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A neuronal prospect theory model in the
brain reward circuitry

Yuri Imaizumi1, Agnieszka Tymula 2, Yasuhiro Tsubo 3,
Masayuki Matsumoto 4 & Hiroshi Yamada 4

Prospect theory, arguably the most prominent theory of choice, is an obvious
candidate for neural valuation models. How the activity of individual neurons,
a possible computational unit, obeys prospect theory remains unknown. Here,
we show, with theoretical accuracy equivalent to that of human neuroimaging
studies, that single-neuron activity in four core reward-related cortical and
subcortical regions represents the subjective valuation of risky gambles in
monkeys. The activity of individual neurons in monkeys passively viewing a
lottery reflects the desirability of probabilistic rewards parameterized as a
multiplicative combination of utility and probability weighting functions, as in
the prospect theory framework. The diverse patterns of valuation signals were
not localized but distributed throughout most parts of the reward circuitry. A
network model aggregating these signals reconstructed the risk preferences
and subjective probability weighting revealed by the animals’ choices. Thus,
distributed neural coding explains the computation of subjective valuations
under risk.

Since its inception in the 70 s, prospect theory1 remains one of the
most influential descriptive theories of choice in science and social
science. The theory proposes that people calculate subjective valua-
tions of risky prospects by a multiplicative combination of two quan-
tities: a value function that captures the subjective value of rewards
(i.e., utility) and an inverse S-shaped probability weighting function
(i.e., probability weight) that captures a person’s subjective distortion
of the reward probability when calculating expected utility. The addi-
tion of the probability weighting function in their descriptivemodel of
choice under uncertainty allowed Kahneman and Tversky to capture
systematic deviations from the expected utility theory, such as Allais
Paradoxes2 and the fourfold pattern of risk attitudes3. Prospect theory
has been assessed in thousands of studies using behavioral data and is
used to explain a plethora of behaviors. However, despite the sig-
nificant progress in the nascent field of neuroeconomics toward an
understanding of how the brain makes economic decisions4,5, a fun-
damental question that remains unanswered is whether discharges
from individual neurons actually follow the prospect theory model.

Does neuronal activity represent the multiplicative combination of
subjective value and probability weighting functions?

Human neuroimaging provides fundamental insights into how
economic decision-making is processed by brain activity, especially in
the reward circuitry across cortical and subcortical structures6. This
circuitry is thought to learn the values of rewards and theprobability of
receiving them through experience7,8 and it allows human decision-
makers to compute subjective valuations of options. Early research in
neuroeconomics established that in line with economic theory9, the
brain encodes a utility-like signal that guides choice10. At the same
time, to establish a biologically viable, unified framework explaining
economic decision-making under uncertainty, neuroeconomists
aimed to incorporate not only the reward magnitude but also prob-
ability into the framework and searched for evidence of inverse-S
subjective reward probability weighting in human brain activity using
neuroimaging techniques11–15. Focusing on the gain domain13,15, pre-
vious studies found that the activity of brain regions in the reward
circuitry correlates with individual subjective valuations as proposed
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by the prospect theory13,15,16. However, limitations in temporal and
spatial resolutions in neuroimaging techniques have restricted our
understanding of how the reward circuitry computes subjective
valuations of economic decisions, and there have been almost no
studies involving the prospect theory analysis of neuralmechanisms in
the last decade.

Recordings of single-neuron activity in monkeys while receiving
risky rewards17–21 may offer substantial progress over existing neuroi-
maging studies11–14. Specifically, utility coding without probability
weightingwas testedon the activity of dopamineneurons22. Compared
to human research, internal valuation measurements of probabilistic
rewards have so far been limited to animals, and not all aspects of the
prospect theory model could have been measured from animal
behavior (e.g.,23, used only a single probability of 0.5). Recent studies
have extended this earlier work by asking whether captive macaques
also distort probabilities in the same way humans do24–27, but no
researchhas yet identifiedwhether the activity of individual neurons in
the reward circuitry computes the subjective valuation of risky pro-
spects in a way that is consistent with prospect theory.

Thus, we targeted the reward-related cortical and subcortical
structures of non-human primates:6 the central part of the orbito-
frontal cortex (cOFC, area 13M), the medial part of the orbitofrontal
cortex (mOFC, area 14O), dorsal striatum (DS, the caudate nucleus),
and ventral striatum (VS).Wemeasured single-neuron activity in a non-
choice situation while monkeys perceived a lottery with a range of
probabilities and magnitudes of rewards (10 reward magnitudes by 10
rewardprobabilities, resulting in 100unique lotteries).We foundmany
neurons whose activities can be parameterized using the prospect
theory model as a multiplicative combination of subjective value
(utility) and subjective probability (probability weighting) functions. A
simple network model that aggregates these subjective valuation sig-
nals, which are distributed through most parts of the reward circuitry,
reconstructed themonkey’s risk preference and subjective probability
weighting estimated from the choices monkeys made in other situa-
tions. This is evidence for a neuronal prospect theory model that
employs distributed computations in the reward circuitry.

Results
Prospect theory and decision characteristics in monkeys
We estimated the monkeys’ subjective valuations of risky rewards
using a gambling task (Fig. 1a)28 similar to those used with human

subjects in economics29. In the choice trials, monkeys chose between
two options that offered a liquid reward with some probability. Mon-
keys fixated on a central gray target, and then two options were pre-
sented visually as pie charts displayed on the left and right sides of the
screen. The number of green pie segments indicated themagnitude of
the liquid reward in 0.1mL increments (0.1–1.0mL), and the number of
blue pie segments indicated the probability of receiving the reward in
0.1 increments (0.1–1.0, where 1.0 indicates a 100% chance). Monkeys
chose between left and right targets by fixating on one side. Following
the choice, monkeys received or did not receive the amount of liquid
reward associated with their chosen option, according to their corre-
sponding probability. In each choice trial, two out of 100 possible
combinations of the probability and magnitude of rewards were ran-
domly selected and allocated to the left- and right-side target options.
We used all the data collected after each monkey learned to associate
the probability andmagnitudewith the pie-chart stimuli. This included
44,883 decisions made by monkey SUN (obtained in 884 blocks over
242 days) and 19,292 decisions made by monkey FU (obtained in 571
blocks over 127 days). These well-trained monkeys, like humans,
showed behavior consistent with utility maximization, selecting aver-
age options with a higher expected value, that is, probability times
magnitude (Fig. 1b). In the experiment, a block of choice trials was
occasionally interleavedwith a block of single-cue trials (Fig. 1c) during
which neural recordings were made. In these trials, monkeys did not
make a choice but passively viewed a single lottery cue, which offered
some reward with some probability given after a delay.

We estimated each monkey’s utility and probability weighting
functions from its choice behavior using standard parametrizations in
the literature. For the utility function, we used the power utility func-
tion u(m) = mα, where m indicates the magnitude of the reward, α > 1
indicates convex utility (risk-seeking behavior), α < 1 indicates concave
utility (risk aversion), and α = 1 indicates linear utility (risk neutrality).
For the probability weighting function w(p), we used one-parameter,
w(p) = exp(- (-log p) γ), and two-parameter,w(p) = exp(-δ (-log p) γ), Prelec
functions. The one-parameter versionwasnested in the two-parameter
version (when δ = 1) for ease of comparison. Overall, we estimated the
following fourmodels of the utility of receiving a rewardmagnitudem
with probability p, V(p,m):
1. EV: expected value

V ðp, mÞ=pm ð1Þ
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Fig. 1 | Cued lottery task andmonkeys’ choicebehavior. aASequenceof events in
the choice trials. Twopie charts representing available optionswere presented to the
monkeys on the left and right sides of the screen. The monkeys chose either of the
targets by fixating on the side where they appeared. b Frequency with which the
target on the right side was selected for the expected values of the left and right
target options. c Sequence of events in single-cue trials. d AIC values are estimated

based on the four standard economic models to describe the monkey’s choice
behavior: EV, EU, PT1, andPT2. See theMethods section fordetails. eEstimatedutility
functions in thebest-fitmodel PT2. f Estimatedprobability-weighting functions in the
best-fit model PT2. Images in panels a-c were created by the authors and previously
published in Neural Population Dynamics Underlying Expected Value Computation.
Hiroshi Yamada, et al.28. https://creativecommons.org/licenses/by/4.0/.
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2. EU: expected utility

V ðp, mÞ=pmα ð2Þ
3. PT1, one-parameter Prelec: prospect theory with w(p) as in30

V ðp, mÞ= expð�ð�log pÞγÞmα ð3Þ
4. PT2, two-parameter Prelec: prospect theory with w(p) as in31

V ðp,mÞ= expð�δð�log pÞγÞmα ð4Þ

α, δ, and γ are free parameters and p and m are the probability and
magnitude of the reward cued by the lottery, respectively. The para-
meters δ and γ control the subproportionality and regressiveness of
w(p). We assumed that subjective probabilities and utilities were inte-
grated multiplicatively, as is customary in economic theory, yielding
V(p, m) = w(p) u(m). The probability of themonkey choosing the lottery
on the right side (LR) instead of the lottery on the left side (LL) was
estimated using the logistic choice function:

PðLRÞ= 1=ð1 + e�z Þ ð5Þ

where z = β (V(LR) V(LL)) and the freeparameterβ controls thedegreeof
stochasticity observed in the choices.

To determine which model best describes the behavior of a
monkey, we used Akaike’s information criterion (AIC), whichmeasures

the goodness of model fit with a penalty for the number of free para-
meters employedby themodel (seeMethods section formoredetails).
Among the fourmodels, PT2 had the lowest AIC and outperformed EV,
EU, and PT1 in both monkeys (Fig. 1d, 44,883 and 19,292 trials in
monkey SUN and monkey FU, respectively). In the best-fit model, the
utility function was concave (Fig. 1e; one-sample t-test: df = 44,882,
α = 0.80, z = 46.10, P <0.001 in monkey SUN; df = 19,291, α =0.52,
z = 25.04, P <0.001 in monkey FU), indicating that the monkeys were
risk-averse. Notably, for both monkeys, the probability weighting
functions were concave instead of the inverse-S shape traditionally
assumed in humans (Fig. 1f; one-sample t-test: df = 44,882, δ =0.57,
z = 86.51, P <0.001 in monkey SUN; δ = 0.57, z = 52.77, P <0.001 in
monkey FU; df = 19,291, γ = 1.43, z = 47.29, P <0.001 in monkey SUN;
γ = 1.12, z = 25.68 inmonkey FU, P < 0.001). Overall, we conclude that in
monkeys, utility functions estimated from behavior are concave,
similar to those in humans, butmonkeys distort probability differently
compared to what is usually assumed by human decision-makers.

Subjective valuation signals were distributed in the reward
circuitry
We recorded single-neuron activity during the single-cue task (Fig. 1c)
from neurons in the DS (n = 194: monkey SUN, 98; monkey FU, 96), VS
(n = 144: monkey SUN, 89; monkey FU, 55), cOFC (n = 190: monkey
SUN, 98; monkey FU, 92), and mOFC (n = 158: monkey SUN, 64; mon-
key FU, 94) (Fig. 2a). These brain regions are known to be involved in
decision-making. We first identified neurons whose activity represents
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Fig. 2 | Neural coding of probability andmagnitude of rewards in the four brain
regions. a Illustration of neural recording areas based on coronal magnetic reso-
nance images. b Example activity histogram of a DS neuron modulated by prob-
ability and magnitude of rewards with positive regression coefficients during the
single-cue task (P +M + type). The activity aligned to the cue onset is represented
for three different levels of probability (0.1–0.3, 0.4–0.7, and 0.8–1.0) and magni-
tude (0.1–0.3mL, 0.4–0.7mL, and 0.8–1.0mL) of rewards. Gray hatched time
windows indicate the 1-s timewindowused to estimate the neuralfiring rates shown
in f and g. Raster grams are shown below. c–e similar to b, but for VS, cOFC, and
mOFC neurons. f Plot of the neural firing rates during the 1-s time window in b for
ten levels of probability and magnitude of rewards. The firings are normalized by

the maximum firing rates. P and M indicate the probability and magnitude of
rewards, respectively. g Color map of the neural firing rates during the 1 s time
window in b for ten levels of probability and magnitude of rewards. Average
smoothing was made between neighboring pixels. h Percentage of neurons
modulated by probability and magnitude of rewards in the four core reward brain
regions. Gray indicates activity showing positive regression coefficients for prob-
ability and magnitude of rewards (P +M+ type). Black indicates activity showing
the negative regression coefficients for probability and magnitude (P-M- type).
Images in panels a were created by the authors and previously published in Neural
Population Dynamics Underlying Expected Value Computation. Hiroshi Yamada,
et al.28. https://creativecommons.org/licenses/by/4.0/.
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the key reward statistics—probability andmagnitude—that underlie the
expected value, expected utility, and prospect theory. Because after
the presentation of lottery cue, neurons in the four brain regions
showed a firing rate increase with a variable time course (Fig. 1h in
Yamada et al., 2020),we analyzed theneuralfiring rate through the cue
period with four analysis epochs (see Methods). These neurons were
identified by regressing neural activity on probability and magnitude
of rewards, and the neurons included in our analysis were those that
had either both positive or both negative regression coefficients (see
Methods), which is the potential signature of V(p,m) - the decision
statistics in economic theory.

An example of single neuron activity during a 1 s time window
after cue onset is shown in Fig. 2b. This DS neuron showed activity
modulated by both the probability and magnitude of rewards with
positive regression coefficients (P +M+ type, proportion of variance
explained, 0.462, n = 114; probability, regression coefficient, β = 13.51,
t = 8.57, P <0.001; magnitude, β = 12.27, t = 7.79, P <0.001). These
types of neurons were also observed in the VS, cOFC, and mOFC
(Fig. 2c–e, VS, P +M+ type, proportion of variance explained, 0.440,
n = 115; probability, regression coefficient, β = 7.14, t = 7.31, P < 0.001;
magnitude, β = 6.71, t = 6.81, P <0.001; cOFC, P +M+ type, proportion
of variance explained, 0.509, n = 119; probability, regression coeffi-
cient, β = 8.55, t = 6.91, P <0.001; magnitude, β = 11.07, t = 8.95,
P <0.001; mOFC, P +M+ type, proportion of variance explained,
0.238, n = 120; probability, regression coefficient, β = 2.72, t = 3.95,
P <0.001;magnitude, β = 2.88, t = 4.15, P <0.001). Neuronalfiring rates
increased as the reward probability increased and as the reward
magnitude increased, representing a positive coding type (Fig. 2f). In a
plot of neuronal activity for all combinations of probability and mag-
nitude, a curvature of the neural firing rates was detected (Fig. 2g).
Similarly, some neurons showed activity modulated by both the
probability and magnitude of rewards with negative regression coef-
ficients, representing a negative coding type (P-M- type, Supplemen-
tary Fig. 1). In total, these types of activity were observed in 24% (164/
686) of all recorded neurons in at least one of the four analysis epochs

during the 2.5 s cue period. The proportions of these signals in each
brain region were different (DS, 22%, 43/194, VS, 32%, 45/141, cOFC,
31%, 59/190, mOFC, 11%, 17/158, chi-square test, Χ2 = 25.59, df = 3,
P <0.001) with significant differences in DS and mOFC between
monkeys (DS: monkey SUN 32/98, monkey FU 11/96, Χ2 = 11.43, df = 1,
P <0.001; VS: monkey SUN 30/89, monkey FU 15/52, Χ2 = 0.17, df = 1,
P =0.682; cOFC: monkey SUN 33/98, monkey FU 26/92, Χ2 = 0.42, df =
1, P = 0.52; mOFC:monkey SUN 15/64,monkey FU 2/94, Χ2 = 16.26, df =
1, P <0.001). These neurons were evident across the entire cue period
(Fig. 2h), during which the monkeys perceived the probability and
magnitude of rewards. Thus, cue period activity in the four core
reward brain regions showed potential signature of V(p, m), which is
the core decision statistics in economic theory.

We also found that the activity of neurons modulated by either
probability or magnitude (probability, 305/686 neurons; magnitude,
269/686 neurons; at least one of the four analysis epochs) and across
the entire cue period (probability: 0~1 s 108/686, 0.5~1.5 s 133/686, 1~2 s
128/686, 1.5~2.5 s 146/686; magnitude: 0~1 s 115/686, 0.5~1.5 s 113/686,
1~2 s 108/686, 1.5~2.5 s 113/686).Wedid not further analyze this activity
of neurons because our main focus was on the V(p, m).

Detecting the neuronal signature of prospect theory
To visually inspect the potential neuronal signature of V(p,m), we
predicted from the behavioral estimates how the observed neuronal
firing rates should look in each of the four models: expected value
(Fig. 3a, EV), expected utility (Fig. 3b, EU), and prospect theory (Fig. 3c
and d, PT1 and PT2, respectively). In each of the models, the neural
firing rate R is given by

R = g wðpÞ uðmÞ+b ð6Þ

where the predicted neuronal response R, the output of the model,
integrates the subjective value function (i.e., utility, u(m)) and sub-
jective probability function (i.e., probability weight, w(p)). b is a free
parameter that captures the baseline firing rates in the probability-
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Fig. 3 | Neural models of economic decision theory. Schematic depiction of
predicted neuronal responses R defined by the four economic models that repre-
sent the expected value (a, EV), expected utility (b, EU), prospect theory one-
parameter Prelec (c, PT1), and two-parameter Prelec (d, PT2). Model equations are
presented in each plot. Rwas plotted against the probability (p) andmagnitude (m)
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represent the probability weighting functions. For these schematic drawings, the
following values for the free parameters were used: b, g, α, γ, and δwere 0 spk s−1, 1,
0.6, 2, and 0.5, respectively, for all four Figs. See the Methods section for more
details.
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magnitude space. g determines how strongly the magnitude of the
neural response depends on u(m) andw(p). u(m) andw(p) are specified
for eachmodel, asdescribed above (see formulas in Fig. 3 andMethods
section).

Next, we aimed to assess which of the models best captured
neuronal discharge rates in each brain region. Therefore, we fitted the
activities of individual neurons with each of the four models, treating
b, g, α, δ, and γ as the free parameters. Our carefully designed set of
lottery stimuli—a sampling matrix of 10 rewards by 10 probabilities—
allowed us to perform a reliable estimation of these five free para-
meters for each neuronal activity. To determine which model best
described the observed neuronal firing rate in each individual neuron,
we used the AIC. As demonstrated for the example neuron in Fig. 4a,
the activity of this DS neuron was best explained by prospect theory
with a two-parameter probability weighting function (Fig. 4b, PT2). For
this neuron, PT2 had the smallest AIC value with the highest propor-
tion of explained variance. The output R of the fitted PT2 model
described the activity pattern well (Fig. 4c) as well as the observed
activity (Fig. 4a), in which the neural utility function and subjective
probability weighting function were parameterized (Fig. 4d) via a
multiplicative relation in the model.

To understand which model best describes the neural activity in
each brain region, we determined the goodness-of-fit score for each
neuronal activity as the difference in AIC between each of the models
(EU, PT1, and PT2) and the EVmodel. Here, we treated the EVmodel as
the baseline because it is the simplest model and a predecessor of
other models in the economics literature. Figure 4e shows the prob-
ability density of the goodness-of-fit score differences for each brain
region separately. The vertical dashed lines at 0 indicate no difference
between the AIC of the EV model and that of the model under con-
sideration. Themodel that shows a greater deviation to the right of the
graph indicates a better fit.

Overall, prospect theory (PT2) best described the activity of most
neural populations in the reward circuitry (DS, VS, and cOFC), except
for mOFC activity. The AIC values of the four models were statistically
compared. Comparisons indicated that the PT2 model was best at
describingDS, VS, and cOFC activity as awhole (one-sample t-test after
subtracting the models’ AIC scores; DS: n = 63, df = 62, EV-EU, t =0.94,

P =0.35, EU-PT1, t = 1.03, P = 0.31, PT1-PT2, t = 3.01, P =0.004; VS:
n = 93, df = 92, EV-EU, t = 2.42, P =0.017, EU-PT1, t = 4.00, P <0.001,
PT1-PT2, t = 3.91, P <0.001; cOFC: n = 116, df = 115, EV-EU, t = 2.90,
P =0.004, EU-PT1, t = 0.65, P =0.52, PT1-PT2, t = 6.18, P <0.001, not
shown for all). However, the best descriptive model of the mOFC
activity could not be determined (one-sample t-test; mOFC: n = 27, df =
26, EV-EU, P = 0.60, EU-PT1, P =0.10, PT1-PT2, P = 0.11), suggesting that
mOFC activity simply signals expected values without distorting the
objective probability andmagnitude of rewards during the perception
of the lottery.

Next, we asked whether some neuronal populations specifically
encoded subjective valuations based on their location (DS, VS, and
cOFC). For this purpose, we used the PT2 model estimates, b, g, α, δ,
and γ of the individual activity of neurons, including both positive and
negative coding types. We clustered these five parameters using
k-means clustering algorithms following principal component analysis
(PCA) across the neural populations in the DS, VS, and cOFC (Figs. 5a
and 5b, see Methods). Five predominant clusters, C1 to C5, were
obtained after PCA based on the four principal components (Fig. 5b).
These five clusters were observed in similar proportions across the
three brain regions with only slight differences (Fig. 5c). One small
difference was that VS contained a smaller proportion of the pre-
dominant cluster, C1, than the other two regions (chi-square test,
n = 272, Χ2 = 18.15, df = 8, P =0.020).

Across the DS, VS, and cOFC, C1 represented 48% of all activities
(Fig. 5d, top row; n = 130, mean values: b = −0.68, g = 10.1, α = 0.64,
δ = 1.30, γ = 2.64). Its output, R, is described by a combination of a
concave utility function and an S-shaped probability weighting func-
tion (Fig. 5d, see the third and fourth columns in the top row). The
second predominant cluster, C2, was best described with a concave
utility function, but its probability weighting function was concave.
This cluster was mostly composed of neurons with negative coding of
the probability and magnitude of rewards (Fig. 5d, middle row; n = 78,
b = 10.6, g = −10.1, α =0.29, δ = 0.38, γ = 1.82). Because the coding gain
was negative (Fig. 5d, middle left, note that the axis values are plotted
from 1.0 to 0), the convex curvature (Fig. 5d, left column in themiddle
row) of the output R corresponded to the concave functions u(m) and
p(w). A considerableproportionof neurons (9%),C3, showedanoutput
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well described by a convex utility function and an S-shaped probability
weighting function (Fig. 5d, bottom; n = 25, b = 2.6, g = 7.2, α = 3.2,
δ = 3.5, γ = 2.7). These clusters of neuronal activities parameterized by
the prospect theory model were not localized and were instead scat-
tered across most parts of the reward circuitry (DS, VS, and cOFC),
suggesting that distributed coding underlies internal subjective
valuations under risk.

Reconstruction of internal preference parameters from
observed neural activity
Finally, we reconstructed themonkeys’ internal valuations of passively
viewed lotteries from the observed neural activity to assess how well
theymatched the utility andprobabilityweighting functions estimated
from the behavioral choices. To do so, we constructed a simple three-
layered networkmodel as a minimal rate model, a primitive version of
the advanced models used recently32,33, and simulated the choices of
this networkmodel (Fig. 6).We assumed thatoutputs reflectingV(p,m)
in neural clusters C1 to C5 (Fig. 6a, Rs in the first layer) were linearly
integrated and positively rectified by the network (Fig. 6a, second
layer, population SEV, seeMethods). The activities in clusters 1, 3, and 5
(mostly composed of P +M+neurons) were linearly summed, and
those in clusters 2 and 4 (mostly composed of P-M- neurons) were
subtracted to integrate the opposed signals (hence, linear summation
of an inversed signal). To simulate the choice, we generated two
identical population SEVs for the left (SEVL) and right (SEVR) target
options and used a random utility model to select one option (Fig. 6a,
third layer, sigmoid choice function). Overall, we simulated 40,000
choices—four times for each possible combination of 100 lotteries,
L(p, m).

While our network model used neural signals modeled by pro-
spect theory during passive viewing, these simulated choice patterns
based on the clustered neuronal prospect theory model were very

similar to the actual gambling behaviors ofmonkeys (Figs. 6b and 1b).
When estimating the utility function and probability weighting
function of these simulated choices, we observed concave utility
functions and concave probability weighting functions similar to
those obtained from actual gambling behavior (Fig. 6c). We repeated
this simulation 1000 times to construct the parameter distributions
of the internal subjective valuation obeyed by the layeredmodel. The
mean and standard deviation of the estimated parameters were as
follows: alpha, 0.49 ± 0.017; delta, 0.50 ± 0.018; gamma, 1.67 ± 0.014.
Theywere significantly different from 1 (P < 0.001 for all cases). Thus,
we concluded that a distributed neural code that accumulates indi-
vidual neuronal signals explains the internal subjective valuations of
monkeys.

Discussion
The prospect theory is the dominant theory of choice in behavioral
economics, but it remains elusive whether the theory is only
descriptive of human behavior or has a deeper meaning in the sense
that it also describes an underlying neuronal computation that
extends to our close evolutionary relatives. Previous human neuroi-
maging studies have demonstrated that neural responses to rewards
measured through blood oxygen levels can be described using pro-
spect theory13,15,16 but with limited resolution in the temporal and
spatial domains. Here, we provide the first evidence that the activity
of individual neurons in the reward circuitry (DS, VS, and cOFC) of
monkeys that perceive a lottery can be captured based on the pro-
spect theory model as a multiplicative combination of utility and
probability weighting functions (Fig. 4). This is consistent with the
idea suggested by Tobler et al. (2007)34 that the striatum integrates
the reward magnitude and probability via multiplication into an
expected value signal. Previous human fMRI studies found a non-
linear response to probability in striatal regions12,15 and the
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dorsolateral prefrontal cortex34, while some studies concluded that
the probability coding in the striatum is linear11,13,14. The probability
weighting that we estimated in behavior and recovered from neural
activity is concave.

One pivotal question is how various subjective preference signals
are transformed into behavioral choices through information proces-
sing via neural networks. Our clustering analysis of parameterized
neuronal activity revealed that these signals were similarly distributed
across the VS, DS, and cOFC (Fig. 5). Ourminimal ratemodel of a three-
layered network successfully reconstructed the internal valuation of
risky rewards observed in monkeys (Fig. 6), suggesting that these
subjective valuation signals in the reward circuitrywould be integrated
into the brain to construct a decision output from risky perspectives. It
is important to denote that influences of V(p,m) signals on the simu-
lationmight be different betweenmonkeys, since larger number of the
detected V(p,m) signals in monkey SUN must affect the clustering of
V(p,m) signals.

Previous studies have shown that neuronal signals related to
cognitive and motor functions are widely observed in many brain
regions35–41. These distributed neuronal signals suggest that the dis-
tributed neural code is a canonical computation in the brain. The
recent development of large-scale neural recording technologies has
verified that this is a common computational mode;42 the analysis of
approximately 30,000 neurons in 42 regions of the rodent brain
revealed that behaviorally relevant task parameters are observed
throughout the brain. Our results from the reward-related brain
regions are in line with this view, except for the mOFC, where fewer
encodings of probability and magnitude of rewards were observed
(Fig. 2h), with a significant difference betweenmonkeys. Thismight be
because the medial-lateral axis in the reward circuitry yields a sig-
nificant difference in reward-based decision-making6. The distributed

code may require some input-output functions43 to process the
probability and magnitude of rewards and integrate this information
to estimate the subjective expected value signals, at least in some
neural populations. One possible information processing for this
input-output mapping might be achieved by neural population
dynamics44–46, in which some subclusters of neurons can process
information moment-by-moment as a dynamical structure of infor-
mation processing in a neural network. Indeed, stable neural popula-
tion dynamics in the VS and cOFC were observed in contrast to the
fluctuating signals in the DS population28 with a significant difference
between monkeys in the present study, which may reflect some
dynamic differences in distributed coding in each individual.

One limitation of our study is that our application of prospect
theory is limited to the domain of gains, since unlike human studies
that use money as a reward, it is impossible to take fluid rewards from
monkeys to make them experience losses. Nevertheless, our study
adds important behavioral evidence to the growing literature on pro-
spect theory preference in primates. Recent studies on captive maca-
ques have begun to investigate the possibility that monkeys make
decisions based on probability values different from those that are
objectively correct, with inconsistent results across studies24–27,47,48.
The probability weighting function was inverse S-shaped25,26,
S-shaped24,27, or concave26,49. Although we consistently found that the
probability weighting functions of our two well-trained monkeys were
concave, most studies conducted in humans found inverse-S-shaped
probability weighting functions at the aggregate level, with a large
amount of heterogeneity at the individual level13,15,50–54 indicating an
inconsistency between the two species. Furthermore, the monkeys in
the present study had concave utility functions (i.e., risk aversion),
while most previous studies have found that monkeys have convex
(i.e., risk-seeking)24,25 or concave23,47–49 utility over rewards in the gain
domain. In conclusion, our monkeys had concave utility functions,
similar to our previous findings in monkeys23,55 as well as in humans.
However, unlike humans, our monkeys have concave probability-
weighting functions.

In summary, we provide novel evidence that the activity of indi-
vidual neurons in the reward circuitry can be described using prospect
theory. These aggregated signals reliably reconstructed the risk pre-
ferences and subjective probability weighting estimated from the
monkeys’ behavior. We note that the probability weighting in our
study is different from that assumed by Kahneman and Tversky (1979)
assumed for humans1.

Methods
Subjects and experimental procedures
Two rhesus monkeys were used (Macaca mulatta, SUN, 7.1 kg, male,
during 4-8 years old; Macaca fuscata, FU, 6.7 kg, female, during 4–7
years old). All experimental procedures were approved by the Animal
Care and Use Committee of the University of Tsukuba (Protocol No.
H30.336) and performed in compliance with the US Public Health
Service’s Guide for the Care and Use of Laboratory Animals. Each
animalwas implantedwith a head-restraint prosthesis. Eyemovements
were recorded at 120Hz using a video camera. Visual stimuli were
generated using a liquid-crystal display at 60Hz, placed 38 cm from
the monkey’s face when seated. Our recording system used Matlab
R2015b with Psychtoolbox 3.0 for behavioral task control. Open
developer software 2.16, OpenEx 2.16, and OpenSorter 2.16 were used
in TDT system for data collection. The subjects performed the cued
lottery task 5 days a week. The subjects practiced the cued lottery task
for 10 months, after which they became proficient in choosing lottery
options.

Cued lottery tasks
Animals performed one of two visually cued lottery tasks: a single-cue
task or a choice task.
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Single-cue task. At the beginning of each trial, monkeys had 2 s to
align their gaze within 3° to a 1° diameter gray central fixation target.
After fixation for 1 s, an 8° pie chart providing information on the
probability and magnitude of rewards was presented for 2.5 s at the
same location as the central fixation target. The probability and mag-
nitude were indicated by the number of blue and green pie chart
segments, respectively. The pie chartwas then removed and0.2 s later,
a 1 kHz and 0.1- kHz tone of 0.15 s duration indicated the reward and
no-reward outcomes, respectively. The high tone preceded reward
delivery by 0.2 s, whereas the low tone indicated that no reward was
delivered. The animals received a liquid reward, as indicated by the
number of green pie chart segments, with the probability indicated by
the number of blue pie chart segments. An intertrial interval of 4–6 s
was used for each trial.

Choice task. At the beginning of each trial, monkeys had 2 s to align
their gaze within 3° to a 1° diameter gray central fixation target. After
fixation for 1 s, two peripheral 8° pie charts providing information on
the probability and magnitude of rewards for each of the two target
optionswerepresented for 2.5 s at 8° to the left and right of the central
fixation location. The gray 1°-choice targets appeared at the same
location. After a 0.5 s delay, the fixation target disappeared, resulting
in saccade initiation.Monkeyswere allowed 2 s tomake their choice by
shifting their gaze to either target within 3° of the chosen target. A
1 kHz and 0.1 kHz tone sounded for 0.15 s to denote reward and no-
reward outcomes, respectively. The animals received a liquid reward,
as indicated by the number of green pie chart segments of the chosen
target, with the probability indicated by the number of blue pie chart
segments. An intertrial interval of 4–6 s was used for each trial.

Payoff, block structure, and data collection. Green and blue pie
charts respectively indicated rewardmagnitudes from 0.1 to 1.0mL, in
0.1mL increments, and reward probabilities from 0.1 to 1.0, in 0.1
increments. A total of 100 pie chart combinations were used in this
study. In the single-cue task, each pie chart was presented once in
random order, allowingmonkeys to experience all 100 lotteries within
a certain period. In the choice task, two pie charts were randomly
allocated to the left and right targets for each trial. Approximately
30–60 trial blocks of the choice task were sometimes interleaved with
the 100–120 trial blocks of the single-cue task.

Calibration of the reward supply system. A precise amount of the
liquid reward was delivered to monkeys using a solenoid valve. An 18-
gauge tube (0.9mm inner diameter) was attached to the tip of the
delivery tube to reduce variation across trials. The amount of reward in
eachpayoff conditionwas calibrated bymeasuring theweight of water
with 0.002 g precision (2μL) on a single trial basis. This calibration
method was the same as that used in55.

Electrophysiological recordings. Conventional techniqueswere used
to record single-neuron activity in the DS, VS, cOFC, and mOFC.
Monkeys were implanted with recording chambers (28 × 32mm) tar-
geting the OFC and striatum, centered 28mm anterior to stereotaxic
coordinates. The locations of the chambers were verified using ana-
tomical magnetic resonance imaging. A tungsten microelectrode
(1–3MΩ, FHC) was used to record neurons. The electrophysiological
signals were amplified, band-pass filtered, and monitored. Single-
neuron activity was isolated based on spike waveforms. We recorded
from the four brain regions of a single hemisphere of each of the two
monkeys: 194 DS neurons (98 and 96 from monkeys SUN and FU,
respectively), 144 VS neurons (89 fromSUN and 55 from FU), 190 cOFC
neurons (98 from SUN and 92 from FU), and 158 mOFC neurons (64
from SUN and 94 from FU). The activity of all the single neurons was
sampled when the activity of an isolated neuron demonstrated a good
signal-to-noise ratio (>2.5). Blinding was not performed. The sample

sizes required to detect effect sizes (the number of recorded neurons,
the number of recorded trials in a single neuron, and the number of
monkeys) were estimated in reference to the previous studies44,55,56.
Neural activitywas recordedduring the 100–120 trials of the single-cue
task. During the choice trials, neural activity was not recorded. Pre-
sumedprojection neurons (phasically activeneurons57,) were recorded
from the DS and VS, whereas presumed cholinergic interneurons
(tonically active neurons58,59,) were not recorded.

Statistical analysis
Statistical analysis was performed using statistical software R and
Stata. All statistical tests were two-tailed. We used standardmaximum
likelihood procedures to estimate the utility functions and probability
weighting functions in Stata. We performed neural analysis and
simulation to reconstruct the choice of a neural model in R.

Behavioral analysis
We first examined whether the choice behavior of monkeys depended
on the expected values of the two options located on the left and right
sides of the screen. We pooled choice data across all recording blocks
(monkey SUN: 884 blocks, 242 days; monkey FU: 571 blocks, 127 days),
yielding 44,883 and 19,292 choice trials for monkeys SUN and FU,
respectively. The percentage of right target choices was estimated
from the pooled choice data for all combinations of the expected
values of the left and right target options. This result has been reported
previously28.

Economic models
We estimated the parameters of the utility and probability weighting
functions within a random utility framework. Specifically, lottery
L(p,m) denoted a gamble that paidm (magnitude of the offered reward
in mL) with a probability p or 0 otherwise. We assumed a popular
constant relative risk attitude (also known as the power utility func-
tion), u(m) = mα, and considered previously proposed probability
weighting functions.We assumed two subjective probabilityweighting
functionsw(p) commonly used in the prospect theory; one-parameter
Prelec (PT1): w(p) = exp(- (-log p) γ)30 and two-parameter Prelec (PT2):
w(p) = exp(-δ (-log p) γ)31. We assumed that subjective probabilities and
utilities were integrated multiplicatively per standard economic the-
ory, yielding the expected subjective utility functionV(p,m) =w(p) u(m).

The probability of amonkey choosing the lottery on the right side
(LR) instead of the lottery on the left side (LL) was estimated using the
logistic choice function:

PðLRÞ= 1=ð1 + e�z Þ ð5Þ

where z = β (V(LR)— V(LL)) and the free parameter β controls the degree
of stochasticity observed in the choices. We fitted the data by max-
imizing the log-likelihood and choosing the best structural model to
describe the monkeys’ behavior using AIC60.

AICModel = �2L+2k ð7Þ

where L is the maximum log-likelihood of the model and k is the
number of free parameters.

In each fitted model, whether α, δ, and γ were significantly dif-
ferent from 0 was determined using a one-sample t-test at P <0.05.
Whether α, δ, and γ were significantly different from one was also
determined using a one-sample t-test at P <0.05.

Neural analysis
Peristimulus time histograms were drawn for each single-neuron
activity, aligned at the onset of a visual cue. The average activity curves
were smoothed using a 50ms Gaussian kernel (σ = 50ms). Basic firing
properties, suchaspeakfiring rates, peak latency, andduration of peak
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activity (half-peak width), were compared among the four brain
regions using parametric or nonparametric tests, with a statistical
significance level of P <0.05. Baseline firing rates 1 s before the
appearance of central fixation targets were also compared with a sta-
tistical significance level of P <0.05. These basic firing properties have
been described by Yamada et al. (2021).

We analyzed neural activity during a 2.5 s period during pie chart
stimulus presentation in the single-cue task. The firing rates of each
neuron during the 1-s timewindowwere estimated every 0.5 s after the
onset of the cue stimuli. A Gaussian kernel was not used.

Pre-screening neural activity for economicmodelfits. To determine
which neurons were sensitive to the probability and magnitude cued
by a lottery, without assuming any specificmodel, the neural discharge
rates (F) were regressed on a linear combination of a constant and the
probability and magnitude of rewards:

F =b0 +bpp+bmm ð8Þ

where p andm are the probability andmagnitude of rewards indicated
by the pie chart, respectively. b0 is the intercept. If bp and bm were not
0 at P <0.05, the discharge rates were regarded as significantly
modulated by that variable.

Based on linear regression, two types of neural modulations were
identified: the “P +M+ ” type with a significant bp and a significant bm
both having a positive sign (i.e., positive bp and positive bm) and the “P-
M-” type with a significant bp and a significant bm both having a
negative sign (i.e., negative bp andnegativebm). Both types of neuronal
signals represent the economic decision statistics described in the
next section.

Neural economic models. We fitted the four neural models of the
subjective valuation of lottery L(p,m) to the activity of the preselected
neurons that were sensitive to the information of probability and
magnitude of rewards. The unified formula for all models is R = g w(p)
u(m) + b, where the output of model R represents the firing rates as a
function of V(p,m) = w(p) u(m), which is the subjective expected value
function (SEV) of a lottery that reflects the lottery valuation of the
neuron. Note that for the neural representation of V(p,m), we call this
value function different from the behavioral measures, the expected
subjective utility. In all models, b (baseline firing rate), g (magnitude of
the neural response), α (utility curvature), γ, and δ (probability
weighting) were free parameters.
1. Expected value model (EV).

R= g pm+b ð9Þ

2. Expected utility model (EU).

R = g pmα + b ð10Þ

3. Prospect theory model with one-parameter Prelec (PT1).

R = g expð�ð�log pÞγÞmα + b ð11Þ

4. Prospect theory model with two-parameter Prelec (PT2).

R = g expð�δð�log pÞγÞmα +b ð12Þ

To identify the structural models that best describe the activity of
neurons in eachbrain region,wefitted eachmodel to the P +M+ andP-
M- type activity of each neuron on a trial-by-trial basis. We estimated
the combination of best-fit parameters using the R statistical software
package the nls() function with random initial values (repeated 100
times) to find a set of parameters that minimized nonlinear least
squared values.

For each of the four brain regions, the best-fit model showing the
minimal AIC was selected by comparing the AIC values among the
models. If the differences in AIC values against the three other models
were significantly different from 0 in the one-sample t-test at P <0.05,
themodel was defined as the best model. For a visual presentation, we
plotted AIC differences in comparison to the EV model as the baseline
model in the economics literature.

Construction of the neural prospect theory model. The estimated
parameters in the best-fit model of neuronal activity were classified
using PCA followed by the k-means clustering algorithm. PCA was
applied once to all parameters estimated in the best-fitmodel PT2, that
is, b, g, α, δ, and γ in the DS, VS, and cOFC. The k-means algorithm was
used to classify the five types of neural responses according to the PC1
to PC4 scores, as the first four PCs explained more than 90% of the
variance. Following the classification, we defined each type of cluster
with the mean of each estimated parameter as the five clusters were
observed in each of the DS, VS, and cOFC neural populations.

Evaluation of neuralmodel performance using a networkmodel for
simulations. We constructed a simple layered network model for
simulations32,33 with a minimal number of assumptions. We simply
reconstructed a neural prospect theorymodel from the clusters above
by accumulating each responseRof thefive clusters. Thefirst layerwas
composed of the five neural clusters (C1-C5:R1-R5) reflecting V(p,m). To
accumulate these V(p,m) signals in the second layer, for clusters 1, 3,
and 5, we linearly summed response R in each of the 100 lotteries’
conditions, while for clusters 2 and 4, which weremostly composed of
P-M- types, we inversed their Rj by subtraction (R =R1-R2 +R3-R4 +R5).
This is because signals of the P-M- types were negatively correlated
with the V(p,m). Then, this accumulated signal was filtered by a recti-
fied linear unit (ReLU) function to remove negative values since it
mimics the firing rate (i.e., SEV =ReLU(R)). We allocated them to the
left and right target options to perform a simulation based on the
difference in these integrated responses of neural clusters. For the
third layer, we then simulated the percentage of right choices (P_Right)
for lottery pairs represented as four times all 10,000 combinations of
two lotteries L(p,m) using the logistic function

P Right = 1=ð1 + e�zÞ ð13Þ

where z = β (SEV(LR) - SEV(LL))andβ is assumed tobe 1, i.e., nobeta term.
These simulated choice data composed of 40,000 choice trials were
visualized and evaluated by applying the best-fit model to estimate the
preference parameters α, δ, and γ in u(m) =mα andw(p) = exp(-δ (-log p)
γ), as well as β in the choice function, similar to the model fit to the
actual behavior of themonkeys. Thus, this simulation simply examined
how the V(p,m) neural signals distributed in the reward circuitry when
monkey perceived probability andmagnitude can reconstruct internal
subjective valuation of risky prospects for economic choices.

To evaluate the statistical significance of the estimated internal
preference parameters in the simulated choice data, we repeated the
simulation to estimate the parameters α, δ, γ, and β as above. We ran
1000 simulations to estimate the parameters and constructed the
distribution of each parameter. The mean and standard deviation of
eachparameter were estimated.We then examinedwhether α, δ, and γ
were significantly different from 1 using each of these constructed
distributions at P <0.05. We also examined whether α, δ, and γ were
significantly different from those values estimated in each monkey’s
behavior at P < 0.05.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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Data availability
Data for the estimated parameter of the neural economic model is
provided in the Supplementary Data file (Supplementary Data 1). See
Supplementary information file for more details. Source data are
provided with this paper.

Code availability
Analysis code of the attached data and simulation code are provided in
the Supplementary Code files (Supplementary Code 1 and Supple-
mentary Code 2). See the Supplementary information file for more
details.
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