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High-resolution genome topology of human
retina uncovers super enhancer-promoter
interactions at tissue-specific and multi-
factorial disease loci

Claire Marchal1,2,3, Nivedita Singh1,3, Zachary Batz 1,3, Jayshree Advani1,3,
Catherine Jaeger 1, Ximena Corso-Díaz1 & Anand Swaroop 1

Chromatin organization and enhancer-promoter contacts establish unique
spatiotemporal gene expression patterns in distinct cell types. Non-coding
genetic variants can influence cellular phenotypes by modifying higher-order
transcriptional hubs and consequently gene expression. To elucidate genomic
regulation in human retina, we mapped chromatin contacts at high resolution
and integrated with super-enhancers (SEs), histone marks, binding of CTCF
and select transcription factors. We show that topologically associated
domains (TADs) with central SEs exhibit stronger insulation and augmented
contact with retinal genes relative to TADs with edge SEs. Merging genome-
wide expression quantitative trait loci (eQTLs) with topology map reveals
physical links between 100 eQTLs and corresponding eGenes associated with
retinal neurodegeneration. Additionally, we uncover candidate genes for
susceptibility variants linked to age-related macular degeneration and glau-
coma. Our study of high-resolution genomic architecture of human retina
provides insights into genetic control of tissue-specific functions, suggests
paradigms for missing heritability, and enables the dissection of common
blinding disease phenotypes.

The three-dimensional (3D) architecture of the human genome is
regulated across multiple levels of organization, yielding precise spa-
tiotemporal patterns of gene expression for morphogenesis and
functional specification1,2. Gene regulation occurs within transcrip-
tional units through productive enhancer-promoter contacts and/or
by inclusion within transcriptionally active membraneless structures,
called phase-separated condensates3–6. The transcriptional units are
containedwithinmegabase-sized self-interacting chromatin structures
known as topologically associated domains (TADs). The boundaries of
TADs are enriched for binding of structural proteins including CTCF
and cohesin7–9. Genome organization also exhibits A (active) and B

(inactive) chromatin compartments, which display distinct patterns of
DNA replication and transcription along with differences in regulatory
marks10–13. Across the 3D hierarchy, genome topology undergoes
dynamic and contextual physical alterations in distinct tissues and cell
types14,15. These adaptations correlate with activation of specific cis-
regulatory elements (CREs) that contribute to the establishment of
unique gene expression patterns14,16,17. Cell-type specific gene expres-
sion is further orchestrated by super-enhancers (SEs), regulatory
regions spanning over tens of kilobases that are highly enriched for
master transcription factor (TF) binding and co-localized with the
active histone mark H3K27Ac18–20.
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Over the past decade, millions of human genetic variations have
been cataloged21,22, permitting exploration of evolutionary divergence
as well as healthy and disease phenotypes. Genome-wide association
studies (GWAS) of common multifactorial retinal diseases afflicting
adult human populations, such as age-related macular degeneration
(AMD) and glaucoma, have predominantly identified common variants
in non-coding regions of the genome23,24. However, the biological
relevance of association signals has been difficult to assess because of
the local linkage disequilibrium (LD) in the region of lead variants,
hindering identification of specific causal genes and variants25. Even in
Mendelian retinal diseases with over 200 associated genes identified
(RetNet; https://sph.uth.edu/retnet/disease.htm), causal mutations
can only be identified in about half of the patients (primarily in Eur-
opean population)26 and genotype-phenotype correlations have been
difficult to decipher. Non-coding variants in cis-regulatory regionsmay
lead to variable penetrance of pathogenic coding mutations in their
target genes27, genetic epistasis28, or account for missing heritability29.
Widespread variability in gene expression observed in humans can be
assigned to cis- or trans-acting variants (expression quantitative trait
loci, eQTLs) and epistasis30. Elucidating how trait-associated genetic
variations impact the regulatory landscape and consequently pheno-
types requires understanding the 3D genome topology in relevant
tissues and cell types.

Here, we report a high-resolution chromatin contact map of the
adult human retina by performing Hi-C1. Further integration of chro-
matin contacts with histone marks, chromatin accessibility, selected
TF binding, and gene expression datasets reveals targets of CREs and
uncovers properties of 3D chromatin organization of SEs in human
retina. Finally, we combine the resulting retinal genomic regulation
network with eQTLs and genetic variants identified through GWAS of
AMD and glaucoma. Thus, our analysis of regulatory 3D genome
architecture contributes to better understanding of genetic control of
human retinal phenotypes.

Results
Deep Hi-C sequencing identifies chromatin structures in human
retina at 5 kb resolution
Figure 1A illustrates the design of our study to elucidate regulatory
networks controlling gene expression in the human retina and their
potential disruption by genetic variants associated with clinical phe-
notypes. Briefly, we have generated a high-resolution chromatin con-
tact map of the human retina using Hi-C and integrated this data with
histone marks, chromatin accessibility, CTCF, and binding of selected
TFs. We then explored the genome topology of eQTLs and variants
associated with AMD and glaucoma (Fig. 1A).

To decipher the 3Dorganization of chromatin, weperformedHi-C
analysis of four independent postmortem human retina samples. The
Hi-C data exhibited high similarity among samples with a stratified
correlation coefficient (SCC) of >0.97 for all autosomes. We therefore
combined the data fromall samples to obtain a total sequencing depth
of 1.148billion read pairs. A high proportion of valid interactions (>95%
of the total mapped interactions) and typical percentage of trans-
interactions (23.6%; Supplementary table 1) indicated the high quality
of our dataset. We obtained 704 million valid chromatin contacts
(Supplementary table 1), which are equally distributed among the
chromosomes, attaining a resolution of 3 kb (Fig. 1B, C, Supplementary
fig. 1A). Our data identified 67,841 significant chromatin contacts and
2948 TADs (Fig. 1A, C, D).

As predicted, the genes expressed in the retina are detected in the
A chromatin compartment, while most silent genes appear in the B
compartment (Fig. 1C; Supplementary Fig. 1B, C). For example, NRL is
expressed in rods, ESRRB in rods and horizontal cells, and VSX2 in
bipolar andMuller glia cells; each of the three genes is present within a
well-defined A compartment TAD and participates in extensive intra-
TAD chromatin looping (Fig. 1D), which is likely required for

qualitatively and quantitatively precise regulation6. We then char-
acterized the loops associated with expressed chromatin at the
genome-wide level. Intra-A compartment loops are shorter compared
to the intra-B (Tukey HSD: p < 0.001; 95% CI 416–449 kb) and the A-B
compartment loops (Tukey HSD: p < 0.001; 95% CI 308–398 kb;
Fig. 1E). These intra-A loops, corresponding to the active chromatin,
span less than 1Mb on average (Fig. 1E) and are mostly constrained
within TADs (Supplementary fig. 1D).

Human retina chromatin topology is tissue-specific and con-
served in mouse
To assess whether the identified chromatin features are specific to the
retina, we compared our dataset with Hi-C datasets from human
neurons (anterior cingulate cortex (ACC) neurons)31, GM12878 lym-
phoblastoid immortalized cells (LCL)2, and colon cancer cells (HCT116;
generated in this study). The correlation, as measured by SCC, is the
highest among our four retina samples (Fig. 2A). Retina compartments
reveal high correlation with those of ACC neurons though limited to
few chromosomes, likely because of the improper calling of com-
partments in the low-resolution ACC dataset (Fig. 2B, Supplementary
fig. 2A). The compartments in the non-transformed LCL dataset are
broadly similar with retinal compartments, whereas the cancer cells
exhibit the lowest correlation (Fig. 2B).

We hypothesized that regions in the A compartment, which are
detected in retina but not in other tissues, are related to retina-specific
functions. Indeed, retina-specific genes such as OTX2, EYS, PDC are
present in the A compartment only in the retina (Fig. 2C). Given the
high correlation between retina and ACC neurons, we compared the
contact maps of PAX6, OTX2 and CRX between the two datasets. As
predicted, interactions at the PAX6 locus are similar in neurons and
retina concordant with its expression in both tissues (Fig. 2D, left
panel), whereas loci encoding OTX2 and CRX, two key retinal TFs,
demonstrate a high number of local interactions in the retina but not in
neurons (Fig. 2D, central and right panels).

Distinct chromatin interactions at retinal genes suggest their
important role in tissue-specific gene regulation. We then assessed
whether these interactions are conserved between human and mouse
retina. To quantify shared chromatin interactions, we evaluated the
number of gene pairs present in the same TAD in our human and a
previously reported mouse retina Hi-C datasets32. We observed that
21.8% of mouse gene pairs in a mouse TAD are also localized in the
correspondinghumanTAD (Fig. 2E toppanel), and that 35.7%ofmouse
gene pairs interacting through a chromatin loop in the retina are also
interacting in human (Fig. 2E bottom panel). These numbers likely
represent an underestimate of shared chromatin structure due to the
relatively lower resolution of the mouse retina Hi-C data. As an
example, the PITX2/EGF locus, located in a human/mouse syntenic
region, extends over 3 TADs in the human retina. This region encom-
passes several expressed genes, with EGF and ENPEP genes interacting
together, each at a TAD boundary (Fig. 2F). Self-interacting domains
corresponding to the human TADs (Fig. 2F, dashed lines) are detect-
able in themouse retina (Fig. 2F), even thoughnot identified asTADs in
the original study. Furthermore, in both species, chromatin loops are
observed between EGF and ENPEP (Fig. 2F). These findings show that
retina-expressed genes exhibit a conserved chromatin topology,
underlining its importance for the regulation of retinal genes and likely
involving tissue-specific CREs.

Retinal SEs overlap with highly expressed tissue-specific genes
and are enriched for accessible retinal TF binding motifs
Chromatin looping plays a crucial role in promoting physical interac-
tions between CREs and their target genes to precisely control gene
expression. To identify retinal CREs, we determined chromatin states
using a Hidden Markov Model (ChromHMM)33 based on chromatin
accessibility (Supplementary fig. 3A) and active (H3K4me3, H3K27Ac,
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H3K4me234) and repressive (H3K9me3) histone marks. We set the
model for 10 chromatin states (see Methods, and Supplementary
fig. 3B) and performed manual annotation. Of these states, we
removed three with low signal and annotated one as promoters (high
chromatin accessibility and enriched for all activemarks), five as active
or poised enhancers (high chromatin accessibility and enriched for all

activemarks except H3K4me3), and one as heterochromatin (enriched
for H3K9me3) (Fig. 3A). Promoters and active or poised enhancers are
enriched for binding of CTCF and key retinal TFs such as CRX, NRL,
OTX2, MEF2D, CREB, and RORB (Supplementary fig. 3C). Moreover,
active and poised enhancers are enriched at regions upstream to TSS,
whereas promoters are enriched at TSS only (Supplementary fig. 3D).
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Fig. 1 | High-resolution Hi-C identifies human retinal chromatin structures.
A Schematic of project workflow. Input data on blue backgrounds were generated
in this manuscript; input data on yellow backgrounds were downloaded from
public databases. Hi-C contact maps of observed contacts across (B) all chromo-
somes, (C) the q armof chromosome 14, and (D) theNRL andVSX2/ESRRB loci. Scale
represents the number of raw contacts. Loops at the NRL and VSX2/ESRRB loci are
plotted on the top; contact maps are below with TADs plotted as black triangles.

E Distribution of chromatin loop sizes within and across A/B compartments
(n = 15,441 loops within A compartment, n = 4318 loops within B compartments,
n = 2697 loops in A-B compartments). Boxplots represent the median and inter-
quartile range (IQR); whiskers mark 1.5x the IQR; data beyond 1.5x the IQR are
plotted as individual points. The three groups differ significantly (one-way ANOVA,
F2,22453 = 2232, p <0.001). Abbreviations: ROSE Rank Ordering of Super-Enhancers,
AMD Age-related macular degeneration, GWAS Genome-wide association study.
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Fig. 2 | Retinal chromatin interactions are tissue specific and conserved in
mouse. A Stratum-adjusted correlation coefficient (SCC) showing similarity of
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B Chromosome-level correlation of A/B compartments between retina and various
tissues. C Venn diagram of gene transcription start sites present in the A com-
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and CRX loci. Scales represent the number of Knight-Ruiz (KR) normalized contact

counts.EHuman-mouse conservationof gene-gene shared occupancywithina TAD
(top) and gene-gene contacts via Hi-C loop calls (bottom). Percentages given are
relative to the number ofmouse gene-gene pairs. FHi-C contact maps and loops in
a syntenic region of the human and mouse genomes. Solid lines on contact maps
indicate computationally called TADs; dashed lines on the mouse contact map
show human TAD boundaries overlaid on mouse genome. Scales represent the
number of KR normalized contacts. Abbreviations LCL Lymphoblastoid B-cell line,
ACC Anterior cingulate cortex, TADs Topologically associating domains.
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We then identified 1,325 SEs using the density of H3K27Ac at the
retinal CREs (promoters and active or poised enhancers) after
removing loci corresponding to TSS. The distribution of SEs along
chromosomes is not homogenous and shows a very low correlation
(R2 = 0.31) between the number of SEs per chromosome and the

chromosome size (Fig. 3B left panel and Supplementary fig. 3E).
Interestingly, however, we detected a high correlation (R2 = 0.86)
between the number of retina-expressed genes and the number of SEs
per chromosome (Fig. 3B, right panel). Retinal SEs also form large
chromatin domains spanning over 10 to 300 kb (Fig. 3C).
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not (grey). Theheatmap shows normalized gene expression in rods and cones from
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bottom edge. Abbreviations ATAC-seq Assay for transposase-accessible chromatin
sequencing, SE Super-enhancer, FPKM Fragments per kilobase million, TSS Tran-
scription start site, ChIP-seq Chromatin immunoprecipitation sequencing, C2H2
ZFs C2H2 zinc finger factors, bZIP Basic leucine zipper factors, NR with C4 ZFs
Nuclear receptors with C4 zinc fingers, HOX Homeodomain factors, bHLH Basic
helix-loop-helix factors, MADS MADS-box factors, HMG High-mobility group
domain factors, FOX Fork head/winged helix factors, RHR Rel homology region
factors.
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Integration of SEs with transcriptome data revealed 2.17x higher
average expression of genes overlapping with SEs compared to those
with CREs and 2.89x higher than 100 sets of random SE-sized loci
(henceforth called “random regions”, seeMethods for details) (Fig. 3D,
Supplementary Data 1). Notably, nearly 50% of retina-enriched genes
and 70% of rod-enriched genes show an overlapwith a SE compared to
~5% with random regions (Fig. 3E). The key photoreceptor-specific
gene NRL is included within a large SE enriched for active histone
marks and accessible chromatin regions (Fig. 3F). Accessible footprints
within SEs are enriched for binding peaks of retinal TFs such as NRL,
CRX, OTX1/2, CREB and RORB (Fig. 3G). Furthermore, hotspots of TF
binding sites are present predominantly in SEs compared to CREs or
random regions (Supplementary fig. 3F). We also confirmed that
accessible chromatin regions in retinal SEs are enriched for binding of
two key photoreceptor TFs, CRX and NRL, alone or in combination
(Fig. 3G, right panel). We discovered that CRX and NRL bound loci are
enriched for binding motifs of other TFs involved in retinal gene reg-
ulation including OTX2, MEF2C, NEUROD1 and MAFG (Fig. 3H, Sup-
plementary fig. 3G, Supplementary Data 2). In addition, we uncovered
an enrichment of motifs for retina-expressed TFs, e.g., ZBTB18, for
which a specific function has not been delineated in retinal cell types
(Fig. 3H, Supplementary Data 2). The genes encoding many of these
TFs with enriched binding motifs also overlap SEs, suggesting their
potential role in maintaining retinal homeostasis (Fig. 3H, Supple-
mentary Data 2).

SEs are enriched for intra-TAD looping and contacts with reg-
ulatory elements
SEsmay contact other regulatory regions to form large transcriptional
units capable of regulating multiple genes, as previously observed in
cell lines35,36. Integrated analysis revealed that retinal SEs are enriched
for shorter chromatin loops compared to the random regions
(t99 = 69.46; p < 0.001; Fig. 4A) and show extensive intra-SE looping
(Fig. 4B). Distinctly, nearly all SE-interacting loops are <1Mb (Fig. 4A)
indicating that SEs primarily harbor interactions within TADs. To vali-
date this observation, we quantified the percentage of intra-TAD loops
overlapping with SEs. We detected an enrichment of loops interacting
within the same TAD compared to the random regions (t99 = −24.76;
p <0.001), whereas we observed fewer than expected loops interact-
ing across TADs (t99 = −18.81; p <0.001; Fig. 4C).

To quantify the significance of chromatin looping at SEs, we
defined SE interactions as those with another regulatory element or
with a target gene. We discovered that SEs are enriched for regulatory
interactions compared to random regions, making direct contact with
3,059 unique CREs (t99 = −361; p <0.001), 1,701 unique TSS (t99 = −346;
p <0.001), and 217 unique SEs (t99 = −651; p <0.001; Fig. 4D).
Remarkably, the genes specifically expressed in the retina and/or brain
aremostly overlappingwith SEs, whereas the genes interacting but not
overlapping with SEs are enriched for ubiquitous genes (Supplemen-
tary fig. 4A). Some SEs interact with many CREs and thereby likely play
important roles in coordinating gene expression patterns. For exam-
ple, the SE overlapping with MIR9-2, a non-coding gene crucial for
neuronal development37 localizes at a TAD boundary and contacts
several CREs (Fig. 4E). We also identified several clusters of SEs inter-
acting with one another via chromatin looping near retina-enriched
genes, including VEGFA (Fig. 4F) and UBE4B (Fig. 4G).

Intra-TAD positioning of SEs is associated with boundary insu-
lation and biological function of target genes
To explore the chromatin landscape around SEs, we assessed physical
properties of the corresponding host TADs. We first compared the
TAD size in relation to the position of SE within the TAD. We observed
that, within the A compartment, TADs containing SEs are larger than
TADs without SEs, except when the SE is located at one of the TAD
edges (Fig. 5A, left panel). We then calculated the insulation score,

which, for each genomic locus, quantifies the interaction frequency
between neighboring loci; a lower score indicates stronger insulation.
Our analysis showed that the presence of SEs at the edge of TADs is
associated with weaker insulation, i.e., increased contact between
neighboring TADs (Fig. 5A, right panel). We then evaluated whether SE
positioning within TADs was associated with the number of inter-TAD
contacts. We identified more chromatin interactions within SE-
containing TADs compared to other TADs, despite no significant dif-
ference in loop size among A-compartment TADs (Fig. 5B). In con-
cordance with the observed weaker insulation, TADs with a SE at one
edge have a significantly higher proportion of loops crossing the TAD
boundary compared to other TADs (Fig. 5B).

Next, we looked at the function of the SE target genes, i.e., genes
with TSS overlapping or interacting with SE. We observed that TADs
with edge SEs are enriched for stress response genes indicating the
need formore dynamic and transitional interactions (Fig. 5C), whereas
retinal genes are primarily enriched in TADs with central SEs (Fig. 5C,
Supplementary fig. 5A). The SE overlapping the stress-response gene
FOS is an example of an edge SE within a low insulation TAD that may
be affected by variation in regions extending beyond their own TAD
boundaries (Fig. 5D). Similarly, at the ATF4 locus, a SE lying at the edge
of a lowly insulated TAD is in contact with regions outside of the TAD
(Supplementary fig. 5B).

Integration of chromatin loops, SEs and CREs with retinal eQTLs
eQTLs link specific genetic variants to changes in expression of a target
gene (henceforth called “eGene”). To identify eQTLs that are poten-
tially relevant for retinal gene regulation, we incorporated 14,859
previously reported retina eQTLs38 with our dataset and observed that
77% of these localize to the A compartment compared to 18.5% in the B
compartment (Fig. 6A, Supplementary Data 3). Interestingly, the A
compartment includes 82.9% of eQTLs linked to retinopathy genes
(RetNet, https://sph.uth.edu/RetNet/), 90% of those associated with
AMD loci23, and 53.5% eQTLs correlated to glaucoma loci24 (Fig. 6A).
eQTLs are enriched for variant-eGene pairs sharing the same TAD
(67.1% of all eQTLs, 75.4% of those in retinopathies, 73.3% AMD-
associated eQTLs, and 79.2% glaucoma eQTLs) compared to randomly
generated TADs (Fig. 6B; Supplementary Data 3). Thus, most retinal
eQTLs are present within the active chromatin compartment and
reside in the same TAD, providing a direct mechanism to explain the
impact of a variant on the eGene.

We then assessed the physical proximity between a variant and
the promoter region (±2.5 kb from TSS) of its eGene, as described39.
This analysis allowed us to discriminate between promoter eQTLs,
distal eQTLs, and distal eQTLs interacting with a promoter (pieQTLs,
seemethods) (Fig. 6C). We identified 2,374 eQTLs overlapping with a
loop foot; of these, 1,275 are pieQTLs and 100 interact with their own
eGene promoter (Fig. 6D). Among these pieQTLs, 27 are associated
with retinopathies, including 3 that interact with their own eGene
promoter (MYO7A, MERTK and PRPH2 genes). Finally, 4 pieQTLs are
each associated with AMD and glaucoma loci (Supplemen-
tary Data 3).

Additional analysis identified 2,410 and 880 eQTLs in CREs (CRE-
eQTLs) and SEs (SE-eQTLs), respectively, with 58.5% of CRE-eQTLs and
69.3% of SE-eQTLs also intersecting the associated eGene (Fig. 6E,
Supplementary Data 3). A majority of retinopathy-associated CRE-
eQTLs (39/60) and SE-eQTLs (38/42) overlaps the respective eGene
(Fig. 6E, Supplementary Data 3). Furthermore, we discovered 3 CRE-
eQTLs and 2 SE-eQTLs in AMD-associated loci and 17 CRE-eQTLs and 5
SE-eQTLs in glaucoma-associated loci (Fig. 6E). In accordance with
their potential role in gene regulation, all CRE- and SE-overlapping
eQTLs exhibit prominent H3K27Ac marks, with promoter eQTLs
showing even higher levels compared to distal eQTLs, though not
statistically significant for the disease-associated eQTLs, due to the
lower number of eQTLs (all eQTLs at CREs: t1059.5 = −14.266, p < 2.2e-16,
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retinopathies-associated eQTLs at CREs: t16.603 = −3.6947,p =0.001861,
glaucoma-associated eQTLs at CREs: t4.0371 = −2.2145, p =0.09055, all
eQTLs at SEs: t133.15 = −8.3212, p = 9.098e-14, retinopathies-associated
eQTLs at SEs: t8.0834 = −2.8884, p = 0.02003, glaucoma-associated
eQTLs at SEs: t1.0051 = −1.2834, p =0.4206, Fig. 6F).

Overall, most eQTLs are physically close to their respective
eGene, either overlapping the eGene or its promoter, or being in
contact through chromatin looping. Our analysis identified multiple

potentially functionally-relevant eQTLs overlapping a SE and in
physical contact with the promoter of their eGene (e.g., PRPH2 and
MYO7A loci; Fig. 6G, top panels) or through chromatin looping
(PRPH2 locus; Fig. 6G, top left panel). We also identified eQTLs
overlapping a CRE, either at the promoter of the eGene (e.g., ABCA1
locus; Fig. 6G, bottom left panel) or by contacting the promoter
through chromatin looping (e.g., PCK2 locus; Fig. 6G, bottom
right panel).
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Genome topology links target genes to AMD- and Glaucoma-
associated risk variants
We then leveraged our dataset to investigate chromatin contacts of 52
and 127 lead GWAS variants identified for AMD and glaucoma,
respectively23,24. We also identified and filtered variants in linkage dis-
equilibrium (LD) with the lead variants (filtered LD variants, see
methods)21 and integrated these with retinal chromatin loops and
regulatory elements.

Among AMD variants, 4 lead and 142 filtered LD variants overlap
with chromatin loops (Fig. 7A, Supplementary Data 4). Of these, 3 lead
variants (C20orf85, CTRB2/CTRB1 and KMT2E/SRPK2 loci) and 136 fil-
tered LD variants distributed among 10 loci [COL8A1, PILRB/PILRA,
TGFBR1, ARHGAP21, RDH5/CD63, ACAD10, RAD51B, C3 (NRTN/FUT6),
APOE (EXOC3L2/MARK4) and SLC16A8 loci] are in contact with gene
bodies or TSS through chromatin loops (Fig. 7A, Supplementary
Data 4). In contrast, no overlap is detected between chromatin loops in
ACCneurons andAMD leadvariants even though 162of the 196filtered
LD variants overlapping a loop in ACC are in contact with a gene body
or TSS. Notably, at the KMT2E/SRPK2 locus, the AMD-associated lead
variant rs1142 is in contact with the TSS of KMT2E and SRPK2 and with
the gene body of 7 genes, which include KMT2E, SRPK2, EFCAB10,
LINC01004, PUS7, AC007384.1 and AC005070.3 through 9 chromatin
loops (Fig. 7B, top panel). The lead variant rs72802342, associatedwith
the CTRB2/CTRB1 locus, connects with the gene bodies and TSS of

CFDP1 and AC009054.2 through 6 chromatin loops (Fig. 7B, bottom
panel). We also identified 5 AMD lead variants overlapping with a CRE
and localizing to gene bodies (ARHGAP21, ARMS2/HTRA1, CNN2, APOE
and TNFRSF10A genes) and one AMD lead variant (rs3750846) over-
lapping with a SE and gene bodies of ARMS2 and BX842242.1 (Supple-
mentary Data 4).

Among glaucoma variants, 12 lead variants and 493 filtered LD
variants overlap a chromatin loop (Fig. 7C, Supplementary Data 4).
Of these, 8 lead variants (TRAPPC3, LPP, TFAP2B/PKHD1, PDE7B,
FBXO32, ADAMTS8, RIC8B and LINC00396/COL4A1 loci) and 363 fil-
tered LD variants are in contact with gene bodies or TSS (Fig. 7C,
Supplementary Data 4). In ACC neurons, 10 lead variants and 2,118
filtered LD variants overlap loops; of these, 9 lead variants and 1,890
filtered LD variants are in contact with a gene body or a TSS. For
example, the lead variant rs72904286, associated with TFAP2B/
PKHD1 locus is in contact with the gene body and TSS of TFAP2B
through a chromatin loop (Fig. 7D, top panel). The lead variant
rs1037013, associated with RIC8B locus is in contact with the gene
body of 4 target genes which include RIC8B, RFX4, POLR3B, and
AC079385.1 and with the TSS of RFX4 through chromatin looping
(Fig. 7D, bottom panel). We also detected 16 glaucoma lead variants
overlapping a CRE with 14 of these localizing to gene bodies or TSS,
and 5 glaucoma lead variants overlapping a SE and a gene body or
TSS (Supplementary Data 4).
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Discussion
Spatial architecture of chromatin is highly dynamic and requires active
control mechanisms40. The adult retina is comprised of non-dividing
and highly-specialized sensory neurons and thus offers a relatively
stable environment for investigating the role of 3D genome in con-
trolling genetic information. Hi-C allows the exploration of 3D genome
architecture by identifying chromatin contacts but can only reveal
pairwise interactions. Thus, it is not possible to determine whether
several regions interacting together in a Hi-C contact map coexist in
each cell of the population, or whether these reflect a heterogeneous
cell population eachwith unique pairs of interacting regions. At higher
resolution, fine regulatory structures can resolve such promoter-

enhancer interactions. Our data have a resolution of almost 3 kb,which
means that significant chromatin contacts spanning over just few
kilobases can be identified. We noted a non-homogeneous average
resolution across the genome, with some regions requiring additional
sequencing to reach this resolution whereas others exceeding this at
our sequencing depth. This heterogeneity was considered when sta-
tistically calling significant contacts at each genomic location.

Our deep sequencing of chromatin contacts integrated with
chromatin accessibility and histone marks in human retina has pro-
vided detailed information on contacts of distal regulatory elements,
including SEs, with their cognate promoter regions. Integrating this
regulatory 3D map with CTCF and retinal TF binding and CREs34 has

104,000 kb 104,500 kb 105,000 kb 105,500 kb

RELN
ORC5

LHFPL3

PUS7

SYPL1

ATXN7L1

KMT2E
RINT1

SRPK2

EFCAB10

CDHR3

rs1142

Loops

Lead Variant
LD Variants

CTCF

Insulation

SE
CRE

Genes

TADs

chr7: 103.9-106.4 Mb, KMT2E/SRPK2 locus

51,000 kb 51,500 kb 52,000 kb

TFAP2D

IL17A

IL17F
TFAP2B

PKHD1

51,000 kb 51,500 kb 52,000 kb

rs72904286

TFAP2D

IL17A

IL17F
TFAP2B

PKHD1

chr6:50.6-52.4 Mb, TFAP2B/PKHD1 locus

75,000 kb 75,250 kb 75,500 kb

CTRB2

CHST5

WDR59

CTRB1
TERF2IP

DUXB

ZNRF1

ZFP1

CHST6

TMEM231

KARS1
LDHD

CFDP1
BCAR1

TMEM170A ADAT1

rs72802342

chr16: 74.9-76.0 Mb, CTRB2/CTRB1 locus

Loops

Lead Variant
LD Variants

CTCF

Insulation

SE
CRE

Genes

TADs

106,500 kb 107,000 kb

rs1037013

CKAP4

POLR3B
RFX4 CRY1

TCP11L2 TMEM263
MTERF2

RIC8B

106,750 kb106,250 kb

chr12: 106.3-107.1 Mb, RIC8B locus

AMD GWAS lead variants 
52 (1196 variants in LD)

Retina SEs
1 (62)

Retina Loops
4 (142)

ACC Neuron Loops
0 (196)

Gene body
TSS

3 (136)
3 (64)

5 (118)
4 (86)

1 (57)
0 (0)

0 (162)
0 (65)

Retina CREs
5 (122)

Glaucoma GWAS lead variants 
127 (12,658 variants in LD)

Retina SEs
5 (221)

Retina Loops
12 (493)

ACC Neuron Loops
10 (2118)

Gene body
TSS

8 (363)
3 (157)

14 (368)
8 (180)

5 (221)
5 (221)

9 (1890)
2 (730)

Retina CREs
16 (434)

A

B

C

D

Fig. 7 | AMD and glaucoma variants are connected to target genes via retinal
chromatin loops. A Count of AMD lead variants and variants in linkage dis-
equilibrium (LD variants; MAF≥ 1% & R2 score ≥ 0.7, shown in parenthesis) con-
tacting genes via chromatin loops in retina or ACC neurons, or residing in retina
CREs or SEs.BChromatin loops, leadvariants, LD variants, CTCFbinding, SEs, CREs,
TADs, and Hi-C contact maps for two AMD GWAS loci. C Count of glaucoma lead
and LD variants (MAF≥ 1% & R2 score ≥0.7, shown in parenthesis) contacting genes

via chromatin loops in retina or ACC neurons, or residing in retina CREs or SEs.
D Chromatin loops, lead variants, LD variants, CTCF binding, SEs, CREs, TADs, and
Hi-C contact maps for two glaucoma GWAS loci. Abbreviations AMD Age-related
macular degeneration, GWAS Genome-wide association study, LD Linkage dis-
equilibrium, TSS Transcription start site, MAF Minor allele frequency, CTCF
CCCTC-binding factor, SE Super-enhancer, TAD Topologically associating domain,
CRE Cis-regulatory element.

Article https://doi.org/10.1038/s41467-022-33427-1

Nature Communications |         (2022) 13:5827 10



allowed us to construct a comprehensive gene regulatory network.We
show that retina SEs frequently overlap with retina-enriched genes
coding for key retinal TFs including NRL, CRX, OTX2, RORB and
MEF2D, whereas TFs they encode bind extensively to SEs. This inter-
connected, self-regulating TF network may represent a core tran-
scriptional regulatory circuit for maintaining cell identity as observed
in embryonic stem cells (sensu41). We have taken advantage of this
regulatory architecture to delineate tissue-specific genomic regulation
and identify the link between eQTL variants and eGenes via regulatory
elements and/or chromatin looping. Finally, by combining ourfindings
with AMD and Glaucoma GWAS, we have uncovered candidate causal
genes contributing to these complex traits.

Most SEs we identified are associated with rod genes reflecting
rod cell-dominance in human retinal samples. However, we also cap-
tured signals from divergent low abundance retinal cell types. For
example, relative to random regions, we observe elevated SE overlap
with bipolar, cone photoreceptor, and Müller glia genes as well as
increased chromatin looping between SEs and horizontal cell genes.
Additionally, we noted several retinal pigment epithelial cell markers
with TSS overlapping A Compartment and enriched for active reg-
ulatory marks (e.g., BEST-1, MERTK, RLBP1, MITF, PMEL). A previous
study of human retina identified accessible chromatin and TF binding
peaks assessed by ChIP-seq at regulatory elements of both rod and
non-rod genes34. In contrast, mostly rod-associated gene states were
identified in mouse retina via ChromHMM analysis42, and no robust
chromatin interactions detected between non-rod enhancers/pro-
moters and SE via Hi-C32. As predicted, many chromatin interactions
correlate with tissue-specific expression and are conserved in mouse.

We demonstrate that the biological function of SE target genes
can be associatedwith SE localization in TADs aswell as TADboundary
insulation. Notably, SEs themselves show interaction mostly with loci
in close proximity, suggesting strong insulation at the local, sub-TAD
level likely due to the enrichment for CTCF binding and to avoid ran-
dom activation of nearby genes, consistent with previous studies43.
Unexpectedly, we detect weaker insulation at SE-containing TAD
boundaries, in contrast to a previous study showing the association of
SEs with increased TAD insulation44. We believe this could be due to
differing approaches to insulation score calculation. We measure
boundary insulation based on contacts crossing a TAD boundary
region, as recommended by the 4D Nucleome consortium (i.e., cool-
tools diamond insulation). In contrast, other study normalized this
count using the contacts in adjacent regions44, leading to a bias of
insulation score for adjacent regions rich in local loops (such as the SE-
containing regions). We should point out that TAD boundary locali-
zation varies at the single cell level45,46, therefore the insulation score at
boundaries can also reflect the heterogeneity in the tissue. Thus, we
propose that chromatin architecture could be more dynamic
around these transcription hotspots. For example, a SE and its asso-
ciated genes could be dynamically targeted to, and released
from subnuclear compartments, temporally disrupting the TAD
boundary in a subset of cells. This would be reflected at the population
level by a lower insulation at the affected TAD boundary. In con-
cordancewith this hypothesis, SE at the edge of a TAD could affect the
boundary to a greater extent compared to SE in the middle of a TAD,
leading to a weaker insulation at edge-SE TAD boundaries, as we
observe here.

Our integrated analysis has uncovered multi-way SE-chromatin
interactions centered around hub-like genomic regions, as observed in
other tissues46–48. For example, the SE overlapping FOS connects large
transcriptional units across multiple TADs and may facilitate rapid
stress response. These hubs often connect genomic regions across
long distances (>250kb); e.g., contacts between the CREs of MEF2C,
VEGFA and CLSTN1 with distant genes. Notably, at the MIR9-2 locus,
MEF2C interacts with the gene CETN3which is associated with retinitis
pigmentosa and located over 1Mb away. This suggests that genetic

variations could impact retinal homeostasis and disease by targeting
genes over very large distance.

Long-range regulation is facilitated by the physical interaction
between regulatory regions and their target genes, providing a prob-
able mechanism for eQTLs to influence expression of eGenes located
far from their variants. By integrating retina eQTLs38 with chromatin
looping, SEs, and CREs, we uncovered multiple variants lying in reg-
ulatory regions interacting with their target eGene including several
pieQTLs, i.e., variants directly contacting the promoter of their eGene.
Remarkably, we have identified multiple pieQTLs involving genes
associated with retinal neurodegeneration illustrating the value of
unbiased genetic association studies to identify genes linked to retinal
diseases. Examining the chromatin state at these eQTLs can help
prioritize specific variants for further investigation. For example, the
variant associated with PCK2 is lying in a large CRE enriched for active
histone marks. Despite being almost 100 kb away from PCK2, it is in
direct contact with its promoter through a chromatin loop. Thus, dif-
ferent alleles at this locus could impact PCK2 regulation affecting CRE
efficiency, TF binding, and/or chromatin loop formation or stability.

Retinal CREs and eQTLs having high resolution chromatin con-
tacts should permit systematic analysis of relevant non-coding reg-
ulating regions formissing heritability and help in addressing issues of
variable penetrance in inherited retinal diseases26. Rare coding variants
in over 200 genes associated with photoreceptor and/or retinal pig-
ment epithelium (RPE) function can lead to vision impairment (RetNet;
https://sph.uth.edu/retnet/); yet, only in few instances, non-coding or
structural alterations have been associated with human retinal
disease34,49. Variants in regulatory elements have been implicated in
altering the effect of codingmutations on phenotypes27,50.We propose
that the analysis of functionally-relevant non-coding regions in rho-
dopsin,ABCA4 and other known retinopathy genes, as identified in this
study, would greatly augment our understanding of Mendelian retinal
diseases.

Adult-onset multifactorial diseases affecting retinal function are
the major cause of irreversible vision impairment in humans. GWAS of
Glaucoma and AMD have identified a large number of non-coding
variants, and additional studies including eQTL analysis have provided
further insights; yet, the causal genes and variants continue to be
elusive for many associated loci. Our integrated analysis of adult
human retinal genome topology with GWAS lead and LD variants has
uncovered several previously unidentified genes potentially con-
tributing to glaucoma and AMD. For example, we show a remarkable
long-range interaction leading to identification of the target gene
TFAP2B for glaucoma-associated variant rs72904286 at the TFAP2B/
PKHD1 locus. Disruption of TFAP2B expression in mouse results in a
strong pathologic phenotype consistent with glaucoma51,52. Interest-
ingly, this phenotype is believed to be due to defects in the eye tissues
originating from the neural crest52, whilewe identified TFAP2B through
data from the retina, originating from the neuroepithelium. It is pos-
sible that this apparent discrepancy is due to a lack of tissue specificity
of the regulatory region containing the variant rs72904286, which
could form non-tissue specific contacts with TFAP2B. Indeed, we
demonstrate a similar number of chromatin interactions among
glaucoma associated eQTLs and risk variants in both retina and in
neurons, demonstrating weak tissue specificity for this eye disease. In
contrast, AMD-associated eQTLs and risk variants reveal a strong
enrichment for chromatin looping in the retina compared to neurons,
demonstrating the value of examining genomic architecture of disease
variants in the affected tissue.

Our study has also led to identification of candidate causal genes
for AMD. For example, we establish CFDP1 as a candidate gene
involved in AMD at the CTRB2/CTRB1 locus. While the lead variant
found at this locus (rs72802342) was previously associated to the
target gene BCAR153, we show association of filtered variants in LDwith
rs72802342 to the gene coding forCFDP1. Indeed, the LD region at this
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lead variant is overlapping a retinal SE (chr16:75233500-75267000),
which interacts with CFDP1 through chromatin looping. We suggest
that this variant could alter the expression of CFDP1 by disrupting the
SE structure and the interactions it facilitates. This hypothesis is
strongly supported by the presence of a variant (rs11641532) in this LD
region previously linked to the expression of CFDP1 in TWAS
analysis23,38. Conservation of this genomic region from zebrafish to
mammals54 further underscores the importance of regulatory ele-
ments contained within. Notably, zebrafish mutants of Cfdp1 exhibit a
loss of Neurod1 positive cells in the retina55. Altogether, this places
regulation of CFDP1 expression in the retina as a strong candidate for
AMD risk. This example demonstrates how the integration of reg-
ulatory elements to 3D chromatin interactions can help clarify the
biological impact of variants associatedwith retinal, andmore broadly,
human diseases. Notably, one limitation of the Hi-C approach is that
the physical interaction between candidate enhancers and promoters
does not directly demonstrate a functional relationshipwith respect to
gene regulation. Additional studies are necessary to validate the sig-
nificance of chromatin interaction on retina-specific gene expression.

In summary, we have generated a significant resource for the
human retina, by integrating high resolution Hi-C data with epigenetic
profiles and CREs, thereby facilitating investigations of genomic reg-
ulation, identification of missing heritability in retinopathies, and
candidate causal genes and variants for common blinding diseases
including AMD and glaucoma. Our studies thus provide a framework
for connecting regulatory variants with retinal diseasephenotypes and
may assist in design of targeted translational paradigms bymodulating
genomic regulation.

Methods
Retina tissues
Five postmortem human donor eyes (from 2 females and 3 males of
65–77 years age at the timeof death) wereprocured fromTheNational
Disease Research Interchange (Philadelphia, PA) (protocol DSWAS
001). Autopsy material from unidentified deceased persons is exclu-
ded from review by Institutional ReviewBoard and does not require an
Office of Human Subjects Research Protections (OHSRP) determina-
tion per 45 CFR 46 and NIH policy (OHSRP ID#: 18-NEI-00619). Eyes
were enucleated within 14 h of death and stored in Dulbecco’s Mod-
ified Eagle Medium (DMEM) (Thermofisher, Waltham, MA) supple-
mentedwith antibiotics at 4 °Cuntil dissection. Retinaswere dissected
and divided into four regions (dorsal, ventral, nasal and temporal) for
further processing. Dorsal regions were used in further experiments.

Hi-C experiment
Freshly dissected human retina tissue (from 3 male and 1 female of
75–77 years age at the time of death) was crosslinked with 1% for-
maldehyde in PBS for 10min, quenched with 125mMglycine for 5min
and frozen until use for Hi-C experiments. Before processing for Hi-C,
samples were crosslinked again in 2% formaldehyde for 10min, then
quenched with 125mM glycine 5min at room temperature. Hi-C was
performed on isolated nuclei using Arima-Hi-C kit (Arima Genomics,
CA, USA) and Hyper Prep DNA-seq library prep kit (KK8502; Kapa
Biosciences, MA, USA), following the manufacturers’ instructions. For
HCT116 cell line (ATCC, VA, USA), 7 × 106 cells were crosslinkedwith 2%
formaldehyde for 10min, quenched for 5min with stop solution I,
lysed, and processed for Hi-C using ARIMA-Hi-C kit. All libraries were
sequencedonHiSeq 2500platform (Illumina,CA,USA) at a read length
of 101 to 126 base pairswith a depth of approximately 300million read
pairs per sample for retina and 50 million read pairs for HCT116.

Cleavage under targets and release using nuclease (CUT&RUN)
Peripheral retina sample (from 1 female of 75 years age at the time of
death) was dissociated using papain as previously described56, cryo-
preserved in HBSS solution containing 10% DMSO and slowly frozen

using a Mr. Frosty container (Invitrogen, CA, USA). CUT&RUN was
performedaspreviouslydescribed57 using 200,000–300,000cells per
experiment. Briefly, cells were bound to activated concavalin A beads
for 7min at room temperature. Antibodies against H3K9me3 (Rabbit,
cat.no. ab8898, Abcam, Cambridge, UK), H3K4me3 (Rabbit, cat.no.
ab8580, Abcam, Cambridge, UK) and control IgG (Rabbit, cat.no. 011-
000-002, Jackson ImmunoResearch Laboratories, PA, USA) were used
at a concentration of 1:100 in 100 µl overnight at 4 °C. pA-MNase
conjugated to protein A (generous gift of Dr. Steven Henikoff, Howard
Hughes Medical Institute, WA, USA) was used at a concentration of
700 ng/ml for 1 hr at 4 oC and activated with calcium chloride for
30mins at0 °C. ReleasedDNA fragmentswerepurified usingQIAquick
PCR Purification Kit (QIAGEN, Hilden, Germany). Libraries were pre-
pared with SMARTer® ThruPLEX® DNA-Seq Kit (Takara Bio USA, Inc,
CA, USA) and amplified with 15 PCR cycles (60 °C extension). Pair-end
sequencing was performed with read length of 50 base pairs using the
HiSeq 2500 platform (Illumina, CA, USA).

Assay for Transposase-Accessible Chromatin using sequencing
(ATAC-seq)
ATAC-seq was performed using fresh dissociated cells from five
retinas (2 females and 3 males of 65–77 years age at the time of
death). Tagmentation and library preparation were carried out as
described58 using Nextera DNA Library Prep kit (FC-121-1030, Illu-
mina, San Diego, CA). Dissociated cells were quantified using a
hemocytometer, and the nuclear fraction of 50,000 cells was incu-
batedwith tagmentation reactionmix (5 µl Tn5, 25 µl 2x tagmentation
buffer, 20 µl nuclease-free water) in a thermomix with 600 rpm agi-
tation. The DNA was purified by “MinElute PCR Purification” kit
(Qiagen, 28004) followed by a two-sided size selection using a 0.5
and 1.5 ratio of SPRIselect reagent (Beckman Coulter B233181). All of
the DNA was used to prepare the libraries, which were sequenced
pair-end using the HiSeq 2500 platform (Illumina, CA, USA) at a read
length of 50 base pairs.

Hi-C data processing
Hi-C analysis was performed with HiCUP v0.8.059 using Arima-
specific in silico digested hg38 genome for the retina and
HCT116 samples, and MboI in silico digested hg38 genome for the
published neuron and GM12878 samples2. Filtered bam files pro-
duced by HiCUP v0.8.059 were converted to.hic files60 and to
HOMER61,62 tag directories. Retina Hi-C resolution was estimated at
3.06 kb using HiCRes63. Reproducibility between samples as well as
correlation with Hi-C from other tissues were assessed using HiCRep
v1.0.064: by computing the average SCC for chromosomes 1 to 22.
Compartments were called with Homer v4.161,62 using 100 kb sliding
windows with a step of 50 kb (using options superRes and res,
respectively). Compartment correlation between different tissues
was computed using R. Loops were called using FitHiC v2.0.765 on the
merged Hi-C datasets, using 5 kb resolution and an FDR threshold of
0.01. TADs calling was performed on the merged samples with
domaincaller66, using raw contact maps of 10 kb bins. Insulation
scores were computed using the diamond insulation tool from
cooltools v0.4.0, using 100 kb windows with 5 kb bins.

ATAC-seq data processing
ATAC-seq from five human retinaswas analyzed by trimming the reads
for Nextera transposase sequence and reducing their size tomaximum
25 bp using cutadapt v3.067 and FASTX toolkit (FASTX-Toolkit v0.0.14,
RRID:SCR_005534). Trimmed reads were mapped on hg38 using bow-
tie2 v2.3.5.168 andfiltered for quality, duplicates andblacklisted regions
(ENCODE dataset ENCFF419RSJ) using samtools v1.969. Two sets of
aligned read pairs were produced: TN5-shifted and non-shifted, to use
with general tools (TN5-shifted) or specialized tools already including a
TN5 shifting step (non-shifted). Quality controls were performed on
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the aligned readpairs by computing the normalized enrichment at TSS
using HOMER61,62, and by computing the fragment size. Retina 1 was
chosen as the best dataset from this QC and used as input for
ChromHMM33 annotation v1.19 (see Chromatin annotation section).

Cut&Run processing
Cut&Run datasets from one retina were processed by trimming the
adaptors using cutadapt v3.067 and mapping locally with bowtie2
v2.3.5.168, allowing dovetail on a chimeric genome (Human hg38, S.
cerevisiae S288C; E. coli ASM584v2). No internal normalization was
performed in these datasets since the proportion of read mapping on
the yeast or on the bacterial genome was too low. Reads mapping on
the human genome were then extracted, filtered for quality, dupli-
cates, and blacklisted regions (ENCODE dataset ENCFF419RSJ) using
samtools v1.969. Quality of the experiment was visualized on IGV
v2.11.970 after conversion to bigwig using deepTools71 (Supplemen-
tary Fig. 6).

ChIP-seq data processing
Public ChIP-seq datasets from human retina (GSE13731134) were rea-
nalyzed using the same parameters as for Cut&Run, i.e., locally map-
ping the reads and allowing dovetail. Mapped reads were filtered for
quality, duplicates, and blacklisted regions (ENCODE dataset
ENCFF419RSJ) using samtools v1.969. To select only one dataset per
chromatin mark, autocorrelation was assessed using HOMER61,62 and
datasets with the highest same and different strand enrichments and
the ratio same / different strand fold enrichment closer to one were
selected for further analysis. Global quality was visually assessed using
IGV v2.11.970 on mapped reads converted to bigwig using deepTools
v3.3.071 (Supplementary Fig. 6). Chromatin binding peaks of CREB,
CRX, CTCF, MEF2D, NRL, Otx1/2 and RORB were identified using
MACS2 v2.2.7.172.

Tissue- and cell type-enriched genes
Tissue-enriched genes and cell type-enriched gene lists used in
Figs. 2C, 3E and Supplementary Fig. 4 were downloaded from the
Human Protein Atlas73.

Chromatin annotation
The chromatin annotation used for this project is an integration of
public (H3K4me2, H3K27Ac) and lab-produced (H3K4me3, H3k9me3)
chromatin histonemarks with our best chromatin accessibility dataset
(see ATAC-seq processing section). This integration was performed by
transforming the read coverage to 500bp signal and computing
chromatin states using the ChromHMM33 tool v1.19. Models defining
between 5 and 20 chromatin states were tested. For each model, we
calculated themean correlation between each chromatin state and the
most similar chromatin state in each model with additional states.
After 10 chromatin states, this correlation plateaued indicating that
additional chromatin states provide minimal information. For each
state of the 10-states model, the average coverage for the chromatin
marks and accessibility were computed using HOMER61,62 and the
chromatin signatures for each segment were used to manually infer a
biological annotation of each state. The average distributions of each
state around the expressed and non-expressed genes were computed
as a quality control usingHOMER61,62, with our previously published list
of expressed genes in human retina38 and all the other genes from
HOMER TSS list as non-expressed genes.

CREs elements and SEs identification
Chromatin states enriched for active histone marks identified by
ChromHMMv1.19weremerged to generate a set of regions called here
CREs. This list of CREs was integrated with the H3K27Ac ChIP-seq
coverage and the corresponding input coverage to identify SE using
the ROSE algorithm20,74.

SE characterization
Basic SE characteristics were computed using R. Correlation between
SE count and chromosome size or number of retina-expressed genes is
measured as Pearson’s r2 computed with ggpubr v0.4.0. To identify
statistically significant enrichment in SE characteristics, 100 random
region datasets have been generated using bedtools random v2.29.275

with a length corresponding to the median length of SE and the
number of regions per dataset equal to the number of SE. SEs and
random regions have been overlapped with the Hi-C loops using
bedtools PairToBed v2.29.275. Statistics of the overlapswere computed
using R. SEs and random regions were overlapped with all expressed
genes as well as tissue- and cell type-enriched genes from the Human
Protein Atlas73 using bedtools intersect v2.29.275. Genomic regions in
contact with a SE or random region through chromatin were also
overlapped with tissue- and cell type-enriched genes, CREs, and het-
erochromatin regions (from chromHMM33 annotated states) using
bedtools intersect v2.29.275.

Accessible motifs analysis
To identify accessiblemotifs, accessible chromatin loci were identified
using MACS2 v2.2.7.172 on each dataset and the average coverage at
ATAC peaks has been computed as a quality control using HOMER61,62.
Footprints have been extracted from each list of accessible loci using
rgt-HINT v0.13.176. Accessible footprint loci less than 20bp apart have
been merged for all ATAC-seq experiments. Loci found in at least 3
retinas have been kept for motif finding. To control the quality of
accessible footprint discovery, we identified binding motifs present
within these footprints at an FDR<0.05 using FIMO77 with the motif
database HOCOMOCOv1178. Then, the read coverage from CRX, NRL,
CTCF and Input ChIP-seq around each CRX, NRL or CTCF accessible
motifs were computed using HOMER and plotted using R.

Enriched TF binding motifs from Fig. 3H were computed by run-
ning AME from MEME suite v5.4.1 on accessible footprints within SE
and containing CRX and NRL binding sites. SE-overlapping footprints
without NRL or CRX binding sites were used as background. Finally,
motifs from expressed TFs were filtered to those expressed in a pre-
vious retina transcriptome study (GSE115828).

Characterization of retinal eQTLs
The 14,859 eQTLs identified previously38 were classified based on the
location of the variants relative to the canonical TSS of the associated
eGene from Ensembl 102. Expression quantitative trait loci variants
located within ±2.5 kb of the eGene TSS were identified as promoter
eQTLs while those located >2.5 kb from the eGene were identified as
distal eQTLs.One hundred sets of randomTADs of the same count and
mean length as the real TADs were generated using regioneR v1.26.179.
For each set of TADs, real and random, we determined what propor-
tion of eQTL variants resided within the same TAD as their associated
eGene TSS. Next, eQTL variants which overlap a chromatin loop foot
were classified based on the location contacted by opposite loop foot;
variants in contactwith their eGene promoterwere identified as eGene
pieQTLs, variants in contact with a promoter other than the eGene as
non-eGene pieQTLs, and variants not in contact with any promoter as
eQTL only. Finally, eQTLs were checked for overlap with CREs and SEs
then subsequently checked if those regions overlapped the associated
eGene. All overlapswere performedusingGenomicRanges v1.4280 in R.

Identification of linkage disequilibrium (LD) variants for AMD
and Glaucoma GWAS loci
Fifty-two AMD associated variants distributed across 34 loci and 127
glaucoma associated variants and loci were considered for the
analysis23,24. We calculated linkage disequilibrium (LD) for 52 AMD lead
genetic variants and for 127 glaucoma lead variants within 1 MB using
LDlink v5.1, among individuals with Europe ancestry from 1000 Gen-
omes Project data21,81. Using hg38 coordinates, we identified 65,625
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AMD variants and 188,465 glaucoma variants in LD; of these, 1,196
filtered AMD variants and 12,658 filtered glaucoma variants in LD with
MAF ≥ 1% and r2 ≥0.7 were selected for further analysis.

Identification of AMD and Glaucoma GWAS loci target genes
The closest target genes overlapping with loops, CRE, SE, 52 AMD lead
variants, 1,196 filtered AMD LD variants, 127 glaucoma lead variants
and 12,658 filtered glaucoma LD variants were obtained using the
closestBed command from bedtools v2.29.275. Gene and TSS hg38
coordinates from Ensembl version 102 were used to overlap with the
coordinates of the 52 AMD lead variants, 1,196 filtered AMD LD var-
iants, 127 glaucoma lead variants and 12,658 filtered glaucoma LD
variants. For a loop target gene, one foot of the loopoverlaps theAMD/
glaucoma GWAS lead variants or filtered AMD/glaucoma LD variants,
and the second foot of the loop overlaps the gene body or TSS of a
gene. CRE and SE target genes were defined by both the AMD/Glau-
coma GWAS lead variant (or filtered AMD/glaucoma LD variant) and
the gene body (or TSS of a gene) overlapping the same CRE.

Figure plots
Contact maps were plotted using the Washington University Epigen-
ome browser82 or using HOMER61,62 and R v3.6 and v4.0.3. Chromatin
profiles and chromatin loops were plotted using IGV v2.11.970. Graphs
were plotted using R v3.6 and v4.0.3, ggplot2 v3.3.5 and dplyr v1.07
and ComplexHeatmap v2.7.10.9002.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
author upon reasonable request. Datasets produced in this study are
accessible in GEO under the accession numbers: GSE202471 (Hi-C),
GSE202472 (ATAC-seq), GSE202473 (Cut&Run) and GSE202474 (full
series). These data can be explored using our user-friendly application
on computer, tablet, or smartphone on http://grn.nei.nih.gov. hg38
genome was used for alignment. Gene expression data are from our
previous study, under the accession GSE11582838. The public ChIP-seq
raw data used in this study are accessible under the following SRA
numbers34: SRR10172858 (H3K27Ac), SRR10172898 (H3K4me2),
SRR10172903 (CRX), SRR10172897 (NRL), SRR10172909 (CTCF),
SRR10172910 (MEF2D), SRR10172908 (RORB), SRR10172914 (CREB),
SRR10172882 (OTX1 / OTX2), SRR10172850 (Input). Public Hi-C data
are accessible under the following accession numbers: GSE135465
(Mouse retina32), Synapse syn12978758 and syn12978762 (Purified
neurons31) and SRR1658572 (GM128782).
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