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Genomic analyses of rice bean landraces
reveal adaptation and yield related loci to
accelerate breeding

Jiantao Guan1,2,3,10, Jintao Zhang1,4,10, Dan Gong1,4,10, Zhengquan Zhang2,
Yang Yu 2, Gaoling Luo5, Prakit Somta6, Zheng Hu1, Suhua Wang1,
Xingxing Yuan7, Yaowen Zhang8, YanlanWang9, Yanhua Chen5, Kularb Laosatit6,
Xin Chen7, Honglin Chen1, Aihua Sha4, Xuzhen Cheng1, Hua Xie 2 &
Lixia Wang 1

Rice bean (Vigna umbellata) is an underexploited domesticated legume crop
consumed for dietary protein in Asia, yet little is known about the genetic
diversity of this species. Here, we present a high-quality reference genome for
a rice bean landrace (FF25) built using PacBio long-read data and a Hi-C
chromatin interaction map, and assess the phylogenetic position and specia-
tion timeof rice beanwithin theVigna genus.We sequence 440 landraces (two
core collections), and GWAS based on data for growth sites at three widely
divergent latitudes reveal loci associated with flowering and yield. Loci har-
boring orthologs of FUL (FRUITFULL), FT (FLOWERING LOCUS T), and PRR3
(PSEUDO-RESPONSE REGULATOR 3) contribute to the adaptation of rice bean
from its low latitude center of origin towards higher latitudes, and the land-
races which pyramid early-flowering alleles for these loci display maximally
short flowering times. We also demonstrate that copy-number-variation for
VumCYP78A6 can regulate seed-yield traits. Intriguingly, 32 landraces collected
from amountainous region in South-Central China harbor a recently acquired
InDel in TFL1 (TERMINAL FLOWER1) affecting stem determinacy; these mate-
rials also have exceptionally high values for multiple human-desired traits and
could therefore substantially advance breeding efforts to improve rice bean.

The genus Vigna is a pan-tropical genus in the family Fabaceae, com-
prising more than 100 wild species and 10 domesticated species such
as cowpea (Vigna unguiculata), mung bean (V. radiata), and rice bean
(V. umbellata)1. As oneof the representative species in the genusVigna,
the rice bean is a multipurpose legume and is widely cultivated in
South, Southeast, and East Asia2. The seeds of rice beans have been
consumed for thousands of years as a good source of dietary protein
and micronutrients, and these are used as a diuretic in traditional
medicine practices3,4. Rice bean has also been widely used as a donor
parent for interspecific hybridization with other species in the genus
Vigna5–7 due to its notable agronomic characteristics including high

grain yield and largebiomasspotential2,8, aswell as strong resistance to
pests9–14, diseases15, drought2,16,17, water logging18, and capacity to grow
in poor fertility soils19. Thus, as the continually growingpopulation and
exacerbated climate changes, rice bean has received increased atten-
tion in recent years and has been proposed as one of the potential
future smart foods tohelp tofight hunger andmalnutrition inAsia2,18,20.
However, the lack of a high-quality reference genome for rice beans
has hindered the exploration of the genetic basis of these excellent
agronomic characteristics and its further genetic improvement.

Current thinking holds that the rice bean originated and was
domesticated in tropical regions of South & Southeast Asia, after
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which it spread to higher latitude regions including China, Japan,
and Korea2,21,22. There are many rice bean landraces that have,
through long-term human and natural selection, become locally
adapted to diverse environments. However, as a short-day plant, the
yield potential and agricultural utility of rice beans can be strongly
affected by photoperiod and temperature conditions2,23,24. More-
over, few cultivated rice bean varieties have a determinate stem
growth habit that influences the potential grain yield and is also
required to support mechanical harvest6,25. Landraces have been
demonstrated as useful resources for the improvement of diverse
crop species26, and there are presently two rice bean core collec-
tions, one comprising mainly landraces from South & Southeast
Asia and the other with a preponderance of Chinese rice bean
landraces22,27,28. Thus, there are rich germplasm panels available
representing the high diversity and broad adaptation of rice beans
to both tropical and temperate environments.

Previous studies have reported several QTLs for adaptation and
yield component-related traits using linkage mapping based on
biparental populations in rice bean11,29. However, the resolution and
sensitivity have been limited by the small number of markers and
genetic recombination, thus making it difficult to reveal the genetic
mechanism of these traits and/or to develop breeding markers30,31.
Genome-wide association studies (GWAS) have been successfully
applied in crops for the efficient identification of favorable alleles/
haplotypes or causal variants/genes underlying complex traits as this
strategy could simultaneously detect many natural allelic variations
using a diverse germplasm panel32,33.

Here, we present a high-quality reference genome assembly of
rice beans based on the integration of Illumina short-reads, PacBio
long-reads, and Hi-C sequencing data. We also construct a genome
variationmap based on sequencing of 440 diverse rice bean landraces
covering two core collections. Subsequent population genomic ana-
lyses support the previously proposed origin of rice bean in South &
Southeast Asia and revealed genetic bottlenecks that occurred along
the northward dispersal of rice bean. GWAS based on phenotypic data
for a germplasm diversity panel grown at three sites with widely
divergent latitudes helps decipher the genetic basis of traits including
flowering time, seed yield, and stem determinacy. Our study also
identifies candidate genes and landraces with strong potential as elite
germplasm lines that could be used to generate excellent varieties that
simultaneously display geographically suitable flowering times, stem
determinacy to support mechanized cultivation, and high yields of
rice beans.

Results
Sequencing and assembly of a reference genome for rice bean
The rice bean landrace FF25—which has red seeds, an erect habit, and
wide environmental adaptability—was selected for genome sequen-
cing and de novo assembly of a rice bean reference genome (Fig. 1a).
We integrated three sequencing technologies: PacBio single molecule
real-time (SMRT) long-read sequencing, Illumina short-read sequen-
cing, and chromosome conformation capture sequencing data (Hi-C)
(Supplementary Table 1). The estimated genome size of the FF25
genome was ~525.60Mb based on 17-kmer depth distribution using
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Fig. 1 | FF25 genome assembly. a FF25 plant (Top); FF25 pod (Bottom left);
FF25 seeds (Bottom right). b Genomic features of the FF25 reference genome. The
outer gray track represents the chromosomes of the FF25 genome assembly (with

units in Mb). The densities of features were calculated based on 100kb window
size, with a step size of 10 kb. The inner green and orange links represent the intra-
and inter- chromosomal collinear genes, respectively. Photograph credit: LXW (a).
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Illumina short-reads (~106.65×; Supplementary Fig. 1). The PacBio
reads (~300.54×) were used to assemble the contigs using Canu v1.934

and the highly efficient repeat assembly (HERA) algorithm35, which
resulted in a 475.64Mb genome (90.49% of the estimated size) con-
taining 351 contigs, with an N50 of 18.26Mb (Table 1), thus repre-
senting highest quality genome among species of the Vigna genus36–40.
To assign the contigs to different chromosomes, 66 contigs
(~465.19Mb, 97.80% of the original assembly) were anchored to eleven
pseudo-chromosomes based on a Hi-C interaction map (Table 1; Sup-
plementary Fig. 2).

We used multiple methods to evaluate the quality of the assem-
bled genome. The mapping and coverage rates of the Illumina short-
readdatawere 99.67% and 99.33%, respectively.We further performed
benchmarking universal single-copy orthologs (BUSCO) analysis41

based on the eudicotyledons_odb10 dataset, and the result showed
that 97.3% of the BUSCO sequences were completely present in the
genome assembly, while 0.5% and 2.2% were partially present or
missing, respectively (Table 1; Supplementary Table 2). The genome
assembly had a high LTR Assembly Index (LAI) score (20.30) (Sup-
plementary Table 2; Supplementary Fig. 3), reaching the level of a gold
standard genome assembly according to previously proposed
criteria42. All of these lines of evidence indicate that our de novo FF25
genome assembly is of high quality.

We used an integrated strategy including evidence-based meth-
ods and ab initio gene prediction to annotate the protein-coding gene
content of the FF25 genome assembly. A final set of 26,736 protein-
coding geneswas predicted, of which 26,430 genes (~98.86%) could be
assigned to eleven pseudomolecules (Supplementary Table 3). Of
these genes, the average lengths of coding sequences, exons, and
introns were 1232 base pairs (bp), 238, and 570bp, respectively
(Table 1). The average gene density was one gene per 17.79 Kb, and the
genes were unevenly distributed, being more abundant towards the
chromosomal ends (Fig. 1b). We also specifically concatenated 2202
transcription factor genes, 9635 pseudogenes, and 3318 noncoding
RNA genes comprising 764 transfer RNA genes, 558 ribosomal RNA
genes, 714 small nucleolar RNA genes, and 1282 microRNA genes
(Fig. 1b; Supplementary Table 4).

Of these predicted protein-coding genes,we found that 96.90%of
the BUSCO sequences were completely present (Table 1; Supplemen-
tary Table 2). Moreover, the tissue-specific RNA-Seq data confirmed
that 85.86% of the predicted protein-coding genes were expressed
(FPKM> 1) in at least one of the 6 examined tissues (Supplementary
Table 5). And 97.48% of the protein-coding genes were assigned a
functional annotation based on five public databases (Supplementary

Table 6). These evaluations collectively support the high accuracy and
completeness of our rice bean genome assembly and annotation.

Phylogenetic position and comparative genomics analyses
To explore the genome evolution of rice bean, genes from the five
Vigna species (Vigna stipulacea, V. radiata, V. angularis, V. umbellata,
and V. unguiculata), four other legumes (Phaseolus vulgaris, Glycine
max, Lotus japonicus, and Arachis duranensis), five other eudicots
(Arabidopsis thaliana, Citrus sinensis, Populus trichocarpa, Vitis vini-
fera, and Solanum lycopersicum), aswell as onemonocot (Oryza sativa)
were clustered into 20,736 gene families. Of these, 334 single-copy
gene families were used to construct a maximum-likelihood phyloge-
netic tree (Fig. 2a). This indicated that rice bean is a sister species to
adzuki bean (V. angularis); they apparently diverged about 1.75million
years ago (MYA), findings in accord with a previous study based on
transcriptome data37.

This view was also supported by a gene synteny analysis between
rice bean and its closely related species in the Vigna genus based on
protein sequences using the MCScanX program43, which revealed that
(as expected) rice bean had higher conservation with V. angularis in
terms of gene structure and order as compared to other Vigna species
(Supplementary Fig. 4; Supplementary Table 7). Based on the tree, we
found that 230 rice bean gene families (comprising 1396 genes)
exhibited significant expansions (P <0.01) relative to the MRCA (most
recent common ancestor) of rice bean and adzuki bean (Supplemen-
tary Data 1). KEGG pathway analysis indicated that these expanded
genes were significantly enriched formetabolismpathways such as the
phenylpropanoid, sesquiterpenoid, and triterpenoid biosynthesis
(P < 0.05, Fisher’s exact test; Supplementary Fig. 5).

Whole-genome duplication (WGD) provides additional genetic
material that can be subsequently subjected to divergence, sub-
functionalization, and neofunctionalization44,45. To investigateWGD
events in rice bean, we identified 332 syntenic blocks within its
genome (including 8052 homologous genes accounting for ~30.12%
of all genes) (Fig. 1b) and estimated synonymous nucleotide sub-
stitutions at synonymous sites (Ks) for homologs. The Ks distribu-
tion of collinear gene pairs indicated no recent WGD in rice beans;
we also observed the expected signals for the ECH event (eudicot-
common hexaploidy; Ks = 1.72) and the LCT (legume-common tet-
raploid; Ks = 0.64) event (Fig. 2b). We estimated the relative time of
evolutionary divergence between rice bean and closely related
Vigna species using the Ks distributions of orthologs based on the
known evolutionary time (~13 MYA) of the SST (soybean-specific
tetraploid) event in soybean37,46. Similar to the very recent specia-
tion time estimated from the maximum-likelihood phylogenetic
tree (Fig. 2a), the Ks distribution of rice bean and adzuki bean also
showed the smallest peak value at 0.019 (Fig. 2b), corresponding to
a divergence time of 1.72 MYA.

Beyond comparisons of orthologous genes, we annotated the
repetitive content in the rice bean genome using an integrated pipe-
line, including de novo repeat identification and homology search
methods (see the “Methods” section). We identified that 38.40% of the
rice bean genome comprises transposable elements (TEs; Supple-
mentary Data 2). Among the distinct classes of TEs, LTR elements
including Gypsy and Copia elements were the predominant classes;
and compared to Copia elements (10.41%), Gypsy elements (19.85%)
occupied relatively larger proportions of genomic sequence in rice
bean, which is consistent with earlier reports about other Vigna
species37,40. In addition, we identified full-length LTR elements and
performed an insert time analysis for rice bean as well as other four
additional Vigna species with sequenced genome assemblies. Except-
ing Vigna radiata, more than half of the LTR elements in the other four
examined Vigna species proliferated at 0 – 0.5 MYA, suggesting that
the amplification of LTR elements has largely occurred after specia-
tion (Fig. 2c).

Table 1 | Summary statistics for the rice bean genome
assembly

Genomic feature Value

Total assembly size (Mb/%) 475.64/90.49%

Number of contigs 351

Largest contigs (Mb) 32.05

Contig N50 (Mb) 18.26

Sequences anchored to chromosomes (Mb) 465.19/97.80%

Genomic GC content (%) 34.21

Genome Complete BUSCOsa (%) 97.3

Protein Complete BUSCOsa (%) 96.9

LTR assembly index, LAI 20.30

Repetitive sequences (%) 57.19

Protein-coding genes 26,736

Mean gene length (bp) 3,602

Mean coding sequences/exon/intron length (bp) 1232/238/570
aAnalysis based on comparisons with the eudicotyledons_odb10 database.
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Population structure and genetic divergence of rice bean
landraces
We performed whole genome re-sequencing for a total of 440 rice
bean landraces from various geographic regions, including the land-
races in the Asia core collection (73) and Chinese core collection (230)
using Illumina sequencing technology (Fig. 3a), ultimately generating
5.32 Tb of high-quality sequencing data, with an average depth of
~24.91× and an average mapping rate of 99.12% based on the newly
assembled reference genome (Supplementary Data 3). A final set of
10,525,548 high-quality single-nucleotide polymorphisms (SNPs) and
2,743,289 small insertions and deletions (InDels) were identified. We
found 5690 SNPs (0.054%) that caused start codon changes, pre-
mature stop codons, or elongated transcripts, while 15,530 InDels
(0.57%) lead to frameshift mutations (Supplementary Table 8), pro-
portions similar to other species likely soybean47, cucumber48, and
watermelon49.

To infer the population structure, we constructed an SNP-based
neighbor-joining (NJ) phylogenetic tree and divided the 440 landraces
into three geographical groups: landraces fromSouth&Southeast Asia
(SSA), South China (SC; coastline of South China to the Yangtze River),
and North China (NC; Yangtze River to North China) (Fig. 3a, b; Sup-
plementary Data 3). This classification was supported by a principal

component analysis (Fig. 3c) as well as a model-based clustering ana-
lysis (K = 4) conducted using STRUCTURE50 (Fig. 3b). Notably, the
landraces collected from other geographical regions (Japan, Korea,
Europe, and America) were spread amongst the SC and NC groups,
indicating their close genetic relationship with Chinese landraces or
their probable introduction from China2. We excluded these landraces
from the SC and NC groups in our further analyses.

To investigate genetic diversity and divergence among the three
geographical groups, we calculated the nucleotide diversity (π) for
each group and conducted a pairwise analysis of genetic distances
(Fixation index values, FST). The SSA group showed the highest
nucleotide diversity (1.08 × 10–3), consistent with the previous results
using SSR markers22 and further supporting the hypothesis that rice
beans originated from South & Southeast Asia2,22. Compared with the
SSA group, gradually decreased nucleotide diversity was observed in
the SC group (0.78 × 10–3) and then the NC group (0.43 × 10–3), indi-
cating that sequential bottlenecks (πSSA/πSC = 1.38; πSC/πNC = 1.81)
occurred during the northward dispersal of rice bean from the origin
center (Fig. 3d). When compared with the SSA group, the FST value of
the SC group was 0.16, whereas it became higher (0.29) for the NC
group, indicating enlarged population differentiation during the
northward dispersal (Fig. 3d).
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We further examined linkage disequilibrium (LD) using the
measure (r2)51 between pairwise SNP loci in SSA, SC, and NC groups.
For the SSA group, the decay of LD with physical distance (i.e., a
drop to half of its maximum value) between SNPs occurred at only
~7.7 kb (r2 = 0.39), whereas it increased to ~34.8 kb (r2 = 0.42) in the
SC group and to ~73.0 kb (r2 = 0.44) in the NC group (Fig. 3e); these
trends are in accord with the observed gradual reduction in genetic
diversity in the SC and NC groups. The LD of rice bean landraces was
similar to those of outcrossing species such as maize (30 kb)52 but
shorter than those of inbreeding crops like soybean (83 kb)53, rice
(123 kb and 167 kb in indica and japonica, respectively)54, and foxtail
millet (~100 kb)55. This finding is consistent with a previous report
that rice bean has a fairly high outcrossing rate22. Notably, the
relatively rapid LD decay in the rice bean landraces may be useful
for enhancement of resolution power of association studies to map
a narrow candidate QTL interval56.

We searched for putatively selective regions with outliers (top 5%)
of FST over 20-kb windows for the three comparisons (SSA vs. SC, SSA
vs. NC, and SC vs. NC). We detected 473, 512, and 444 outlier regions
for these three comparisons, respectively occupying 5.67% (26.95Mb),
5.92% (28.15Mb), and 5.59% (26.57Mb) of the genome and including
1894, 1950, and 1296 protein-coding genes (Supplementary Data 4). A
MapMan analysis of all the selected genes indicated that these genes
were significantly enriched for annotations related to biological pro-
cesses such as “phytohormone action”, “nutrient uptake”, and “circa-
dian clock system” (Supplementary Fig. 6). Notably, among the genes
related to “circadian clock system”, we found four orthologs of
reported flowering time genes in A. thaliana using FLOweRing Inter-
active Database (FLOR-ID57), including TOC158, PRR359, and two LHY160

genes between the SSC and SC groups, ofwhich one LHY160 apparently
also underwent selection between the SSC and NC groups (Supple-
mentary Fig. 7). These flowering time genes could plausibly have
contributed to the adaptation of rice bean landraces to different
latitudes.

The genetic architecture underlying control of flowering at dif-
ferent latitudes
Weobservedflowering timevariationacross 440 landraces as grown at
three sites withwidely divergent latitudes: 22–106 days in Sanya (18°N)
in 2020 and 2021, 25–122 days inNanning (22°N) in 2020 and 2021, and
38–104 days in Beijing (40°N; where some landraces did not bloom
before the first frost in the autumn of 2020 and 2021). To explore the
genetic basis of the flowering time for rice beans, we performedGWAS
for the flowering phenotype data measured in both years at the three
sites, which revealed distinct association signals for the different
locations (Fig. 4a–c). The repeatedly detectedmajor signal from Sanya
was an intergenic region (Chr11: 6,142,933–6,162,249) that was only
~5 kb away from a MADS-box gene that is the closest rice bean
homolog (Vum_11G00418) of Arabidopsis FRUITFUL (FUL) (Fig. 4a;
Supplementary Figs. 8, 9; Supplementary Table 9), a gene known to
control flowering time and reproductive transition61.

This GWAS signal explained up to 7.04–14.86% of the flowering
time variation across two years (Supplementary Data 5). All the sig-
nificantly associated SNPs and InDels in this GWAS signal were located
in its upstream region (>5 kb) (Supplementary Fig. 10), suggesting that
these polymorphisms could influence FUL expression to control
flowering time. This was further supported by the observation that the
expression level of FUL (in newly expanded leaves in a panel of 16
diverse rice bean landraces) was strongly negatively correlated
(R = –0.69, P = 2.95 × 10−3) with flowering time (Supplementary Fig. 11).

For the Nanning site, the repeatedly detected major signal (Chr4:
35,931,101–35,996,258) had a PVE (phenotypic variation explained)
value of 6.07–8.23% (Supplementary Fig. 8; Supplementary Data 5;
Supplementary Table 9). And themost likely candidate among the five
protein-coding genes in this region is a FLOWERING LOCUS T (FT;
Vum_04G01668) ortholog (Fig. 4b; Supplementary Data 6; Supple-
mentary Fig. 12); in many species, FT genes function as integrators of
diverse signals for controlling of flowering time62. We found two sig-
nificantly associated SNPs around (<2 kb) and within FT gene; one SNP
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(Chr4:35,950,445) was located upstream (<200bp) of the transcrip-
tion start site and another was located in the first intron
(Chr4:35,951,311) (Supplementary Fig. 13).

For the Beijing data, we repeatedly detected a peak SNP in the
PSEUDO-RESPONSE REGULATOR 3 (PRR3) gene (Vum_02G01965) at
Chr2: 38,647,190 (7.30–17.30% of PVE), encoding a nonsynonymous
variant (S–F) in the third CDS consisting of the functional PR (pseudo-
receiver) domain (Fig. 4c; Supplementary Data 5; Supplementary
Figs. 8 and 14; Supplementary Table 9). PRR3 is an ortholog of the
known soybean circadian clock geneGmTof12/GmPRR3b that has been
previously shown to function as a major flowering time regulatory
gene and has been linked to the expansion of soybean into higher
latitudes63,64. Notably, a similar effect from a single amino acid change
(S–L) on flowering time has also been reported for the GmPRR3b gene
in soybean63.

We next explored the potential flowering-time-related impacts of
the FUL, FT, and PRR3 orthologs in rice beans by classifying the land-
races according to their alleles at these three loci. There were two

alleles for FUL in the collection, and at the Sanya site, the set of 28
landraces carrying the minor allele (6.73%) displayed significantly
(P < 0.001) later flowering time (~33 days delayed, a 70.72% increase)
than the set of landraces carrying themajor allele (Fig. 4a). Note that all
of the landraces carrying the late-flowering FUL allele were initially
collected from low latitude regions (South & Southeast Asia; Fig. 4d).
We also found these landraces carrying the late-flowering FUL allele
also exhibited a significantly higher number of branches than other
landraces carrying the early-flowering FUL allele (Supplementary
Fig. 15), suggesting the probable effect of high yield potential from the
late-flowering FUL allele.

In contrast, landraces carrying theminor alleles for FT (12.31%) and
for PRR3 (7.24%) displayed earlier flowering times, with the average
flowering time for the landraces carrying the early-flowering FT allele
~19 days earlier (a 30.29% reduction) and 18 days earlier (23.36%) for
the landraces carrying the PRR3 minor allele (Fig. 4b, c). There were
notable geographical differences among the landraces carrying the
early-flowering alleles of FT and PRR3 genes: for FT there was a clear
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trend for collection from the region between the Yangtze and Yellow
rivers, whereas the landraces harboring the early-flowering PRR3 allele
tended to be from higher latitude regions north of the Yellow River
(including Northwest and Northeast China) (Fig. 4d). We also inferred
the model of inheritance for these alleles and found that the best
models for FUL, FT, and PRR3 loci were additive, dominant, and addi-
tive, respectively (Supplementary Table 10; see the “Methods”
section).

Beyond suggesting that early-flowering alleles for both of these
loci have contributed to the adaptation of rice beans to higher
latitudes (relative to the tropical origin center), these results indi-
cate potential discrete impacts of the two loci that are sensitive to
conditions found in different latitudinal ranges. Offering support
for this idea, analysis of phenotype data from the geographically
distinct test site revealed differential impacts from the two alleles of
interest at the FT and PPR3 loci. That is, at the northernmost site of
our study (Beijing), the extent of the flowering time shortening
effect was significantly larger among the set of landraces carrying
the relevant PRR3 allele as compared to the set of landraces carrying
the relevant FT allele (Fig. 4e). Importantly, this trend was reversed
at the other two (more southerly) sites: at both Nanning and Sanya,
the set of landraces with the early-flowering FT allele had the shorter
flowering times (Fig. 4e).

We alsoevaluated the pyramiding effects of the alleles for the FUL,
FT, and PRR3 loci by comparing the flowering time data in Sanya,
Nanning, and Beijing sites among landraces carrying multiple early-
flowering allelic combinations. As expected, landraces carrying a
relatively higher number of early-flowering alleles invariably exhibited

relatively earlier flowering times (Fig. 4f): a total of three landraces
carried all the three early-flowering alleles, and these showed the
earliest detected flower times, with the average maximum shortening
effects for this set of three landraces being 51.25%, 54.73%, and 25.37%
for the Sanya, Nanning, and Beijing sites, respectively (Fig. 4f). It
should be noted that this apparently weaker shortening effect at the
Beijing site was virtually certainly underestimated, as most of those
landraces harboring no early-flowering alleles failed to bloom before
the autumn frost. Collectively, these results highlight an opportunity
to improve rice bean adaptability for growth in distinct latitudes
through breeding efforts to combine the early-flowering alleles for
three flowering time-controlling genes.

The molecular basis and selection history of stem determinacy
in cultivated rice bean
The stem determinacy trait is known to strongly influence lodging in
legumes65. We collected data for stem determinacy traits in 2020 and
2021 for the 440 landraces at the Nanning site. The large majority
(>85%) of the landraces exhibited an indeterminate stem growth
phenotype (Supplementary Data 3). Notably, this distribution
emphasizes thatmost rice bean landraces do not have the determinate
stem growth phenotype that is amenable for mechanized cultivation
systems. We performed GWAS analysis of stem determinacy based on
the whole genome SNPs data for the germplasm panel and detected a
total of 29 and 22 significant signals for stem determinacy in 2020 and
2021, including 7 signals detected repeatedly in both years (Supple-
mentary Fig. 16; Supplementary Data 5; Supplementary Table 9).
Among the repeatedly detected signals, the strongest signal was at
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province. e There was a significant improvement for the 32 landraces carrying Del
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Source Data file.
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Chr4 with high PVE values (17.96–41.43%) but spanned up to ~12Mb
genomic region (Chr4: 42,022,544–53,749,059).

The InDel-based GWAS for the 2-year stem determinacy data
revealed a significantly associated InDel (2 bp–deletion at Chr4:
47,174,187) with a PVE of 22.01–35.21% positioned within the strongest
SNP signal (Fig. 5a; Supplementary Data 5). Gene functional annotation
revealed that this InDel apparently leads to premature termination of
translation for the first exon in the gene Vum_04G02513, TFL1 (TERM-
INAL FLOWER1; Fig. 5b), for which the ortholog in soybean was
reported as theDt1 locus (Gmtfl1gene) controlling stemdeterminacy25.
We found that a total of 32 landraces carried the homozygous muta-
tion (2-nt deletion) alleles, which were identified using the sequencing
data and were confirmed using Sanger sequencing (Supplementary
Fig. 17). These landraces had a significantly higher proportion of
determinate growth habit type compared to landraces harboring the
reference alleles or the heterozygous alleles (Fig. 5c).

Notably, these 32 landraces were all in the SC group and were
originally collected from an adjoining andmountainous area in South-
Central China comprising five provinces (Chongqing, Hunan, Hubei,
Guizhou, and Guangxi) (Fig. 5d). We also observed that these 32
landraces (represented by the bars with a predominant proportion of
beige color in the Supplementary Fig. 18) were genetically distinct
from other landraces within the SC group using model-based

clustering (K = 4), an inference that was further supported by a mod-
erate level of differentiation (FST = 0.11). Notably, these landraces also
displayed desirable agronomic traits including significantly earlier
flowering time and significantly increased pod width, seed length,
hundred seed weight, and branch number as compared to the other
landraces of the SC group (Fig. 5e).

We next estimated the divergence time for these 32 landraces
from the other landraces with distinct genetic admixture in the SC
group inferred by the model-based clustering analysis (Fig. 3b), and
obtained a similar divergence time of ~219 and 249 years ago using the
SMC++66 and MSMC267 methods, respectively (Fig. 5f; Supplementary
Fig. 19). Our results collectively support that the 32 landraces carrying
the homologousmutation alleles have been improved by producers in
certain mountainous regions in South-Central China for at least 200
years, and suggest that these materials have huge potential for utili-
zation in modern breeding programs seeking a variety of
improvement goals.

Tandem duplication of the VumCYP78A6 gene associated with
seed yield trait
Seed yield traits (including size and weight) have undergone strong
selection in the domestication histories and modern breeding pro-
grams for legume crops53,68–70. We measured the hundred seed weight
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Fig. 6 | Tandemduplicationof theVumCYP78A6geneassociatedwith seedyield
traits. a GWAS using the 2020 and 2021 Nanning datasets, indicating that the
strongest association signals for hundred seed weight (HSW) and seed length (SL)
traits all located at Chr9: 29,030,437–29,126,729. b Local Manhattan plot of HSW
(top), the gene models (middle), and pairwise linkage disequilibrium heat map
(bottom) at Chr9: 29,030,437–29,174,247. The two tandemly duplicated Vum-
CYP78A6 genes (VumCYP78A6-1 and VumCYP78A6-2) are shownwith the red dashed
triangles. In a and b, the red horizontal dashed lines indicated the Bonferroni-
corrected significance thresholds of GWAS (α = 1). c The HSW distributions of
landraces carrying distinct copy numbers of the VumCYP78A6 gene. The number
(n) of landraces carrying distinct copy numbers is shown below. d Bar plot showing
the relative expression levels of VumCYP78A6 in the pods at 16 DAP (days after
pollination) from the long-seed landrace S28 (carrying two gene copies) and the
short-seed landrace S33 (carrying one gene copy). e Lightmicroscope images (top)

and cell number per square millimeter (bottom) of the cross-sections of the pod
wall for the S28 and S33 landraces at 16 DAP. Scale bar, 100μm. In the box plots of
c and e, central line: median values; bounds of box: 25th and 75th percentiles;
whiskers: 1.5*IQR (IQR: the interquartile range between the 25th and 75th percen-
tile). f Silique (left) and seed (right) morphology of the wild type (Col-0) and two
independent Arabidopsis thaliana transformants overexpressing the VumCYP78A6-
2 gene (OE1 andOE2). Scale bar: 5mm for silique and 1mm for seed.gThe bar plots
of thousand seed weight (TSW), silique length, silique width, and SL for Col-0, OE1,
and OE2. P values are 1.07 × 10−4, 1.11 × 10−2, 2.36 × 10−8, 4.18 × 10−6, 1.44 × 10−2,
5.25 × 10−3, 1.88 × 10−7, and 1.94 × 10−6. The significance was tested using the two-
sided Student’s t-test in c, d, e, and g. *P <0.05, **P <0.01, ***P <0.001 in (g). The
data in d and g are shown as mean± SE. In d, e, and g, the number (n) of each
independent experiment is shown below. Source data are provided as a Source
Data file.
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(HSW) and seed length (SL) at the Nanning and Sanya sites in both
2020 and 2021. We next performed GWAS analysis to explore the
genetic basis of these two traits, and identified one QTL locus sig-
nificantly associated with the two traits at both examined sites in both
examined years (Fig. 6a; Supplementary Fig. 20; Supplementary
Table 9); this QTL is positioned at Chr9: 29,030,437–29,126,729, con-
tains six predicted ORFs (Fig. 6b; Supplementary Data 7), and explains
5.99–16.17% of phenotypic variations (with the maximum value for SL
at the Nanning site in 2020; Supplementary Data 5).

We next conducted a qPCR analysis for seed tissues of one long-
seed landrace (S28) and one short-seed landrace (S33) at the 16 DAP
(days after pollination) for the six candidate genes positioned within
the aforementioned significantly associated interval on Chr9. Two of
thesegenes showed significant differences in expression level between
the two landraces, but neither of them had an obviously relevant
functional annotation (Supplementary Fig. 21), which prompted us to
explore the potential candidate genes positioned adjacent to this QTL.
We found two tandemly repeated genes (Vum_09G01129 and
Vum_09G01130) at ~10.45 kbdownstreamof theQTL (Fig. 6b).Using an
in silico detection approach based on read depth information71, a copy
number variation (CNV) analysis of this gene in the 440 landraces
showed that the 87 landraces carrying two copies exhibited sig-
nificantly higher values for the two examined phenotypes than the 310
landraces carrying only one copy (Fig. 6c; Supplementary Fig. 22).
These results suggested that the CNVmay represent the causal variant
controlling these two seed yield component traits.

The two duplicated genes had identical CDS sequences and were
homologous to the AtCYP78A6 gene (64.65% amino acid sequence
identity; Supplementary Fig. 23), which encodes a cytochrome P450
monooxygenase known to function in maternally promoting seed
growth by increasing the cell number in the integument of developing
Arabidopsis seeds72. We, therefore, designated these rice bean genes
as VumCYP78A6-1 (Vum_09G01129) and VumCYP78A6-2
(Vum_09G01130). A qPCR analysis showed that the expression level
of VumCYP78A6 in pod wall tissue at 16 DAP was significantly higher
(~2-fold) in S28 than S33 (Fig. 6d). The impact of this CNV on the
expression of VumCYP78A6 was also verified in a larger panel com-
prising 20 landraces with one copy and 20 landraces with two copies.
Specifically, qPCR analysis of the VumCYP78A6 gene for the first fully
expanded trifoliate leaves at 14 days after sowing showed a sig-
nificantly (P <0.01) higher expression level (~2-fold) in the20 landraces
with two copies than that in 20 landraces with one copy (Supple-
mentary Fig. 24).

We also examined the number of cells in the pod wall at 16 DAP
through cytological observation and detected a significantly increased
number of cells in S28 compared to S33 (Fig. 6e). Finally, we generated
two independent transgenic Arabidopsis lines by overexpressing the
VumCYP78A6-2 gene (Supplementary Fig. 25), both of which displayed
significantly increased values for silique length, silique width, seed
length, and seed weight (Fig. 6f, g; Supplementary Fig. 26). Viewed
collectively, these results support VumCYP78A6 as a highly probable
causal gene underlying seed yield component traits in rice bean.

Discussion
Rice bean has been proposed as a potential multipurpose legume crop
to promote sustainable agriculture and fight hunger in Asia18,73. In the
present study, we assembled a high-quality landrace FF25 reference
genome and developed a valuable genomics resource by re-
sequencing 440 rice bean landraces. By combining the high cover-
age of PacBio long reads and a Hi-C interaction map, our reference
genome reached high accuracy and high continuity; this genome
provides a valuable resource for future comparative genomics, evo-
lutionary studies, and molecular research. Our rice bean genome
assembly still contains 87 gaps, 78 of which have more than one
flanking region (100 bp) with a high proportion (>90%) of repeat

sequences, suggesting that most of the gaps were caused by the
incomplete assembly of the repeat sequences, which also reported by
other studies74,75. We also predicted the candidate centromere regions
using a previouslypublishedmethod76 (see the “Methods” section) and
found that all the 11 candidate centromere regions contained more
than one assembly gap, suggesting none of the centromere sequences
was fully assembled (Supplementary Table 11); future efforts using
long sequencing reads (likely the ultra-long ONT reads) should help to
‘close these gaps’. Additionally, our phylogenomic analysis clarified
trends in the geographical distribution of the 440 rice bean landraces
and revealed a bottleneck as well as an obvious “isolation by distance”
pattern77 for landraces during the northward dispersal of rice beans
into and throughout China.

Genomic mutations associated with geographical adaptation
allow the radiation of crop species to different agro‐ecological and
cultural environments78. Genetic control of flowering time is of great
significance in determining the adaptation during the domestication
and diversification of many crop species79,80. Appropriate timing to
flowering is undoubtedly an advantage for survival and/or
propagation81 at distinct latitudes, as this impacts the growth period
structure, yield, and quality of crops82–84. Studying flowering time is a
large research field in plant biology because of its obvious agronomic
implications, and studies from multiple species have shown that
flowering time is controlled by multigene, highly topologically com-
plex regulatory networks85–87. Our study has revealed how genetic
alterations of the three known flowering loci—FUL, FT, and PRR3—have
apparently supported ricebean’s adaptationduring its dispersal across
a latitudinal gradient from South to North.

Agronomically, experience with crops including soybean and rice
has established thatflowering is delayedwhen a short-day crop species
are grownat a high latitude location84,88, so it is necessary to reduce the
photoperiod sensitivity of such plants to advance flowering time and
thus enable productive growth and yield86. We found that an early-
flowering allele of the PRR3 gene apparently supports early flowering
for landraces fromNorthof theYellow river. It is notable that studies of
barley89, soybean63,64, and rice90 have also implicated PRR gene family
members in high-latitude adaption. Previous studies in rice91,
cucumber92, and soybean93 have implicated natural variation in the FT
gene in enhancing adaptation to higher latitudes. We identified an
early-flowering allele of the FT gene that has apparently contributed to
the adaptation of rice beans in the relatively low latitude region
between the Yangtze and Yellow rivers. In contrast to these two alleles
supporting adaptation to higher latitudes, a late-flowering allele of the
FUL gene was found to have the potential to increase grain yield by
extending the vegetative growthperiod andgeneratingmorebranches
at low latitude growth sites. Pleiotropy of the FUL gene has also been
reported for other species including Arabidopsis94, tomato95, and
Setaria viridis96. Similar to the FUL gene, in the short-day model plant
soybean, breeding exploitation of the J gene (ELF3) has enabled the
successful deployment of commercial soybean cultivation in tropical
regions97. It is conceivable that—perhaps similar to successful efforts to
variously combine mutations in four E loci in soybean98—our insights
about the differential geographical distributions of alleles for flower-
ing loci could be exploited to develop high-yield rice varieties for
growth at low to high latitudes.

Our GWAS analyses helped decipher the genetic basis of stem
determinacy in rice beans, detecting that stem determinacy of rice
beans is influenced by the TFL1 gene; this gene has been implicated in
determining node termination and node number to control plant
height and stem determinacy in many legumes species25,99–101. We also
found that 32 landraces from Southern-Central China have multiple
agronomically desirable traits and have undergone improvement by
humans for at least 200 years; these materials should be considered
for use as elite parents in rice bean breeding programs. Historically,
elite landraces of other crops have been hugely beneficial to modern
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breeding26,102,103, for example with Taiwanese landraces in rice104: the
so-called “miracle rice” IR8 with high yield supported the Green
Revolution in Asia, and this line harbored a semi-dwarf allele from the
Taiwanese landrace Dee-Geo-Woo-Gen105. Although QTLs for stem
determinacy and seed yield-related traits were detected by our GWAS
analyses in one and two environments respectively, further efforts
should be made to investigate the robustness of these QTLs in more
different environments.

Although the rice bean has been cultivated for thousands of years,
to date it has received very little attention from breeders and agri-
cultural scientists. The wealth of resources developed and identified in
our study should help to rapidly advance breeding programs seeking
to produce excellent varieties that simultaneously display geo-
graphically suitable flowering times, stem determinacy to support
mechanized cultivation, and high yields through marker-assisted
selection.

Methods
Plant materials and sequencing
The sequenced rice bean (Vigna umbellata) landraces used in this
study were obtained from the Center for Crop Germplasm Resources,
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences,
Beijing, China. An individual plant of rice bean landrace FF25 growing
in a field in Beijing was used for the reference genome construction.
The tender leaves were sampled for DNA extraction, and tissues
including root, tender leaves, tender stem, flower, pod, and seed were
harvested and immediately frozen in liquid nitrogen. Samples were
stored at –80 °C prior to DNA or RNA extraction.

The high-quality genomic DNA from tender leaves was extracted
andpurifiedusingDNeasyPlantMaxi Kits (Qiagen,Germany). TheDNA
concentration was measured using a NanoDrop spectrophotometer
(Thermo Fisher Scientific, USA) and a Qubit 2.0 Fluorometer (Invitro-
gen, USA). Illumina short-read data were obtained using the Illumina
NovaSeq platform, which generated a total of 338.19 million paired-
end reads, with a total length of 50.73 Gb (Supplementary Table 1).
Single-MoleculeReal-Time (SMRT) cells were sequenced on the PacBio
Sequel platform (Pacific Biosciences, USA), generating a total of 10.99
million reads with a total length of 142.95 Gb. Hi-C libraries were con-
structed from tender leaves using the Illumina NovaSeq platform. This
allowed us to generate a total of 465.99 million paired-end reads and
69.90Gb of sequencing data.

Each of the 440 landraceswas planted atdifferent sites for 2 years:
(1) Beijing site (40.23°N, 116.56°E) with sowing date in the middle of
June 2020 and 2021; (2) Nanning site (23.15°N, 108.28°E) with sowing
date in the middle of July 2020 and 2021; (3) Sanya site (18.38°N,
109.21°E) with sowing date in the middle of November 2019 and 2020.
Supplementary Fig. 27 presents the day length (per day) during the ~5-
month growth period for the three sites. The day length differs
obviously among the three sites (but was very similar between the two
observation years). The average day lengths of Beijing during the first
4 months (during which all the landraces opened the first flower) was
the longest (13.94 and 13.93 h) in both 2020 and 2021, followed by the
Nanning site (12.52 and 12.53 h) and the Sanya site (11.28 and 11.28 h).
Note that the phenotypes of the landraces grownat the Sanya sitewere
measured the next year (i.e., 2020 and 2021; when the landraces were
harvested); thus, the time of phenotypic data was designated as 2020
and 2021. For the plantings, 20 seeds of each landrace were sown in
two rows (10 plants per row). Phenotypes in all three environments
were investigated following the “Descriptors and data standards
[Vigna umbellate (Thunb.) Ohwi & Ohashi]”106. Briefly, flowering time
was recorded as the number of days after emergence (DAE) when the
first flower opened. The main stem type was classified as indetermi-
nate, semi-determinate, or determinate according to the growth state
of the plants by observation106 on five healthy individuals randomly
selected from each plot for each landrace. The seed morphological

traits (seed length and hundred seed weight) for each landrace at each
site were measured after harvest using automatic seed counting and
analyzing instrument (Model SC-G, Hangzhou Wanshen Detection
Technology Co., Ltd., Hangzhou, China, http://www.wseen.com/)107.
The pod morphological traits (pod length and pod width) were mea-
sured using a vernier caliper with at least five healthy individuals for
each landrace at each site after harvest.

Genome assembly and quality assessment
In order to estimate the genome size of rice beans, the Illumina short
reads were recruited to determine the K-mer distributions using GCE
v1.0.2 (https://github.com/fanagislab/GCE). The PacBio long-read data
were de novo assembled into PacBio contigs using Canu v1.934, and
then the contigs were extended without the introduction of any gaps
using the highly efficient repeat assembly (HERA) method35, generat-
ing a total of 351 contigs with an N50 value of 18.26Mb (Table 1). The
Illumina short-read data was used for error-correcting of the contigs
using Pilon108. Subsequently, to anchor the contigs into chromosomes,
we aligned the Hi-C sequencing data into these contigs using Juicer
v1.8.9109. The contigs were finally linked into 11 distinct chromosomes
by 3D-DNA v180922110.

The Illumina short-read data were also used to evaluate assembly
accuracy and completeness using BWA-MEM v0.7.17-r118896111. The
completeness of the genome assembly and the gene annotations were
assessed with a plant database composed of 2121 conserved plant
genes (eudicotyledons_odb10) using BUSCO v3.0.29741.

Repeats and gene annotation
The annotation of transposable elements was performed using
RepeatMasker (http://www.repeatmasker.org). The repeat libraries
included the RepBase-20170127 and a de novo repeat library created
using RepeatModeler (http://www.repeatmasker.org) (with the para-
meter -LTRStruct). We analyzed the density distribution of the top-50
most abundant repeat subfamilies in 100 kb windows (using Repeat-
Masker), and used BEDtools112 to merge the results with the parameter
‘-d 100000’. The rnd-6_family-604 subfamily (a 217-bp repeat) was
identified as a centromere-specific repeat (Supplementary Fig. 28). The
candidate centromere regions were also predicted according to the
density distributionof this centromere-specific repeat (Supplementary
Table 11). The LTRharvest113 and the LTR_FINDER114 programswereused
to identify intact LTRs in the genomes of five Vigna species (V. stipu-
lacea, V. radiata, V. angularis, V. umbellata, and V. unguiculata). LTR
insertion times were estimated according to the formula T = d/2m (d,
the nucleotide distance for each pair of LTRs; m, the nucleotide sub-
stitution rate = 1.64e−8).

Protein-coding genes were predicted using three different stra-
tegies: ab initio prediction, homology-based prediction, and
transcript-based prediction. We used augustus115 and SNAP116 for ab
initio predictions, and exonerate117 was used for homology-based
predictions. For transcript-based predictions, the RNA-Seq clean reads
of tissues including root, tender leaves, tender stem, flower, pod, and
seed were mapped to the genome assembly using HISAT2118. The
mapping reads were assembled into transcripts using StringTie119. The
transcripts were used for gene structure prediction using TransDeco-
der (http://transdecoder.github.io) and GeneMarkS-T120. These clean
reads were also de novo assembled using Trinity121 and the assembled
transcripts were subsequently used for gene prediction using PASA122.
Finally, EVidenceModeler (EVM) v1.1.1123 was used to integrate the
prediction results obtained by the above three methods (codon
length ≥ 150 bp) to produce high-confidence gene models.

Ribosomal RNAs (rRNAs) were identified using RNAmmer124 with
default parameters. Reliable tRNA structures were detected using
tRNAscan-SEM v1.23125. Non-coding RNAs containing miRNA and
snoRNA features were annotated using INFERNAL126 with default
parameters. Pseudogenes were identified using the published
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pipeline127. The transcription factors and transcription regulators were
annotated using iTAK v18.12128 with default parameters.

Gene families and phylogenetic analysis
WeusedOrthoFinder v2.3.9129 to identify sharedgene families between
rice beans and 13 other plant species, including five Vigna species (V.
stipulacea, V. radiata, V. angularis, V. umbellata, and V. unguiculata),
four other legumes (Phaseolus vulgaris, Glycine max, Lotus japonicus,
and Arachis duranensis), five other eudicots (Arabidopsis thaliana,
Citrus sinensis, Populus trichocarpa, Vitis vinifera, and Solanum lyco-
persicum), and one monocot (Oryza sativa). Based on the protein
sequences of 334 single-copy ortholog families, the phylogenetic
relationships among these species were estimated using RAxML
v8.2.12130. Divergence timeswereestimatedby theMCMCtree program
embedded in PAML v4.9131. We measured the expansion and contrac-
tion of orthologous gene families based on amaximum likelihood tree
using CAFE v4.2 (https://github.com/hahnlab/CAFE).

KEGG enrichment analysis
The R package ClusterProfiler v3.18.0132 was used to perform KEGG
enrichment analysis. KEGG terms showing adjusted P values < 0.05
were considered significantly enriched.

Comparative genomics and Ks analysis
Gene synteny analysis was performed using MCScanX43 and BLASTP133

(−evalue < 1e−10, -v 5, -b 5) to determine the pairwise similarity among
the protein sequences of Glycine max, Phaseolus vulgaris, and five
Vigna species (V. stipulacea, V. radiata, V. angularis, V. umbellata, and
V. unguiculata). The synteny figurewas plotted using theNGenomeSyn
program (https://github.com/hewm2008/NGenomeSyn). Synon-
ymous nucleotide substitutions on synonymous sites (Ks) were esti-
mated using the WGDi tool (https://github.com/SunPengChuan/wgdi)
with default parameters.

SNP and small InDel calling
We sequenced the genomes for 440 rice bean landraces with an
average depth of 24.91× using the Illumina NovaSeq platform (Sup-
plementary Data 3). The quality control for the raw sequencing data
was performed using fastp v0.20.1134 with default settings. The high-
quality short reads were aligned to the genome using BWA-MEM
v0.7.17-r118896111; PCR duplicates were removed using Picard v1.118
(http://broadinstitute.github.io/picard/); SNPs and InDels were identi-
fied using HaplotypeCaller of the Genome Analysis Toolkit (GATK)
v4.1.5.0135, and were subsequently filtered (‘QD< 2.0 || FS > 60.0 ||
MQ<40.0 || MQRankSum< −12.5 || ReadPosRankSum< −8.0’ for
SNPs, and ‘QD< 2.0 || FS > 200.0 || ReadPosRankSum< −20.0’ for
InDels)49. Non-biallelic SNPs/InDels with a read depth < 5 were
removed from further analyses.

Phylogenetic and population structure analyses
A total of 1,400,862 SNPs with a minor allele frequency (MAF) ≥0.05
and missing rate ≤ 50% were used to build a maximum likelihood
phylogenetic tree using TreeBeST v1.9.2136, as well as to perform
principal component analyses (PCA) using the smartPCA program
embedded in the Eigensoft package v7.2.1137. The π and FST values were
calculated using VCFtools v0.1.17138 based on the same SNP set.
Population structure was investigated based on 20,000 randomly
selected SNPs using STRUCTURE v2.3.450 with 100,000 iterations of
burning and 200,000 iterations of MCMC, and evaluating each K
from 2 to 4.

Divergence time estimation
MSMC2 v2.1.167 was used to infer the divergence times of stem deter-
minacy landraces carrying homologous deletion mutation alleles with
other landraces carrying the homologous reference alleles in the SC

group. To improve reliability, genome regions were masked with the
SNPable tool (http://lh3lh3.users.sourceforge.net/snpable.shtml)
when the coverage depth was <15× after removing reads withmapping
quality <20. First, we split the reference genome into overlapping 35-
mers and then mapped these 35-mers back to the reference genome
using BWA139 (bwa aln -R 1000000 -O 3 -E 3). Only regions where the
majority of 35-mers were uniquely mapped and without mismatch
were retained for further analysis. We selected the top 10 samples in
each population with the highest coverage after masking. The 8 most
frequent haplotypes were randomly selected from the 10 samples in
order to infer the demographic history of each population. We repe-
ated this procedure 20 times. Scaled times were converted to years by
assuming a generation time of 1 year and a mutation rate of
μ = 1.5 × 10–8 per site per generation140. We also used the SMC++
v1.15.266, which does not rely on haplotype phase information, to
estimate the divergence times (using the same generation time and
mutation rate).

Linkage disequilibrium
To estimate and compare the patterns of linkage disequilibrium (LD)
decay in each population, we computed the mean squared correlation
coefficient (r2) values between any two SNPs within 300 kb using
PopLDdecay v3.41141.

GWAS analysis
We retained SNPs with a MAF ≥0.05 and a missing rate ≤ 50% to per-
form GWAS analysis. After imputation using Beagle v4.1142 with default
parameters, theGWAS analysiswas performedbased on a linearmixed
model using the program Fast-LMM v2.06.20130802143. The P value
threshold for significance was estimated as 1/n (where n corresponds
to the SNP number). The phenotypic variance that was explained by
each SNP was estimated following the below previously reported
method144:

PVE=
2β̂

2
× MAF× ð1�MAFÞ

2β̂
2
× MAF × 1�MAFð Þ+ ðse β̂

� �
Þ
2
× 2N ×MAF × ð1�MAFÞ

ð1Þ

where β̂ andMAF is the effect size estimate andminor allele frequency
for the SNP, N is the sample size, and seðβ̂Þ is the standard error of
effect size for the SNP.

Inference of the inheritance model for alleles of the flowering
time genes
To infer the most likely inheritance model of alleles for the flowering-
time related loci (FUL, FT, and PRR3), we used the R package
“SNPassoc”145 to perform association analysis of the alleles based on
several genetic models (co-dominant, dominant, recessive, over-
dominant, or additive). The model with the smallest Akaike informa-
tion criteria (AIC) valuewas identified as the bestfitting geneticmodel.

Histological analysis
Cross-sections of pod walls from S28 and S33 landraces were analyzed
by light microscopy (BX51; Olympus). The pod wall tissues were sam-
pled at 16DAP and immediately fixedwith FAA: glacial acetic, 38% form
aldehyde, 70% ethanol (1:1:18), and then dehydrated through a stan-
dard ethanol series. The pod wall tissues were embedded in Paraplast
Plus tissue-embedding medium (Sigma-Aldrich), sectioned at 8mm
using a microtome (RM2235, Leica Microsystems), and then stained
with toluidine blue. The cell numbers in the cross-sections were mea-
sured using Olympus Stream software. The analysis was based on at
least three biological replicates.
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RNA extraction and qPCR analysis
qPCR analysis was used to quantify the relative expression levels of
the FUL gene in newly expanded leaves in a panel of 16 diverse
landraces, the expression levels of the VumCYP78A6 gene in the
seed and pod tissues of the S28 and S33 landraces, and the
expression levels of the VumCYP78A6-2 gene in the primary inflor-
escence stems of the transgenic Arabidopsis plants. Total RNA was
extracted using TreliefTM RNAprep Pure Plant Kits (Polysaccharides
& Polyphenolics-rich) (Tsingke, China). First-strand cDNA was syn-
thesized using a PrimeScriptTM RT Reagent Kit with gDNA Eraser
(Takara, Japan). Quantitative PCR was performed using TSINGKE
Master qPCR Mix (SYBR GreenIwith UDG) (Tsingke, China), on a
StepOnePlusTM Real-Time PCR System (Applied Biosystems, USA)
following the manufacturer’s instructions. cDNA transcript levels
were normalized to those of the reference gene ACTIN using the
2−ΔΔCT method146. PCR reactions were performed in triplicate for
each biological replicate; three or more biological replicates were
assessed. Primers were designed to span an intron in order to avoid
the amplification of genomic DNA and are shown in Supplementary
Table 12.

Arabidopsis transformation
The total RNA of the pod tissue from the FF25 landrace was extracted
and reverse transcription was performed. The full coding sequence of
the VumCYP78A6-2 gene (Vum_09G01130) was amplified and cloned
into the pEasy-T1 vector. The binary vector pCambia3301 was used to
subclone the gene for overexpression. The construct was individually
introduced into Agrobacterium tumefaciens strain GV3101 and trans-
formed into the Arabidopsis ecotype Columbia (Col-0) using the floral
dipmethod147. Relative expression levels of the VumCYP78A6-2 gene in
primary inflorescence stems of 2-week-old T1 transgenic plants were
measured with qPCR, and two lines with relatively high VumCYP78A6-2
expression were selected for further analyses. All phenotypes were
measured for T3 homozygote plants. Primers are shown in Supple-
mentary Table 12.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this work are available within the
paper and its Supplementary Information files. A reporting sum-
mary for this Article is available as a Supplementary Information file.
The datasets and plant materials generated and analyzed during the
current study are available from the corresponding author upon
request. All datasets reported in this study have been
deposited in the National Center for Biotechnology Information
(NCBI) with the following accession IDs: FF25 genome assembly,
JALEER000000000; Raw data for FF25 genome assembly,
PRJNA819955; Raw data for genome sequencing of 440 landraces,
PRJNA803965. The annotation files including predicted CDS and
protein sequences generated for FF25 genome assembly
have been deposited at Figshare [https://doi.org/10.6084/m9.
figshare.19420058]. The online tools and database used in this
paper include: Pfam [http://pfam.xfam.org/], InterPro [https://www.
ebi.ac.uk/interpro], NR [https://www.ncbi.nlm.nih.gov/refseq/
about/nonredundantproteins/], GO [http://geneontology.org],
KEGG [https://www.genome.jp/kegg/], FLOweRing Interactive
Database [http://www.phytosystems.ulg.ac.be/florid/]. Source data
are provided with this paper.

Code availability
The scripts used for the analyses can be freely and openly accessed at
GitHub [https://github.com/guanjiantao-caas/Code-for-rice-bean].
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