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Self-organization of an inhomogeneous
memristive hardware for sequence learning

MelikaPayvand 1,4 , FilippoMoro1,2,4, KumikoNomura 3, ThomasDalgaty 2,
Elisa Vianello 2, Yoshifumi Nishi3 & Giacomo Indiveri 1

Learning is a fundamental component of creating intelligent machines. Bio-
logical intelligence orchestrates synaptic and neuronal learning at multiple
time scales to self-organize populations of neurons for solving complex tasks.
Inspired by this, we design and experimentally demonstrate an adaptive
hardware architecture Memristive Self-organizing Spiking Recurrent Neural
Network (MEMSORN). MEMSORN incorporates resistive memory (RRAM) in its
synapses and neurons which configure their state based on Hebbian and
Homeostatic plasticity respectively. For the first time, we derive these plasti-
city rules directly from the statistical measurements of our fabricated RRAM-
based neurons and synapses. These "technologically plausible” learning rules
exploit the intrinsic variability of the devices and improve the accuracy of the
network on a sequence learning task by 30%. Finally, we compare the perfor-
mance of MEMSORN to a fully-randomly-set-up spiking recurrent network on
the same task, showing that self-organization improves the accuracy by more
than 15%. This work demonstrates the importance of the device-circuit-
algorithm co-design approach for implementing brain-inspired computing
hardware.

The hallmark of intelligence is the ability of the brain to adapt and self-
organize itself to sensory information it receives throughout its life-
span. This self-organization ismediatedby a rich set of neuro-cognitive
mechanisms that together contribute to sequence learning and long-
term memory formation1. While learning, a web of memory forms
between large groups of neurons, leading to coherent dynamic activity
patterns that are a function of the sensory information the system
receives.

It has been shown that the combination of brain-inspired learning
rules at different time scales lends themselves to the self-organization
of dynamic networks for behavior control2,3. This type of self-
organization lies in the unsupervised learning realm where the
ground truth is not available for learning. Instead, the memory forms
as a result of clustering information in cell-assemblies2. A cell assembly
can be defined as a group of neurons with strong mutual excitatory
connections.Once a subset of a cell assembly is stimulated, its neurons

tend to be activated as awhole, so that the cell can be considered as an
operational unit of a Spiking Recurrent Neural Network (SRNN).
Applying local learning rules to the recurrent connections forms
independent cell assemblies and makes the SRNN more powerful in
extracting temporal features in the data, compared to a fully-
randomly-connected solution3.

One exampleof sucha concept has been shown in Self-Organizing
Recurrent Network (SORN)3, a recurrent network model of excitatory
and inhibitory binary neurons. It incorporates Hebbian-based synaptic
plasticity at a shorter timescale, along with Homeostatic plasticity at a
longer timescale. It is illustrated that SORN outperforms random
Recurrent Neural Networks (RNNs) without plasticity on sequence
prediction tasks.

Implementing SORN-like networks on a hardware substrate holds
great promise for machine intelligence and autonomous agents,
especially in situations where the agent is in unknown environments4,5.
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Neuromorphic technologies with online learning capabilities can
support the hardware implementation of such self-organizing
SRNNs6,7.

Online learning in electronic devices requires local and dis-
tributed memory elements for storing the learned parameters (e.g.,
the synaptic weights). Resistive Random Access Memory (RRAM) has
recently gained significant attention as a promising memory technol-
ogy for on-line learning8–16. Its non-volatile and multi-state properties
make it a plausible candidate for employment in adaptive hardware.
Importantly, its internal dynamics and intrinsic stochasticity have been
proven beneficial for on-chip learning17–20 which cannot be simply
introduced in a digital implementation6,21. As biological networks rely
on small unreliable components for reliable learning, they can provide
guidance for learning with RRAMdevices. Brain-inspired unsupervised
Hebbian learning strategies have already been extensively explored in
adaptivememristive neuromorphic architectures12,22–24. In theseworks,
the RRAM conductance changes towards a more/less conductive state
based on the correlation/anti-correlation between its pre- and post-
synaptic neurons. However, Hebbian learning by itself cannot robustly
lead to self-organization, as it implements a greedy mechanism which
can lead to unstable dynamics25. To achieve self-organization in
memristive neuromorphic architectures, a multitude of plasticity
mechanismsneed to be atplay together,with properties and dynamics
that match the physics of the underlying adaptive hardware
substrate26,27.

Here we present MEMSORN: a hardware architecture inspired by
SORN with multi-timescale on-chip plasticity rules. MEMSORN is
developed following a device-algorithm co-design approach exploit-
ing the physics of the employed RRAM devices taking advantage of
their variability.

We designed and fabricated the RRAM-based synapse and neu-
rons in 130 nm CMOS technology integrated with HfO2-based RRAM
devices. Based on the statisticalmeasurements from these designs, we
derive the local technologically plausible plasticity mechanisms
(Hebbian and Homeostatic), and apply them in the MEMSORN

architecture. We benchmark the network on a sequence learning task
and show that this approach exploits the intrinsic variability of the
RRAM devices and improves the network’s accuracy as a function of
sequence length, learning rate, and training epochs. As a control
experiment, we apply the same task to the same exact network, only
without learning, whose recurrent connections are randomly set up.
We show that MEMSORN accuracy outperforms the random network
by about 15%. This work represents a fundamental step toward the
design of future neuromorphic intelligence devices and applications.

Results
Inspired by SORN3, we implemented two recurrently-connected net-
works of Leaky Integrate and Fire (LIF) neurons: one randomly con-
nected with fixed weights (static) and one with connections that
change through learning (MEMSORN). Other than this difference, the
twonetworks are identical. Both networks consist of an excitatory pool
of recurrently connected neurons, and an inhibitory pool of neurons
that inhibit the excitatory ones, along with a read-out layer fully con-
nected to the two pools. The inhibitory neurons balance the activity of
excitatory neurons by providing a negative feedback28,29. Inspired by
neuro-anatomy considerations on cortical circuits, we divided the
excitatory and inhibitory population into 80% and 20% of the total
number of neurons, respectively30 (see Methods). Different sub-
populations of neurons are stimulated by different parts of the input
sequence. In both networks, the activities of all the recurrent neurons
are fed to a linear classifier at the readout which learns to distinguish
between different classes of input (see Fig. 1a).

Hardware Implementation
Architecture. To implement the network in hardware, we designed a
crossbar memory architecture (Fig. 1b). Its rows are connected to the
neurons and its columns are connected to either external inputs or to a
recurrent input from another neuron. We employed RRAMs both in
the design of the synapses at the cross-points holding their strength
(Fig. 1b), and in the design of the neurons holding their internal
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Fig. 1 | Spiking Recurrent Neural Network (SRNN) and its hardware imple-
mentation. a The SRNN is composed of a recurrent pool of excitatory neurons (E)
whose connections are formed by random fixed weights (static) or through
learning (MEMSORN). The probability of these connections are defined as pEE. The
network is excited by spatio-temporal inputs activating sub-populations, shown in
blue. Each of the sub-populations encodes a particular part of the sequence. The
excitatory (E, gray) and inhibitory (I, red) populations are connected to each other
with probabilities pIE and pEI. There are no recurrent connections amount the
inhibitory populations. Both populations contribute to the activationof the output,
via the readout connections (green arrow). Each neuron in the readout is assigned
to a different prediction class. b A possible hardware implementation of the SRNN.

Neuron’s recurrent and external input connections are implemented by RRAM
devices assembled in a crossbar array. Rows of the crossbar are connected to the
inputs, while its columns are connected to the neurons. cNeurons are implemented
using a hybrid CMOS/RRAM design. RRAMs hold the parameters of the neurons,
such as gain (T1 −R1, purple), leak (T2 −R2, green), and refractory period (T3 −
R3,red). Neuron integrates part of Iin, defined by the gain, on its membrane capa-
citance, C1, giving rise to a potential Vmem. As soon as Vmem passes the neuron
threshold, Vth1, it generates a pulse at Vout. The output pulse charges C2, whose
voltage rises above Vth2, putting the neuron in the refractory regime, closing
transistor M2, and resetting C1.
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parameters (Fig. 1c); Each synapse contains a transistor in series with
an RRAM (aka 1T-1R), with the free side of the transistor and the RRAM
connecting to the rows and the columns, respectively; Each neuron
implements the LIF model shown in Fig. 1c. This hybrid CMOS/RRAM
neuron design encompasses three RRAMs whose value set the neuron
time constant (shown in green), gain (shown in purple), and refractory
period (shown in red) (see Methods)31. The adaptive nature of RRAM
allows for learning both the synaptic and internal neuron parameters
in an on-chip and online fashion.

As soon as an input spike arrives at a column, a voltage is applied
across the corresponding synaptic RRAMs, giving rise to a current,
through Ohm’s law. All currents are summed at the rows and are
integrated by the corresponding neurons18. The input to the neuron is
multiplied by the gain (R1/R2) and is integrated on the membrane
capacitanceC1 with a time constant determined by R2C1. As soon as the
voltage on C1 passes the threshold Vth1, the neuron generates a voltage
spike, and sends it both to Vout and to the feedback path. In the feed-
back path, the neuron’s spike is integrated on C2, and the resulting
voltage has a time constant of R3C2. As soon as this voltage passes the
threshold Vth2, the membrane capacitance C2 is reset, and the neuron
awaits the next input current.

Synapse and neuron characteristics. We fabricated and measured a
4 kb synaptic crossbar array along with the hybrid CMOS/RRAM neu-
rons, using 130 nm CMOS technology integrated with HfO2-
based RRAMs.

In the synapses, we can induce a change by applying a voltage
across the RRAM devices. The device state changes from a High-
Resistive State (HRS) to a Low-Resistive State (LRS) (SET operation) by
applying a positive voltage between the positive and negative term-
inals of the 1T-1R, while applying a voltage to the gate of the transistor,
Vgate, to control the current passing through it during programming.

Alternatively, the device switches from LRS to HRS, by applying a
negative voltage across the 1T-1R (RESET operation). Both SET and
RESEToperations produce changes in a stochasticmanner. This results
in a distribution over the resistance values given a programming
condition31–33. We define a threshold at 50 kΩ for the resistance mark-
ing the border between HRS and LRS, and characterize the SET and
RESET properties; Fig. 2a shows the probability of the SET operation as
a function of the voltage applied to the 1T-1R cell, which follows a
sigmoidal function. TheRESEToperation is characterized in Fig. 2b as a
function of the voltage applied across the devices, with different gate
voltages. The distribution of HRS values for a RESET voltages of 2 V is
shown in Fig. 2c. The distribution fits well with a log-normal function33.

In the neurons, wemeasured the output firing pattern in response
to a spike train as is shown in Fig. 2d and e. Setting R2 with lower values
increases (Fig. 2d), and with higher values decreases (Fig. 2e, f) the
neuron’s time constant, and thus changes the likelihood of the neuron
firing. In sensory-motor applications, matching the dynamics of sen-
sory signals to those of the electronic circuits in the processing hard-
ware can minimize the system power consumption and maximize the
Signal to Noise Ratio (SNR)4. Therefore, to obtain neuron’s time con-
stants of millisecond range, on the order of sensory signals, while
limiting the size of the capacitors (to minimize area usage), the neu-
ron’s RRAMdevices should be operated in their HRS ranging fromMΩ
to GΩ (Fig. 1b).

Technologically-plausible algorithms
With the technologically plausible algorithm design, we aim to opti-
mize the hardware implementation of algorithms by taking the hard-
ware physics into account while developing the algorithm. Figure 3
depicts the algorithms for the two static and MEMSORN networks
which are derived based on the synapse and neuron measurements
of Fig. 2.

Fig. 2 | Measurements from our fabricated synapse and neurons of Fig. 1 in
130nm technology integratedwith HfO2-based RRAM. a–c Experimental results
from the fabricated 4 kb synapse array, each device is programmed 100 times.
a SET characteristics; The box plot represents the SET probability as a function of
the SET voltage, over theRRAMpopulation; the greenhorizontal bar represents the
median value, the box lower andupper limits represent the ± 25%and ± 75%quartile
respectively, and the whiskers show the ± 95% quartile. The dashed green line
connecting the median values shows the emerging sigmoidal behavior of the SET
probability over the SET voltage. b RESET characteristics; HRS measurements as a
function of the RESET voltage applied across the devices (VRESET), for different gate

voltages applied to the transistor (T) (Vgate). c The HRS distribution at VRESET = 2.0V
and Vgate= 4V which fits well to a log-normal distribution, and we used in our
neuronmodel.d, e Experimental results from the fabricated neuron. The neuron is
excitedbya trainof spikeswith a pulsewidth of 1 μs and amagnitudeof 450mV and
a frequency of 1 kHz (green). Neuron membrane potential is measured (red).
Changing the state of R1 and R2 devices changes the gain and time constant of the
neuron.d, eNeuron’s time constant and thus its firing rate changes by changing R2.
Gain is set so as tomake the neuron integrate for many pulses before it fires. In (d),
R2 is set to 50MΩ, and in (e) it is set to 150MΩ, increasing the timeconstant,making
the neuron fire more often.
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Static network. The algorithm for the static network (i.e., with fixed
random weights) is depicted in Fig. 3b, c. The synapse and neuron
behavior isfixed apriori; the synaptic connections are set randomly, by
comparing the probability of connections in different populations to a
random number, and if higher/lower, induce a SET/RESET to the
devices (Fig. 3b, See Methods for details); the neuron parameters are
sampled from the HRS log-normal Probability Distribution Function
(PDF) derived from the measurements of Fig. 2c, equivalent to apply-
ing VRESET = 2V to the devices.

MEMSORN. The MEMSORN plastic network self-organizes to form
multiple cell-assemblies. This is done by changing the RRAMs in the
synapse and neuron parameters through learning. The excitatory
synapses undergo a Hebbian-type plasticity, i.e., Spike Driven Synaptic
Plasticity (SDSP), which changes the synaptic RRAM based on the
correlation between the input (pre-synaptic) and output (post-synap-
tic) neural activities7,34. In addition, the neuron parameters undergo
Homeostatic plasticity, i.e., Intrinsic Plasticity (IP), which acts as a
regulatory mechanism to keep the neuron’s firing activity within the
desired range35. Both forms of plasticity are well suited for the imple-
mentation on CMOS and RRAM hardware.

Following the SDSP rule, the RRAM resistance of a synapse is
decreased/increased, on the onset of its pre-synaptic spike, if the
membrane potential of the post-synaptic neuron is higher/lower than
Vθ threshold (Fig. 3d).

On the other hand, IP changes the neuron’s RRAM to maintain its
output firing rate, fn, close to a target firing frequency, fT, within a
toleranceof σ (Fig. 3e). If fn lies outsideof theseboundaries, theRRAMs
in their HRS areupdated accordingly. For simplicity,wehave chosen to
only update R2 which simultaneously changes both the gain and the

time constant of the neuron. Changing the gain will additionally
implement synaptic scaling which is another homeostatic plasticity
mechanism, used in conjunction with IP in the original SORN paper3.
To tune R2 in HRS, it is first SET and then RESET. SET is done prob-
abilistically proportional to the difference between fn and fT (δ). Once
SET, The RESET operation with a fixed VRESET effectively samples a new
HRS value froma log-normal PDF. Therefore, neuronswith a frequency
deviating significantly from the target will change their leak and gain
by acting on R2, to adapt their firing rate. Note that since the amplitude
of VRESET is fixed, the sampled HRS value is drawn from a single dis-
tribution, which makes the search for the correct resistance values
non-guided. This reduces circuitry overhead with respect to an alter-
native algorithm in which the RESET operation is performed by
adapting the VRESET to the deviation of the fn from fT (i.e.
VRESET∝ ∣fn − fT∣)35 (see Methods).

Benchmark
To validate our approach, we used the same benchmark proposed in
the original SORN paper3: a sequence learning task based on counting
for predicting the next sequence at the output. The network receives a
shuffled alternation of two input sequences of length n + 2 of 6 pos-
sible characters in [A,B,C,D, E, F]. In both sequences, either char-
acters, B or E are repeated n times (Fig. 4a). Examples of these
sequences are S1,n: [A, B1,B2, . . . , Bn,C] and S2,n: [D, E1, E2, . . . , En, F]. The
goal is to learn to predict the next character given all the previously-
presented ones, i.e Pðnext � characteri∣

Pi�1
j shown� characterjÞ.

After fixing the length of the sequence, the network has to learn to
count the repetition of characters B and E by means of a reliable
dynamical state.
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Fig. 3 | Technologically plausible algorithms for static and MEMSORN net-
works. a A Spiking Recurrent Neural Network (SRNN) with excitatory connections.
b, c Synapse and neuron parameters for the static network. Both values are fixed
after an initialization process. b Synaptic parameters are initialized based on
comparing the probability of different connections with a random number.
c Neuronal parameters are initialized by resetting the memristors R1, R2 and R3
which is equivalent to sampling from a log-normal distribution around a mean
resistance that is a function of the reset voltage. d, e Synaptic and neuron para-
meters for MEMSORN network. Both parameters are learned throughout the input

sequence presentation. d Synaptic parameters are learned based on the Hebbian-
based Spike Dependent Synaptic Plasticity (SDSP) learning rule. At the time of the
pre-synaptic event (tpre), weight (conductance) of the synapses (RRAMs) are
increased/decreased, if the membrane potential of the post-synaptic neuron
(Vmem,post) is higher/lower than Vθ. e Neuron parameters are changed based on the
IP algorithm which tries to keep the firing rate of each neuron ( < f > ) in a healthy
regime (fT ± σ/2). If the neuron’s firing rate goes beyond this regime, neurons’ R2 is
first SET probabilistically and then it is RESET. The RESET process samples a new
value for R2 from the log-normal distribution of HRS values.
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We applied the counting task to the static and MEMSORN net-
works and compared their performance. The network is asked to dif-
ferentiate between n = 10 repetitions of the same symbol, presented in
the middle of the two sequences. Each symbol’s position in the two
sequences is assigned to one output neuron in the readout whose
activity represents the network’s prediction of the next symbol. Fig. 4b
shows the confusionmatrix, indicating the predicted, compared to the
expected output.

The static network is capable of separating only the first repeti-
tions, whereas the MEMSORN network can successfully resolve all the
repetitions, forming a diagonal in the confusion matrix, matching the
output to the target. Since the two sequences are randomly alternated,
the output of the network under the presentation of the last symbol in
the sequence cannot be predicted. This applies to outputs 0, 13, and 25
in Fig. 4b. The internal dynamics in the static network saturate and
lands on an attractor state from which no further information can be
extracted. The MEMSORN network, instead, is capable of forming
more complex dynamics that allow for fading memory to form and
separate the repetitions in the input sequence. Figure 4c illustrates the
histogram of the accuracy calculated over 1000 networks initialized
differently for both networks on the counting task with the sequence
length of n = 10. As shown, the mean accuracy of the MEMSORN net-
work is increased compared to the static network. (Mean accuracy of
0.756 compared to 0.596 respectively). The standard deviation is due
to the random initialization of the connections and the variability of
RRAMs, implementing both the weights of the connections and the
parameters of the neurons (See Methods.) Taking into account the
hardware constraints, our statistical analysis shows that by enabling
learning inside the recurrent network, there is a higher probability of
obtaining a more accurate network; i.e. the number of learned net-
works that can correctly predict the next letter with an accuracy of
more than 0.8, is four times that of the static network.

Analysis on the effect of variability in MEMSORN
RRAM devices undergo cycle-to-cycle and device-to-device variability
as was confirmed with our measurements in Fig. 2. To understand the
effect of variability in MEMSORN, we performed simulations on four
cases: (i) No device variability and IP operation off; (ii) Variability in
devices receiving the SDSP rule, and IP operation off; (iii) Variability in
devices receiving the SDSP, and IP operation onwithout variability; (iv)

Variability in both SDSP and IP learning with standard deviation for the
IP devices set as 0.1, taken from our measurements. It is worth noting
that in condition (iii), since there is no variability in IP operation, the
same initial value is always applied when IP is acting.

Figure 5 shows the network performance under these four con-
ditions. The figure demonstrates the positive effect of the regularizing
IP mechanism, and how MEMSORN network exploits the different
sources of variability of the RRAM devices to increase its accuracy on
the sequence learning task; Figure 5a plots the histograms of accuracy
for every 100 samples of learning in the MEMSORN network for all the
variability conditions. The histograms show that introducing IP
operation, and any source of variability shifts themeanof the accuracy
of the network to higher values; Figure 5b illustrates the accuracy as a
function of the sequence length. As the sequence length increases, the
network needs to remember increasingly longer sequenceswhich tests
its fading memory36. Thus, the accuracy of the network drops with
longer sequences. It is worth noting that as the sequence length
increases, the number of output neurons increases, and thus the
baseline chance level accuracy reduces. Figure 5b confirms that the
networks including IP and added source of variability outperform
other conditions. Figure 5c depicts the network accuracy as a function
of the SDSP learning rate (See Methods).

Despite that a large learning rate results in a consistent drop in
accuracy, introducing variability suppresses accuracy degradation.
This suggests that the noise introduced by the variability of the RRAM
devices is beneficial for the stability of the network making it less
sensitive to hyper-parameters and low bit resolution. This is because
through learning with noise, the algorithm finds a set of parameters
that are more insensitive to noise. Figure 5d shows the accuracy evo-
lution of the MEMSORN network during learning epochs. Each epoch
consists of presenting one of the two sequences which are presented
to the network with a random order. Condition (i) without any varia-
bility and IP operation (black) leads to more stable learning dynamics,
but also lower performance. Instead, adding noise to SDSP or adding
the IP operation causes some instability in the network, but also allows
for much higher overall accuracy. Finally, combining the variability in
SDSP with that of IP leads to the best performance compared to other
conditions.

The positive effect of variability is because a distribution of
parameters due to variability provides a larger space of parameters for

Fig. 4 | Static and MEMSORN performance comparison. a Sequence learning
task. Two input sequences of S1n =ABB. . .BC and S2n =DEE. . . EF, with Bs and Es
presented n times, are fed to the network. Each letter represents part of the
sequence. The task is to predict the next symbol in the sequence, forwhich it needs
to keep the count of the presented B and E symbols. b Confusion matrix for the
static (red) and MEMSORN (green) networks. The static network is capable of
separating only the first part of the sequence, whereas the MEMSORN network can
successfully predict the next letter in the sequence resulting in a diagonal confu-
sion matrix. Understandably, the performance drops to chance level between the

two sequences, since input symbols are equiprobable and their temporal succes-
sion carries no structure. c Histogram of the accuracy in the static (red) and
MEMSORN (green) networks tested on 1000 different networks, for the counting
task with sequence length (n) of 10. The mean of the accuracy distribution in
MEMSORN network increases compared to the static network (mean of 0.756 for
MEMSORN network compared to 0.596 in the static network). Also, the number of
low-accuracy networks in MEMSORN is greatly reduced compared to the static
network (about four times).
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search during learning which helps the network to explore and reach a
better set of parameters for the task. We discuss this in more detail in
the Discussion section.

Clustering analysis
To understand the dynamics of the static andMEMSORNnetworks, we
performed clustering analysis on the firing activities of the neurons
inside the excitatory pool. Figure 6 shows the result of the clustering
analysis. First, we reduced the dimensionality of the neural activity
using Principle Component Analysis (PCA) (see Methods). Figure 6a
plots the PCAof both network activities in response to 50 sequences of
length 10. Temporally adjacent letters in the sequence line up next to
each other in the principal component space. This indicates the higher
structural richness in MEMSORN compared to the static network.
Moreover, this helps with the classification accuracy in the readout
layer, since the sequences becomemore linearly separable as indicated
by the PCA plot. Figure 6b plots the histogram of explained variance in
the firing rate of the random and MEMSORN networks with respect to
the first 20 principal components. The explained variance is about 11%
more in MEMSORN network compared to the random network sug-
gesting more orderly dynamics in MEMSORN network.

Additionally, we performed a hierarchical clustering analysis on
the activity of the SRNN which reveals the formed cell assemblies (see
Methods). The result is indicated by the dendrogram in Fig. 6c,

showing an increase in the number of uncorrelated clusters in MEM-
SORN network compared to the random network. This is the result of
more structure emerging from the learning in the recurrent network
which is in agreement with the unsupervisedmemory formation in cell
assemblies as we argued in the introduction.

Discussion
Following a device-algorithm co-design approach, we presented
MEMSORN, a hardware architecture that uses its intrinsic properties to
self-organize and learn a sequence prediction task. We used a hybrid
CMOS/RRAM technology as our hardware substrate, and presented
experimental results from the implementation of neurons and synap-
ses in this technology.We then used these statistical measurements to
derive "technologically plausible” local learning ruleswhich give rise to
self-organization in an SRNN. The self-organization proved to improve
the accuracy of the SRNN compared to a fully random network, by
more than 15% on a sequence prediction task.

To further investigate the capacity of the network to retain the
memory of the past stimuli within its activity, we performed the
RANDx4 task proposed in37 (Methods). Four symbols are randomly
presented to the network at different time lags, and the network is to
classify the type of signal and its time of presentation at the readout.
We have compared the accuracy of the network in four cases with no
plasticity, SDSP and IP plasticity applied separately and applied

Fig. 5 | Performance of our proposed self-organized network (MEMSORN)
under four different cases of variability in the device models: (i) No variability
indevices, and IPoperation is off (black), (ii)Variability indevices receiving the
SDSP, and IP operation is off (red), (iii) Variability in devices receiving the
SDSP, and IP operation is on without variability (Blue), and (iv) Variability in
both SDSP and IP learningwith standard deviation for the IP devices set to 0.1,
taken fromourmeasurements (green). aHistogramof accuracy for 500networks
confirms the higher accuracy for the networks that include variability and IP
operation compared to the other conditions.bAccuracyof theMEMSORNnetwork
on the counting task with respect to the sequence length. As the sequence length
increases, the network needs to remember increasingly more input symbols in the

form of a dynamic state of the network, and thus the accuracy drops. Introducing
variability, calibrated onmeasureddata, helps the accuracyof the network as all the
cases with variability outperform the case without any variability. c The average
accuracy of the MEMSORN network (for every 100 samples between 1000 to 5000
training epochs) on the counting task with a length of 10 as a function of different
learning rates. Introducing variability makes the network robust to hyper-
parameter change. d Learning evolution of the network accuracy on the counting
task with a sequence length of 10 for the four variability cases. Condition (i) has
much less noise but has an overall lower accuracy (less than 40%) than the cases
where variability and IP are introduced.
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together. The results for this task are shown in Fig. S1. As reported in37,
the accuracy of the network drops with increasing time lags. However,
the combination of the two plasticity rules outperforms the other
cases. The SDSP reinforces themutual information of the input and the
SRNN, making it harder to retrieve information from the past. IP
spreads the activation of the recurrent neurons more evenly and
improves the memory capacity, despite making the activity response
too homogeneous. The combination of IP and SDSP results in the best
performance, as the associative (SDSP) and homeostatic (IP) forces in
the SRNN are perfectly balanced. The PCA of Fig. S2 also reflects these
results showing amore cyclic trajectory inMEMSORNcompared to the
static network. The cyclic nature helps to keep the information in the
system in the form of short-term memory.

The unique property of RRAM, compared to other technologies,
which was highlighted in this work is its intrinsic variability. The
variability provides a distribution of analog values which equips the
learning with a large parameter space. We showed that this variability
improved the sequence learning by 30% for different sequence
lengths. Moreover, introducing the variability while learning, de-
sensitized the network to the hyper-parameters, specifically the
learning rate.

The positive effect of variability can be explained through the
interplay between the SDSP and IP, thoroughly investigated in ref. 37.
SDSP learns the structure of the spatio-temporal input transition, by
increasing the correlation of the network activity with the input
sequence, thus increasing their mutual information. On the other
hand, IP increases the neural code space, by ensuring all neurons are
part of the computation, thus increasing the redundancy and entropy
of the network. Together, synaptic and homeostatic plasticity

cooperate to generate stimulus-sensitive attractors and redundant
representations around them. These stimulus-sensitive components
are pulled apart by the stimulus-insensitive dynamics, leading to the
preservation of the input structure, while separating the neural
representations. Adding noise to this system through device variability
increases the network state entropy, which helps escape the input-
sensitive attractors. This leads to higher accuracy for systems with
larger noise as a function of sequence length, learning rate, or epochs
as we showed in Fig. 5. Specifically, the device-to-device variability is
responsible for decreasing the correlation between the intrinsic
attractors in the recurrent network, resulting in increasing the neural
code space. On the other hand, the cycle-to-cycle variability of the
devices, used in the design of the neurons, provides a search space for
finding the optimal neural parameter in order to keep the neural
activity in the desired range. This ensures the participation of all the
neurons in the computation, further increasing the neural code space.
Both sources of variability in the RRAM are present for ’free’. Imple-
menting such randomness using digital circuitry requires bulky cir-
cuits such asLinear-feedback shift registers, whichuse and calculate an
algorithm to generate pseudo-random numbers.

Therefore, our approach of "technological plausibility” paves the
way for building systems that are potentiallymore area and also power
efficient, as their physical structure gives rise to their function. A
technologically-plausible co-design approach closes the gap between
the ideas inspired by neuroscience and their applications, algorithms,
circuits, and devices. Taking the physics of the devices into account,
we designed algorithms that match and exploit them. In our previous
works, we have designed CMOS circuits that implement both Hebbian
(SDSP) and Homeostatic (IP) plasticity algorithms, shown in Fig. 3d, e.

Fig. 6 | Clustering analysis on the spiking activity of thenetworks for static and
MEMSORN architectures on the counting task with a sequence length of 10.
a Principal Component Analysis (PCA) was applied to the firing rate of the two
networks in response to 50 sequences of length 10 (600 letters). Each color is
assigned to a different position of the letter in the sequence with similar colors
encoding the temporal adjacency of the letters in the sequence. In the Principal
Component (PC) space, the different input conditions form random clusters in the
static network that are not well separated. On the other hand, in MEMSORN net-
work compact clusters are formed which are well separated for different input

conditions. b Histogram of the captured variance by the first 20 PCs in the static
and MEMSORN networks. The explained variance amounts to 79% for the static
network, compared to 87% in theMEMSORN, suggestingmore orderly dynamics in
MEMSORN network. c Dendrogram of static and MEMSORN networks showing the
hierarchical relationship between clusters of neurons. The normalizedheight of the
dendrogram indicates the distance between the clusters and the links indicate the
order inwhich the clusters are joined. For any givendistance, the number of branch
numbers forMEMSORN are larger than those for the static network, indicating that
the clusters in MEMSORN are better structured.
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Synaptic plasticity, i.e., SDSP, circuits were implemented by reading
the membrane potential of the post-synaptic neuron on the arrival of
the pre-synaptic spike and increasing/decreasing the conductance of
the synapse if the sampled value is higher/lower than a reference
value7. Neuronal plasticity, IP, circuits were implemented by compar-
ing the running average of the neuron’s spiking activity to two
thresholds which determine the desired range of activity of the
neuron31,35.

These previous works demonstrate the feasibility of the imple-
mentation of both learning algorithms using CMOS circuits. In this
work, we are including silicon results from our synapse and hybrid
neuron implementation, along with system-level evaluation, using
simulations that take into account the measurements of the circuit
behavior.

Energy and latency estimations
The MEMSORN hardware reaches convergence for the sequence
learning task within the presentation of 1000 learning samples
(Fig. 5d), giving rise to ≈ 13min for learning the task. The power con-
sumption of the MEMSORN’s recurrent network during this task con-
sists of three components of static power consumption, dynamic
power as a result of the firing of the neurons, and dynamic power due
to changing the state of the RRAM devices for learning. The static
power consumption of the recurrent layer, including the 1T-1R array
and the 200 neurons is 0.2 μW. The dynamic power due to the firing of
the neurons is about 0.8 μW, and the dynamic power of changing the
state of the RRAMs due to IP and SDSP learning is 0.2 μW (methods).
For the duration of the learning, this gives rise to 936 μJ of energy
consumption. These values are well within the energy budget and real-
time online learning requirement of edge devices38.

Comparison to other neuromorphic self-organizing networks
Unsupervised self-organizing networks have been previously studied
on different hardware substrates, such as Self-organizing Maps (SOM)
on Field Programmable Gate Array (FPGA)39, and reservoir computing
using nano-wire networks40,41.

The FPGA substratewas used to implement SOMs formulti-modal
sensory processing39. Hebbian learning was employed to create the
SOM in eachmap, by calculating the weight update based on the input
signal. The difference between this implementation and MEMSORN is
two-fold; (i) the learning in the SOM network is offline and is learned
based on batches of data that are given to the networkduring learning.
In contrast, MEMSORN learns in a fully online fashion, as the input is
being streamed, making it suitable for edge computing applications,
embedded next to the sensors. (ii) The SOM weight update is calcu-
lated by digital hardware, whereas the physics of the MEMSORN sub-
strate naturally gives rise to the weight update and structural changes
in the network.

The nano-wire networks are more similar to MEMSORN as they
use the physics of randomly dispersed nano-wires and bottom-up self-
assembly to create critical recurrent dynamics. The dense unorganized
network of these nanowires gives rise to non-linear dynamics creating
a reservoir network. Therefore, the nano-wire networks are similar to
the static SRNN in ourwork. Although the principle of creating random
connectivity is different, the concept of using randomness to project
the input to a high-dimensional space is similar to our static network.
As we have demonstrated, MEMSORN with combined plasticity rules
using different time scales outperforms the static reservoir framework.

These self-organizing networks are applicable in scenarios where
no global teaching signal is available for learning. In the presence of a
teaching signal, a supervised learning framework can be used. For
online and on-chip learning systems using events, this can be done
through approximationsofBackpropagationThroughTime42–44, which
can be implemented both on digital45, or in-memory memristive neu-
romorphic hardware46. However, in the absence of supervision,

MEMSORN-like hardware changes its structure and self-organizes to
cluster the input signal. MEMSORN implementation provides an
architecture where the algorithm is run using the physics of the sub-
strate to adapt to the input stream at the edge.

Future perspective
MEMSORN takes advantage of the internal properties and statistics of
emerging memory technologies for learning. Specifically, the wide
distributions of resistive memory in the high-resistive state give rise to
a random search algorithm that implements IP. This unguided search
can be improved by implementing probabilistic techniques such as
Simulated Annealing which reduces the temperature (in this case
variability) of the search as the network is converging. This can be
achieved by reducing the SET voltage and thus SET probability (IP in
Fig. 3d) and thus guiding the search. Moreover, stop-learning criteria
can also be added to the SDSP rule as it is done in47. Both of these
schemes will further reduce the number of device updates and hence
energy consumption. We envision a future where intelligent chips
enabled by MEMSORN-like designs receive sensory information from
the environment and self-organize themselves to interact smoothly
with it. This work is a step in that direction.

Methods
Fabrication/integration
The circuits of Fig. 1 have been taped-out in 130 nm technology at CEA-
Leti, in a 200mm production line. The Front End of the Line, up to
metal 4, has been realized by ST-Microelectronics, while from Metal 5
upwards, including the deposition of the composites for RRAM devi-
ces, the process has been completed by CEA Leti. RRAM devices are
composed of a 5 nm thickHfO2 layer sandwichedby two5 nm thickTiN
electrodes, forming an TiN/HfO2/Ti/TiN stack. Each device is accessed
by a transistor composing the 1T-1R unit cell. The size of the access
transistor is 650 nm in width. 1T-1R cells are integrated with CMOS-
based circuits by stacking the RRAM cells on the higher metal layers.

Device Measurements
For programming and reading the RRAM devices, Source Measure
Units (SMU)s from the 4200 SCS Keithley machine were used. We
performed statistical analysis from the switching characteristics of a
4 kb array of HfO2-based RRAM.

A SET/RESET operation is performed by applying a positive/
negative pulse across the device which forms/disrupts a conductive
filament in the memory cell, thus decreasing/increasing its resistance.
When the filament is formed, the cell is in the LRS, otherwise the cell is
is the HRS. For a SET operation, the bottom of the 1T1R structure
(columns in Fig. 1b) is conventionally left at ground level, and a positive
voltage is applied to the 1T1R top electrode (rows in Fig. 1b). The
reverse is applied in the RESET operation. Typical values for the SET
operation are Vgate in [0.9− 1.3]V, while the Vtop peak voltage is nor-
mally at 2.0V. For the RESET operation, the gate voltage is instead in
the [2.75, 3.25]V range,while the bottomelectrode is reaching a peakat
3.0 V. The reading operation is performed by limiting the Vtop voltage
to 0.3V, a value that avoids read disturbances, while opening the gate
voltage at 4.5V.

SET and RESET statistics. To ensure the resistive switching is deter-
ministic, i.e., the device definitely makes the transition from HRS to
LRS, a strong VSET is usually applied across the device. If the pro-
gramming voltage is lowered, a sub-threshold SET is obtained, which
makes the switching operation stochastic. We analyzed the sub-
threshold SET operation on a population of 4096 1 transistor- 1 RRAM
(1T-1R) devices by applying a different range of VSET voltages for 100
cycles, while setting the gate of the transistor to 1.7V. To perform a
RESET operation, an opposite voltage VRESET with respect to the SET
operation is applied and the gate is biased with Vgate. HRS of the
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devices after theRESEToperation for differentVRESET andgate voltages
Vgatewere recordedover 100 cycles. Basedon thesemeasurements, we
derived the statistical model for the stochastic SET and RESET which
were used in our simulations.

Technologically plausible self-organizing network
Static network. The static fully-randomnetwork is similar to theLiquid
State Machine (LSM)48 where two populations of excitatory (E) and
inhibitory (I) neurons are randomly connected. The excitatory/inhibi-
tory neurons increase/decrease the post-synaptic potential of the
neurons to which they are connected. The SRNN neuron population is
divided into 80% of excitatory and 20% of inhibitory neurons48. An
input layer encodes the input information by means of Poisson spike
trains. The choice of a noisy input is common practice for Spiking
Neural Networks (SNNs) and is justified by the noise-resilient nature of
SNNs and stimulation of plasticity mechanisms. The input is randomly
projected to the SRNN with a probability of pin, set at 0.2 in this work.
The excitatory population connects to itself with a probability of pEE,
and connects to the inhibitory population with the probability pEI. The
inhibitory population connects to the excitatory population with
probability pEI. The SRNN represents a complex dynamical system
governed by many parameters. In detail, neurons have three para-
meters (gain, time-constant and threshold), and synapses have 2
parameters (time constant and weight). Table 1 shows the parameter
values for the initialization of the SRNN. The output from each of the
neurons in the excitatory pool is projected to the output layer, con-
stituted of neurons that encode the output of the network.

MEMSORN. MEMSORN is equipped with the two technologically
plausible learning rules of SDSP and IP. These local learning rules are
only applied to the excitatory neurons and EE connections.

Modified SDSP. The measure of correlation in SDSP is the difference
between the membrane potential of the post-synaptic neuron Vmem to
a defined threshold, Vθ at the time of the pre-synaptic spike tpre. The
weight update on tpre is defined as:

wEE =
wEE + LR, if Vmem ≥Vθ

wEE � LR, otherwise

�

WherewEE is the weight between the excitatory neurons, and LR is
the learning rate. The SDSP rule is thus controlled by two parameters,
the thresholds applied to the post-synaptic neuronmembrane voltage
(Vθ), and the synaptic weight increment (LR). These values are repor-
ted in table 1.

Intrinsic plasticity. In SRNNs equipped with plasticity mechanisms,
Hebbian synaptic plasticity is thought to create clusters of tightly-
bonded neurons, known as attractors. In these networks, IP controls
the growth of such attractors and in turn limits the dynamics of neural
microcircuits. This effectively improves the information transfer
across the SRNN and eventually to the output.

Algorithm 1. IP algorithm

Technologically-Plausible IP. Algorithm 1 describes the technologi-
cally plausible IP algorithm to change the conductance of RRAMs in
order to keep the firing rate in a healthy regime. A target firing fre-
quency fT with an error margin σ is defined as the desired range, and
the neuron measures its firing rate fn with respect to the boundaries
fT ± σ/2. If fnmovesoutsideof theseboundaries, the valueofHRSneeds
to be updated. To do so, the RRAM is SET with a subthreshold SET
voltage which is proportional to the difference between the target and
neuron activity. The higher the difference, the higher the SET voltage
and thus the higher the probability of setting the device. If the device is
SET (i.e., thefinal resistanceRfinal < 50 kΩ),we thenRESET the device to
sample from its internal distribution and find a new value that sets the
time constant and gain of the neuron.

IP rule is thus controlled by three parameters of up and down
thresholds applied to the neuron’s firing rate, and the RESET voltage).
The values that are used for all the variables in the learning algorithms
are in table 1.

Sequence presentation and learning
Two patterns of S1n and S2n are presented to the network in random
order and sequentially. Each symbol is assigned to a sub-population in
the excitatory pool and upon presenting the letter, the corresponding
sub-population is stimulatedwith Poisson spike trainswith a frequency
of 1 kHz. Each symbol is presented for 50ms. Once each sequence is
completely presented, we wait for 200ms before presenting the next
sequence. This will ensure the activity of the network is decayed away
before the next sequence is presented.

Static network. The values for the neuron and synapses are initialized
and fixed at the beginning of the simulation as is shown in Fig. 3b, c.
The neuron parameters are sampled from the HRS distribution fixed
on VRESET= 2V and the synapse parameters are generated randomly
based on pin, pEE, pEI and pIE. The parameters of the static network
follow the values in table 1. These hyper-parameters are manually
tuned to put the SRNN in an optimal condition.

A general optimumoperational condition for SRNNs is the Edgeof
Chaos, in which the dynamics of the network are neither chaotic nor

Table 1 | Parameter values for the initialization of the SRNN

Neurons Synapses SRNN

Excitatory Inhibitory

Number of
neurons

160 40 τ 1ms pEE 2%

R2 trained by IP 1GΩ Weight (trained
by SDSP)

pII 0%

R1 400MΩ 600MΩ pEI 2%

C1 10 pF 10pF pIE 10%

τCa 100ms 100ms

Vth 0.2 V 0.2V

R3 1GΩ 1GΩ

C2 2 pF 2 pF

IP SDSP

FT 50Hz Vth 0.2V

σ 15Hz Vθ 0.1 V

VRESET 2 V Learning
Rate

0.01–0.1

Such values are defined with small-to-absent tuning, with the only aim to guarantee a minimal
activation of the network, so to fully rely on the plasticity mechanisms (SDSP and IP) to improve
performance. Some parameters, such as the magnitude of RRAM resistance in HRS and the
Membrane Capacitance, are forced by technological constraints.
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deterministic. Traditional approaches to achieve these optimal con-
ditions are either exploiting genetic algorithms49 or manual hyper-
parameter tuning. Random initialization of the weights in the SRNN
does not guarantee the formation of multiple clusters of connected
neurons, proved to be crucial for memory formation in recurrent
networks2.

MEMSORN. Training of theMEMSORN is performed in two steps: first,
a purelyunsupervisedphase inwhich thenetwork is exposed to inputs,
and the two technologically-plausible rules of SDSP and IP shape the
activity and response of the SRNN; second, the recurrent weights and
neurons’RRAM states are frozen and the output is trainedwith logistic
regression.

In the first phase, the input patterns are presented and synapses
modify their weights according to the SDSP rule, creating clusters of
neurons that respond to particular spatio-temporal input sequences.
The input signal is converted into the activation of different groups of
neurons inside the recurrent network. In turn, these sub-groups of
neurons are connected to the rest of the SRNN in a random and sparse
manner. This results in each input exciting the SRNN in a different way;
SDSP is thus capable of exploiting these correlations between parts of
the SRNN to reinforce certain connections and form different clusters
in the network. At the same time, IP adapts the excitability of neurons
in order to control their activity. This prevents strong clusters to take
over the SRNN and form a single big group of hyperactive or inactive
neurons. Therefore, the benefit of IP is to steer away the SRNN from a
regime in which either most neurons are not present in information
processing, or they have high output frequency and thus high energy
consumption. In MEMSORN, the hyper-parameter tuning of the static
network is substituted with the described unsupervised phase. The
plasticitymechanisms are exploited in order to find a good enough set
of parameters to optimize the performance of the SRNN, alleviating
the need to carefully tune or learn the network parameters. These
plasticity mechanisms are capable of finding a suitable SRNN config-
uration depending on the presented input which tunes the network
accordingly.

Once the SRNN is tuned, the second phase begins. The activity of
the neurons in the network is low-pass filtered through the calcium
dynamics of the neuron circuit (τCa), indicative of the running average
activity. This runningfiring rate is registered at the endof the sequence
and utilized in a logistic regression algorithm to calculate the output
weights in the readout.

The logistic regression could also be replaced with the online
delta rule in an always-on fashion50. Such circuit implementation of the
delta rule algorithm allows training the output layer using Stochastic
Gradient Descent (SGD) in a one-layer SNN. This kind of system will
continuously adapt to the input stimuli in a low power always-on
manner.

Latency and energy calculations
As is shown in Fig. 5d, the learning takes about 1000 presentations of
samples to converge. Each symbol is presented for 50ms with a
200ms of wait time in between pattern presentations. For a pattern of
12 symbols (n = 10), that gives rise to 800ms per epoch. Therefore, the
total latency is 800 s or 13min.

We identified three sources of power consumption in our system:
static power, dynamic power due to the firing of the neurons, and
dynamic power due to the state of the RRAM devices changing.

Static power. The static power consumption of each neuron, together
with the switches is 1.4 nW. This gives rise to ≈0.2 μW of static power
consumption for the entire population of the neurons.

Neuron dynamic power. Based on our measurements, the energy
consumption of our neuron in 130 nm process is 100pJ/spike. Our

recurrent layer has 160 excitatory neurons firing at 50Hz (maintained
by the IP algorithm). This gives rise to:

160× 50 spikes=second × 100pJ=spike≈0:8μW

RRAM state change dynamic power. During the learning operation,
the state of the RRAMdevices changes due to the IP and SDSP learning
rules. We have counted the total number of times that the state of the
devices is changing during the learning process, which is≈ 3 × 106

times. As we have previously reported31, each RRAM SET and RESET
cycle consumes around 50pJ. For the duration of the learning
(13mins), this gives rise to 50 pJ × 3 × 106/(13 × 60 s) = 0.2 μW.

Therefore, for the duration of the learning process, the total
energy consumption is

ð0:2μW +0:8μW +0:2μW Þ× 13 × 60 seconds = 1:2μW × 780 seconds =936μJ:

RANDx4 task
As is detailed in37, in RANDx4 task, the recurrent network is driven by
four randomly drawn inputs P =A, B,C,D. The receptive fields of non-
overlapping subsets of neurons are tuned exclusively to each input. In
our case, the 100 neurons reservoir was split into the excitatory (80%
of the total) and inhibitory (20%) populations. Input stimuli are
directed towards small receptive fields of 12 excitatory neurons in the
reservoir. Inputs are encoded as Poisson pulse trains at the average
frequency of 5 kHz, each activated when the corresponding letter A,
B,C,D is randomly chosen.

We have performed the RANDx4 task by setting the duration of
each input stimuli approximately the same as that of the silicon neu-
rons and synapses, at 1ms. This assures that the memory capacity of
the network does not stem from the components alone - neurons and
dynamical synapses - and it rather leverages the organization at the
network level.

Clustering Analysis
We show 50 sequences of length 12 (n = 10, 600 letters) to the static
and MEMSORN networks and record the spike times of all the excita-
tory populations for each shown symbol. This spiking data is then low
pass filtered with a time constant of τ = 5ms. We take the data point at
the last time step of the symbol presentation for all the symbols in the
two sequences during 50 data presentations.

PCA. We reduce the dimension of the SRNN activity from 160 excita-
tory neurons to the first two Principle Components (PCs) and plot the
first and second PCs in time. This is plotted in Fig. 6a.

Hierarchical clustering. We also analyze the obtained SRNN activity
using hierarchical clustering analysis. This is a type of unsupervised
learning algorithm used to cluster the data points with similar char-
acteristics. We use the agglomerative hierarchical clustering which is a
"bottom-up” approach where each data point starts in its own cluster.
Movingup the hierarchy, clusters are formedby joining the two closest
data points resulting in increasingly fewer clusterswith higher distance
or dissimilarity. This hierarchy of clusters is represented as a tree (or
dendrogram). The root of the tree is the unique cluster that gathers all
the samples, the leaves being the clusters with only one sample. For
performing this analysis, we have used the "cluster.hierarchy.linkage”
function from the python scipy library. We have calculated the dis-
tance between the clusters with the "ward” method which minimizes
the total within-cluster variance. At each step, this method merges
pairs of clusters which lead to a minimum increase in the total within-
cluster variance after merging. This increase is a weighted squared
distance between cluster centers.
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