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Synaptic plasticity in self-powered artificial
striate cortex for binocular orientation
selectivity

YanyunRen1,2, XiaoboBu2,MingWang3, YueGong4, JunjieWang4, Yuyang Yang4,
Guijun Li 3, Meng Zhang4, Ye Zhou2 & Su-Ting Han 4

Get in-depth understanding of each part of visual pathway yields insights to
conquer the challenges that classic computer vision is facing. Here, we first
report the bioinspired striate cortex with binocular and orientation selective
receptive field based on the crossbar array of self-powered memristors which
is solution-processed monolithic all-perovskite system with each cross-point
containing one CsFAPbI3 solar cell directly stacking on the CsPbBr2I memris-
tor. The plasticity of self-powered memristor can be modulated by optical
stimuli following triplet-STDP rules. Furthermore, plasticity of 3 × 3 flexible
crossbar array of self-powered memristors has been successfully modulated
based on generalized BCM learning rule for optical-encoded pattern recog-
nition. Finally, we implemented artificial striate cortex with binocularity and
orientation selectivity based on two simulated 9 × 9 self-powered memristors
networks. The emulation of striate cortex with binocular and orientation
selectivity will facilitate the brisk edge and corner detection formachine vision
in the future applications.

The history of machine vision spans more than several decades1.
Nevertheless, the robust and general solutions to themajor issues such
as motion detection, object recognition, vision-based navigation and
activity recognition are still beyond reach of present computer vision
system2. Biologically visual system is hierarchical organization
including retina, optic nerve, lateral geniculate nucleus (LGN) and
striate cortex3–5. It is evident that the different level of visual system
process different types of visual information with receptive fields
covering different region of visual field6. Get understanding of each
partof visual pathwayplaying in visual perception yields insights of the
challenges that classic computer vision is facing7.

The receptive field is a restricted retinal area where the light
shining on it could influence the firing rate of corresponding units4,8.
The ganglion cells possess concentric receptive field with an “off”
center and an “on” border or an “on” center and “off” border. The “on”

and “off” region in receptive field are mutually antagonistic9. So that
the light spots with circular form and restricted to the “on” area are
more effective stimuli for activating retinal ganglion cells3,10–12. Its next
part, LGN, possesses similar concentric receptive field13,14. However,
the receptivefield of cells in the striate cortex is narrow, long, vertically
oriented region which differs strikingly from that in retinal ganglion
cells and LGN15. Therefore, the vertical slit-shaped spot of light
superimposing on the center of receptive field of striate cortical cells
often evoke brisk response16–18. The key role of receptive field of striate
cortex is supporting the edge and corner detection so the motion
detection is usually processed here19.

Along the visual pathway, the receptive field of different level of
visual system shows convergence process20. The receptive field of one
ganglion can be viewed as the collective of the many photosensory
cells which synapses with it. In turn, the group of ganglion cells form
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the receptive field of striate cortical cells (Fig. 1a). Therefore, the
receptive field of one striate cortical neuron can be viewed as the
collective of the many retinal photosensory cells (rods and cones)
which indirectly synapse with it21. The modulation of synaptic con-
nections between the photosensory cells and striate cortical cells is
crucial to develop the narrow, slit-shaped receptive field, ensuring the
orientation selective in striate cortex22,23.

Compared with Purely Hebbian, that is the modification of
synapse based on the multiplication of the pre- and post-stimuli and
the synaptic weight stabilized by controlling cortical responses below
the maximum, the rate-based Bienenstock-Cooper-Munro (BCM)
learning rule is more biorealistic for the synaptic modification and
neuronal response selectivity in the experience-dependent modifica-
tion that observed in striate cortex24. It describes that the sign of
synapse weight modification is determined by whether the post-
synaptic response exceeds a threshold. The postsynaptic firing rate
higher than a sliding threshold induces the strengthening of synapse
while the postsynaptic responses below the threshold weaken the
synapse25,26. The sliding threshold is dependent on the average activity
of the postsynaptic neuron, ensuring a history- or experience-
dependent characteristic, which is the figure of merit of BCM27–29. In
order to realize BCM, a triplet-STDP which introduces a third pre-
synaptic or postsynaptic spike to pair-STDP has been employed to
reproduce frequency effect of the pair protocol30,31. The frequency
effect stems from thepair spikes-inducedpaired termand theprevious
spike of triplet-STDP induced triplet term32. Furthermore, the triplet-
STDPcanbeemployed to realize rate-basedBCM learning rule through
an All-to-All framework33.

Except for a strong preference for a particular orientation, the
visual response of striate cortical neuron is also binocular34. In the
biological visual system, signals from the left and the right eyes first

converge in the striate cortex, V1. Neurons in adult striate cortex are
binocular with a strong preference for contours of a particular orien-
tation. In biology visual system, the newly born interocular neurons
have different orientation preference which means the binocular
response is inconsistent for the same field of view (FoV). A matching
process between two eyes is required to form normal binocular per-
ception for depth and stereopsis35. Binocular neurons in the striate
cortex must match their orientation tuning through the two eyes in
order for the animal to perceive coherently.

Currently, the vision sensors are emerging to mimic receptive
field of ganglion cell in retina for simultaneously sensing and proces-
sing. The emulation of experience-dependent modifications of
synaptic strength to form binocular, orientation selective receptive
field that observed in the striate cortex lags considerably behind that
of the retina36–38. In this work, we first report the bioinspired striate
cortex with binocularity and orientation selectivity based on the
crossbar array of self-powered memristors where each cross-point
contains one CsFAPbI3 perovskite solar cell and one CsPbBr2I per-
ovskite memristor. The second-order CsPbBr2I memristor withmobile
halogenic vacancy similar to Ca2+ dynamics in the striate cortical
synapse, which allows the emulation of rate-based plasticity. While the
CsFAPbI3 perovskite solar cell can be viewed as photosensory retinal
cells to synapse with striate cortical cell for converting external optical
signals into electrical signals (For biological visual system, the cortical
cell synapseswith LGN, LGN synapseswith ganglion cells, and ganglion
cell synapses with retinal sensory cells. In our hardware implementa-
tion, we directly synapse artificial retinal photosensory cells with cor-
tical cell for simplicity). Furthermore, plasticity of 3 × 3 crossbar array
of self-powered memristor has been successfully modulated based on
rate-based BCM learning rules for pattern recognition by light illumi-
nation. Finally, we realized artificial striate cortexwith binocularity and

Fig. 1 | Artificial striate cortexbasedonself-poweredmemristor. aThehierarchy
of human visual system for light perception and processing. b The convergence
process of receptive field in different level of visual system. c The concept of

artificial striate cortex based on self-powered perovskite memristor. d The devel-
opment of narrow, slit-shaped receptive field of striate cortex with binocular
orientation selectivity based on BCM learning rule.
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orientation selectivity based on two 9 × 9 self-powered memristor
networks, following the generalized BCM learning rule. By varying the
type of input for (1) normal binocular contour vision, (2) monocular
deprivation, (3) binocular deprivation, we highly reproduced the
experience-dependent modifications that have been observed
experimentally in kitten striate cortex. To the best of our knowledge,
this is the first time to realize the hardware implemented striate cortex
with binocular and orientation selectivity. The bio-inspired striate
cortex is highly compatible with high-density and low power con-
sumption machine vision owing to its crossbar paradigm and homo-
typic materials system.

Results
The concept of artificial striate cortex
As mentioned above, the retina (photoreceptor layer), bipolar cell
layer, horizontal cell layer and ganglion cell layer, optic nerve, lateral
geniculate nucleus (LGN) and striate cortex are organized in a hier-
archical way to realize visual perception (Fig. 1a). In the retina, the
photoreceptors (rod opsins and cone opsins) detect the outside sti-
muli and directly synapsewith bipolar cells, which in turn synapsewith
ganglion cells and conduct action potentials to the LGN. The LGN
consisting of six layers in humans is a sensory relay nucleus in the
thalamus of the brain39. The striate cortex, which is also called primary
striate cortex (area V1) receives and organizes information from LGN
and further sends the signal downstream to higher visual area19. The
striate cortex is the first cortex area to receive visual information in
which the cells are more effectively stimulated by bars or edges with
narrow ranges of orientations. The complete map of receptive field of
striate cortex cells is shown in Fig. 1b with dark purple pad areas giving
excitation and surrounding light purple circle areas giving inhibitory
effects. When the vertically slit-shaped spot of light covering the
receptive field located in central area of eye hemisphere, the greatest
“on” response accompanies the strongest inhibitory responses gives
the peak response of striate cortex with highest firing rate3,4. The key
role of receptive field of striate cortex is supporting the edge and
corner detection so the motion detection is usually processed here19.

Here we emulate the striate cortex with binocular and orientation
selective receptive field by integrating self-powered memristor into a
crossbar array where the plasticity of the individual device is modu-
lated by light pulses separately (Fig. 1c). Each cross-point contains one
two-terminal CsFAPbI3 perovskite solar cell directly stacking on the
two-terminal CsPbBr2I perovskite memristor. The solar cell functions
as pre-synaptic photosensory neuron in retina, converting the external
optical signals to electrical signals. The memristor functions as striate
cortical synapse which can be driven by the solar cell. The bottom
electrode (BE) of self-powered memristor can be regarded as post-
cortical neuron and the change of conductance emulates potentiation
or depression of synaptic weight for the development of binocular and
orientation selective receptive field. According to the BCM rate-based
theory, the plasticity of excitatory cortical synapses varies as the pro-
duct of input activity and a function of the summed postsynaptic
response (ϕ).ϕ exhibits a negative value forpostsynaptic response less
than modification threshold (θ) while ϕ has a positive value for post-
synaptic response greater than θ. The novel feature of the BCM theory
is that the value of θ is not fixed which slides as a nonlinear function of
the average postsynaptic responses, allowing the precise specification
of biological situation40. Figure 1d shows the schematic illustration of
development of binocular, orientation preference receptivefield in the
human visual system driven by visual experience based on the BCM
rate-based theory with typical feature of sliding threshold.

Synaptic emulation of CsPbBr2I memristor
First, the pureperovskitememristorwith structure of Au/P3HT(poly(3-
hexylthiophene))/CsPbBr2I/ITO were fabricated to verify its second
order effect for emulating rate-based plasticity. Figure 2a shows the

schematic illustration and the cross-sectional scanning electron
microscopy (SEM) image of the perovskite memristor. The ultrathin
P3HT layer functions as the passivation layer to decrease the defects of
perovskite and reservoir layer to retain halogenic ions. The thickness
of perovskite film in memristor is ~100 nm. The X-ray photoelectron
spectroscopy (XPS), X-ray diffraction (XRD), atomic force microscopy
(AFM) characteristics of perovskite film are in Supplementary Fig. 1.
The P3HT film is too thin to be directly characterized by scanning
electron microscopy (SEM) and its existence can be verified by the
infrared transmittance spectra41. For electrical measurements of
memristor, the external voltage approaches on the AuTEwhile the ITO
BE keeps ground, the input voltage pulse, device conductance and
response current are regarded as the presynaptic spike, synaptic
strength and postsynaptic current. The direct current (DC) measure-
ment of memristor shows the pinched hysteresis phenomenon, as
shown in Fig. 2b. Different from the bistable resistive switching phe-
nomenon, the response current of our device gradually increases
during application of five consecutive positive sweeps and decreases
followed five consecutive negative sweeps, indicating tunable con-
ductance characteristics which is analogue to the modulation of bio-
logical synapses.

In Supplementary Fig. 1d, we demonstrate the excitatory post-
synaptic current (EPSC) behavior through memristor under a single
presynaptic spike, the EPSC increase abruptly at the arrival of pre-
synaptic pulse which takes about 200ms to relax back to the initial
state. The abrupt EPSC increase is generally attributed to the voltage-
triggered halogenic vacancy (e.g. bromine vacancy (VBr) and iodine
vacancy (VI)) migration and the hysteresis phenomenon may be ori-
ginated from the spontaneous diffusion of halogenic vacancy after
removal of external bias42–44. Hence, our memristor displays second-
order phenomena with first-order variable of halogenic vacancy dis-
tribution into a steady state in long term dynamics and the second-
order variable of spontaneously redistribution of halogenic vacancy.
Furthermore, the paired-pulse facilitation (PPF) is an important short-
term phenomenon in neuroscience which represents a facilitation
effect of EPSC when the pre-synaptic membrane is stimulated by two
consecutive spikes. The second spike will trigger a reinforced EPSC on
the basis of first spike where the amplitude enhancement is deter-
mined by the interval time between two spikes. Figure 2c shows the
PPF experimental results and the PPF value decreases with the increase
of interval time, the experiment data can be defined as:

PPF = c1e
� t

τ1 + c2e
� t

τ2 ð1Þ

where the c1/c2and τ1/τ2 are the initial magnitudes and characteristic
relaxation times of the rapid and slow phases, respectively45. By fitting
the PPF curve, the τ1 of short-term potentiation (STP) constant and τ2
of long-term potentiation (LTP) constant were estimated as 0.28ms
and 10.86ms, respectively. The τ2 is one order larger than τ1 which is
comparable to the biological synapse (~ms order)46,47. The fast
relaxation process is originated from the low activation energy of
halogenic vacancy migration43.

The programmable conductance levels ofmemristor are essential
toward mimicking long-term synaptic plasticity such as LTP and long-
term depression (LTD)48,49. Figure 2d shows that the memristor con-
ductance can be gradually increased (decreased) by consecutive 100
positive 0.5 V/5ms (negative −0.5 V/5ms) pulses, which is corre-
sponding to the synaptic LTP and LTD behaviors. To quantitative
assessing the plasticity of our memristor, the conductance window
(Gmax – Gmin) and the non-linearity (NL) of LTP/LTD are calculated as
3.00/3.98 (Note Non-Linearity in Supporting Information). We also
characterized the current responses by separately varying the pulse
interval and pulse width as shown in Fig. 2e, f. It is clear that a stronger
LTP behavior can be obtained under pulse train stimuli with shorter
pulse interval and larger pulse width. When the pulse interval
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decreases form 15ms to 5ms, the peak current increases from 62.1 μA
to 76.3 μA.

Synaptic plasticity not only depends on the competition between
excitatory and spontaneous decay, but also relates to the previous
activity50,51. This history-dependent plasticity can be realized based on
the perovskite memristor, as shown in Fig. 2g. The four pulse trains
with fixed pulse amplitude of 0.5 V, fixed width of 5ms and different
frequencies were applied to memristor successively. It is clearly that,
the device conductance rapidly increases after the first pulse train with
frequency of 100Hz, indicating that the excitatory of device over-
comes its spontaneous decay.While the conductance decreases under
second pulse train with low spike frequency of 10Hz, implying that the
spontaneous decay is dominated. During the third pulse train with the
frequency of 1 Hz, the device conductance remains essentially
unchanged because the relaxation and excitatory process of device
achieve balanced state at low spike frequency. Interestingly, the fourth
pulse train with spike frequency of 10Hz triggers the increase of
conductance, displaying opposite trend of conductance modulation

compared with the application of second pulse train even though the
same spike frequency were employed. It can be explained that after
relaxation of device during third pulse train, the excitatory of device
re-dominate the conductancemodulation under the fourth pulse train
with relatively higher spike frequency. In brief, the different modula-
tion of conductance change can be obtained at a given stimulation
condition (e.g. 10Hz) based on different previous activities (e.g.
100Hz, 1 Hz), indicating that our memristor can simulate history-
dependent synaptic plasticity successfully.

Along with the single-terminal-triggered synaptic plasticity (e.g.
PPF, LTP and LTD), the pair-STDP which describes a plasticity mod-
ulation by adjusting the temporal intervals between presynaptic and
postsynaptic pulses45,52. In order to verify the feasibility of the pair-
STDP emulation for our memristor, a pair of rectangular voltage pulse
with amplitude of 0.5 V, width of 5ms and variable pulse interval
ðΔt = tpost � tpreÞwere applied to the pre-synaptic neuron and post-
synaptic neuron. Based on the pair-STDP learning rule, if the pre-
synaptic pulse arrived before postsynaptic pulse, (Δt > 0), the synaptic

Fig. 2 | Emulation of artificial synapses. a The schematic and the cross-sectional
SEM image of Au/P3HT/CsPbBr2I/ITOmemristor. b The current with respect to DC
voltage sweeps, the device conductance gradually increase (decrease) under
positive (negative) sweeps of 0.5 V (−0.5 V). c The PPF ratio as a function of pre-
synaptic pulse interval which can be expressed as ðA2 � A1Þ=A1 × 100%. The pulse
width and amplitude were set to 5ms and 0.5 V. d The modulation of device con-
ductance as a function of 100 consecutive potentiating and 100 depressing pulses.

e Emulation of EPSC versus pulse interval at 5ms, 10ms and 15ms. f Emulation of
EPSC versus pulse width at 5ms, 10ms and 15ms. g The device response to con-
secutive presynaptic pulse sequences at the frequencies of 100Hz, 10Hz, 1 Hz and
10Hz. h The STDP learning rule simulated at three different initial states
(G0 = 100μs, 200μs, 300 μs) as a function of presynaptic and postsynaptic pulses
interval.
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weight increases to induce LTP. On the contrary, if the order of pairing
pulse reverses, (Δt <0), the synapticweight decreases to obtain LTD. In
addition, the amplitude of synaptic weight change (ΔG) shows a
negative exponent relationship with pulse interval, where the pair-
pulse with a smaller pulse interval usually results in larger LTP or LTD.
Inspired by the history-dependent plasticity as shown in Fig. 2g, we
emulated the pair-STDP plasticity in three initial states with G0 of 100
μs, 200μs and300μs, as shown inFig. 2h. The signofΔG changes from
positive to negative with the increase of Δt in high G0 state, and vice
versa. This phenomenon can be explained as when pair-pulse with a
large Δt is employed to activate the device, the increase of con-
ductance fails to overcome the decay effect. Hence, the conductance
decreases even in a conventional LTP region. This successful simula-
tion of history-dependent pair-STDP learning rule is the foundation of
realizing BCM learning rules in our self-powered memristor, more
details are shown in Supplementary Fig. 17.

Triple-STDP in self-powered memristor
In order to realize BCM learning rule, a triplet-STDPwhich introduces a
third presynaptic or postsynaptic spike to pair-STDP has been
employed to reproduce frequency effect of the pair protocol53,54. In
this part, lightmodulation of plasticity of self-poweredmemristor with
structure of ITO/CsPbBr2I/P3HT/Au/ITO/Au/Spiro/CsFAPbI3/SnO2/ITO
were realized based on triple-STDP (Fig. 3a). By delicately compound
engineering and structural design, we first realize solution-processed
monolithic all-perovskite system to implement the self-powered
memristor for realizing hardware-based striate cortex. The micro-
scopic images were obtained by performing the cross-sectional scan-
ning electron microscopy (SEM) on device where the continuous and
smooth surface of each layer can be observed, verifying that the
structure contains one CsFAPbI3 perovskite solar cell directly stacking

on the CsPbBr2I perovskite memristor and our design of solution-
processed monolithic all-perovskite system allows the facile integra-
tion of memristor and solar cell without damaging of each layer. The
solar cell functions as pre-synaptic photosensory neuron in retina,
generating a voltage spike with the open-circuit voltage (Voc) of ~1 V
under light irradiance of 100mW/cm2 (Supplementary Figs. 7–9). The
photovoltaic potential induced by photoelectric conversion activates
the memristor which is viewed as striate cortical synapse. The BE of
self-powered memristor is regarded as post-cortical neuron and the
change of conductance emulates potentiation or depression of
synaptic weight obeying triplet-STDP learning rule (Fig. 3b).

For the long-term triplet-STDP, the spike train can be considered
as the integration of two spike pairs which induce the combination of
LTP and LTD processes and the synaptic modification (Fig. 3c)31,55. For
example, in ‘post-pre-post’ sequence, the first ‘post-pre’ pair
ðΔt1 = t1post � tpre<0Þ of ‘post-pre-post’ pulse induces a LTD, following
by a LTP caused by the second ‘pre-post’ pair ðΔt2 = t2post � tpre>0Þ.
Similarly, the ‘pre-post-pre’ configuration can also be divided as a ‘pre-
post’ pair (LTP, Δt1 = tpost � t1pre>0) and a ‘post-pre’ pair (LTD,
Δt2 = tpost � t2pre<0). Moreover, the triplet term made by the previous
spike to the paired spikes is required to be taken into the considera-
tion. Figure 3d summarize the data of the first-spike-dominating
triplet-STDP (the first spike suppresses the efficacies of subsequent
spikes) with varying Δt1 and Δt2 using a colored background to show
ΔG30,56. The results in quadrant II and IV regions are the typical triplet-
STDP. In the quadrant II region, the synapse depression and poten-
tiation are realized simultaneously in the ‘post-pre-post’ pulses by
adjusting the parameters of Δt1 and Δt2. As shown in the up-right part,
the |Δt1| is smaller than |Δt2|, the LTD dominates the whole process
which results in the weight depression. With the increase of |Δt1|, the
differenceof |Δt1| and |Δt2| goes down, the equilibriumstate received at

Fig. 3 | The triplet-STDP implement of self-power memristor under light sti-
muli. a The schematic and the cross-sectional SEM image of self-powered mem-
ristor.bCircuit diagramof self-poweredmemristor for realizing triplet-STDP. cThe
schematic of the typical triplet-STDP, including ‘post-pre-post’ and ‘pre-post-pre’
pulse sequences. d The triplet-STDP simulation based on self-powered memristor.

The memristor was preset to a middle conductance 200 μs and the experimental
results show that the potentiation or depression is determined by the pulses
sequences and its timing intervals. The size of red star (potentiation) and blue
rhombus (depression) with corresponding background color are employed to
express the magnitude of device conductance change.
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the state of |Δt1|≈|Δt2|. When the |Δt1| continuously increases to be
larger than |Δt2|, the LTP plays a dominant role reversely and results in
weight potentiation (the bottom-left part). In the quadrant IV regionof
‘pre-post-pre’ sequence, the weight depression and potentiation take
place in the up-right (|Δt1|>|Δt2|) and bottom-left (|Δt1|<|Δt2|) parts. It is
worth pointing out that, the conversion of depression and potentia-
tion does not appear in the |Δt1|≈|Δt2| region owing to the decay effect.

The asymmetry characteristic of triplet-STDP is beneficial to
the following realization of BCM-rate learning rule compared to
pair-STDP. Beside the typical triplet-STDP, four other triplet-STDP
(e. g. ‘pre-pre-post’, ‘pre-post-post’, ‘post-post-pre’, ‘post-pre-pre’)
are also performed in quadrant I and III regions, where the pre-
synaptic pulses are always received before (after) postsynaptic
pulses. Actually, the quadrant I region can be simplified to LTP
behavior and potentiation effect is observed while the quadrant III
region can be simplified to LTD behavior and pure depression. The
fitting results of triplet-STDP are shown in Supplementary Table 6,
which can support us to further implement the BCM learning rule
quantitatively, e.g. the weight change value in BCM learning rule is

determined by the triplet potentiation/depression terms of
triplet-STDP.

Pattern learning in self-powered artificial striate cortex
Next, to demonstrate the functionality of self-powered memristor for
developing the receptive field of striate cortex based on BCM rate-
based learning rule, the flexible 5 × 5 self-powered memristor array
were fabricated. As illustrated in Fig. 4a, nine solar cells in the crossbar
array function as pre-synaptic photosensory neuron in retina to emit
voltage spike trains corresponding to the input visual pattern. Thenine
memristors are viewed as striate cortical synapses and the bottom
electrodes of nine self-powered memristors were connected together
as one post-cortical neuron. The Fig. 4b shows the optical image of
hemispherical shaped artificial striate cortexwith field-of-view (FoV) of
180° along both the x and y direction and the inset shows the optical
image of the flexible array glowing as sunlight passes through it,
indicating the high flexibility and transparency of the array. The
crossbar array of self-powered memristors were further connected
into the processing unit STM32 which has been integrated in printed

Fig. 4 | BCM learning rule for pattern learning based on device-level artificial
striate cortex. a The schematic illustration of artificial striate cortex and the
postsynaptic electric circuit design. b The optical images of hemispherical-shaped
artificial striate cortex and the flexible array glowing as sunlight passes through it
(insert). And the dimension of the array is 3 cm × 3 cm with the electrode width of
1000μm, where the large array size is limited by the size of sub-solar cell for

receiving sufficient visual information from the environment. c The schematic of
circuit block. d The measured (triangle) and fitting (line) results of BCM learning
rule as a function of postsynaptic firing frequency based on the artificial striate
cortex. e The schematic of artificial striate cortex for pattern learning. f The evo-
lution of synaptic weights of the 9 visual cortical synapses during pattern learning
task. g The initial and final states of synaptic weights in the pattern learning task.
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circuit board (PCB), as shown in Fig. 4c and Supplementary Fig. 18. All
electrodes including bottomelectrodes of solar cells, top electrodes of
solar cells which are also the top electrodes ofmemristors and bottom
electrodes ofmemristors are connected to controller, therefore all the
synaptic states can be controlled and monitored in real time. During
the learning process, the input voltage pulse is generated by solar cell
when optical pulse arrives with a rate of ρx (Poisson distribution). Each
input pulse is applied to TE of memristor and generates a post neuron
current which collected by STM32, where the total current is
I =

P
t<200msw0Gwherew0 = 0.5 V. Then, the STM32 feedback electrical

pulse to BE ofmemristorwith firing rate according to ρy = g × I, where g
= 50Hz/mA. In this framework, simplified the constants, the numerical
value of postsynaptic firing rate can be redefined as ρy = Gρx with a
Poisson distribution, too. Hence, the synaptic weight change induced
by the BCM learning rule with the presynaptic input rate ρx and post-
synaptic firing rate ρy

57–59.
The triplet-STDP methods can be employed to attain the gen-

eralized BCM learning rule in our self-powered memristor array for
high-order spatiotemporal recognition. The BCM learning exhibits two
features. Firstly, if the synaptic input with firing rate ρx drives post-
synaptic firing rate ρy = Gρx to a high level, the potentiation effect
occurs while if the synaptic input drives ρy to a low level, the depres-
sion effect can be obtainedwhich is called enhanceddepression effect.
Secondly, a modification threshold θ is defined as the crosspoint
between potentiation and depression. It shows sliding characteristic
that a potentiation direction moves when average postsynaptic firing
rate hρyi is low, while a depression direction moves when hρyi is high.
Based on a single linear neuron assumption, the synapse weight
modification based on BCM learning rules can be simplified as:

dG=dt =ϕðρy,θÞρx ð2Þ

where ϕ() is a scalar function of ρy and θ. Thus, the BCM learning rule
can be simplified as a function of postsynaptic pulse firing rate, slide
threshold and presynaptic input pulse rate40,60.

Indeed, the change of synaptic weight base on BCM learning can
be calculated based onAll-to-All framework (the synaptic change is the
integration of changes made by all possible pre- and post-synaptic
pairs) based on our self-powered memristors array. In this framework,
the weight change is determined by the interaction of every single
spike with all other spikes depend on triplet-STDP:

dG=dt =ϕðρy,θÞρx = ð�A�
2 τ�ρy � A�

3 τ�τxρxρy +A
+
2 τ + ρy +A

+
3 τ + τyρ

2
yÞρx

ð3Þ

where theA+
2 ,A

�
2 ,A

+
3 ,A

�
3 are the relevant amplitudes, and the τ+, τ−, τx,

τy are the corresponding time constants of potentiation and depres-
sion terms in pair-STDP and triplet-STDP. This fitting function can
satisfy the BCM learning through parameters deformation as follows.
On the one hand, the A�

3 =0is used to emulate the first feature of BCM
based on a minimal triplet rule, namely, ðρy<θ,θÞ<0, ðρy>θ,θÞ>0 and
(0, θ) = 0. On the other hand, the second feature is matched by
redefining A�

2 ! A�
2 hρ2

yi=ρ2
0, A

+
2 ! A+

2 hρ2
yi=ρ2

0 where ρ0 is a constant.
This yields a frequency dependent threshold θ= hρ2

yiðA�
2 τ� �

A+
2 τ + Þ=ðρ2

0A
+
3 τ + τyÞ which is proportional to the expectation over

the second power of postsynaptic firing rate37,55. For our self-powered
memristors array, threshold sliding effect can be realized by tuning
synapse history state G0 as shown in Fig. 4d. The memristor display
the depression effect at low postsynaptic firing rate and potentiation
effect at higher firing rate. The threshold slides from 40Hz, 60Hz to
80Hz with the increase of synapse history states from 100 μs, 200 μs
to 300 μs. It should be pointed out that, this BCM implementation is
based on the assumption that the responsiveness of neuron
connectivity is active which means pre-synapse and post-synapse
need keep fires to active the retina-genicular-cortical pathway.

In order to demonstrate that the BCM learning rule allows the
development of receptive field of artificial striate cortex, the simple
visual pattern learning was first implemented based on the crossbar
array of self-poweredmemristors. The visual pattern was encoded into
optical pulses which acts on the solar cell (artificial photosensory
neurons), the solar cells then convert the optical stimuli into electrical
pulses to activate the memristor. The current generated in each
memristor was collected by the post-cortical neuron (Fig. 4e). The red
pixels of the input pattern ‘X’ possess high optical input rate of 30Hz
while the blue pixels of input pattern possess low optical input rate of
14Hz. The post-cortical neuron responds to the input singles following
a linear function with a firing rate of ρy =Gρx =

P9
i = 1Giρ

i
x, where

G= ½G1,G2 � � �Gi� and ρx = ½ρ1
x ,ρ

2
x � � �ρi

x� (i is the index of the synapse) are
the synapse weight and input rate, respectively. The synaptic weights
modulation and pattern learn result are shown in Fig. 4f, g. All the
synapses are set to lower stochastic weights as the initial state.
enduring the learning process, the pattern pixels are stimulated to
high weights (synapse 1, 3, 5, 7, 9) owing to the high input rate, while
the background pixels (synapse 2, 4, 6, 8) possess low weights. In the
end, a well-defined ‘X’ pattern has been mapped to the artificial striate
cortex.

Artificial striate cortex with binocularity and orientation
selectivity
To show the potential of the self-powered memristor in the con-
struction of large-scale crossbar array for realizing artificial striate
cortex with binocularity and orientation selectivity, we performed a
simulation based on experimental data. The BCM learning rule is
attractive because it is suitable for explaining the development of
spatiotemporal receptive field properties encountered in striate cor-
tex (V1)61,62. The orientation selectivity, which means the neurons may
exhibit high firing rate spike corresponding to the input bar with a
particular orientation while low firing rate spike is obtained corre-
sponding to the input with other orientations16,63. Nowadays, most of
the experimental and simulation works have been focused on elec-
trical monocular simulation64,65. The critical light sensitivity char-
acteristic as well as the binocular rearing correlation (e.g. binocular
competition effect) of biology visual system have not been
demonstrated yet.

Our self-powered memristors array is an ideal candidate to
simulate orientation selectivity andbinocularity in striate cortex owing
to (1) the exact implementation of BCM learning rule and (2) the great
functional congruent with biological visual system (discussed in last
section)66. As shown in Fig. 5a, the 2-layer spiking neural network (SNN)
including two 9 × 9 resolution input layer and a single cell output layer
was design to represents the two eyes and one striate cortical neuron,
respectively. Four different orientation bars in the tilt angle of 0°, 45°,
90°, 135° were used as input patterns, the grids on the orientation bar
possess high optical input rate of 30Hz while other grids possess low
optical input rate of 14Hz. The cortical cell responds to the input
singles following a linear function with a firing rate of ρy =Glρ

l
x +Grρ

r
x,

where G1/Gr and ρl
x=ρ

r
x are synapse weight and input rate of left and

right eyes, respectively. Before the simulation, all the synapse is given
lower stochastic weight. During each simulation epoch, the four
orientation patterns are stochastically input to the right and left eyes
with equal probability, and the postsynaptic neuron synchronously
responds based on the real-time presynaptic input with the firing rate
of ρy. Then, the synaptic weight G and the threshold θ are modified
following BCM learning rule in real-time. Finally, the orientation bar
which can drives the highest postsynaptic firing rate will selected by
the network, serving as the winner orientation and inhibiting other
orientations shake its winner state. The detailed simulation flow chart
is shown in Supplementary Fig. 20.

Based on the designed SNN network, the orientation selectivity
simulation is executed in the conditions of (1) normal binocular
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contour vision, (2) monocular deprivation, (3) binocular deprivation,
as shown in Fig. 5b–j, respectively. The first two columns are the final
maps of synaptic weights in left and right eyes, and the following two
columns are the evolutionof synapticweights andpostsynapticfiring
rates/sliding threshold as a function of eclipsed time. In the normal
binocular contour vision, the orientation inputs of left and right eyes
are identical in every epoch. At the beginning of the simulation, the
synaptic weights exhibit less variation, the four postsynaptic firing
rates and sliding threshold have similar resultant values, without
selectivity capacity. After a one-hour training, the vertical orientation
has been randomly selected and continue potentiated with its post-
synaptic firing rate gradually increasing to be larger than threshold
(ρ90

y >θ). Meanwhile, the other orientations gradually perform with
lower postsynaptic firing rate (ρ0

y ,ρ
45
y ,ρ135

y <θ). Finally, the SNN net-
work reaches a steady state after four-hour learning process with the
vertical orientation as the winner orientation. In the monocular
deprivation condition, we assume that the right eye is deprived,

which is input with image containing noise pixels (randomly selected
in the rage of 4 to 6Hz). It is clearly that, the left eye network with
normal input image develops a selection of horizontal orientation
successfully while the right eye network loses its responsiveness and
the synaptic weight always fluctuate in the low weight region. The
postsynaptic firing rate of the winner horizontal orientation
(ρ0

y =54 Hz) is lower than that of the winner vertical orientation
(ρ90

y =64Hz) in normal rearing simulation. The sliding threshold
keeps greatly fluctuation even in the steady state of simulation. The
degraded performance is attributed to the unrecognizable and
negative effects of the noise input from right eye. In the binocular
deprivation condition, both eyes are input with image containing
noise pixels. Unsurprisingly, the orientation selectivity is lost. All the
simulation results are in agreement with experimental findings,
indicating a feasibility of our self-powered artificial cortex for
developing the receptive field with binocularity and orientation
selectivity67.

Fig. 5 | Simulated large-scale crossbar array for artificial striate cortex with
binocularity and orientation selectivity. a Schematic of SNN for the orientation
selectivity simulation. b The finial color maps of 9 × 9 cortical synapse arrays in
normally rearing condition of orientation selectivity simulation, including two
arrays for left and right eyes. c The evolution of synaptic weights as a function of

simulation time, where the upper and lower behalf are corresponding to left and
right eyes. d The evolution of postsynaptic firing frequencies and network
threshold as a function of simulation time. It is clearly that only ρ90

y is larger than
firing threshold which means the vertical is the selected orientation. e–j Similarly,
the simulation results of monocular deprivation and binocular deprivation.
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Discussion
In summary, based the crossbar array of self-powered memristors, we
first emulated artificial striate cortex with binocularity, orientation
selectivity based on the BCM learning rule. The crossbar array of self-
powered memristors is monolithic all perovskite system where each-
cross point contains one CsFAPbI3 perovskite solar cell (photosensory
retinal cell) to convert external optical signals into electrical signals
and one CsPbBr2I perovskite memristor (cortical synapse) to imple-
ment plasticity modulating. Based on this artificial striate cortex, we
investigated the triplet-STDP rules under optical stimuli. The asym-
metry characteristic of triplet-STDP is beneficial to the following rea-
lization of BCM-rate learning rule compared to pair-STDP. By
constructing the 3 × 3 crossbar array of self-powered memristor, the
critical characteristics of BCM, synapse depression/potentiation takes
place at low/high postsynaptic firing rate region, and the history-
dependent sliding threshold were realized which has been further
applied in the optical-encoded pattern recognition. Finally, artificial
striate cortex with binocularity and orientation selectivity based on
two simulated 9 × 9 self-powered memristor networks, following the
generalized BCM learning rule. By varying the type of input for (1)
normal binocular contour vision, (2) monocular deprivation, (3)
binocular deprivation, we highly reproduced the experience-
dependent modifications that have been observed experimentally in
kitten striate cortex. Two-terminal structure of self-powered memris-
tor based onmonolithic all-perovskite system ensures the bio-inspired
striate cortex to be extendable to crossbar array structure for high-
density and low power consumption machine vision, which has not
been realized yet.

Methods
Materials preparation
The CsPbBr2I perovskite precursor was prepared by reacting PbI2
(0.461 g, 99.99%), PbBr2 (0.367 g, 99.999%) and CsBr (0.425 g, 99.9%)
in the 4mL component solvent of dimethyl sulfoxide (DMSO, 99.9%)
and N,N-dimethylformamide (DMF, 99.8%) with VDMSO:VDMF = 1:1. The
reacting solution was stirred at ambient temperature (25 °C) for
30minutes and then filtered the impurities. P3HT precursor was pre-
pared by reacting P3HT in the trichloromethane (CHCl3) as 3mg/ml
which followed by 1 hour dispersed ultrasonically and impurities filter
processes. The 1.5M CsFAPbI3 perovskite precursor solution was pre-
pared by dissolving FAI of 245.05mg, CsI of 19.47mg, PbI2 of
681.13mg, PbBr2 of 8.53mg, and MACl of 35mg in the mixed solvents
of DMFandDMSO (VDMF:VDMSO = 4:1). The Spiro-OMeTAD (72.3mg), 4-
tert-butyl pyridine (tBP, 28.8 µL) and lithium bis (tri-
fluoromethanesulfonyl) imide (Li-TFSI, 17.5 µL) stock solution (520mg
Li-TSFI in 1mL acetonitrile)weredissolved in 1mL chlorobenzene (CB),
using as the Spiro-OMeTAD precursor.

Perovskite memristor fabrication
The ITO substrates used in this work were sequentially treated by
warm deionized water, acetone, isopropanol and UV-ozone. the
CsPbBr2I perovskite filmwas spin-coated on the ITO at 500 rpm for 5 s
and 2000 rpm for 30 s, and 10min/100 °C annealing process was also
needed. Then, P3HT film deposited by spin coating at a spinning speed
of 500 rpm for 5 s and at 3000 rpm for 10 s, followed by being
annealed at 100°C for 10min. Finally, the Au top electrodes were
deposited by thermal evaporation through a metal shadow mask.

Artificial striate cortex fabrication
We first fabricated solar cell by sandwiching a perovskite active layer
between two selective charge transport layers and electrodes where
SnO2 is electron transport layer for negative charge extraction, spiro-
OMeTAD film functions as hole transports layer for positive charge
extraction, ITO is anode and Au electrode functions as cathode. The
colloidal solution of SnO2 (3.75 wt%) was spin-coated on the ITO

substrates at 3000 rpm for 30 s and then the SnO2-coated ITO sub-
strates were annealed at 150 °C for 30min. It’s worth noting that the
diluted SnO2 colloidal solution was filter by the 0.45 µm PVDF filter
before use. Then, the CsFAPbI3 perovskite film was prepared by one-
step spin coating method and followed an annealing process at 150 °C
for 30min. The filtered Spiro-OMeTAD solution by the 0.45 µm PTFE
filter was spin coated onto the perovskite layer at 3000 r.p.m. for 30 s.
The Au cathode were deposited by thermal evaporation through a
metal shadow mask. Subsequently, we directly integrated memristor
onto the as-fabricated solar cell by the following procedures: the
600 nm ITO layer were deposited onto the Au cathode of solar cell by
magnetron sputtering which are compact enough to protect the as-
formed sub-solar cell from damage during solution processing of
perovskite memristor. Then, the Au electrodes were deposited on ITO
by thermal evaporation through ametal shadowmask. Ultrathin P3HT
film was spin-coated onto Au layer to function as reservoir layer to
accept the migrated halide ions for continuous modulation of con-
ductance. The CsPbBr2I was spin-coated on the P3HT film to act as
switching layer. Finally, the ITOwasdeposited by vacuumevaporation.

Device and system characterization
The electrical properties of ourmemristor and photoelectric synapse
were measured with a B1500A semiconductor characterization sys-
tem at room temperature. The current density-voltage (J-V) char-
acteristic of the solar cell was measured in a N2 glove box using a
Keithley 2400 Source Meter under standard AM1.5 G illumination
(SS-F5; Enli Technology, Taiwan) which calibrated by a silicon refer-
ence cell under a light intensity of 100mW/cm2. The implementation
of BCM learning rule can be achieved based on a rational triplet-STDP
scheme by elaborate designing the fire time of post-synaptic pulses.
For instance, two post-synaptic pulses evenly distribute on the two
sides of pre-synaptic pulse and the post-synaptic firing rate can be
calculated as the reciprocal value of interval time of two post-
synaptic pulses. The transition of memristor conductance states is
identified as the result of BCM learning rule with a designed post-
synaptic firing rate. For the implementation of light pattern recog-
nition, the array of artificial striate cortex was divided to two groups
based on different frequency ranges of optical input signal. One
group consists of five cells whose input is high-frequency optical
signal and another group contains four cells whose input is low-
frequency optical signal. The cells in the same group triggered by the
same optical stimuli can be operated synchronously which greatly
simplified our experimental setup. The optical signal with different
frequency was generated by combining the normal light source with
rotating disc optical chopper. UV-vis absorption spectra was mea-
sured on a UV-vis spectrometer (Shimadzu UV-1800, Japan). The
steady-state PL spectra was obtained by a fluorescence spectro-
photometer (Cary Eclipse, Agilent) with an excitation wavelength of
510 nm. The time-resolved PL measurements was carried out using a
combined fluorescence lifetime and steady-state spectrometer
(FLS980, Edinburgh Instruments Ltd.) by using a 510 nm picosecond
pulsed laser. EIS measurement was performed on CHI760E Electro-
chemical Workstation (Chen Hua, China) in the frequency range of
1MHz to 0.1 Hz under dark illumination. TPC and TPVmeasurements
were performed with a system excited by a 520 nm (3nJ, 60 ns) pulse
laser. The XRDmeasurements was performed onD8advance (Buker),
the the scan range of 2θ is from 10° to 50° with a step of 0.02°. The
XPS characterizationwas carried out using 250xi (Thermo ESCALAB).
The AFM (Bruker Dimension Icon) and SEM (SU8010, HITACHI) were
used to detailed analyse the film morphology and cross sectional
structure of our device.

Data availability
The data that support the plots within this paper are available from the
corresponding author upon reasonable request.
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Code availability
The code can be available from the corresponding author upon rea-
sonable request.
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