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Whole genome sequence analysis of blood
lipid levels in >66,000 individuals

A list of authors and their affiliations appears at the end of the paper

Blood lipids are heritablemodifiable causal factors for coronary artery disease.
Despite well-described monogenic and polygenic bases of dyslipidemia, lim-
itations remain in discovery of lipid-associated alleles using whole genome
sequencing (WGS), partly due to limited sample sizes, ancestral diversity, and
interpretation of clinical significance. Among 66,329 ancestrally diverse (56%
non-European) participants, we associate 428M variants from deep-coverage
WGS with lipid levels; ~400M variants were not assessed in prior lipids genetic
analyses. We find multiple lipid-related genes strongly associated with blood
lipids through analysis of common and rare coding variants. We discover
several associated rare non-coding variants, largely at Mendelian lipid genes.
Notably, we observe rare LDLR intronic variants associated with markedly
increased LDL-C, similar to rare LDLR exonic variants. In conclusion, we con-
ducted a systematic whole genome scan for blood lipids expanding the alleles
linked to lipids for multiple ancestries and characterize a clinically-relevant
rare non-coding variant model for lipids.

The discovery of rare alleles linked to plasma lipids (i.e., low-density
lipoprotein cholesterol [LDL-C], high-density lipoprotein cholesterol
[HDL-C], total cholesterol [TC], and triglycerides [TG]) continue to
yield important translational insights toward coronary artery disease
(CAD), including PCSK9 and ANGPTL3 inhibitors now available in clin-
ical practice1–5. The monogenic and polygenic bases of plasma lipids
are well-suited to population-based discovery analyses and confer
broader insights for genetic analyses of complex traits. We now eval-
uate numerous newly catalogued, largely rare, alleles never previously
systematically analyzed with lipids.

Analyses of imputed array-derived genome-wide genotypes
and whole exome sequences in hundreds of thousands of increas-
ingly diverse individuals continue to uncover low-frequency pro-
tein-coding variants linked to lipids. Due to purifying selection,
causal variants conferring large effects tend to occur relatively
more recently, and are thus rare and often specific to families or
communities6. Most discovery analyses for large-effect rare alleles
have focused on the analysis of disruptive protein-coding variants
given (1) well-recognized constraint in coding regions, (2) incom-
plete genotyping of rare non-coding sequence given relative spar-
sity of deep-coverage (i.e., >30X) whole genome sequencing (WGS),
and (3) better prediction of coding versus non-coding sequence

variation consequence1,7–12. We recently described a statistical fra-
mework incorporating multi-dimensional reference datasets paired
with genomic data to improve rare coding and non-coding variant
analyses for WGS analysis of lipids and other complex traits13,14.
Furthermore, including individuals of non-European ancestry
facilitates the discovery of both novel alleles at established loci as
well as novel loci14–16.

Here, we examine the full allelic spectrum with plasma lipids
using whole genome sequences and harmonized lipids from the
National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for
Precision Medicine (TOPMed) program17,18. We studied 66,329
participants and 428 million variants across multiple ancestry
groups—44.48% European, 25.60% Black, 21.02% Hispanic, 7.11%
Asian, and 1.78% Samoan. We identified robust allelic heterogeneity
at known loci with several novel variants at these loci; we addi-
tionally identified novel loci and pursued replication in indepen-
dent cohorts. We then explored the association of genome-wide
rare variants with lipids, with detailed explorations of rare coding
and non-coding variant models at known Mendelian dyslipidemia
genes. Our systemic effort yields new insights for plasma lipids and
provides a framework for population-based WGS analysis of com-
plex traits.
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Results
Overview
We studied the TOPMed Freeze8 dataset of 66,329 samples from
21 studies and performed genome-wide association studies (GWAS)
separately for the four plasma lipid phenotypes (i.e., LDL-C, HDL-C,
TC, and TG) using 28M individual autosomal variants (minor allele
count [MAC] >20) and aggregated rare autosomal variant (minor
allele frequency [MAF] <1%) association testing for 417M variants
(Fig. 1, Supplementary Fig. 1). Secondarily, we associated individual
variants with minor allele frequencies (MAF) >0.01% within each
ancestry group to detect ancestry-specific lipid-associated alleles.
We intersected our results with currently published array-based
GWAS results15 to identify novel associations with lipids. We per-
formed replication analyses for the putative novel associations
identified, in up to ~45,000 independent samples with array-based
genotyping imputed to TOPMed and 400 K samples from UK Bio-
bank (UKB) imputed genotypes. Finally, we conducted rare variant
association studies as multiple aggregate tests across the genome
to identify gene-specific functional categories and non-coding
genomic regions influencing plasma lipid concentrations. We
replicated the significant rare variant aggregates in ~130 K whole
genomes from UKB.

TOPMed baseline characteristics
The TOPMed Informatics Research Center (IRC) and TOPMed Data
Coordinating Center (DCC) performed quality control, variant calling,
and calculated the relatedness of population structures of Freeze 8
data17. We studied 66,329 samples across 21 cohorts, and 41,182 (62%)
were female. The ancestry distribution was 29,502 (44.46%) White,
16,983 (25.60%) Black, 13,943 (21.02%)Hispanic, 4719 (7.11%) Asian, and
1182 (1.78%) Samoan (Supplementary Data 1). The mean (standard
deviation [SD]) age of the full cohort was 53 (15.00) years which varied
by cohort from 25 (3.56) years for Coronary Artery Risk Development
in Young Adults (CARDIA) to 73 (5.38) years for Cardiovascular Health
Study (CHS). The Amish cohort had a higher-than-average concentra-
tion of LDL-C (140 [SD43]mg/dL) andHDL-C (56 [SD 16]mg/dL) aswell
as lower TG (median 63 [IQR 50] mg/dL) consistent with the known
founder mutations in APOB and APOC37,8,14. In the Women’s Health
Initiative (WHI) cohort, theTC (230 [SD41]mg/dL) andTG (median 129
[IQR 87] mg/dL) concentrations were higher than for other cohorts as
previously described12. We accounted for lipid-lowering medications
and fasting status and inverse rank normalized the phenotypes as
before12,14 which are further detailed in the Methods. The adjusted
normalized lipid concentrations for the four lipids were similar across
the cohorts.
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Fig. 1 | Overall study schematic. The analyses were conducted using the multi-
ancestral TOPMed freeze8 data to associate whole genome sequence variationwith
lipid phenotypes (i.e., LDL-C, HDL-C, TC, and TG). A total of 66,329 samples with
lipidsquantifieddata fromfive ancestrygroupswere analyzed. Single variantGWAS
were carried out using SAIGE on the Encore platform using SNPs with MAC >20.
Both trans-ancestry and ancestry-specific GWAS were conducted. Genome-wide
rare variant (MAF <1%) gene-centric and region-based aggregate tests were

grouped and analyzed using STAARpipeline. Finally, single variant and rare variant
associations at Mendelian dyslipidemia genes were investigated in further detail.
TOPMed Trans-Omics for Precision Medicine, HDL-C high-density lipoprotein
cholesterol, LDL-C low-density lipoprotein cholesterol, TC total cholesterol, TG
triglycerides, GWAS genome wide association study, SAIGE Scalable and Accurate
Implementation of GEneralized mixed model, MAC minor allele count, MAFminor
allele frequency, SNPs single nucleotide polymorphisms.
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A total of 428M variants passed the quality criteria with an aver-
age depth >30X in 22 autosomes. 202M variants were singletons,
417M were rare variants (MAF <1%), and 11M were common or low-
frequency variants (MAF >1%) with differences by cohort (Supple-
mentary Data 2).

Individual variant associations with lipids
Weperformed single variant analysis of ~28Mvariants with aMAC> 20
for four lipid phenotypes. We identified significant genomic risk loci
for each lipid level (Supplementary Data 3) and considered a p-value
<5 × 10−9 to claim significance as previously recommended for whole
genome sequencing common variant association studies14,19. The total
numbers of variants that met our significance threshold were 2214,
2314, 2697, and 2442 for LDL-C, HDL-C, TC and TG, respectively, and
after clumping20 the numbers of variants were 357, 338, 324, and 289,
respectively. Of these variants, 99% were previously demonstrated to
be associated with plasma lipids either at the variant- or locus-level15

(Supplementary Data 4, Supplementary Fig. 2).
To identify putative novel variant associations, we compared our

results to a recent multi-ethnic lipid GWAS among 312,571 participants
of theMillionVeteranProgram(MVP)15 aswell as theGWASCatalog (All
associations(v1.0) file dated 06/04/2020) (Fig. 2). We clumped (win-
dow 250kb, r2 0.5) significant variants using Plink20 and queried these
in the GWAS Catalog and MVP. Among genome-wide significant

variants, we tabulated ‘known-position’ (variant previously asso-
ciated), ‘known-loci’ (variants not previously significantly associated
with the corresponding lipid phenotype but within 500 kb of a known
locus, thereby representing additional allelic heterogeneity), and
‘novel’ variants (variants not in a known lipid locus) (Supplemen-
tary Data 4).

The novel variants, tabulated in Table 1, are divided into two
subsets—‘novel variants’ or variants at established lipid loci for another
lipidphenotype, and ‘novel loci,’ representing new loci associations for
any lipid phenotype. For example, the CETP locus is well-known for its
link to HDL-C, but we now found that rs183130 (16:56957451:C:T, MAF
28.3%) at the locus is associated with LDL-C. Similarly, the variants
rs7140110 (13:113841051:T:C, MAF 27.8%) GAS6 and rs73729083
(7:137875053:T:C, MAF 4.5%) CREB3L2 are newly associated with TC,
while previous studies showed that rs73729083 associateswith LDL-C21

and rs7140110 associates with LDL-C22 and TG23. Index variants at novel
loci were typically low-frequency variants often observed in non-
European ancestries, so we also conducted ancestry-specific associa-
tion analyses for these alleles (Supplementary Data 5). For example,
12q23.1 (12:97352354:T:C,MAF0.3%) and4q34.2 (4:176382171:C:T,MAF
0.2%) associations with LDL-C are specific to Hispanic (MAF 1.3%) and
Black (MAF 0.6%) populations, respectively and among Asians (MAF
1.5%) alone, 11q13.3 (11:69219641:C:T, MAF 0.2%) was associated with
TG.One variant initially passing thenovel locusfilter forHDL-C (RNF111

Fig. 2 | Summary of single variant genome-wide association. Representation of
the single variant GWAS results from TOPMed Freeze 8 whole genome sequenced
data of 66,329 samples. Each quarter represents a different lipid phenotype, and
dots extending in clock-wise fashion represent variants with increasing evidence of
association as noted by −log10(p-value), which was truncated at 200. The outer
three circles show the GWAS data from TOPMed freeze8 where variants binned to
nominally significant (p-value 0.05–5 × 10−07), suggestive significant (p-value
5 × 10−07–5 × 10−09) and genomewide significant (p-value < 5 × 10−09). The inner three

circles compare our TOPMed results with known significantly associated lipid loci
and variants from the MVP summary statistics and GWAS catalog to the identified
novel variants and loci that are genome-wide significant from the current study,
respectively. The figure represents the outputs from two-sided genetic association
testing preformed using SAIGE-QTmodel, where themodel was adjusted for all the
covariates; see Methods. TOPMed Trans-Omics for Precision Medicine, GWAS
genome wide association study, MVP million veteran program.
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- rs112147665, beta = 8.664, p-value = 6.51 × 10−10), was in LD (r =0.7)
with LIPC p.Thr405Met (rs113298164) which is known to be associated
with HDL-C. The lead variant from MVP was 604 kb away from the
RNF111 variant but the rare LIPC missense variant p.Thr405Met was
421 kb away. Conditional analysis accounting for LIPC p.Thr405Met
rendered the non-coding variant near RNF111 variant non-significant
(beta = 4.351, p-value = 2.47 × 10−02), therefore we reclassified RNF111
variant as a known-position variant. Ancestry-specific GWAS did not
yield additional novel loci beyond our larger trans-ancestryGWAS. The
majority of genome-significant single variants were captured by pre-
vious lipid GWAS15, but ancestry-specific novel-hits are unique to WGS
TOPMed data.

For the single variant GWAS, we pursued replication with two
genome-wide array-based genotyped datasets imputed to TOPMed
WGS17,24: Mass General Brigham (MGB) Biobank (N = 25,137) and
Penn Medicine Biobank (N = 20,079)25,26, these replication cohorts
had diverse ancestry distribution, where non-European samples
accounted for 15.77% in MGB Biobank and 51.20% in Penn Medicine
Biobank. We also conducted replication using UKB imputed data
which accounted for 16.10% of non-European samples (Supple-
mentary Data 6). We brought seven putative novel variants with
Type="Italic">p-values < 5 × 10−9 forward for replication. The three
common variants, rs183130 (CETP), rs7140110 (GAS6), and rs73729083
(CREB3L2), that were associated with both LDL-C and TC in TOPMed
replicated in MGB and UKB along with rs77687061 for TG and two of
these (rs183130, rs73729083) replicated in Penn Biobank at an alpha
level of 0.05 and consistent direction of effect (SupplementaryData 5).
The two variants that were associated in all three replication studies
were most significantly associated among African Americans in
TOPMed (rs183130: beta = −2.762mg/dL, p-value = 5.71 × 10−07;
rs73729083: beta = −3.725mg/dL, p-value = 5.25 × 10−07). We meta-
analyzed the single variant replication from the three cohorts and
identified three common variants with suggestive p-value (5 × 10−5)
(Table 1). Low-frequency variants from specific ancestry groups
associated with lipids in TOPMed were not replicated but we cannot
rule out the possibility of reduced power due to the general
underrepresentation of non-white ancestry groups in the replication
data. In exploratory analyses, we extended the same approach for
variants discovered to have 5 × 10−9 < p-value < 5 × 10−7 but did not
observe replication (Supplementary Data 7).

In-silico analysis to gain mechanic insights from single variant
GWAS results
Prioritization and functional enrichment analysis. We first mapped
the variants to genes and to functional regions using ANNOVAR. Sec-
ond, we determined gene tissue specificity, relating tissue-specific
gene expression with disease-gene associations, using MAGMA. Sig-
nificantly associated variants were enriched in intronic and intergenic
regions (Supplementary Fig. 3). Using GTEx, tissue-specific gene
expression was enriched among liver, stomach, and pancreatic tissues
(Supplementary Fig. 4) with top tissue-gene sets tabulated in Supple-
mentary Data 8. Using the STRING protein-protein interaction data-
base examining liver-specific genes, we highlight that the HDL-C
protein network uniquely harbored metal-ions related genes (MT1A,
MT1B, MF1F, MT1G, MT1H) and anticipated LCAT-CETP interactions
(Supplementary Fig. 5). Enriched pathways from Reactome, GeneOn-
tology and other curated and canonical pathways (Supplementary
Data 9)with a p-value < 2.5 × 10−06 wereobserved including response to
metal ions, lipoprotein assembly, and chylomicron remodeling.

The enrichment analysis was carried out with the full single variant
summary statistics,wherewe identified thatmost of theprioritized loci/
genes were previously documented for lipid associations. Next, we
specifically investigated the novel variants that we identified from this
study. Out of the seven variants documented in Table 1, four were
low frequency variants, 12:97352354:T:C (rs189010847) closest to
NEDD1, 4:176382171:C:T (rs115489644) closest to SPCS3, 11:69219641:
C:T (rs74791751) near to SMIM38, are all intergenic variants and
13:107551611:C:T (rs77687061) is an intronic variant in FAM155A. We did
not find any information for these variants in the Open Target Genetics
database27. Finally, twoof the commonnovel-loci variants (rs183130 and
rs7140110) were present in eQTL and sQTL databases28, therefore, we
performed analysis to determine the correlation among effects and the
importance of these variants more in detail.

CETP locus, HDL-C, and LDL-C. CETP is a well-recognized Mendelian
HDL-C gene and the locus was previously known to be significantly
associated with HDL-C, TC, and TG at genome-wide significance15.
Pharmacologic CETP inhibitors have shown strong associations with
increased HDL-C but mixed effects for LDL-C reduction in clinical
trials29–32. We found that the CETP locus variant rs183130
(chr16:56957451:C:T, MAF 28.3%, intergenic variant) was associated

Table 1 | Putative novel variants identified in TOPMed and evidence for replication

Associated lipid
phenotype

Novel variant class Variants (Gene) Discovery Cohort TOPMed Freeze8
(N = 66,329)

Replication Cohort Meta Analysis
(METASOFT) MGB Biobank
(N = 25,137); Penn Medicine Biobank
(N = 20,079); UK Biobank
(N =424,955)

Effect estimate p-value MAF Beta p-value Std.Err

LDL-C Novel locus 12:97352354:T:C −12.439 4.88 × 10−09 0.003 3.316 3.62 x 10−01 3.634

LDL-C Novel variant 16:56957451:C:T (CETP) −1.568 2.88 × 10−09 0.283 −1.459 8.74 x 10−84 0.075

LDL-C Novel locus 4:176382171:C:T −16.086 2.82 × 10−09 0.002 −0.980 7.80 x 10−01 3.514

TC Novel variant 13:113841051:T:C (GAS6) 1.731 1.12 × 10−09 0.278 1.262 1.29 x 10−38 0.097

TC Novel variant 7:137875053:T:C (CREB3L2) −4.106 7.54 × 10−11 0.045 −3.538 7.70 x 10−07 0.716

TG Novel locus 11:69219641:C:T 0.232 1.98 × 10−09 0.002 −0.030 6.04 x 10−01 0.059

TG Novel variant 13:107551611:C:T (FAM155A) 0.052 6.78 × 10−10 0.045 0.015 2.20 x 10−02 0.006

Variants identified as novel after comparingwith theGWAScatalog andMVP summary statistics for associationswith lipid phenotypes, including LDL-C, TC, and TG. All effect estimates are inmg/dL
units, except for TG which was log-transformed in analysis thereby representing fractional change. Variants are categorized as novel loci or novel variant (i.e., known locus associated with another
lipid phenotype) and the genes assigned to the variants per TOPMed whole genome sequence annotations (WGSA) are listed. Data is provided for the discovery (TOPMed freeze8) and replication
cohorts (Imputeddatasets fromMGBBiobank, PennMedicineBiobankandUKBiobank).Meta-analysiswith the replication cohortswas carriedout and thecorrespondingbeta,p-valuesandstandard-
errors are provided. All the effect-estimates and p-values are reported from two-sided association testing with all independent samples from each cohort (Discovery-TOPMed: 66,329; Replication-
MGB Biobank: 25,137; UK Biobank: 424,955; Penn Biobank: 20,079).
GWAS genome wide association study,MVPmillion veteran program, LDL-C low-density lipoprotein cholesterol, TC total cholesterol, TG triglycerides, TOPMed trans-omics for precisionmedicine,
WGSA whole genome sequence annotations.
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with reduced LDL-C concentration (beta = −1.568mg/dL, SE = 0.264,
p-value = 2.88 × 10−09). The lead HDL-C-associated variant at the locus,
rs3764261 (chr16:56959412:C:A, MAF 30.3%), was associated with
3.5mg/dL increased HDL-C (p-value = 8.03 × 10−283), and rs183130 was
associatedwith 3.9mg/dL increasedHDL-C (p-value < 1 × 10−284) aswell.
Among the ancestry groups analyzed, rs183130 was most significantly
associated with LDL-C among those of African ancestry (beta =
−2.762mg/dL,p-value = 5.71 × 10−07) (SupplementaryData 10).Wenext
investigated variants by their HDL-Cand LDL-C effectswithin this locus
(+/−500 kb of rs183130 and rs3764261) (Fig. 3). We identified five var-
iants showing at least suggestive (p-value < 5 × 10−07) association with
both HDL-C and LDL-C. Though variants with strong LD (linkage dis-
equilibrium) existed, ancestry-specific analyses showed that the
stronger LDL-C effects were among those of African ancestry.

To better understand the mechanisms for HDL-C and LDL-C
effects at the CETP locus, we pursued colocalization with eQTLs
from three tissues (Liver, Adipose Subcutaneous and Adipose
Visceral [Omentum]) from GTEx28. We analyzed 5 LDL-C and 441
HDL-C associated (p-values <5 × 10−07) variants. We correlated eQTL
effect estimates for genes at the locus with lipid outcome effect
estimates. Indeed, CETP gene expression effects were strongly
negatively correlated with HDL-C effects (Liver: ρ −0.933, p-value
4.01 × 10−17; Adipose Subcutaneous: ρ −0.762, p-value 8.87 × 10−12;
Adipose Visceral: ρ −0.739, p-value 5.52 × 10−10) (Supplementary
Fig. 6). However, CETP expression effects were not significantly
correlated with LDL-C (Liver: ρ 0.007, p-value 0.99; Adipose

Subcutaneous: ρ 0.344, p-value 0.57; Adipose Visceral: ρ −0.59, p-
value 0.29). Given the possibility that the observed lack of corre-
lation for LDL-C could be due to reduced power from a limited
number of variants attaining a suggestive p-value (<5 × 10−07), we
repeated the analysis with a subset of 122 nominally significant (p-
value < 0.05) LDL-C associated variants in this locus. Indeed, CETP
gene expression effects were strongly positively correlated with
LDL-C effects (Liver: ρ 0.957, p-value 2.28 × 10−08; Adipose Sub-
cutaneous: ρ 0.922, p-value 1.34 × 10−15; Adipose Visceral: ρ 0.868, p-
value 6.09 × 10−11).

GAS6 locus, LDL-C/TG, and TC. Variants at GAS6 were previously
associated with LDL-C and TG22,23, but in our analysis, rs7140110 was
now significantly associated with TC. We performed colocalization
analysis of the variants+/−500Kb from rs7140110 in liver and adipose
tissues fromGTEx. Across the three lipid-related tissues (liver, adipose
subcutaneous, and adipose visceral), strong colocalization was
observed in liver for all three lipid phenotypes (TG 46.6%; LDL-C 33.3%;
TC 28%). The TG and LDL-C-associated variants were eQTLs for the
GAS6 gene only. However, the TC-associated eQTLs at this locus
influenced the cis expression of multiple genes, including GAS6, anti-
sense genes of GAS6 (AS1, AS2) as well as other genes (i.e., TFDP1,
CHAMP1, LINC00565, ADPRHL1, RASA3, UPF3A, GRTP1, AL442125.1,
C13orf46, DCUN1D2, CDC16, TMEM255B, GRTP1-AS1, ATP4B, TMCO3). In
addition to GAS6, the TC-associated rs7140110 is an sQTL for
TMEM255B in adipose subcutaneous tissue (p-value 5.6 × 10−08), with

-log10 p-values (LDL-C)

-log10 p-values (HDL-C)

Fig. 3 | Comparisonof effects estimates for HDL-C and LDL-C among variants in
the CETP locus. The color scale of the data points was based on −log10 p-values
from HDL-C association and the size of each data point was based on −log10
p-values of LDL-C association. Variants which are genome wide significant with
LDL-C are represented as chromosome:position:reference allele:alternate allele.

The effect estimates and p-values were calculated from two-sided genetic asso-
ciation testing preformed using SAIGE-QT model, where the model was adjusted
for all the covariates; see Methods. HDL-C high-density lipoprotein cholesterol,
LDL-C low-density lipoprotein cholesterol.
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further support fromTCcolocalization analysis andwas not significant
for other lipid levels.

Phenome-wide association with complex traits. We conducted a
phenome-wide association (PheWAS) of 1572 binary complex traits
using UK Biobank for the three replicated common variants
(16:56957451:C:T (CETP); 13:113841051:T:C (GAS6); 7:137875053:T:C
(CREB3L2)) adjusting for PC1–10, age, age2, sex, and race. We claimed
significance at FDR of 0.05 and identified various complex traits sig-
nificant, including ischemic heart disease for the CETP variant and
heart failure/atherosclerosis, hypercholesterolemia traits for GAS6
variant. The summary statistics from PheWAS analysis for the sig-
nificant complex traits are tabulated in Supplementary Data 11.

Rare variant aggregates associated with lipids
Gene-Centric associations. We next evaluated the association of
aggregated rare (MAF < 1%) variants, linked to protein-coding genes
(‘gene-centric’). We employed a Bonferroni-corrected significance
threshold of 0.05/20,000 = 2.5 × 10−06 for coding and non-coding
gene-centric rare variant analyses (Supplementary Fig. 7). We
identified 102 coding and 160 non-coding gene-centric rare variant
aggregates significantly associated with at least one of the four
plasma lipid phenotypes in nonconditional analysis (Supplementary
Data 12, 13). We secondarily conditioned our significant aggregate
sets on variants individually associated with lipid levels from the
GWAS catalog, MVP summary statistics and the TOPMed data. We
identified 74 coding and 25 non-coding rare variants aggregates
associated with at least one lipid level after conditional analyses
(Supplementary Data 14, 15).

Most of the coding gene-centric sets remained significant after
secondary conditioning, while a minority of non-coding gene-centric
sets remained significant after conditioning. Significant genes identi-
fied from coding rare variant analyses included multiple known Men-
delian lipid genes including LCAT, LDLR, and APOB (Supplementary
Data 13). RFC2 putative loss-of-function mutations (combined allele
frequency < 0.002%) were significantly associated with triglycerides
(p-value 2 × 10−06) representing a putative novel association for trigly-
cerides. The RFC2 aggregate set (plof) was associated with reduced TG
(beta = −0.89 for log[TG]). The persistently significant regions identi-
fied fromnon-coding rare variant analyses linked to genes included the
UTR (untranslated region) for CETP and promoter-CAGE (CAGE—Cap
Analysis of Gene Expression sites) around APOA1 for HDL-C, and APOE
promoter-CAGE, APOE enhancer-DHS (DHS—DNase hypersensitivity
sites), and EHD3 promoter-DHS for total cholesterol (Supplementary
Data 15).Most of the coding aggregates had larger effects compared to
non-coding aggregates, and among the non-coding aggregates SPC24
non-coding aggregate (enhancer-CAGE) at the LDLR locus had the
strongest effect for LDL-C (beta = 2.320mg/dL; p-value = 1.75 × 10−05).

We analyzed the UK Biobank whole genome sequences among
~130K participants to provide evidence of replication for the sig-
nificant coding and non-coding aggregate sets. We used a Bonferroni-
corrected significance threshold based on the number of genes tested
in each type of aggregate-based test. For gene centric-coding aggre-
gates, we conducted replication of 21 genes (p-value < 0.05/
21 = 2.38 × 10−03) and for non-coding aggregates we replicated the
findings from 13 genes (p-value < 0.05/13 = 3.85 × 10−03). At Bonferroni
significance, 71% and 62% of genes replicated for at least one coding
and non-coding aggregate set, respectively (Supplementary Data 14,
15). We observed that most of theMendelian lipid genes replicated for
coding aggregates including ABCA1, ABCG5, LCAT, APOB, LDLR, PCSK9,
and LPL. For the non-coding aggregate set, the most significant repli-
cations were observed for the APOB, LDLR (SPC24), and PCSK9 loci,
further corroborating the observation that both coding and noncod-
ing rare variant signals contribute to variation in lipid levels at
these loci.

Region-based associations. We also performed unbiased region-
based rare variant association analyses tiled across the genome with
both static and dynamicwindow sizes.Wefirst evaluated 2.6M regions
statically at 2 kb size and 1 kb window overlap by the sliding window
approach. Statistical significance was assigned at 0.05/(2.6 × 1−06)
=1.88 × 10−08. We identified 28 significantly associated windows with at
least one lipid phenotype. After conditioning on variants individually
associated with the corresponding lipid phenotype, we identified two
regions at LDLR still significantly associatedwith both total cholesterol
and LDL-C, although these regions included both intronic and exonic
variants (Supplementary Data 16). LDLR intron 1, which encodes LDLR-
AS1 (LDLR antisense RNA 1) on the minus strand, had suggestive evi-
dence for association with TC (p-value 3.17 × 10−6) with −2.76mg/dL
reduction in TC. A prior study identified that a common variant
(rs6511720, MAF 0.11) in LDLR intron 1 is associated with increased
LDLR expression in a luciferase assay and reduction in LDL-C33. When
adjusting for rs6511720, the significance improved (p-value 1.43 × 10−8)
with −3.35mg/dL reduction in TC.

For dynamic window scanning of the genome, we implemented
the SCANG method34. The SCANG procedure accounts for multiple
testing by controlling the genome-wide error rate (GWER) at 0.134. In
the dynamic window-based workflow, STAAR-O detected 51 regions
significantly associated with at least one lipid phenotype after con-
ditioning on known variants (Supplementary Data 17). Most of the
regions mapped to known Mendelian lipid genes, including LCAT
(8.7 × 10−13) for HDL-C, and LDLR (2.4 × 10−28, 7.3 × 10−26) and PCSK9
(2.9 × 10−12, 5.5 × 10−12) for LDL-C and TC, respectively. Exon 4
aggregates of LDLR were specifically associated with 20mg/dL
increase in LDL-C. PCSK9 Exon2-Intron2 region spanning
chr1:55043782–55045960 had significantly reduced LDL-C by 6mg/
dL (p-value = 3 × 10−13), and the effect persisted even with only Intron
2 rare variants of PCSK9 (−5 mg/dL, p-value = 2 × 10−8). Strikingly, in
secondary analyses, we found evidence for very large effects for rare
variants in LDLR Introns 2 and 3 (+21mg/dL, p-value = 7 × 10−4) and
LDLR Introns 16 and 17 (+17mg/dL, p-value = 0.02), similar to rare
coding LDLRmutations.While 32 of the significant dynamicwindows
also included exonic regions, there were also several dynamic win-
dows significantly independently associated with lipids not con-
taining exonic regions. For example, four non-coding windows (two
overlapping) at 2p24.1, which harbors the Mendelian APOB gene,
were significantly associated with LDL-C. Intronic non-coding
regions were associated with both LDL-C and TC -associated win-
dows at LPAL2-LPA-SLC22A3; for example, LPAL2 Intron 3 was asso-
ciated with a 3.7 mg/dL increase in TC. Non-coding TC-associated
significant dynamic windows were near TOMM40/APOE. One rare
variant signal observed was at TOMM40 Intron 6, where the ‘poly-T’
variant in this region is on the APOE4 haplotype and influences
expressivity for Alzheimer’s disease age-of-onset35,36. For HDL-C, we
identified significant non-coding windows at an intergenic region
near LPL and CD36 Intron 4. In the generation of the spontaneously
hypertensive rat model, the deletion of intron 4 in CD36 with
resultant CD36 deficiency has been mapped to defective fatty acid
metabolism in this model37. Several regions significant in SCANG
were not even nominally significant in burden association analyses
indicating the likelihood of causal variants with bidirectional effects.

We replicated 28 sliding and 51 dynamic window aggregate sets
using UKB whole genomes, at a Bonferroni-corrected alpha threshold
of 0.05/no. of regions for each approach separately. At Bonferroni
significance, 61% of the regions from each of the sliding window (p-
value < 0.05/28 = 1.79 × 10−03) and dynamic window (p-value < 0.05/
51 = 9.80× 10−04) approaches significantly replicated (Supplementary
Data 16, 17). Multiple regions linked to LDLR, PCSK9, CETP, APOC3, and
ABCA1 were highly significant.

Several gene-centric non-coding aggregates associatedwith lipids
near knownmonogenic lipid genes butmapped to another gene at the
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locus via annotations. Therefore, we performed downstream condi-
tional analyses adjusting the gene-centric non-coding results for rare
coding variants (MAF < 1%) within known lipid monogenic genes
(Supplementary Data 18).When accounting for both common and rare
coding variants at the nearby familial hypercholesterolemia LDLR
gene, SPC24-enhancer DHS was significantly associated with total
cholesterol (p-value = 3.01 × 10−11) and with suggestive evidence for
LDL-C (p-value = 1.57 × 10−06). In a similarly adjusted model, LDLR-
enhancer-DHS showed a strong association with TC (p-value
5.18 × 10−12).When adjusting for known commonvariants aswell as rare
coding variants in PCSK9, both PCSK9-enhancer DHS and PCSK9-
promoter DHS were significantly associated with total cholesterol
(Fig. 4, Supplementary Fig. 8). Through this procedure, CETP UTR
retained significance for its independent association with HDL-C as
well as the putatively novel gene EHD3-promoter DHS association
with TC. However, the non-coding gene-centric APOC3 and APOE
associations were rendered non-significant for HDL-C and TC,
respectively.

Since we cannot rule out the possibility of reduced power for
genome-wide rare variant analyses, we leveraged current knowl-
edge of 22 Mendelian lipid genes for more focused exploratory
analyses14. We validated most genes in rare variant coding analyses.
The genes with the strongest coding signals typically had at least
nominal evidence of gene-centric non-coding rare variant associa-
tions (Supplementary Data 19, Supplementary Fig. 9). When rare
coding variants were introduced into the model, the evidence for
non-coding rare variant associations were largely unchanged. Our
findings expanding the currently described genetic basis for
hypercholesterolemia to include rare non-coding variation at LDLR
and PCSK9 (Fig. 5).

Heritability contributions from rare variants
To understand the contribution of rare variants towards lipid trait
heritability, we examined heritability of lipids by variant allele fre-
quency across three ancestral samples (White, Black, and Hispanic) in
TOPMed.Wecalculated trait heritability usingGreml-LDMS38 following
the steps as implemented by Wainschtein et al.39. Using the TOPMed
WGS, we grouped the variants into 4 MAF bins for the three ancestral
samples. In eachMAF bin, we grouped variants based on the LD scores
into four quartiles and calculated variance contributedby the SNPs (h2)
for each of the lipids using unrelated individuals from each ancestral
group (Supplementary Fig. 10) and set negative estimate to zero. We
observed that rare variants from the lower MAF bins contributed to
trait heritability but have large standard errors (Supplementary
Data 20). We observed an increase in h2 values including WGS variants
relative to estimates obtained from array-genotypes as reported by
Cadby et al.40 for the European samples. We also compared the h2

estimates from all the variants from WGS TOPMed cohort against
array-genotypes captured in MGB Biobank to understand the differ-
ences contributed by these two sequencingmethods. As expected, the
h2 estimates from array-genotypes were reduced corresponding to
missing heritability from the lower MAF bins captured by WGS. The
heritability estimates from array-genotypes were markedly higher for
European samples relative to African and Hispanic sample sets indi-
cating that WGS better captured heritability for the latter groups.

Discussion
Conducting one of the largest population-based WGS association
analyses, we now simultaneously interrogate and establish a common,
rare coding, and rare non-coding variant model for a complex trait.
Utilizing 66,329 diverse individuals with deep-coverage WGS, we

Adjusted for rare-coding variants in gene & Set1

Adjusted on known variants (Set1)

Conditional analysis

APOE Enhancer-DHS

APOE Promoter-CAGE

EHD3 Promoter-DHS

HBB Promoter-CAGE

LDLR Enhancer-DHS

PCSK9 Enhancer-DHS

PCSK9 Promoter-DHS

SPC24 Enhancer-CAGE

SPC24 Enhancer-DHS

TG-APOB1 Promoter-CAGE

-log10(P-values)

Adjusted for rare-coding variants in LDLR & Set1

Fig. 4 | Conditional analysis of coding rare-variants from the same gene and a
near-by gene.Non-coding rare variant sets significantly associated with TC and TG
after the conditional analysis on known variants are shown with additional
adjustment on rare-coding variants. The additional adjustment for rare-coding
variants were carried out for the same gene of the aggregate set and for certain
gene aggregates (SPC24) the conditional analysis was carried out with a nearby
Mendelian gene. After adjusting for rare-coding variants and known variants, EHD3
signal drops minimally, whereas signal from PCSK9 (promoter-DHS, enhancer-
DHS), LDLR-loci (enhancer-DHS, SPC24 enhancer-DHS) enhances significantly.

APOB1, SPC24 (enhancer-CAGE), HBB and APOE signal drops after the conditional
analysis on rare-coding variants. The different colored dots on the plot represents
the conditional STAAR-O p-values when adjusting for known variants (Set1) and
rare-coding variants of the sameornear-by gene. Thep-valueswere calculated from
two-sided aggregate testing preformed using STAAR gene-centric model, where
the model was adjusted for all the covariates; seeMethods. STAAR variant-Set Test
for Association using annotation information, TC total cholesterol, TG triglycer-
ides, CAGE cap analysis of gene expression, DHS DNase hypersensitivity.
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interrogated 428M variants with plasma lipids expanding the allelic
series to rare non-coding variants, often within introns, of Mendelian
lipid genes with prior robust rare coding variant support. Our obser-
vations have important implications for plasma lipids as well as the
genetic basis of complex traits more broadly.

WGS of diverse ancestries enables both allelic and locus hetero-
geneity for complex traits. Population genetic analyses have largely
been enriched for individuals of European descent41. Genetic associa-
tion of plasma lipids using arrays or whole exome sequencing among
Europeans have yielded several important insights regarding plasma
lipids and the causal determinants of CAD4,5,42–44. Similar increasingly
larger studies among non-Europeans have often yielded new genetic
loci and sometimes newgenes, such asPCSK91,15,16,45,46. Suchdifferences
have also led to concerns about the use of polygenic risk scores
gleaned from much larger European GWAS of complex traits for non-
Europeans47. Aided by the availability of WGS data, we identify new
putative loci associated with lipids in non-Europeans. Furthermore,
our study enabled the discovery of several novel alleles at known loci,
with richly distinct allelic heterogeneity across ancestry groups. For
example, HDL-C-raising CETP locus variants linked to CETP gene
expression were only associated with LDL-C reduction among those of
African ancestry. While all pharmacologic CETP inhibitors increase
HDL-C, only those that decrease LDL-C also reduce cardiovascular
disease risk29–32. Given the contribution of genetic differences, clinical
trials with more diverse samples would show insights.

Our study now provides increasingly robust evidence for a rare
non-coding variant model for complex traits. Our rare non-coding
variant associations in both gene-centric and sliding window models
were largely restricted to the introns of Mendelian lipid genes with
prior robust rare coding variant support consistent with biologic
plausibility48. Rare intronic variants, often impacting splicing, have
been previously implicated in afflicted Mendelian families or small
exceptional case series, often through candidate gene approaches49–52.
We discovered one example of a rare non-coding signal without prior

rare coding support—i.e., EHD3 which also nominally replicated in the
independent UKB WGS cohort. We obtained estimates of phenotypic
effect using burden tests. For most regions, even nominal significance
was not detected using burden testing indicating the likelihood of
variants with bidirectional effects further complicating clinical inter-
pretation. When burden signals were detected, observed effects were
typically larger than common non-coding variants and less than rare
coding variants, with the exception of LDLR, consistent with whole
genome mutational constraint models53–55.

The detection of independent rare non-coding variant signals has
remained elusive largely due to limited sample sizes with requisite
WGS and limitations in the interpretation of rare non-coding variation
functional consequence. Previously, we used annotated functional
non-coding sequence in 16,324 TOPMed participants, and found that
rare non-coding gene regions associated with lipid levels, but they
were not independent of individually associated single variants14.
Using STAAR, we observed putative rare non-coding variant associa-
tions for lipids independent of individual variants associated with
lipids in TOPMed.

WGS can improve diagnostic yield beyond the current standard
of next-generation gene panel sequencing for dyslipidemias. A very
small fraction with severe hypercholesterolemia and features con-
sistent with strong genetic predisposition have a familial hypercho-
lesterolemia variant in LDLR, APOB, or PCSK956,57. The presence of
familial hypercholesterolemia variants is independently prognostic
for CAD, beyond lipids, and merits the consideration of more costly
lipid-lowering medications56–59. We now observe that rare LDLR var-
iants in Introns 2, 3, 16, and 17 lead to ~0.5 standarddeviation increase
in LDL-C, approximating effects observed with clinically reported
exonic familial hypercholesterolemia variants in LDLR59. Small stu-
dies have indicated the possibility of rare intronic LDLR variants
causing familial hypercholesterolemia due to altered splicing,
which we now observe in our unbiased population-based WGS
study60,61. A WGS approach to lipid disorders, particularly for familial
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Fig. 5 | Influence of common and rare variants with hypercholesterolemia. In
addition to monogenic contributions from rare variants in Mendelian hypercho-
lesterolemia genes, multiple genome-wide significant LDL-C-associated common
variants also yield a polygenic basis for hypercholesterolemia. In the present work,
we now identify rare non-coding variants in proximity of Mendelian

hypercholesterolemia genes, specifically LDLR and PCSK9, that also contribute to
the genetic basis of hypercholesterolemia. Parts of the figurewere generated using
pictures from ServierMedical Art. ServierMedical Art by Servier is licensed under a
Creative Commons Attribution 3.0 Unported License (https://creativecommons.
org/licenses/by/3.0/). LDL-C low-density lipoprotein cholesterol.
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hypercholesterolemia, will markedly improve the diagnostic yield
beyond existing limited approaches.

Our dynamic window approach may also improve the clinical
curation of exonic variants. Among the data used to curate exonic
variants is the use of in silico functional prediction tools62. Although
evolutionary constraint measures are typically employed, such tools
are largely agnostic to functional domain. As it relates to lipids, dis-
ruptive APOB and PCSK9 exonic variants can lead to strikingly oppos-
ing directions with large effects for LDL-C depending on
locations1,8,63,64. Using SCANG34, wedetect a significant associationwith
large effect for LDLR Exon 4 itself. This observation supports the
pathogenicity of LDLR Exon 4 disruptive variants among patients with
severe hypercholesterolemia. The majority of familial hypercholes-
terolemia variants worldwide occur in Exon 4 of LDLR65–68. Conven-
tional rare coding variant analyses aggregate all exonic variants for a
transcript. Here, we demonstrate an opportunity for exon-level rare
variant association testing.

Our discovery analyses with replication as well as heritability
assessment are consistent with the notion that both rare coding and
non-coding alleles, not well-captured by genome-wide arrays. Fur-
thermore, we observe that heritability gains relative to genome-wide
genotyping arrays are more significant for individuals of European-
ancestry likely indicative of Eurocentric array designs. A tradeoff for
WGS, however, is the greater cost. However, as costs continue to
decrease as well as cheaper WGS implementations via reduced cov-
erage, cost may no longer be a downside.

Our study has important limitations. First, while our study is large
for a WGS study by contemporary standards, it is dwarfed by existing
GWAS datasets limiting power for novel discovery. Nevertheless, by
using WGS in diverse ancestries, we can study hundreds of millions
new variants. Second, prediction of rare non-coding variation con-
sequence to prioritize causal variants remains a challenge thereby
limiting power69. The striking difference for most STAAR and burden
results also highlights bidirectional effects for rarenon-coding variants
within the same region and further challenges for clinical utility. Third,
given the paucity of multi-ancestral WGS datasets with lipids, our
analyses are largely restricted to TOPMed and replication to European
rich UK BiobankWGS data. For single variant associations, we pursued
TOPMed-imputed GWAS datasets but were limited by the lack of
ancestral diversity. As TOPMed is a consortium of multiple different
cohorts, we demonstrate consistencies by cohort. Furthermore, rare
variant non-coding signals were largely restricted to regions with rare
variant coding signals supporting biological plausibility.

In conclusion, using WGS and lipids among 66,329 ancestrally
diverse individuals we expand the catalog of alleles associated with
lipids, including allelic heterogeneity at known loci and locus hetero-
geneity by ancestry. We characterize the common, rare coding, and
rare non-coding variant model for lipids and replicated the results.
Lastly, we now demonstrate a monogenic-equivalent model for rare
LDLR intronic variants predisposing to marked alterations in LDL-C,
currently not recognized in current population or clinical models for
LDL-C.

Methods
Dataset
Contributing studies. The discovery cohort includes the whole gen-
ome sequenced (WGS) data of 66,329 samples from 21 studies of the
Trans-Omics for Precision Medicine (TOPMed) program with blood
lipids available17. The overall goal of TOPMed is to generate and use
trans-omics, including whole genome sequencing, of large numbers of
individuals from diverse ancestral backgrounds with rich phenotypic
data to gain novel insights into heart, lung, blood, and sleep disorders.
The Freeze 8 data includes 140,306 samples out of which
66,329 samples qualifiedwith lipid phenotype. Freeze8 dataset passed
the central quality control protocol implemented by the TOPMed

Informatics Research Core (described below) andwas deposited in the
dbGaP TOPMed Exchange Area.

The studies included in the current dataset, along with their
abbreviations and sample sizes, contains the Old Order Amish
(Amish, n = 1083), Atherosclerosis Risk in Communities study (ARIC,
n = 8016), Mt Sinai BioMe Biobank (BioMe, n = 9848), Coronary
Artery Risk Development in Young Adults (CARDIA, n = 3,056), Cle-
veland Family Study (CFS, n = 579), Cardiovascular Health Study
(CHS, n = 3,456), Diabetes Heart Study (DHS, n = 365), Framingham
Heart Study (FHS, n = 3992), Genetic Studies of Atherosclerosis Risk
(GeneSTAR, n = 1757), Genetic Epidemiology Network of Arterio-
pathy (GENOA, n = 1046), Genetic Epidemiology Network of Salt
Sensitivity (GenSalt, n = 1772), Genetics of Lipid-Lowering Drugs and
Diet Network (GOLDN, n = 926), Hispanic Community Health Study -
Study of Latinos (HCHS_SOL, n = 7714), Hypertension Genetic Epi-
demiology Network and Genetic Epidemiology Network of Arterio-
pathy (HyperGEN, n = 1853), Jackson Heart Study (JHS, n = 2847),
Multi-Ethnic Study of Atherosclerosis (MESA, n = 5290), Massachu-
setts General Hospital Atrial Fibrillation Study (MGH_AF, n = 683),
San Antonio Family Study (SAFS, n = 619), Samoan Adiposity Study
(SAS, n = 1182), Taiwan Study of Hypertension using Rare Variants
(THRV, n = 1982) and Women’s Health Initiative (WHI, n = 8263)
(Please see Supplementary Note 1 for additional details). The multi-
ancestral data set included individuals fromWhite (44%), Black (26%),
Hispanic (21%), Asian (7%), and Samoan (2%) ancestries. Study parti-
cipants granted consent per each study’s Institutional Review Board
(IRB) approved protocol. Secondarily, these data were analyzed
through a protocol approved by the Massachusetts General Hospital
IRB. Supplementary Data 1 details the number of samples across
different studies and ancestral group.

The replication cohorts for single variant GWAS include TOPMed-
imputed genome-wide array data from the Mass General Brigham
(MGB), Penn Medicine Biobanks and UK Biobank (UKB) imputed data
which consist of 25,137, 20,079, and 424,955 samples
respectively25,26,70. The replication cohort for rare variant aggregates
test include UKB whole genome sequenced data which consists of a
subset of 133,360 UKB participants, where we removed unconsented
and related individuals. We curated the MGB Biobank and Penn Med-
icine Biobank phenotype data from the corresponding electronic
health record databases in accordance with corresponding institu-
tional IRB approvals. The UKB data included volunteer residents of the
UK aged 40–69 and were recruited between 2006 and 2010. Consent
was previously obtained from each participant regarding storage of
biological specimens, genetic sequencing, access to all available elec-
tronic health record (EHR)data, and permission to recontact for future
studies. All UKB participants gave written informed consent per UKB
primary protocol. The MGB Biobank consists of 54%, Penn Medicine
Biobank consist of 52% andUK Biobank imputed data consist of 54% of
female samples and average ages were 55.89, 58.35 and 56.55 years,
respectively (Supplementary Data 6).

Phenotypes. The primary outcomes in this study included LDL cho-
lesterol (LDL-C), HDL cholesterol (HDL-C), total cholesterol (TC), and
triglycerides (TG) phenotypes. LDL-C was either directly measured or
calculated by the Friedewald equation when triglycerides were
<400mg/dL. Given the average effect of lipid lowering-medicines,
when lipid-lowering medicines were present, we adjusted the total
cholesterol by dividing by 0.8 and LDL-C by dividing by 0.7, as pre-
viously done14. Triglycerides remained natural log transformed for
analysis. Fasting status was accounted for with an indicator variable.

We harmonized the phenotypes across each cohort18 and inverse
rank normalization of the residuals of each race within each cohort
scaled by the standard deviation of the trait and adjusted for
covariates12. We included covariates such as age, age2, sex, PC1–11,
study-groups as well as Mendelian founder lipid variants APOB
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p.R3527Q and APOC3 p.R19X for the Amish cohort7,8,71. Supplementary
Data 1 provides the distributions of each of the four lipid phenotypes
by cohort, ancestral groups, and gender. For the UK Biobank, we
curated the first instance of the four lipids (data field numbers: HDL-C-
30760; LDL-C-30780; TC-30690; TG-30870). The lipid measurements
from mmol/L were converted to mg/dL by multiplying TG measure-
ments by 88.57 and for other lipids by multiplying by 38.67. We exe-
cuted similar steps of phenotype harmonization and normalization for
the replication cohorts. In addition, we adjusted the MGB Biobank for
study-center and array-type, and Penn Medicine Biobank for ancestry
and BMI in addition to the other common covariates.

Genotypes. Whole genome sequencing of goal >30X coverage was
performed at seven centers (Broad Institute of MIT and Harvard,
Northwest Genomics Center, New York Genome Center, Illumina
Genomic Services, PSOMAGEN [formerlyMacrogen], Baylor College of
Medicine Human Genome Sequencing Center, and McDonnell Gen-
ome Institute [MGI] at Washington University). In most cases, all
samples for a given study within a given Phase were sequenced at the
same center (Supplementary Note 1). The readswere aligned to human
genome build GRCh38 using a common pipeline across all centers
(BWA-MEM).

The TOPMed Informatics Research Core at the University of
Michigan performed joint genotype calling on all samples in Freeze 8.
The variant calling “GotCloud” pipeline (https://github.com/statgen/
topmed_variant_calling) is under continuous development and details
on each step can be accessed through TOPMed website for Freeze817.
The resulting BCF files were split by study and consent group for dis-
tribution to approved dbGaP users. Quality control was performed
centrally by the TOPMed IRC and the TOPMed Data Coordinating
Center (DCC) as previously described17. Briefly, the two sequence
quality criteria used in freeze 8 are: estimated DNA sample con-
tamination below 10%, and 95% ormore of the genome covered to 10×
or greater. The variant filtering in TOPMed Freeze 8 is performed by (1)
first calculating Mendelian consistency scores using known familial
relatedness and duplicates, and (2) training a Support Vector Machine
(SVM) classifier between known variant sites (positive labels) and
Mendelian inconsistent variants. A small number of sex mismatches
were detected as annotated females with low X and high Y chromo-
some depth or annotated males with high X and low Y chromosome
depth. These samples were either excluded from the sample set to be
released on dbGaP or their sample identities were resolved using
information from prior array genotype comparisons and/or pedigree
checks. Details regardingWGSdata acquisition, processing and quality
control vary among the TOPMeddata freezes. Freeze-specificmethods
are described on the TOPMed website (https://www.nhlbiwgs.org/
data-sets) and in documents included in each TOPMed accession
released on dbGaP. The VCF/BCF files were converted to GDS (Geno-
mic Data Structure) format by the DCC and were deposited into the
dbGap TOPMed Exchange Area.

The genetic relationship matrix (GRM) is an N*N matrix of relat-
edness information of the samples included in the study and was
computed centrally using ‘PC-relate’ R package (version: 1.24.0)72.
Using the ‘Genesis’ R package (version:2.20.1)73 we generated sub-
setted GRM for the samples with plasma lipid profiles. The GDS files
with the variants were annotated internally by curating data
from multiple database sources using Functional Annotation of
Variant–Online Resource (FAVOR (http://favor.genohub.org)13. This
study used the resultant aGDS (annotation GDS) files.

The MGB Biobank replication cohort was genotyped using three
different arrays (Multiethnic ExomeGlobal (Meg), Humanmulti-ethnic
array (Mega), and Expanded multi-ethnic genotyping array (Megex)),
and we separately imputed the data using TOPMed imputation server
with default parameters74,75. This study applied the Version-r2 of the
imputation panel, it includes 97,256 reference samples and ~300M

genetic variants. The Illumina Global Screening array was used to
genotype the Penn Medicine Biobank. Penn Medicine Biobank
TOPMed imputation was performed using EAGLE75 and Minimac76

software. For this study, we downloaded variants that passed a min R2

threshold of 0.3. The TOPMed imputation panel is robust, built from
97,256 deeply sequenced human genomes and contains 308,107,085
genetic variants frommulti-ethnic samples. Imputationwasperformed
in independent non-overlapping samples agnostic to phenotypes. The
UKB imputed data was derived using merged UK10K77, 1000 Genomes
phase2 reference panels andwascombined to theHaplotype reference
Consortium78 (HRC) using IMPUTE 4 program (https://jmarchini.org/
software/). The UKB WGS data consist of whole genomes of 150,119
UKB participants with an average coverage of 32.5X. We used joint
called VCFs from GraphTyper, which consist of 710,913,648 variants79.
We used VCFs provided on the UK Biobank and conducted all the
analysis in UKB Research Analysis Platform (UKB RAP).

Single variant association
We performed genome-wide single variant association analyses for
autosomal variants withminor allele frequency (MAF) >0.1% across the
dataset with each of the four lipid phenotypes. We implemented the
SAIGE-QT80 method, which employs fast linear mixed models with
kinship adjustment, in Encore (https://encore.sph.umich.edu/) for
single variant association analyses.We additionally adjusted themodel
for covariates (PC1-PC11, age, sex, age2, and study-groups [cohort-race
subgrouping]).

We conducted single variant association replications for putative
novel variants. After comparing the results with published lipid
GWAS summary statistics, we filtered putative novel GWAS variants
based on a stringent whole genome-wide significant threshold
(alpha = 5 × 10−9)81. Replication was performed in the MGB, Penn
Medicine Biobanks and UK Biobank where linear regression models
were fitted and adjusted for covariates as indicated above. In addition,
we adjusted the MGB Biobank for study recruitment center and array
and PennMedicine Biobank for ancestry and BMI. In theMGBBiobank,
we selected lipid concentrations closest to the sample acquisition time
point and adjusted for statins if prescribed within one year prior to
sample acquisition. In the Penn Biobank, we utilized each participant’s
median lipid concentration for replication; statins prescribed prior to
lipid concentration used were adjusted in the models. In addition, we
carried out meta-analysis using fixed effects model based on inverse-
variance-weighted effect size for the two replication cohorts using
METASOFT82.

Rare variant association test
Weperformed rare variant association (RVA) using theVariant-Set Test
for Association using Annotation infoRmation (STAAR) pipeline13,83.
STAARpipeline is a regression-based framework that permits adjust-
ment of covariates, population structure, and relatedness by fitting
linear and logistic mixed models for quantitative and dichotomous
traits83–85.We chose STAAR to leverage the annotation information and
associated scores that were available for TOPMed Freeze 8 data to
incorporate the analysis of rare non-coding variants from whole gen-
ome sequencing. The method implements genome-wide scanning of
rare variants (MAF <0.01) in gene-centric and region-based workflows.
For each variant set, STAARpipeline calculates a set-based p-value
using the STAAR method, which increases the analysis power by
incorporating multiple in silico variant functional annotation scores
capturing diverse genomic features and biochemical readouts13. We
aggregated rare variants into multiple groups for coding and non-
coding analyses. For the coding region, we defined five different
aggregate masks of rare variants 1) plof (putative loss-of-function),
plof-Ds (putative loss-of-function or disruptive missense), missense,
disruptive-missense, and synonymous. For the non-coding regions, we
used seven rare variant masks: (1) promoter-CAGE (promoter variants
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within Cap Analysis of Gene Expression [CAGE] sites86), (2) promoter-
DHS (promoter variants within DNase hypersensitivity [DHS] sites87),
(3) enhancer-CAGE (enhancerwithinCAGE sites88,89), (4) enhancer-DHS
(enhancer variants within DHS sites87,89), (5) UTR (rare variants in 3′
untranslated region [UTR] and 5′ UTR untranslated region), (6)
upstream, and (7) downstream. Detailed explanations of the regions
defined based on these masks is discussed within STAARpipeline13,83.

In the gene-centric workflows, for both coding (within exonic
boundaries) and non-coding (promoter: +/-3 kb window of transcrip-
tion starting site (TSS), enhancer: GeneHancer predicted regions, UTR
(both 5′ and3′UTR regions)/upstream/downstream:GENCODEVariant
Effect Predictor (VEP) categories) regions, we considered only genes
with at least two rare variants (i.e., 18,445 genes in all 22 autosomes). In
the region-based workflows, we implemented two protocols: (1) a
‘sliding window’ approach, where we aggregated rare variants within
2-kb sliding windows and with 1-kb overlap length, and (2) a ‘dynamic
window’ approach, where we executed SCANG34 method and aggre-
gated dynamically variant-sets between 40–300 variants per set,
where the method systematically scans the whole genome with over-
lapping windows of varying sizes. The STAARpipeline R-package
implements multiple rare-variants aggregate tests including SKAT90,
Burden91 and ACAT92 and integrates them as STAAR-O13,83. We per-
formed gene-centric and region-based rare variant tests using anno-
tated GDS files of TOPMed.

We completed aggregate tests as three-step process. In the first
step, we fitted a null model using glmmkin() function. The null model
was fitted for each of the four lipid phenotypes adjusted for all cov-
ariates and relatedness except the genotype of interest. In the second
step, we ran genome-wide gene-centric and region-based rare-variant
aggregate tests. The third step directed conditional analyses, where
the results were adjusted for previously known significantly lipid-
associated (i.e., p < 5 × 10−8 in external datasets) individual variants
from GWAS Catalog93 and Million Veterans Program (MVP)15 GWAS
summary statistics. To obtain effect estimates of significant aggregate
sets, we associated the cumulative genotypes (binary scores) based on
the variants forming the aggregates and used Glmm.Wald test from
GMMAT R package83(version 1.3.1). For significantly associated
window-based rare variant aggregations, we trimmed the exonic var-
iants and estimated the effects with only non-coding variants.

For the rare variant replication in UKB WGS data, we curated the
rare variant aggregate sets in UKB RAP for the gene-centric coding/
non-coding and region-based significant sets and applied STAAR
workflow as demonstrated by the STAARpipeline (https://github.com/
xihaoli/STAARpipeline) and describe above.

Computational mining of single variant GWAS
Gene-set enrichment using FUMA. We performed enrichment ana-
lysis with single variant GWAS summary stats from the four lipids using
FUMA94 (version 1.3.7) with default parameters and significance at
5 × 10−9. FUMA is an integrated platform which efficiently facilitates
functional mapping and enrichment of GWAS-associated genes using
multiple useful resources. Themethoduses 18different biological data
repositories and tools to process GWAS data. We additionally used
MAGMA95 (version 1.08) gene-based analysis enrichment workflow
within FUMA with the complete GWAS summary data for eQTL based
tissue enrichment. The functionally prioritized genes were visualized
based on their protein-protein interaction networks using the STRING
database96.

CETP and GAS6 gene expression and lipid trait colocalization. We
studied the correlation of LDL-C andHDL-C effects with eQTL effects
at chromosome 16q13, which includes CETP and correlation of LDL-C
and TC with eQTLs at rs7140110 of GAS6. We downloaded GTEx
eQTL build 38 (version8) data for liver, adipose subcutaneous, and
adipose visceral (omentum) tissues from GTEx on 16/APR/202097.

For the CETP variant analysis, we selected eQTLs with nominal sig-
nificance (p-value < 0.05) and utilized the eQTL-gene pairs with the
most significant p-values. Genes with at least 5 eQTLs were selected
for the colocalization analysis. We selected variants with a sugges-
tive significance (p-value <5 × 10−7) for LDL-C or HDL-C effects within
500 kb of the lead locus variant. For the GAS6 variant analysis, we
curated all the GWAS variants within 500 kb of the lead variant with
nominal significance (p-value < 0.05) and matched them to eQTL
data where the transcription starting site of the corresponding gene
is within +/−500 kb. We conducted colocalization analysis using the
coloc.abf() function98 and identified nominally significant (PP.H4 >
1 × 10−03) genes-eQTL pairs. The coloc methodology implements an
efficient statistical framework to identify shared variants from two
association signals through posteriors probabilities. Finally, we used
the colocalized signals and compared the significant genes using
STRING96, a protein-protein interaction database. All the correlation
tests were conducted in R, where we calculated Pearson correlations
between the lipid effect estimates and gene expression effects
(slope) from GTEx.

Phenome wide association analysis. The complex trait information
was curated from UK Biobank resource, where we curated multiple
disease phenotypes for UKB samples into International Classification
of Diseases (ICD)-based phecodes based on phecode map (https://
phewascatalog.org) using the PheWAS R package (version Phe-
WAS_0.99.5-4). We conducted a phenome-wide association analysis
(PheWAS) using a logistic regressionmodel glm() in R.We adjusted the
models for PC1–10, age, age2, sex, and race.

Calculation of heritability estimates from TOPMed WGS data
We calculated heritabilities estimated for the four lipids using
TOPMedWGS data using Greml-LDMS approach39, where we binned
the variants into four MAF bins based on minor allele frequency and
grouped the variants to four LD quartiles based on LD score calcu-
lated by GCTA method99. The four MAF bins used in this study
includes >=0.05, >=0.01 to <0.05, >=0.001 to <0.01 and >=0.0001 to
<0.001. We excluded any variant with MAF < 0.0001 from this ana-
lysis. The hereditary estimation was calculated for three ancestral
groups (African, European, Hispanic) where only unrelated samples
(kinship score < 0.025) were included in the analysis. We excluded
the other two ancestral groups (i.e., Asian and Samoan) from this
analysis due to insufficient sample sizes. In total we included 9640,
21568 and 10631 in African, European and Hispanic ancestries
respectively. For each MAF bin, we implemented certain quality
control (QC) measures using PLINK software20, which includes;
genotype missingness (--geno 0.05), sample missingness (--mind
0.05), Hardy-Weinberg equilibrium (--hwe 10−6) and LD pruned var-
iants (--indep-pairwise 50 5 0.1) as implemented by Wainschtein
et al.39. Next, we implemented Greml-LDMS with LD score region as
200 and GRM cut-off as 0.05 for the four lipid phenotypes. We cal-
culated 20 principal components from the QC passed variants in
each MAF bin and implemented GCTA workflow with --reml-no-
constrain, --reml-no-lrt and --reml-maxit 10,000 parameters to avoid
the no-convergence issues and negative h2 estimates. For comparing
the h2 estimates between variants from WGS data and array-geno-
types, first, we used QC passed WGS variants as mentioned above,
second, we curated the variants from MGB Biobank array data and
intersected them with WGS variants from TOPMed. Next, we calcu-
lated heritability estimates for array-genotype variants and com-
pared with h2 estimates from WGS variants for the three ancestral
groups.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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Data availability
Individual whole-genome sequence data for TOPMed and harmonized
lipids at individual sample level are available through restricted access
via the TOPMed dbGaP Exchange area. Summary level genotype data
from TOPMed are available through the BRAVO browser (https://
bravo.sph.umich.edu/). The UK Biobank (UKB) whole-genome
sequence data can be accessed through UKB Research Analysis Plat-
form (RAP), through the UKB approval system (https://www.
ukbiobank.ac.uk). The Mass General Brigham Biobank (MGBB)
individual-level data are available from https://personalizedmedicine.
partners.org/Biobank/Default.aspx,where the data is available through
institutional review board (IRB) approval, therefore not publicly avail-
able. Individual-level data from Penn Medicine BioBank is not publicly
available due to research participants privacy concerns. The summary
data capturedusingwhole exome sequencing canbe accessed through
PMBB Genome Browser (https://pmbb.med.upenn.edu/allele-
frequency/). The dbGaP accessions for TOPMed cohorts are as fol-
lows: Old Order Amish (Amish) phs000956 and phs00039; Athero-
sclerosis Risk inCommunities study (ARIC)phs001211 andphs000280;
Mt Sinai BioMeBiobank (BioMe) phs001644 and phs000925;Coronary
Artery Risk Development in Young Adults (CARDIA) phs001612 and
phs000285; Cleveland Family Study (CFS) phs000954 and phs000284;
Cardiovascular Health Study (CHS) phs001368 and phs000287; Dia-
betes Heart Study (DHS) phs001412 and phs001012; Framingham
Heart Study (FHS) phs000974 and phs000007; Genetic Studies of
Atherosclerosis Risk (GeneSTAR) phs001218 and phs000375; Genetic
Epidemiology Network of Arteriopathy (GENOA) phs001345 and
phs001238;Genetic Epidemiology Network of Salt Sensitivity (GenSalt)
phs001217 and phs000784;Genetics of Lipid-Lowering Drugs and Diet
Network (GOLDN) phs001359 and phs000741; Hispanic Community
Health Study - Study of Latinos (HCHS_SOL) phs001395 and
phs000810;Hypertension Genetic Epidemiology Network andGenetic
Epidemiology Network of Arteriopathy (HyperGEN) phs001293 and
phs001293; Jackson Heart Study (JHS) phs000964 and phs000286;
Multi-Ethnic Study of Atherosclerosis (MESA) phs001416 and
phs000209; Massachusetts General Hospital Atrial Fibrillation Study
(MGH_AF) phs001062 and phs001001; San Antonio Family Study
(SAFS) phs001215 and phs000462; Samoan Adiposity Study (SAS)
phs000972 and phs000914; Taiwan Study of Hypertension using Rare
Variants (THRV) phs001387 and phs001387;Women’s Health Initiative
(WHI) phs001237 and phs000200.

Code availability
Codes used to implement STAAR workflows are available at https://
github.com/xihaoli/STAAR and https://github.com/xihaoli/STAAR
pipeline. Workflow implemented for whole genome heritability
calculations are available at https://github.com/CNSGenomics/
Heritability_WGS.
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