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Uncertainty modulates visual maps during
noninstrumental information demand

Yvonne Li 1,2,4, Nabil Daddaoua1,2,4, Mattias Horan1, Nicholas C. Foley1,2 &
Jacqueline Gottlieb 1,2,3

Animals are intrinsically motivated to obtain information independently of
instrumental incentives. This motivation depends on two factors: a desire to
resolve uncertainty by gathering accurate information and a desire to obtain
positively-valenced observations, which predict favorable rather than unfa-
vorable outcomes. To understand the neural mechanisms, we recorded par-
ietal cortical activity implicated in prioritizing stimuli for spatial attention and
gaze, in a task in which monkeys were free (but not trained) to obtain infor-
mation about probabilistic non-contingent rewards.We show that valence and
uncertainty independently modulated parietal neuronal activity, and uncer-
tainty but not reward-related enhancement consistently correlated with
behavioral sensitivity. The findings suggest uncertainty-driven and valence-
driven information demand depend on partially distinct pathways, with the
former being consistently related to parietal responses and the latter
depending on additionalmechanisms implemented in downstream structures.

Humans and other animals have an intrinsic desire to obtain infor-
mation about future events. This desire is clearly illustrated in tasks of
noninstrumental information demand in which participants have the
opportunity to obtain information about future non-contingent
rewards but cannot take actions to control the reward. Animals,
including humans and monkeys, are willing to pay and exert effort to
obtain noninstrumental information, showing that they value infor-
mation as a good in itself, independently of any material gains they
may realize by acting on the information1,2.

Studies of noninstrumental information demand suggest that the
intrinsic utility of gathering information is of two kinds. On the one
hand, participants seek to resolve uncertainty by gathering accurate
information1,3–6. This is an important mechanism through which indi-
viduals can improve their predictions in an unbiased, theoretically
normative fashion. On the other hand, participants prefer to obtain
observations that have positive rather than negative valence—e.g.,
signal the availability of reward rather than a lack of reward3,5,7. This
preference is thought to reflect an emotional bias, or “anticipatory
utility”, whereby individuals seek to anticipate (“savor”) desirable
outcomes but avoid anticipating (“dreading”) undesirable outcomes8,9.

Anticipatory utility canproducenon-normative biaseswhereby people
reject information that is likely to signal undesirable outcomes, but
nevertheless, it persists even in instrumental conditions when it limits
the ability to take appropriate actions5,10,11 (e.g., people may avoid
information about a medical diagnosis). Moreover, the relative
strengths of anticipatory utility and uncertainty motives show indivi-
dual variability that correlates with personality traits12,11.

Despite the importance of different information demand strate-
gies, their neural mechanisms are not well understood. An imaging
study in humans suggests that uncertainty resolution and anticipatory
utility are mediated by different structures involved in reward and
motivation7. However, humans andmonkeys often obtain information
through active sensing behaviors like making rapid eye movements
(saccades) to visual stimuli, but little is known about howmotivational
signals of reward and uncertainty interfacewith visuo-motor areas that
generate saccade policies.

Saccades are controlled by a network of topographically orga-
nized cortical and subcortical areas in which neurons have visual
receptivefields (RF) andencode saccadegoals. The lateral intraparietal
area (LIP) is an intermediate node in this network that encodes “visual
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priority”—a sparse topographic representation of relevant stimuli that
provides inputs to downstream motor mechanisms deciding how to
act on the stimuli13,14. In contrast, reward probability and uncertainty
are encoded outside the visual system15–17, including in a network
involving the pallidum, dorsal striatum, and dorsal anterior cingulate
cortex (dACC)18. Uncertainty-sensitive cells in this network are not
spatially tuned and cannot specify a saccade target location, raising the
question of how motivational and uncertainty signals shape concrete
saccade policies.

Here we examined this question by recording LIP cells in a task of
noninstrumental information demand, in which monkeys were free
(but not trained) to reveal informative stimuli in trials with different
reward probability. To dissociate the effects of valence and uncer-
tainty, we fit the data with two functions of reward probability7,19. One
function increased linearly with reward probability and measured the
impact of valence—the extent to which the demand for information
depended on the probability that the information would signal a
desirable outcome. The second function was a quadratic (inverted-U)
functionof rewardprobability thatpeaked at 50%andwasminimal at 0
and 100% reward probability and measured the sensitivity to uncer-
tainty—the extent to which information demand at an intermediate
(uncertain) probability departed from the predictions of a linear trend.
As in previous studies using this method7,18–20, we verified that reward
and uncertainty regressors had low correlations in our dataset,
establishing their suitability to disambiguate the effects of valence and
uncertainty.

We show that monkeys were sensitive to both valence and
uncertainty and, consistent with previous findings in humans, showed
individual differences in the relative strengths of these motives7,12,19.
Importantly, these individual differences were not encoded in LIP,
suggesting that the parietal cortex is more closely associated with
uncertainty-based relative to valence-based information gathering.

Results
Information seeking is sensitive to reward probability and
uncertainty
Two monkeys performed a task in which they were free to obtain
advanced information about noncontingent rewards (Fig. 1a). A trial
started with central fixation, followed by the presentation of a per-
ipheral cue (Cue 1) that signaled the trial’s reward probability. Cue 1
was followed by a delay period in which the monkeys maintained
central fixation and a free-viewing period in which the monkeys could
reveal an additional reward cue (Cue 2). During the first part of free-
viewing, themonkeys had access to a visualmaskwhich, contingent on
themonkeys’maintaining gaze on themask, disappeared and revealed
Cue 2. After a fixed interval of 2.5 s, the trial ended with the delivery of
the outcome—a reward or a lack of reward. The outcome was non-
contingent on the monkeys’ free-viewing behavior, which thus
expressed the monkeys’ intrinsic willingness to reveal Cue 2.

To determine how this willingness depended on valence and
uncertainty, we analyzed behavior using two functions of reward
probability (Fig. 1b). The valence that Cue 2 was expected to have (the
probability that it would convey a positive outcome) increased linearly
with reward probability. In contrast, the uncertainty that Cue 2 would
resolve was a nonlinear function of reward probability, being low at 0
and 100% but maximal at 50%. Thus, Cue 1 sets up the valence and
uncertainty associated with sampling Cue 2. Moreover, the informa-
tiveness of the two stimuli was inversely related. When Cue 1 was fully
informative (signaling 0or 100% rewardprobability), it renderedCue 2
uninformative, and when Cue 1 was uninformative (signaling a 50%
probability), it rendered Cue 2 maximally informative (frames
in Fig. 1b).

The monkeys’ information demand was sensitive to both factors
(Fig. 1c). The willingness to reveal Cue 2 was higher for 100% than for
0% trials, suggesting sensitivity to anticipatory utility. Moreover, the

willingness to reveal in 50% trials was higher than would be predicted
by a linear trend, suggesting an effect of uncertainty.We quantitatively
measured each factor by fitting viewing behaviorwith a two-parameter
regression in which one term linearly coded for reward probability
(REW, 0.0, 0.5, and 1.0) and a second term indexed uncertainty (UNC,
respectively, 0, 1, 0;Methods, Eq. 1). The coefficients for the linear term
were on average positive, confirming a significant valence effect in
each monkey (βREW_reveal relative to 0: MK1: p < 10−4, MK2, p < 10−5;
Wilcoxon test relative to 0). Likewise, both monkeys were strongly
sensitive to uncertainty, with the uncertainty coefficients being sig-
nificantly greater than 0 on average (Fig. 1d, yellow; βUNC_reveal relative
to 0, MK1: p < 10−6, MK2, p < 10−5) and, remarkably, in every individual
session (Fig. 1d, colored points). The Spearman correlation between
the REW and UNC regressors was below 0.07 in all individual sessions
(all p >0.1), showing that the model was suitable for disentangling the
effects of these factors. Moreover, because regressors compete to
explain variance in a multiple regression model, finding significant
coefficients indicated that reward and uncertainty each explained
behavior beyond the effect captured by the other term. A separate
analysis of the fraction of unique variance explained based on R2

(Methods) replicated all the effects based on the coeffi-
cients (Supplementary Fig. 3), further confirming that reward and
uncertainty explained unique fractions of behavioral variability.

While both monkeys had significant sensitivity to anticipatory
utility and uncertainty, the relative strengths of these drives had
individual variability. The effect of rewardwas stronger inMK2 relative
to MK1, as shown by his higher βREW coefficients (Fig. 1d, green;
p < 10−10 between monkeys, Wilcoxon test) and a higher fraction of
sessions with significant effects (100 vs 37%). Conversely, the effect of
uncertainty was stronger in MK1 relative to MK2, as shown by MK1’s
higher βUNC coefficients (Fig. 1d, yellow; p < 10−6, Wilcoxon test). These
differences could be explained neither by the animals’ training (which
involved identical protocols; Methods) nor by their familiarity with the
cues (since both monkeys had anticipatory licking responses that
closely followed the cued reward probabilities; Supplementary Fig. 1a)
or by their engagement with the task (since both monkeys showed
significant effects of valence and uncertainty). Thus, the findings
reflect individual differences in the monkeys’ relative sensitivities to
uncertainty and anticipatory utility, consistent with previous studies
on humans12. We return to this finding below in relation to neural
activity.

Control analyses ruled out spurious explanations for the mon-
keys’ information-seeking behavior. Anticipatory licking was influ-
enced by reward probability even when the monkeys did not reveal
Cue 2, showing that the monkeys understood that rewards were
forthcoming regardless of revealing behavior (Supplementary Fig. 1b).
Viewing behavior was unchanged in control sessions in which the
spout was placed inside the monkeys’ mouth, ruling out that the
monkeys revealed Cue 2 to reduce the physical effort of licking19.
Finally, eachCue 1was equally likely to be followedby oneof twoCue 2
patterns (Fig. 1b), ruling out that revealing behavior was related to
differential expectations of visual novelty.

LIP neurons are modulated by reward and uncertainty
To examine the neural substrate of the sensitivity to reward and
uncertainty, we recorded the activity of 68 LIP neurons (37 inMK1) that
were selected based on their good isolation and spatial tuning—the
presence of a circumscribed visual receptive field (RF) in a memory-
guided saccade task (Supplementary Fig. 2a, b). For each neuron, the
stimuli appeared inside the RF or at two possible locations outside the
RF (Methods). The locations of Cue 1 and themaskwere independently
randomized with the constraint that they did not overlap in an
individual trial.

We first focused on responses to Cue 1 during central fixation,
when the retinotopic locations of Cue 1 and the mask were controlled
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and could be inside or outside the visual receptive field (RF). As
expected from their visuo-spatial selectivity, the neurons had excita-
tory responses if Cue 1 appeared inside the RF (Fig. 2a, “Cue 1 in RF”)
but not when it appeared outside the RF (Fig. 2a, “Cue 1 outside RF”).
Similarly, the cells responded to mask onset if the mask appeared
inside the RF but not outside the RF (Fig. 2b, “Mask in RF” vs “Mask
outside RF”). At all stimulus geometries, these responses were modu-
lated by reward anduncertainty. Firing rateswerehigher for 100% than
0% probability and, for 50% probability were higher than would be
predicted by a linear trend (Fig. 2).

To determine if these responses indicated distinct sensitivity to
reward and uncertainty, we fit individual neurons with a model that
included the REW and UNC terms we used for behavior, alongside
nuisance regressors to control for other factors previously proposed
to be encoded by the cells (the direction and latency of the first sac-
cade away from fixation, licking behavior, and the prior trial reward21;
Methods, Eq. 3). This revealed significant effects of reward probability
and uncertainty at each stimulus geometry. After onset of Cue 1 inside
the RF, the neural coefficients βUNC_neural and βREW_neural were sig-
nificantly positive, indicating that reward and uncertainty enhanced
firing rates throughout the visual epoch (100–600ms: βUNC_neural:
0.16 ± 0.03, p < 10−6, βREW_neural 0.41 ± 0.06, p < 10−9) and delay period

(1000–1400ms; βUNC_neural: 0.14 ± 0.02, p < 10−9, βREW_neural 0.25 ± 0.02,
p < 10−11, Wilcoxon test relative to 0, n = 68). Significant reward and
uncertainty sensitivity were also found in the visual response to the
mask (Fig. 2b, Mask in RF; 0–400ms; βUNC_neural: 0.25 ± 0.04, p < 10−6;
βREW_neural: 0.51 ± 0.05, p < 10−10, n = 68; see also Methods). Moreover,
reward and uncertainty modulations were robust even when no sti-
mulus appeared inside the RF—after Cue 1 presentation (Fig. 2a, right;
1000–1400ms, βUNC_neural: 0.16 ± 0.02, p < 10−9; βREW_neural: 0.34 ± 0.04,
p < 10−9, n = 68) or after onset of the mask outside the RF (Fig. 2b,
bottom; βUNC_neural: 0.23 ± 0.03, p < 10−8; βREW_neural: 0.27 ± 0.03,
p < 10−8, n = 68). Except for higher βREW coefficients after mask onset
inside versus outside the RF (βREW_neural: p < 10−6), coefficients had
comparable magnitudes across stimulus geometries (paired tests in vs
out RF, n = 68, Cue 1, delay: βUNC_neural, p = 0.33, βREW, p = 0.12; mask:
βUNC_neural:p = 0.23). As expected, whenCue 1 appeared in the RF, some
neurons were sensitive to the visual patterns (Methods), but the pre-
sence of reward and uncertainty modulations were robust at all sti-
mulus geometries ruling out explanations in terms of pattern
sensitivity.

As in the behavioral data analysis, it was important to verify that
reward and uncertainty explained distinct portions of firing rate
variability. In the sets of trials contributing to each of the above

P

  

 
.

 
Fig. 1 | Task and behavior. a Trial structure in the information-seeking task. The
monkeys started with a period of central fixation in which they viewed Cue 1
followed by a delay period. Gaze was then released for 2.5 s of free-viewing. During
the first 1.5 s of free-viewing, the monkeys could hold gaze on the mask if they
wished to reveal Cue 2. After an additional 1 s delay the outcome (reward or lack of
reward) arrived regardless of free-viewing behavior. b Cue-reward contingencies.
Cue 1 and Cue 2 were distinct checkerboards associated with reward probabilities
whose informativeness was inversely related. When Cue 1 signaled 0 or 100%
reward probabilities it provided complete information about the trial’s outcome
(black frames) and Cue 2 was merely redundant. When Cue 1 signaled 50% prob-
ability, it provided no new information, and all the information was provided by

Cue 2 (black frame). Each Cue 1 pattern was equally likely to be followed by one of
two Cue 2 patterns, controlling for visual novelty. c Reveal probability. P(reveal)
was the fraction of trials where the monkeys revealed Cue 2 (mean and SEM over
37 sessions in MK1 and 31 sessions in MK2). Here and in all following figures, red,
cyan, and blue represent, respectively, 0, 50, and 100% reward probability.
d Distributions of the coefficients indicating the effects on revealing behavior of
reward probability (βREW_reveal, green) and uncertainty (βUNC_reveal, yellow). Each
point is one session. Colored points indicate regression coefficients that are sig-
nificantly different from 0 (p <0.05). The shading represents probability density,
with points randomly jittered along the y-axis within the distribution envelope for
visualization. Source data are provided as a Source Data file.
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analyses, reward and uncertainty regressors had very low correlations
(ranging between −0.11 to 0.19 across cells, all p > 0.1), meaning that
the effects could be reliably separated with regression analysis.
Moreover, analyses of unique variance explained (R2, Methods) con-
firmed the results of the coefficient analyses and showed that they
were robust in individualmonkeys (Supplementary Fig. 3a, b). At times
of peak modulation, reward and uncertainty explained, respectively,
~10 vs ~5% of unique firing rate variability in the population response
with substantial fractions of individual cells showing significant con-
tributions from each factor (e.g., after the onset of themask in RF, over
40% of cells were sensitive to uncertainty and over 80% were sensitive
to reward in eachmonkey, and similar results were found in other task
epochs and geometries; see Supplementary Fig. 3c, d). Thus, reward
anduncertainty explained independent fractions offiring rate variance
in each individual monkey.

Uncertainty modulations are independent of saccade plans
By including saccade direction as a nuisance regressor, the analyses
above established that the reward and uncertainty modulations were
not artefacts of a saccade planning response. However, consistentwith
their spatially tuned activity (Supplementary Fig. 2a, b), the neurons
had a slight saccadic response; if the mask was inside the RF, firing
rates were slightly higher if the saccade was directed toward versus
away from the mask (Fig. 3a, top), resulting in significant saccade
direction coefficients in a brief period around the saccade (βDIR; Fig. 3a,
top right).

The saccade directional coefficients were equivalent across reward
probabilities, suggesting that reward anduncertaintymodulationswere
independent of motor response (Fig. 3a, top right, pre-saccade time
window; p =0.087, one-way ANOVA; n = 31, 26, and 21 cells for,
respectively, 0, 50, and 100% probability). To further verify this con-
clusion, we estimated the reward and uncertainty modulations in the
subset of trials in which the mask appeared inside the RF, but the sac-
cade was directed away and did not reveal Cue 2. As shown in Fig. 3b,
βUNC_neural and βREW_neural coefficients were highly robust in these trials,
starting before the saccade and extending for several hundreds of
milliseconds after saccade onset (average coefficients in the 200ms
after saccade onset, βUNC_neural,1.06 ±0.15, p< 10−4; βREW_neural =
0.54 ±0.14,p< 10−3,Wilcoxon test against 0,n = 26). Thiswas confirmed
by analysis of variance explained, which produced significant
population-level R2 for reward (0.09 ±0.014) and uncertainty
(0.03 ±0.007, bothp < 10−3,Wilcoxon test against label-shuffled results)
and in, respectively, 58 and 39% of individual cells (one-sided permu-
tation tests, p <0.05). These results are consistent with the view that LIP
encodes a visual rather than motor priority map22. It suggests that the
neurons encode the higher priority of stimuli that are associated with a
positive valence or uncertainty resolution independently of an
immediate saccade motor response.

Neural uncertainty modulations predict behavioral sensitivity
Having found that the uncertainty modulations were independent of
the immediate saccade plan, we wondered if these modulations may

Fig. 2 | LIPmodulations by rewardanduncertainty. aResponses aligned toCue 1
onset. The cartoons show Cue 1 (colored checkerboard) appearing inside or out-
side the RF (dashed circle). The middle row shows population peri-stimulus
response histograms computed by z-scoring the raw FRwithin each neuron (using
all of its data in the task), averaging across trials within each neuron, and averaging
across neurons (n = 68). The bottompanels show regression coefficients indicating
the effects of uncertainty (βUNC_neural, yellow) and reward (βREW_neural, green). The

traces are averaged across cells (n = 68) and shading shows ±2 SEM (equivalent to
95% confidence interval). b Responses aligned to mask onset. Same format as in a.
Saccades away from fixation had an average latency of 193.2 ± 0.22ms. Across the
trials contributing to the analyses in the different panels, the Spearman correla-
tions between REW and UNC regressors were not significant for any cell (range,
−0.11 to 0.19). Source data are provided as a Source Data file.
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predict the monkeys’ sensitivity to uncertainty on longer time scales.
We thus asked if the neural and behavioral βUNC coefficients were
correlated across days. Although this analysis entails comparisons
across cells, it is validated by the fact that we targeted a constant
population of cells (our recordings were clustered in a small area of
less than ~2mm2 on the cortical surface, and the neurons’ responses on
the benchmark memory-guided saccade task showed no change
across days; Supplementary Fig. 2c, d).

Across this uniform neural population, the individual neuron βUNC
coefficients were significantly correlated with daily fluctuations in the
sensitivity to uncertainty in themonkeys’behavior.While the effects of
reward and uncertainty were sustained, the neural-behavioral corre-
lationsweremost consistent aftermaskonset and extended for several
hundred milliseconds after this onset. We illustrate this result in
Fig. 4a, by showing the individual neuron uncertainty coefficients as a
function of time after mask onset and sorting the neurons in order of
the revealed uncertainty coefficients. Uncertainty modulations were
more pronounced and of longer duration in sessions with stronger
behavioral modulation (more yellow toward the top of the maps). The
correlations between βUNC_reveal and βUNC_neural coefficients
(200–600ms after mask onset) were significant if the mask appeared
inside the RF in the combined dataset (Spearman rho = 0.46, p <0.001,
n = 59) and in individual monkeys (Fig. 4a, left; MK1, rho =0.41, MK2,
rho =0.55, both p <0.05). When the mask was outside the RF, the
correlations reached significance in only one monkey (Fig. 4a, right;
MK1: rho =0.39, p < 0.05; MK2, rho =0.30, p = 0.12). Note that, to rule
out an effect of the immediate motor response, these analyses were
restricted to trials in which the saccade was directed away from the
mask; we found similar results when we included all-saccade trials,
although these trials had higher variability related to the variability in
the motor response and revealing Cue 2 (Supplementary Fig. 4).

Because the neural-behavioral correlations peaked relatively late
after mask onset, we verified whether, rather than pre-saccadic selec-
tion, they reflected some aspect of post-saccadic behavior. The
200–600ms epoch is the approximate time when the monkeys could
have revealed and inspected the information shown by Cue 2. When
the monkeys revealed Cue 2, their viewing durations (VD) were sen-
sitive to valence and uncertainty19 (βUNC_VD; Methods, Eq. 2) and daily
fluctuations of the uncertainty sensitivity in VD were correlated with
those in revealing behavior (βUNC_VD vs βUNC_reveal across days: MK1,
rho =0.43, p < 0.01; MK2, rho = 0.39, p < 0.05), suggesting that the

apparent neural-behavioral correlation may have arisen artefactually
because of a relationship with VD. To examine this possibility, we
conducted a nonparametric partial correlation analysis in which we
examined the residuals after regressing out the effects of the (ranked)
βUNC_VD coefficients on the (ranked) βUNC_neural and βUNC_reveal coeffi-
cients (Methods and Fig. 4b, cartoon). The residual βUNC_neural and
βUNC_reveal coefficients remained significantly correlated in each mon-
key (Fig. 4b, scatterplots), ruling out an artefactual effect of VD.

Together, the findings suggest that the uncertainty enhancement
of LIP visual activity correlates with the effect of uncertainty on
information gathering. The correlations persisted across recording
sessions and cells, suggesting that the neural effects of uncertainty
change on scales that are slower than an individual trial and are com-
mon to populations of LIP cells.

Relationship between uncertainty and reward modulations
We next sought to examine the extent to which LIP neurons reflect the
individual variability in the monkeys’ sensitivity to valence and uncer-
tainty. As noted above, sampling behavior was relatively more sensitive
to uncertainty in MK1 and more sensitive to reward in MK2 (Fig. 1c, d).
Strikingly, these individual differences were not encoded by LIP cells,
which showed stronger effects of reward relative to uncertainty in both
monkeys, as noted above (Fig. 2 and Supplementary Fig. 3).

This analysis of the monkeys’ behavior also showed that the
monkeys differed in the associations between their reward and
uncertainty sensitivity. MK1 had a negative correlation between the
βUNC_reveal and βREW_reveal coefficients (Spearman rho, respectively,
−0.37, p =0.025; Fig. 5a, top). As illustrated by the raw data in Sup-
plementary Fig. 5, on days inwhichMK1 sampledmore on 50%of trials,
he tended to sample lesson 100%of trials (Supplementary Fig. 5a, top).
In contrast, MK2 had a positive correlation (Spearman rho, 0.82,
p < 10−6, Fig. 5a, bottom). On days in whichMK2 sampledmore on 50%
of trials, he also sampled more on 100% of trials (Supplementary
Fig. 5a, bottom).

In contrast to this behavioral difference, the neural reward and
uncertainty modulations showed only null or positive correlations in
both monkeys. The visual response to the mask showed positive cor-
relations between βUNC_neural and βREW_neural coefficients in both mon-
keys (Fig. 5b). Across the different task geometries, and whether we
analyzed the coefficients or R2, we never found a negative correlation
that would correspond to MK1’s behavioral pattern.

  

Fig. 3 | Uncertainty andsaccadedirection. aDirectional selectivity. (Left) PSTHof
activity aligned on saccade onset, pooled across reward probabilities for the
geometrydepicted in the cartoons (mask inside the RF and saccades toward (solid)
and away (dashed) from theRF). The traces showmeanand±2SEM for all cells with
sufficient trials in each condition (saccade away, n = 68; saccade toward, n = 52).
(Right) Directional selectivity by reward probability. Time-resolved regression
coefficients capturing the effect of saccade direction (βDIR) in the same trials as left
panel separated by reward probability (mean and ±2 SEM across cells with

sufficient trials; 0%; n = 31; 50%: n = 26; 100%: n = 21). Gray bar along the x-axis
indicates time window used for statistics. b Effects of reward and uncertainty for
saccades away from a mask in the RF (cartoon). PSTHs (top) and reward and
uncertainty coefficients (bottom) aligned on saccade onset (mean and ±2 SEM,
n = 26 cells with sufficient number of trials). Other conventions as in Fig. 2. The
correlation of UNC and REW regressors ranged between −0.04 and 0.1, and was
never significant. Source data are provided as a Source Data file.
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To analyze the relationship between uncertainty and reward
sensitivity, we computed the principal components (PCs) linking the
βUNC and βREW coefficients for behavior and neural activity (using the
data in, respectively, Fig. 5a and b). The first PC identifies themain axis
of common variability in the two metrics, and the projections of
individual points onto this PCmeasure the extent to which reward and
uncertainty sensitivity covaried in each session or cell. In MK2, the
neural and behavioral projections were strongly correlated (Fig. 5c,
bottom, Spearman rho =0.54, p =0.002), showing that, in sessions in
which LIP neurons were more sensitive to both uncertainty and
reward, the monkeys’ revealing behavior was also more sensitive to
both factors. MK1, in contrast, showed no correlation (Fig. 5c, top,
Spearman rho = −0.15, p = 0.375). For him, sessions in which LIP neu-
rons weremore sensitive to both uncertainty and reward did not result
in greater behavioral sensitivity to these factors. Thus, the correlated
variability in uncertainty and reward modulations in LIP cells can be
significantly modified by downstream mechanisms producing the
revealing behavior.

We finally asked if LIP neurons encoded the sensitivity to reward
in revealing behavior. In MK2, the neural and behavioral reward coef-
ficients were significantly correlated, as expected based on this mon-
key’s association of the two factors (Spearman rho for βREW_reveal and
βREW_neural in the mask response, 0.5, p = 0.005; for the corresponding
R2 values, 0.45, p =0.01). However, this was not replicated in MK1,
whose LIP reward modulations did not covary with his reward sensi-
tivity (Spearman rho for βREW_reveal and βREW_neural (mask response),

0.22, p =0.1857; for R2 values, 0.21, p =0.2). Thus, LIP neurons show
consistent correlations with the monkeys’ behavioral sensitivity to but
not with their sensitivity to anticipatory utility.

The neurons respond to the revealed visual information
In the analyses conducted so far, weexplored the effects of reward and
uncertainty conveyed by Cue 1, but we wondered if the neurons may
have additional independent responses to the information conveyed
by Cue 2. This is an interesting question because Cue 2was outside the
RF (at the monkeys’ fixation), and thus a response to its information
would be a global effect. To examine this question,we focusedon trials
in which the monkeys revealed Cue 2, and plotted neural activity
aligned on reveal onset after subtracting the average pre-reveal firing
rates to remove confounds related to Cue 1-based expecta-
tions (Fig. 6a).

This showed that, if Cue 2 announced a reward, firing rates
showed no significant change (Fig. 6a, top, blue and blue/cyan traces).
However, if Cue 2 announced a lack of reward, firing rates showed a
prominent dip reaching the lowest level 600ms after the reveal (red
and red/cyan traces). The dip did not appear to be a reward prediction
error response because it was present even on 0% trials when Cue 2
was redundant. However, the dip was more pronounced if Cue 2
resolved uncertainty rather thanmerely confirming prior expectations
(Fig. 6a, top panel, cyan-red vs solid red traces), showing that it was
enhanced by uncertainty. Thus, the neurons conveyed nonspatial
responses to the reward conveyed by Cue 2. These responses were

Fig. 4 | Correlations between neural and behavioral sensitivity to uncertainty.
a Color maps of the time-resolved βUNC_neural coefficients (color) for individual
neurons ordered according to the magnitude of the uncertainty coefficient in
revealingbehavior (βUNC_reveal). The analysiswasperformedon trialswhen themask
was inside the RF (left) or outside the RF (right) but the saccade was away from the
mask (cartoons).b Top: the partial correlation analysis controlling for correlations
between the effects of uncertainty on viewing duration (VD) and reveal behavior.
Raw βUNC_reveal coefficients and βUNC_neural averaged over 200-600ms after saccade
onset were transformed to ranked values (rβ) and separately regressed against the

rankeduncertainty coefficients onVD (rβUNC_VD). Thebottomscatterplots show the
correlations between the residuals of these fits corresponding to the panels in a.
Each point is one session, and shows the residual of rβUNC_neural coefficient (ordi-
nate) against the residual of rβUNC_reveal coefficient (abscissa). The text shows the
correlation coefficient and its p-value. In the subset of trials used for the analyses in
a and b, the Spearman correlation coefficients between UNC and REW regressors
ranged between −0.07 and 0.46 across cells. Source data are provided as a Source
Data file.
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distinct from the Cue 1 evoked activity but nonetheless sensitive to the
predictions that had been made by that cue.

We quantified these effects using a linear model with regressors
indicating the reward signaled by Cue 2 (REW2, 0 or 1), the uncertainty
resolved by Cue 2 (UNC, 0, 1,0 as for Cue 1), and the interaction of the
two terms. We included nuisance regressors to establish that the
results were not independent of the direction and latency of the sac-
cade to themask, the prior trial reward, lick rate, and viewing duration
(Methods, Eq. 4). The analysis showed that post-revealing responses
were common in significant fractions of cells and were dominated by
the uncertainty and interaction effects. The uncertainty coefficients
reached the largest magnitude at ~600ms after revealing Cue 2 and
were negative, showing that the dip after a Cue 2 signaling no-reward
was larger if Cue 2 resolved uncertainty both on average (Fig. 6a,
bottom, yellow) and for many individual cells (Fig. 6a, top colormap;
note the darker hues around 600ms). The interaction coefficients
were positive, showing that uncertainty enhanced thepositive effect of
reward on average (Fig. 6a, bottom, pink) and in many individual cells
(Fig. 6a, bottom colormap).

Given that the neurons encode the resolution of uncertainty
through visual cues, we asked if they also anticipate information
delivered by the outcome itself. However, examining the free-viewing
epoch responses on no-reveal trials, when the monkeys expected
uncertainty to be resolved by the outcome itself, produced no evi-
dence of an anticipatory response (Fig. 6b). This finding, together with
a lack of response to reward delivery, suggested that the LIP neurons’
sensitivity to reward and uncertainty was specific to contexts in which
the reward information was delivered visually.

Control analyses ruled out alternative interpretations of the
reveal-related responses. We found no correlations between the
reward and uncertainty coefficients in the pre- and post-saccadic
responses (and conducted the analyses after subtracting pre-reveal

firing rates to remove the preceding effects of Cue 1), ruling out the
post-reveal responses weremere continuations of the neurons’ earlier
reward and uncertainty sensitivity. Second, the reveal-related
responses peaked at ~600ms, long after Cue 2 was covered again by
the mask, ruling out a relation with viewing duration (additionally, VD
was included as a regressor-of-no-interest; Methods, Eq. 4). Finally,
analysis of free-viewing saccades ruled out an explanation in terms of
saccade motor plans. Counting the fraction of free-viewing saccades
with vectors within 45° of each cell’s preferred direction showed that
the monkeys made more saccades in the neurons’ preferred direction
when Cue 2 announced a lack of reward (both in the entire epoch;
41.9 ± 1% on no-reward trials vs 32.6 ± 1% on reward trials; p <0.05,
n = 68 sessions; andwhenwemeasured smaller timebins spanning the
free-viewing epoch). This is opposite to a motor hypothesis, which
predicts that the monkeys would make fewer RF-directed saccades on
trials with a lower post-revealing response. Thus, the post-reveal
responses reflected a bona fide nonspatial response to the information
conveyed by Cue 2.

Discussion
The control of attention and gaze is traditionally explained in a rein-
forcement learning framework, based on the utility of these cognitive
processes in increasing instrumental rewards—i.e., enhancing the
probability of success of incentivized actions1,23,24. However, compu-
tational studies show that the mechanisms controlling spontaneous,
noninstrumental attention differ substantially from those driven by
instrumental incentives1,3,9,12,23. Intrinsically motivated information
demand has widespread behavioral consequences for curiosity23,
decision making, and personality traits11, highlighting the importance
of understanding its cellular mechanisms.

Here we show that cortical responses of visual priority are inde-
pendently enhanced by two variables that govern noninstrumental

Fig. 5 | Relationship between uncertainty and reward modulations. a Scatter
points show the correlation of βUNC_reveal (ordinate) and βREW_reveal (abscissa) coef-
ficients for individual sessions, color coded to indicate significance (p <0.05) of the
coefficients. Significant uncertainty effects could appear alone (yellow) or in
combination with reward sensitivity (black). The gray line is the unity line. Rho and
p-value are of a Spearman correlation analysis. b Correlation of βUNC_neural and

βREW_neural fit from average z-scored firing rates during the 400ms after the mask
appeared inside the RF of individual neurons. Conventions are the same as a.
c Scatter points show the rank of PC projections (see text for details) of neural
(ordinate) and behavior (abscissa) data. The gray line is the unity line. Rho and p-
value are of a Spearman correlation analysis. Source data are provided as a Source
Data file.
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information demand: the valence that a stimulus is expected to have
and the uncertainty that the stimulus is expected to resolve. The two
factors explain distinct portions of firing rate variability and have dif-
ferent behavioral correlations. We discuss the implications of these
findings for the mechanisms of information gathering in attentional
and executive networks.

LIP neurons have long been proposed to encode the relative
importance (priority) of competing for visual stimuli for guiding sac-
cades and attention. The neurons are known to integrate bottom-up
and top-down factors that determine the attentional weight and do so
independently of motor modality—i.e., whether a stimulus guides a bar
press or instructs a saccade towardor away from the stimulus25–28. Thus,
the visuo-spatial selectivity shown by the cells has been interpreted as
encoding the priority of competing for visual stimuli in an effector-
general fashion and informing downstream mechanisms that compute
decisions about whether and how to act on the information14,25,28,29.

While abundant evidence supports this idea, little is known about
how priority is computed. Previous studies have focused exclusively
on the LIP neurons’ sensitivity to instrumental rewards4,21,30, but our
results show that the neurons are also sensitive to noninstrumental
conditions. We showed that the cells are independently modulated by
noninstrumental valence and uncertainty and, consistent with the
integrative nature of the priority map, thesemodulations converge on
a common population of cells. Moreover, consistent with the visual
rather than motor nature of the neurons’ responses, the uncertainty
modulations correlated with the monkeys’ behavioral sensitivity over
the course of a session but independently of immediate saccade plans.
Notably, the neurons did not signal informativeness per se, since they

responded similarly to Cue 1 and the mask, while the informativeness
of the stimuli was inversely related (Fig. 1b). Thus, they encoded a
prospective response—the priority of gathering additional information
froma visual stimulus given the valence and uncertainty resolution it is
expected to have.

We also show that, in addition to their pre-saccadic responses, the
neurons had post-saccadic responses to the obtained information. In
trials inwhich themonkeys revealed Cue 2, the neurons encoded if the
cue signaled a reward or a lack of reward and the uncertainty that this
signal resolved, long after the RF had moved away from Cue 2. This
suggests that LIP receives nonspatial feedback about the obtained
information and may integrate the selection of informative stimuli
with the information obtained from the stimuli.

The valence and uncertainty responses in LIP cells had complex
relationships with the monkeys’ behavior, suggesting that their con-
tributions to information gathering depend crucially on additional
structures. While our understanding of these structures is incomplete,
the available evidence suggests that they include areas involved in
value and executive function.

According to the expected value of control theory, cognitive
processes like attention, learning, and memory are controlled by a
network of executive functions, which includes the dACC and neuro-
modulatory systems and monitors the rewards of a task and the effort
that one should invest in a task31. A recent neurocomputational model
postulates that the dACC monitors reward rates by virtue of inputs
from midbrain dopamine cells and, upon detecting a “need for con-
trol”, regulates behavioral output by enhancing the appropriate cog-
nitive function32.

Fig. 6 | LIP neurons responded to new visual information. a Responses to the
information conveyed by Cue 2. Top: Firing rates on trials in which Cue 2 was
revealed, aligned on the time of reveal. PSTHs show average firing for the possible
combinations of reward and uncertainty resolved by Cue 2 (n = 60 cells with at
least 2 trials in each condition). Pre-reveal firing was subtracted to remove effects
of Cue 1. Heatmaps show time-resolved regression coefficients (uncertainty,

reward and interaction) for each neuron included in the top panel. The bottom
panel shows the average coefficients (shading shows ±2 SEM). b Lack of anticipa-
tion of information on no-reveal trials. The panels show uncertainty and reward
coefficients on no-reveal trials, aligned on the time of reward onset (mean and
±2 SEM, n = 59/68 cells for mask in/outside RF with at least 2 trials in each condi-
tion). Source data are provided as a Source Data file.
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The model was shown to account for adaptive, context-
dependent regulation of memory, learning rates, and physical
effort32 and we recently showed that it also explains the uncertainty-
related enhancement in LIP cells23. A recent report shows that a net-
work including thedACCdetects noninstrumental uncertainty in a task
similar to our own18. These cells may produce visual modulations in
posterior areas by promoting the release of neuromodulators like
norepinephrine, dopamine, or acetylcholine that enhance sensory
gain23 (see also refs. 17,33,34) or through cortical routes via the dor-
solateral prefrontal cortex and frontal eye field35–37.

The existing literature has primarily focused on the behavioral
effects of uncertainty that are global and generalized, like heightened
arousal, increased learning rates, higher behavioral stochasticity, and
pupil size modulations (e.g., refs. 36,38). In contrast, the effects we
report involve the prioritization of specific visual stimuli and most
likely arise from interactions between uncertainty signals that are not
spatially tuned and spatially-specific visual representations23. In our
task, uncertainty and rewards enhanced firing rates both for visual
stimuli and at non-stimulated locations, but we speculate that this is
due toour useof displayswith isolatedvisual stimuli. Thus, uncertainty
may produce a global increase in visual gain, which, in the presence of
competing distractors, would strengthen winner-take-all selection
dynamics and enhance the selectivity for informative stimuli39.

Our comparisons of behavior and neural activity highlight the
interactions between valence-driven and uncertainty-driven informa-
tion demand and suggest that these interactions are individually
variable and involvemechanisms that extend beyond the parietal lobe.

Computational and behavioral studies suggest that reward and
uncertainty have complex interactive roles in information gathering.
On the one hand, the information that animals can access is practically
infinite, and subjective utility is crucial for constraining the stimuli to
which animals devote their resources. Thus, when behavior is moti-
vated by instrumental rewards, animals appropriately focus on items
that are relevant to obtaining those rewards36,40. Similarly, when
behavior is intrinsically motivated, the anticipatory utility can focus an
individual’s inquiries on topics that resonate with their preferred
outcomes and longer-term goals.

On the other hand, rewards can spuriously interfere with infor-
mation gathering. People are distracted by reward-associated stimuli
that are irrelevant to a task41 and inefficiently demand information
from stimuli that have higher rewards but resolve less uncertainty12.

This complex relationship implies that the efficient control of
attention would ideally allow individuals to flexibly use or filter out
reward drives depending on the behavioral context. This may explain
findings that humans show marked individual variability in their sen-
sitivity to anticipatory utility and the ability to decouple it from
uncertainty-driven information demand12,11. Our present results show
that analogous variability is present in monkeys. MK1 was relatively
more sensitive to uncertainty, andMK2was relativelymore sensitive to
rewards. Moreover, MK1, but not MK2, showed a negative correlation
between valence and uncertainty sensitivity, consistent with an ability
to dissociate the two motives.

Strikingly, these individual differences were not encoded in LIP
cells, suggesting that they depend on mechanisms that are largely
independent of the parietal cortex. We speculate that valence and
uncertainty modulations can arise through multiple circuits, and the
circuits that involve LIP may be more or less aligned with those mod-
ulating the behavioral output. Our finding that uncertainty modula-
tions in LIP cells correlate with behavior suggests that the uncertainty
signals conveyed to LIP overlap with those that determine final deci-
sions about information gathering. This view is consistent with prior
results implicating the human parietal cortex in unbiased visual
discrimination42 and probabilistic reasoning43,44. In contrast, our find-
ing that reward modulations in LIP cells do not consistently correlate
with behavior suggests that the valence response modulating LIP can,

at least in some individuals, differ from thatmodulating behavior. This
proposal resonates with a recent conclusion by Charpentier and col-
leagues that, in humans, uncertainty- and valence-driven information
demand are associated with, respectively, the orbitofrontal cortex
versus the mesolimbic reward circuitry7. Thus, uncertainty-based
information gathering may be driven primarily by circuits that are
closely related to cortical areas—including the orbitofrontal and par-
ietal cortex—while the impact of valence depends more strongly on
subcortical reward mechanisms.

In sum, our results demonstrate the utility of investigating the
cellular mechanisms of noninstrumental information and the insights
these investigations can provide about attentional and executive
mechanisms in humans and monkeys.

Methods
General
Data were collected from two adult male rhesus monkeys using stan-
dard behavioral and neurophysiological techniques45. All methods
were approved by the Animal Care and Use Committees of Columbia
University and the New York State Psychiatric Institute as complying
with the guidelines within the Public Health Service Guide for the Care
andUseof LaboratoryAnimals. Behavioral controlwas implemented in
MonkeyLogic, stimuli were presented on a Mitsubishi Diamond Pro
2070 monitor (30.4 × 40.6 cm viewing area), eye tracking was per-
formed using an Applied Science Laboratories model 5000 (digitized
at 240Hz), licking was recorded with an in-house device that detected
interruptions in a laser beam produced by extensions of the monkeys’
tongue, and action potentials were recorded using an APM digital
processing module (Fred Haer). Individual electrodes (glass-coated
tungsten electrodes, Alpha Omega, the impedance at 1 kHz: 0.5–1MΩ)
were inserted in daily sessions and aimed at the lateral bank of the
intraparietal sulcus based on stereotactic coordinates and structural
magnetic resonance imaging. Data analysis was performed with
MATLAB (R2020b) library functions and custom scripts.

Memory-guided saccade task
After obtaining a well-isolated waveform, a neuron was first screened
with a standard MGS task in which a peripheral target was flashed for
300ms while the monkeys maintained central fixation, and, after a
500ms delay period, the monkeys were rewarded for making a sac-
cade to the remembered target location. Neurons were further tested
only if they had spatially tuned visual and delay period responses on
this task (Supplementary Fig. 2). For these cells, the RF wasmapped by
conducting the MGS at the same locations used in the information-
seeking task, including the estimated RF center and two equally
eccentric locations spaced at 120° intervals.

Information seeking task
Themonkey fixated on a central point to initiate a trial. A pattern (Cue
1) indicating 0, 50, or 100% reward probability then appeared for
400ms, followed by a 1000ms delay period and the onset of a white
mask concealing Cue 2. The locations of Cue 1 and Cue 2 were ran-
domly selected from 3 possible equi-eccentric and equidistant loca-
tions, with the constraint that they did not overlap in a trial. The
fixation point was removed simultaneously with mask onset, and the
monkeyswere free to deploy gaze for 2500ms. For the first 1500ms of
this epoch, the mask remained visible, and the monkeys could reveal
Cue 2 by fixating the mask for a minimum of 200ms (ensuring that
their gaze did not spuriously land on the mask). If revealed, Cue 2 was
visible for 300ms and was again concealed by the mask regardless of
the monkey’s gaze location. After the 1500ms epoch, the mask dis-
appeared, and, after a 1000ms blank screen, the trial ended with a
tone and the delivery of the outcome—reward or no-reward—as pre-
dicted by the cues regardless of free-viewing behavior. All temporal
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intervals between Cue 1 onset and outcome were fixed, removing
uncertainty about the delay to reward delivery.

The cues were square, colored checkerboard (“Mondrians”)
measuring 3 deg of visual angle that were equated for luminance
and discriminability46. Three patterns were consistently asso-
ciated with 0% reward probability, two with 50% probability, and
three with 100% reward probability. The monkeys were first
extensively familiarized with the 8 cue patterns using a passive
version of the task in which they fixated centrally while a pattern
was presented for 400ms in the periphery, followed by delivery
of the appropriate outcome after a 1 s delay. Familiarization
continued until the monkeys showed reliable discrimination of
Cue 1 probability in their anticipatory licking response. At this
stage, the monkeys were presented with an information-seeking
task. During the information-seeking task, each trial was first
randomly assigned a reward probability and outcome (reward/
no-reward). Then, one of the patterns signaling the appropriate
probability was randomly assigned as Cue 1, with each Cue 1
pattern followed by two equiprobable Cue 2 patterns signaling
the appropriate outcome. Anticipatory licking was monitored
throughout, and each information-seeking session started with a
few “reminder” trials of the passive task, ensuring that the mon-
keys had a good grasp of the cue-reward contingencies (Supple-
mentary Fig. 1).

Data analysis
Duringneural recordings, oneof the threepossible locationswas in the
RF of the cell, while the others were outside the RF. We analyzed data
from completed trials in which the monkeys successfully maintained
fixation andeither did not reveal Cue 2or did sowithin 600msofmask
onset (on average, 607 trials per cell; for simplicity, we excluded <0.5%
of trials in which Cue 2 was revealed after 600ms or later).

Behavior
Saccade onset and offsets were detected based on velocity and accel-
eration criteria using custom-made software47. To analyze information-
seeking behavior, we fit each session’s data into a linear model

REV= β01 + βREW revealREW + βUNC revealUNC ð1Þ

where REV contains 1 for trials where Cue 2 was revealed and 0
otherwise, REW is the reward probability signaled by Cue 1 (0, 0.5, or
1), and UNC is the associated uncertainty (0, 1, 0).

To analyze viewing duration (VD), we fit the reveal trials in each
session to a linear model:

VD=β01 + βREW2 VDREW2 + βUNC VDUNC + βREW2*UNC VDREW2 � UNC ð2Þ

where VD is the time from removal of the mask and eye’s exit from a
2 deg window surrounding the mask, REW2 is the reward probability
signaled by Cue 2 (0 or 1), UNC is the uncertainty resolved by Cue 2
defined as above, and ∗ denotes element-wise multiplication.

Neural analysis
We computed z-scored firing rates (FRz) by convolving each
trial’s spike trains with a Gaussian filter (sigma = 30 ms) and
z-scoring within a cell using all the time points and trials collected
from that cell. We analyzed each cell using statistical models as
noted below, and report coefficient distributions over all the cells
that had at least 2 trials for each condition required to estimate
the model regressor.

To extract the time-resolved effects of reward and uncertainty in
the information-seeking task (Fig. 2), we fit FRz with 1ms resolution

throughout the period of interest using the equation:

FRzt = β01 + βREW reveal REW + βUNC revealUNC + βDIRDIR

+βLATLAT + βPRPR + βLICKt
LICKt

ð3Þ

where FRzt is the z-scored firing rate at time t, REW and UNC are
defined as in Eq. 1,DIR is the direction of the first free-viewing saccade
(1 if directed in a ±45° cone centeredon theRF; 0 otherwise),LAT is the
latency of the first free-viewing saccade, PR is the reward outcome on
the preceding trial (1 if rewarded, 0 otherwise), LICKt is the binary
licking status at time t (1 if licking, 0 otherwise).

Consistent with previous findings48, we found that, when Cue 1
appeared inside theRF, 50%of the cells showed sensitivity to the visual
pattern independently of reward probability. However, pattern-
selective and non-selective cells did not consistently differ in their
reward and uncertainty coefficients (p >0.05 for both βUNC_neural, and
βREW_neural), confirming that reward and uncertainty exerted indepen-
dent effects.

In the post-reveal analysis (Fig. 6), in order to control for effects of
reward and uncertainty merely based on Cue 1, we first subtracted the
mean over the 100ms before Cue 2 onset from the z-scored firing rate
on each trial. We then used thesemean-subtracted firing rates (FRzdt)
to estimate the effects produced specifically by Cue 2 by fitting the
equation:

FRzdt = β01 + βUNC neuralUNC + βREW2 neuralREW2

+βUNC*REW2 neuralUNC � REW2 + βDIRDIR + βLATLAT

+βPRPR +βVDVD + βLICKt
LICKt

ð4Þ

whereDIR, LAT, PR, and LICKt are defined as in Eq. (3) (with DIR and
LAT referring to the first saccade away from fixation, which triggered
the reveal), and VD defined as in Eq. (2).

Although an ideal design would have allowed for cross-validated
estimates of significance, this would require careful a priori compu-
tations of the number of trials in training and validation sets. However,
our focus on spontaneous rather than instrumental behavior meant
that trial numbers for many analyses were under the animals’ rather
than the experimenters’ control (e.g., there were very few trials in
which the monkeys chose to reveal Cue 2 at 0% reward probability,
etc.). Thus, to enhance the reliability of traditional significance tests,
we used nonparametric tests and repeated the analyses using both
beta coefficients and fraction of variance explained, as described next.

One set of analyses focused on the regression coefficients for
reward and uncertainty—βREW and βUNC in the various models. Because
models that contain only a reward or only an uncertainty regressor are
nested into those that contain both regressors, finding a significant
beta coefficient in a two-parametermodel indicates that the respective
term accounts for a significant portion of variability that is not
explained by the other term. This inference assumes that the regres-
sors have low correlations, to preclude overfitting or misallocation of
variance. Thus, we report the correlation among the reward and
uncertainty regressors for each analysis in the text (below 0.1 in most
individual sessions/cells).

We verified these results using additional R2 analysis estimating
the variance that was uniquely explained by each variable. We defined
variance that was uniquely explained by a regressor as the R2 of the full
model minus the R2 a partial model that omitted the regressor, i.e., the
increase in R2 by including the target regressor. To determine the
significance of the excess R2 we conducted a 1-sided permutation test
and determined if the observed excess R2 was larger than the 95%
chance excess R2 obtained from randomly shuffled data.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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Data availability
The data that support the findings of this study are available in fig-
share with the identifier https://doi.org/10.6084/m9.figshare.
20666349. Source data are provided with this paper.
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