in
tissue sections by spatial transcriptomics. Science 353,
78–82 (2016).

5. Hunter, M., Moncada, R., Weiss, J., Yanai, I. & White, R. Spatial
transcriptomics reveals the architecture of the tumor/micro-
environment interface. Nat. Commun. 12, 6278 (2020).

6. Liao, J., Lu, X., Shao, X., Zhu, L. & Fan, X. Uncovering an organ’s
molecular architecture at single-cell resolution by spatially
resolved transcriptomics. Trends Biotechnol. 39, 43–58 (2021).

7. Xiaowei, A. Method of the Year 2020: Spatially resolved tran-
scriptomics. Nat. Methods 18, 1 (2021).

8. Dries, R. et al. Advances in spatial transcriptomic data analysis.
Genome Res. 31, 1706–1718 (2021).

9. Zhao, E. et al. Spatial transcriptomics at subspot resolution with
BayesSpace. Nat. Biotechnol. 39, 1375–1384 (2021).

10. Dries, R. et al. Giotto: A toolbox for integrative analysis and visua-
lization of spatial expression data. Genome Biol. 22, 1–31 (2021).

11. Hu, J. et al. SpaGCN: Integrating gene expression, spatial location
and histology to identify spatial domains and spatially variable
genes by graph convolutional network. Nat. Methods 18,
1342–1351 (2021).

12. Pham, D. et al. stLearn: Integrating spatial location, tissue mor-
phology and gene expression to find cell types, cell-cell interac-
tions and spatial trajectories within undissociated tissues. Preprint
at bioRxiv https://doi.org/10.1101/2020.05.31.125658 (2020).

13. Palla, G. et al. Squidpy: A scalable framework for spatial omics
analysis. Nat. Methods 19, 171–178 (2022).

14. He, Y. et al. ClusterMap for multi-scale clustering analysis of spatial
gene expression. Nat. Commun. 12, 1–13 (2021).

15. Liu, W. et al. Joint dimension reduction and clustering analysis of
single-cell RNA-seq and spatial transcriptomics data. Nucleic Acids
Res. 50, e72–e72 (2022).

16. Yang, Y. et al. SC-MEB: Spatial clustering with hidden Markov ran-
dom field using empirical Bayes. Brief. Bioinform. 23,
bbab466 (2022).

17. Dong, K. & Zhang, S. Deciphering spatial domains from spatially
resolved transcriptomics with an adaptive graph attention auto-
encoder. Nat. Commun. 13, 1–12 (2022).

18. Wang, J. et al. scGNN is a novel graph neural network framework for
single-cell RNA-Seq analyses. Nat. Commun. 12, 1–11 (2021).

19. Haralick, R. M., Shanmugam, K. & Dinstein, I. H. Textural features for
image classification. In IEEE Transactions on Systems, Man, and
Cybernetics 610–621 (1973).

20. Velickovic, P. et al. Graph attention networks. stat 1050, 20
(2017).

21. Wu, Z. et al. A comprehensive survey on graph neural networks.
IEEE Trans. Neural Netw. Learn. Syst. 32, 4–24 (2020).

22. Qu, M. et al. Attention-based collaboration framework for multi-
view network representation learning. In Proceedings of the 2017
ACM on Conference on Information and Knowledge Management
1767–1776 (2017).

23. Gurcan,M. N. et al. Histopathological image analysis: A review. IEEE
Rev. Biomed. Eng. 2, 147–171 (2009).

24. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition 770–778 (2016).

25. Deng, J. et al. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE Conference on Computer Vision and Pattern Recog-
nition 248–255 (2009).

26. Maynard, K. R. et al. Transcriptome-scale spatial gene expression in
the human dorsolateral prefrontal cortex. Nat. Neurosci. 24,
425–436 (2021).

27. Nadarajah, B. & Parnavelas, J. G. Modes of neuronalmigration in the
developing cerebral cortex. Nat. Rev. Neurosci. 3, 423–432 (2002).

Article https://doi.org/10.1038/s41467-022-33619-9

Nature Communications |         (2022) 13:5962 12

https://support.10xgenomics.com/spatial-gene-expression/datasets
https://support.10xgenomics.com/spatial-gene-expression/datasets
http://spatial.libd.org/spatialLIBD/
https://github.com/wanglab-broad/ClusterMap
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE176078
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8859/
https://xenabrowser.net/datapages/
https://www.gsea-msigdb.org/gsea/msigdb/
https://zenodo.org/record/6052602
https://github.com/cmzuo11/stMVC
https://doi.org/10.1101/2020.05.31.125658


28. Liu, B. et al. An entropy-based metric for assessing the purity of
single cell populations. Nat. Commun. 11, 1–13 (2020).

29. Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis. J. Comput. Appl. Math. 20,
53–65 (1987).

30. Nelson, L. et al. A living biobank of ovarian cancer ex vivo models
reveals profound mitotic heterogeneity. Nat. Commun. 11,
1–18 (2020).

31. Danaher, P. et al. Advances in mixed cell deconvolution enable
quantification of cell types in spatial transcriptomic data. Nat.
Commun. 13, 1–13 (2022).

32. Kulbe, H. et al. The inflammatory cytokine tumor necrosis factor-α
generates an autocrine tumor-promoting network in epithelial
ovarian cancer cells. Cancer Res. 67, 585–592 (2007).

33. Xia, Y., Shen, S. & Verma, I. M. NF-κB, an active player in human
cancers. Cancer Immunol. Res. 2, 823–830 (2014).

34. Petrova, V., Annicchiarico-Petruzzelli, M., Melino, G. & Amelio, I. The
hypoxic tumour microenvironment. Oncogenesis 7, 1–13 (2018).

35. Nguyen, T., Nioi, P. & Pickett, C. B. The Nrf2-antioxidant response
element signaling pathway and its activation by oxidative stress. J.
Biol. Chem. 284, 13291–13295 (2009).

36. Al-Alem, L. & Curry, T. E. Jr Ovarian cancer: Involvement of the
matrix metalloproteinases. Reproduction 150, R55 (2015).

37. Steitz, A. M. et al. Tumor-associatedmacrophages promote ovarian
cancer cell migration by secreting transforming growth factor beta
induced (TGFBI) and tenascin C. Cell Death Dis. 11, 1–15 (2020).

38. Guo, X. & Ding, X. Dioscin suppresses the viability of ovarian cancer
cells by regulating the VEGFR2 and PI3K/AKT/MAPK signaling
pathways. Oncol. Lett. 15, 9537–9542 (2018).

39. Zhang, Y. et al. Ovarian cancer-associated fibroblasts contribute to
epithelial ovarian carcinoma metastasis by promoting angiogen-
esis, lymphangiogenesis and tumor cell invasion.Cancer Lett. 303,
47–55 (2011).

40. Wang, H. et al. NEDD9 overexpression is associated with the pro-
gression of and an unfavorable prognosis in epithelial ovarian
cancer. Hum. Pathol. 45, 401–408 (2014).

41. Zhang, Y. et al. Single-cell RNA-sequencing atlas reveals an MDK-
dependent immunosuppressive environment in ErbB pathway-
mutated gallbladder cancer. J. Hepatol. 75, 1128–1141 (2021).

42. Aunoble, B., Sanches, R., Didier, E. & Bignon, Y. Major oncogenes
and tumor suppressor genes involved in epithelial ovarian cancer.
Int. J. Oncol. 16, 567–643 (2000).

43. Youn, B. S. et al. NM23 as a prognostic biomarker in ovarian serous
carcinoma. Mod. Pathol. 21, 885–892 (2008).

44. Wolf, F. A. et al. PAGA: Graph abstraction reconciles clusteringwith
trajectory inference through a topology preserving map of single
cells. Genome Biol. 20, 1–9 (2019).

45. Zheng, A. et al. Long non-coding RNA LUCAT1/miR-5582-3p/
TCF7L2 axis regulates breast cancer stemness via Wnt/β-catenin
pathway. J. Exp. Clin. Cancer Res. 38, 1–14 (2019).

46. Garcia-Heredia, J. M., Lucena-Cacace, A., Verdugo-Sivianes, E. M.,
Pérez, M. & Carnero, A. The cargo protein MAP17 (PDZK1IP1) reg-
ulates the cancer stem cell pool activating the Notch pathway by
abducting NUMB. Clin. Cancer Res. 23, 3871–3883 (2017).

47. Chang, X.-Z., Yu, J., Liu, H.-Y., Dong, R.-H. & Cao, X.-C. ARK5 is
associated with the invasive and metastatic potential of human
breast cancer cells. J. Cancer Res. Clin. Oncol. 138, 247–254 (2012).

48. Rody, A. et al. Gene expression of topoisomerase II alpha (TOP2A)
bymicroarray analysis is highlyprognostic in estrogen receptor (ER)
positive breast cancer. Breast Cancer Res. Treat. 113,
457–466 (2009).

49. Yamamoto-Ibusuki, M. et al. C6ORF97-ESR1 breast cancer sus-
ceptibility locus: Influence on progression and survival in breast
cancer patients. Eur. J. Hum. Genet. 23, 949–956 (2015).

50. Gobin, E. et al. A pan-cancer perspective of matrix metallopro-
teases (MMP) gene expression profile and their diagnostic/prog-
nostic potential. BMC Cancer 19, 1–10 (2019).

51. Dunbier, A. K. et al. ESR1 is co-expressed with closely adjacent
uncharacterised genes spanning a breast cancer susceptibility
locus at 6q25. 1. PLoS Genet. 7, e1001382 (2011).

52. Trapnell, C. et al. The dynamics and regulators of cell fate decisions
are revealed by pseudotemporal ordering of single cells. Nat. Bio-
technol. 32, 381–386 (2014).

53. Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by
single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016).

54. Chatterjee, S. Artefacts in histopathology. J. Oral. Maxillofac.
Pathol.: JOMFP 18, S111 (2014).

55. Hu, J. et al. Statistical and machine learning methods for spatially
resolved transcriptomics with histology. Comput. Struct. Bio-
technol. J. 19, 3829–3841 (2021).

56. Li, R. & Zhou, S. Spatially resolved proteomics identify biomarkers
from endometrial sentinel lymph nodes. Cell Rep. Med. 2,
100283 (2021).

57. Deng, Y. et al. Spatial profiling of chromatin accessibility in mouse
and human tissues. Nature 609, 1–9 (2022).

58. Liu, Y. et al. High-spatial-resolution multi-omics sequencing via
deterministic barcoding in tissue. Cell 183, 1665–1681 (2020).

59. Zuo, C. & Chen, L. Deep-joint-learning analysis model of single cell
transcriptome and open chromatin accessibility data. Brief. Bioin-
form. 22, bbaa287 (2021).

60. Zuo, C., Dai, H. & Chen, L. Deep cross-omics cycle attention model
for joint analysis of single-cell multi-omics data. Bioinformatics 37,
4091–4099 (2021).

61. Rodriques, S. G. et al. Slide-seq: A scalable technology for mea-
suring genome-wide expression at high spatial resolution. Science
363, 1463–1467 (2019).

62. Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-
cellular resolution with Slide-seqV2. Nat. Biotechnol. 39,
313–319 (2021).

63. Chen, L., Liu, R., Liu, Z.-P., Li, M. &Aihara, K. Detecting early-warning
signals for sudden deterioration of complex diseases by dynamical
network biomarkers. Sci. Rep. 2, 1–8 (2012).

64. Liu, X., Wang, Y., Ji, H., Aihara, K. & Chen, L. Personalized char-
acterization of diseases using sample-specific networks. Nucleic
Acids Res. 44, e164–e164 (2016).

65. Liu, X. et al. Detection for disease tipping points by landscape
dynamic network biomarkers. Natl Sci. Rev. 6, 775–785 (2019).

66. Zhang, C. et al. Landscape dynamic network biomarker analysis
reveals the tipping point of transcriptome reprogramming to pre-
vent skin photodamage. J. Mol. Cell Biol. 13, 822–833 (2021).

67. Zuo, C. et al. Elucidation and analyses of the regulatory networks of
uplandand lowlandecotypesof switchgrass in response todrought
and salt stresses. PLoS One 13, e0204426 (2018).

68. Liu, D. et al. Molecular bases of morphologically diffused tumors
acrossmultiple cancer types.Natl Sci. Rev.https://doi.org/10.1093/
nsr/nwac177 (2022).

69. Yi, F., Huang, J., Yang, L., Xie, Y. & Xiao, G. Automatic extraction of
cell nuclei from H&E-stained histopathological images. J. Med.
Imaging 4, 027502 (2017).

70. Greenwald, N. F. et al. Whole-cell segmentation of tissue images
with human-level performance using large-scale data annotation
and deep learning. Nat. Biotechnol. 40, 555–565 (2022).

71. Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A simple framework
for contrastive learning of visual representations. In PMLR
1597–1607 (2020).

72. Li, Q., Han, Z. & Wu, X.-M. Deeper insights into graph convolutional
networks for semi-supervised learning. In Thirty-Second AAAI con-
ference on artificial intelligence (2018).

Article https://doi.org/10.1038/s41467-022-33619-9

Nature Communications |         (2022) 13:5962 13

https://doi.org/10.1093/nsr/nwac177
https://doi.org/10.1093/nsr/nwac177


73. Veličković, P. et al. Graph attention networks. In 6th International
Conference on Learning Representations, ICLR (2018).

74. Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by
jointly learning to align and translate. Preprint at bioRxiv https://doi.
org/10.48550/arXiv.1409.0473 (2014).

75. Wu, S. Z. et al. A single-cell and spatially resolved atlas of human
breast cancers. Nat. Genet. 53, 1334–1347 (2021).

76. Goldman, M. J. et al. Visualizing and interpreting cancer genomics
data via the Xena platform. Nat. Biotechnol. 38, 675–678 (2020).

77. Netanely, D., Avraham, A., Ben-Baruch, A., Evron, E. & Shamir, R.
Expression and methylation patterns partition luminal-A breast
tumors into distinct prognostic subgroups. Breast Cancer Res. 18,
1–16 (2016).

78. Stuart, T. et al. Comprehensive integration of single-cell data. Cell
177, 1888–1902 (2019).

79. Aran, D., Sirota, M. & Butte, A. J. Systematic pan-cancer analysis of
tumour purity. Nat. Commun. 6, 1–12 (2015).

80. Russell, B. C., Torralba, A., Murphy, K. P. & Freeman, W. T. LabelMe:
A database and web-based tool for image annotation. Int. J. Com-
put. Vis. 77, 157–173 (2008).

81. Bradski, G. & Kaehler, A. Learning OpenCV: Computer Vision with
the OpenCV Library (O’Reilly Media, 2008).

82. Handcock, M. S. & Morris, M. Relative Distribution Methods in the
Social Sciences (Springer Science & Business Media 1999).

83. Zuo, C. et al. Elucidating tumor heterogeneity from spatially
resolved transcriptomics data by multi-view graph collaborative
learning. figshare https://doi.org/10.6084/m9.figshare.
19880812 (2022).

84. Zuo, C. et al. Elucidating tumor heterogeneity from spatially
resolved transcriptomics data by multi-view graph collaborative
learning. Zenodo https://doi.org/10.5281/zenodo.6052602 (2022).

85. Guo, X. et al. Global characterization of T cells in non-small-cell
lung cancer by single-cell sequencing. Nat. Med. 24,
978–985 (2018).

86. Tang, Z., Kang, B., Li, C., Chen, T. & Zhang, Z. GEPIA2: An enhanced
web server for large-scale expression profiling and interactive
analysis. Nucleic Acids Res. 47, W556–W560 (2019).

Acknowledgements
This workwas supported by the National Key R&D Program of China (No.
2017YFA0505500 to L.C.), the Strategic Priority Research Program of
the Chinese Academy of Sciences (No. XDB38040400 to L.C.), the
National Natural Science Foundation of China (Nos. 12131020,
31930022, and 12026608 toL.C., andNo. 62102068 toC.C.), theSpecial
Fund for Science and Technology Innovation Strategy of Guangdong
Province (Nos. 2021B0909050004 and 2021B0909060002 to L.C.), the
Major Key Project of Peng Cheng Laboratory (No. PCL2021A12 to L.C.),
JST Moonshot R&D (No. JPMJMS2021 to L.C.), open project of BGI-

Shenzhen (No. BGIRSZ20210010 to L.C.), Shanghai Sailing Program (No.
22YF1401700 to C.Z.), and the Fundamental Research Funds for the
Central Universities (No. 2232022D-30 to C.Z.).

Author contributions
L.C. and C.Z. conceived and supervised the study. C.Z. designed and
implemented the model, performed all the experiments, and wrote the
manuscript with feedback from all authors. Y.Z., C.C., J.F., and M.J.
analyzed and interpretated the data. L.C. revised the manuscript. The
authors read and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-022-33619-9.

Correspondence and requests for materials should be addressed to
Chunman Zuo or Luonan Chen.

Peer review information Nature Communications thanks the other
anonymous reviewer(s) for their contribution to the peer review of
this work.

Reprints and permission information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

Article https://doi.org/10.1038/s41467-022-33619-9

Nature Communications |         (2022) 13:5962 14

https://doi.org/10.48550/arXiv.1409.0473
https://doi.org/10.48550/arXiv.1409.0473
https://doi.org/10.6084/m9.figshare.19880812
https://doi.org/10.6084/m9.figshare.19880812
https://doi.org/10.5281/zenodo.6052602
https://doi.org/10.1038/s41467-022-33619-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Elucidating tumor heterogeneity from spatially�resolved transcriptomics data by�multi-view graph collaborative learning
	Results
	Overview of stMVC model
	stMVC reveals the trajectory relationship between different spatial domains
	stMVC contributes to detecting cell-states missed by competing methods
	stMVC enables us to identify transited cell-states
	stMVC improves the results for detecting layer-specific inhibitory neurons in mouse brain

	Discussion
	Methods
	stMVC model
	Learning visual features by contrastive learning to construct HSG
	Learning robust representations by multiple view graph collaborative learning
	stMVC for learning view-specific representations
	stMVC for multi-view graph collaborative learning
	Datasets and preprocessing
	SRT data
	scRNA-seq and bulk RNA-seq data
	Preprocessing
	Manual region segmentation
	Evaluation of denoising of gene expression data
	Statistical model for detecting normal cells
	Clustering and visualization
	Evaluation of the clustering
	Identification of SVGs
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




