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Proteogenomics refines the molecular
classification of chronic lymphocytic
leukemia

A list of authors and their affiliations appears at the end of the paper

Cancer heterogeneity at the proteome levelmay explain differences in therapy
response and prognosis beyond the currently established genomic and
transcriptomic-based diagnostics. The relevance of proteomics for disease
classifications remains to be established in clinically heterogeneous cancer
entities such as chronic lymphocytic leukemia (CLL). Here, we characterize the
proteome and transcriptome alongside genetic and ex-vivo drug response
profiling in a clinically annotated CLL discovery cohort (n = 68). Unsupervised
clustering of the proteomedata reveals six subgroups. Five of these proteomic
groups are associatedwith genetic features, while one group is only detectable
at the proteome level. This new group is characterized by accelerated disease
progression, high spliceosomal protein abundances associated with aberrant
splicing, and low B cell receptor signaling protein abundances (ASB-CLL).
Classifiers developed to identify ASB-CLL based on its characteristic proteome
or splicing signature in two independent cohorts (n = 165, n = 169) confirm that
ASB-CLL comprises about 20% of CLL patients. The inferior overall survival in
ASB-CLL is also independent of both TP53- and IGHV mutation status. Our
multi-omics analysis refines the classification of CLL and highlights the
potential of proteomics to improve cancer patient stratification beyond
genetic and transcriptomic profiling.

Chronic lymphocytic leukemia (CLL) is the most common adult leu-
kemia in Western countries. It is characterized by the accumulation of
mature B lymphocytes in the peripheral blood, the bone marrow, and
lymph nodes. This incurable malignancy has a very heterogeneous
clinical course. Some patients can be followed with a “watch and wait”
strategy for many years, while others need frequent treatments and
have a shorter overall survival1.

The cell of origin of CLL represents an important source of het-
erogeneity, which is marked by the mutation status of the immu-
noglobulin heavy variable (IGHV) genes and characteristicmethylation
profiles2–4. CLL with unmutated IGHV genes (U-CLL) cases progress
faster and have worse outcomes than IGHV-mutated CLL (M-CLL)
cases5. These differences in clinical behavior between M-CLL and
U-CLL are partially determined by differences in responsiveness to

B-cell receptor (BcR) stimulation6. Inhibition of the BcR pathway has
revolutionized the treatment landscape of CLL7 and the prognostic
difference between U-CLL andM-CLL is diminished in patients treated
with BcR inhibitors8.

Recently, the genetic landscape of CLL has been well
characterized9, which partially explains the heterogeneous disease
courses. The most frequent recurrent somatic mutations in CLL alter
genes encoding for components of a small set of oncogenic
pathways10. These include the DNA damage response pathway, path-
ways that receive input from the microenvironment (NOTCH, Toll-like
receptor, and CD40 signaling), and pathways affecting ribosomal
processing11. Additionally, mutations in central splicing components,
most frequently in SF3B1, are drivers of CLL12. Recurrent structural
chromosomal aberrations, including deletions of 13(q14), 11(q22-23),
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17(p13), and trisomy 12, are routinely measured before the initiation of
treatment and are detected in approximately 80% of CLL patients.
They are associated with diverse biological phenotypes and contrast-
ing clinical behavior13, but the pathophysiology of some of these var-
iants such as trisomy 12 is still insufficiently understood.

A multi-omics analysis integrating the genome, transcriptome,
and clinical outcomes could offer a valuable tool to fill this gap and
improve the understanding of genetic variants and outcomes in CLL.
Recent developments in mass spectrometry have facilitated deep
proteomic profiling of multiple tumor specimens in parallel. The
integration of proteomics with genomics and other data layers has
started to enhance our understanding of selected cancer entities14–21.
However, the proteome-centric data integration to clinically relevant
endpoints and functional phenotypes has been mostly lacking.

Although the proteome of CLL B cells has been compared to
non-malignant normal B cells22–24, and proteomic insights from
reverse-phase protein arrays have been linked to clinical data25–27, a
systematic description of the proteomic landscape of CLL integrat-
ing genome, transcriptome, and clinical datasets is currently
limited25,27. Here, we employed in-depth high-resolution isoelectric
focusing liquid chromatography–mass spectrometry (HiRIEF-
LC–MS)28 based proteomics to connect the proteomic landscape of a
clinically well-characterized and representative cohort of 68 CLL
patients with genome, transcriptome, and drug perturbation profil-
ing. Among the six identified proteome-based subgroups, we dis-
covered a previously unknown subset of CLL patients with poor
outcome. This subgroup was characterized by a high abundance of
spliceosomal proteins. We could link spliceosomal protein abun-
dances to aberrant splicing and poor outcome in CLL. We validated
the subgroups in further independent cohorts using multiple vali-
dation strategies. Most importantly, we took advantage of the higher
throughput of data-independent acquisition (DIA) proteomics to

confirm our findings from the in-depth HiRIEF dataset. Including all
patients used for the different validation strategies, our study con-
tains data from 1503 CLL patients (233 for which proteomics was
performed) and directly links the observed molecular phenotypes to
clinical outcome.

Results
Study outline
We assembled a discovery cohort of 68 well-characterized CLL
patients with a representative distribution of CLL subgroups9,13 (Fig. 1,
Supplementary Fig. 1a, Supplementary Tables 1 and 2). Viably frozen
CLL samples were CD19 enriched and split into three aliquots: one for
proteomics (Supplementary Data 1), one for RNA sequencing, and one
for DNA panel sequencing29. We further characterized functional
phenotypes of the same CLL samples by ex-vivo drug response pro-
filing using a high-throughput microscopy-based drug screening
platform with a panel of 43 drugs, most of them FDA approved or
currently in clinical trials (e.g. ibrutinib, venetoclax)10.

We used multiple validation strategies to confirm associations
between genetic features, the proteome, splicing signatures, and
clinical outcome in independent CLL cohorts (Fig. 1, Supplementary
Tables 1 and 2). This included data-independent acquisition (DIA)
based mass spectrometry profiles of 165 well-characterized CLL
patient samples (Fig. S1b, Validation1_DIA cohort), 18 CLL proteomes
previously published (Validation2_Eagle,24), 169 CLL transcriptomes
(Validation3_RNA cohort), and two clinical validation cohorts of 620
untreated CLL patients (Validation4_untreated cohort) and 463
ibrutinib-treated CLL patients (Validation5_ibrutinib).

To facilitate further analyses, we set up an open-access, user-
friendly web application for others to explore and mine this compre-
hensive characterization of the relationship between the proteome,
recurrent genetic aberrations, and the transcriptome of CLL, and

Fig. 1 | Overview of the study design. In-depth proteomics, transcriptomics,
genetic and drug perturbation profiling were performed for a discovery cohort of
68 clinically well-characterizedCLL patients. An integrative analysis was performed
to describe associations between the different molecular layers and to uncover
patient subgroups. These were validated in multiple independent cohorts using
different validation strategies. To validate proteomic signatures, we performed
data-independent acquisition (DIA) proteomics on 165 CLL patient samples

(Validation1_DIA) and took advantage of a published cohort of 18 CLL samples
(Validation2_Eagle). For the validation of splicing signatures, 169 additionalpatients
were characterized by RNA-sequencing (Validation3_RNA). We linked proteomic
signatures with genetic profiles, which allowed us to validate associations of major
biological axes in CLL with clinical outcome in 620 untreated (Validation4_un-
treated) and 463 ibrutinib-treated CLL patients (Validation5_ibrutinib). In total, this
study analyzed data from 1503 CLL patients.
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consequences for drug response and clinical outcome (https://www.
dietrichlab.de/CLL_Proteomics/).

Genotype-molecular phenotype connections with functional
consequences
To explore genotype-phenotype relationships, we investigated asso-
ciations between known recurrent genetic alterations of CLL9,10, mRNA

expression, and protein abundance. We first analyzed protein abun-
dance with respect to recurrent genetic aberrations of CLL and found
that trisomy 12 had the strongest impact on differential protein
abundance in comparison to other genetic lesions (Fig. 2a). First, we
applied a very stringent FDRof0.1% and found 54proteins significantly
up- and 13 proteins downregulated in trisomy 12 positive CLL. IGHV
mutation status (19 proteins, among them ZAP70) and SF3B1
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Fig. 2 | Interplay between genetic alterations, proteomics, and tran-
scriptomics. a Number of significantly differentially abundant proteins (left;
FDR <0.1%; |log2FC| > 0.5) and differentially expressed genes (right; FDR <0.1%; |
log2FC| > 1.5) in relation to recurrent genetic alterations. b Levels of both proteins
and transcripts from chromosome 12 and the impact of trisomy 12. Normalized
protein abundance (left panel) and gene expression levels (right panel) for chro-
mosome 12 are shown. Points represent individual values for protein/gene–patient
pairs. Lines are locallyweighted scatterplot smoothed values for individual patients
with (red) orwithout (blue) trisomy 12. The box is the region affected by trisomy 12.
c Distribution of Spearman’s rank correlations for protein-mRNA pairs.
d Cumulative density distribution of protein-mRNA Spearman’s rank correlations
for the proteins significantly differentially abundant in IGHVmutated (red), trisomy

12 (pink) or SF3B1-mutated (blue) CLL in comparison to all other proteins without
these associations (green). e Volcano plot indicating differential proteins in TP53
mutated in comparison to TP53 wild-type CLL; hit = adjusted p <0.001, |log2FC|
>0.5. P values calculated by limma. Multiple testing correction by FDR to identify
hits. f TP53 transcript levels in TP53mutated (mut, n = 11) and wild-type (wt, n = 47)
biologically independent CLL samples; two-sided Wilcoxon signed-rank test
p =0.005. g Percentages, normalized to solvent control, of alive cells of TP53
mutated (mut, n = 56) and wild-type (wt, n = 11) biologically independent CLL
samples treated ex-vivo with 9 µM nutlin 3a; two-sided Wilcoxon signed-rank test,
p =0.0019. Boxplots are represented asfirst and thirdquartileswith amedian in the
center. Whiskers are defined as 1.5 times the interquartile range (f and g). Source
data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-022-33385-8

Nature Communications |         (2022) 13:6226 3

https://www.dietrichlab.de/CLL_Proteomics/
https://www.dietrichlab.de/CLL_Proteomics/


mutations (29 proteins) were also associated with multiple differen-
tially abundant proteins. With a less stringent FDR of 5% we found
similar trends (Supplementary Fig. 1c, d). Next, we analyzed gene
expression with respect to recurrent genetic alterations of CLL (FDR
0.1%, Fig. 2a; FDR 5% Fig. S1e). Again, trisomy 12 (549 transcripts at FDR
0.1%) and IGHV mutation status (205 transcripts at FDR 0.1%) were
associatedwithmany significant gene expression changes. In contrast,
SF3B1 mutations were associated with fewer differentially expressed
genes than with differentially abundant proteins (14 transcripts at
FDR 0.1%).

We further investigated if changes in protein abundance asso-
ciated with trisomy 12 were related to gene dosage effects. While
trisomy 12 increased the abundance of proteins located on chromo-
some 12 as expected (Fig. 2b), 63% of the proteins identified as dif-
ferentially abundant were expressed by genes located on other
chromosomes. Similar gene dosage effects affecting mRNA and pro-
tein levels were also observed for other important structural aberra-
tions of CLL, e.g. deletion of 13(q14), 11(q22-23), 17(p13), and gain of
8(q24) (SupplementaryFig. 2a, b). As shown forother cancers, our data
confirm in CLL that gene dosage effects translate into transcriptomic
as well as proteomic changes14,15,17,30.

Even though alterations like trisomy 12 or the presence of somatic
hypermutations translated into changes in levels of both mRNA and
protein, overall correlation between protein abundance and corre-
sponding mRNA levels was low (Fig. 2c; median correlation = 0.243).
This is comparable to gene ~ protein correlations reported for other
cancers, suggesting wide post-translational regulation of cancer
proteomes14,15,17. Out of all quantified genes and corresponding pro-
teins, 42% showed significant, positive correlations (BH adjusted
p <0.05). Differentially abundant proteins associated with trisomy 12
or IGHVmutation status exhibited higher mRNA ~ protein correlations
than unassociated proteins (Fig. 2d; median correlation trisomy 12
associated proteins = 0.69; IGHV associated proteins = 0.86). This was
not the case for differentially abundant proteins associated with SF3B1
mutations (Fig. 2d; median correlation = 0.29). These findings further
demonstrate a direct link between protein abundance changes and
gene expression changes in trisomy 12 and IGHV-mutated CLL, while
the tumorigenic effect of SF3B1 mutations is caused by post-
transcriptional mechanisms.

Although TP53, ATM, and XPO1 mutations were associated with
relatively few differentially abundant proteins, we detected specific
and biologically relevant protein abundance changes. p53 was the
most upregulated protein in TP53-mutated compared to wild-type
samples (Fig. 2e). It is well-established that not only loss-of-function
but also gain-of-function mutations in TP53 can contribute to tumor
progression31. Our results are consistent with the finding that these
tumors accumulate high levels of mutant p53, contributing to gain-of-
function properties32. In contrast, TP53 transcripts were significantly
downregulated in TP53-mutated CLL samples (Fig. 2f), indicating that
post-transcriptional mechanisms are responsible for the accumulation
of mutant p53 in CLL, as suggested for other blood cancers32. The ex-
vivo drug response screen revealed that TP53-mutated CLL samples
responded worse to chemotherapy and the MDM2 inhibitor nutlin 3a
than TP53 wild-type samples (Fig. 2g), as expected32. This example
illustrates howmulti-omicsprofiling can be used to trace the effect of a
somatic mutation on the transcriptome, the proteome, and finally on
the functional consequences for drug response.

We further found that protein levels of the tumor suppressor ATM
and the nuclear transport protein XPO1 were lower in mutated than in
wild-type samples (Supplementary Fig. 2c, d). Both associations were
only observed on protein but not on transcript level (Supplementary
Fig. 2c, d).

Together, our data show that the CLL proteome not only shows
many changes that also are present on mRNA level, but in addition
uncovers biological relationships not apparent from the transcriptome.

Integrative analysis reveals proteomics factor associated with
outcome
We performed an unbiased, unsupervised multi-omics factor analysis
(MOFA33) to obtain an integrative view of covariations across multiple
datasets. MOFA revealed eleven latent factors (LF) explaining at least
1.5% of variance each (Fig. 3a). Only LF1, LF2, and LF9were significantly
associated with time to next treatment (TTNT, Fig. 3b). LF1 and LF2
were active in all data layers (proteome, RNA and genetics) and were
mainly driven by trisomy 12 and IGHV mutation status in the genetics
data (Fig. 3c). The proteins loaded onto LF1 and LF2 were not only
significantly associated with TTNT in the discovery cohort (Fig. 3d),
but also showed a significant association with overall survival in our
DIA proteomics validation cohort (Validation1_DIA; Supplementary
Fig. 3). Interestingly, LF9 was nearly exclusively active in the pro-
teomics data and was apart from LF1 and LF2 the only factor sig-
nificantly associatedwith clinical outcome.Hence,MOFA revealed that
proteomics profiling uncovers clinically relevant biology that was not
detected with the other data layers.

Proteomics-based stratification of CLL identifies six distinct
subgroups
We discovered associations of the proteomics layer and clinical
outcome (TTNT), which could not be found on the transcript or on
the genetic level. Therefore, we decided to explore the proteomics
layer in depth and in an unbiased manner. To describe similarities
and differences between protein profiles of patients, we performed
consensus clustering of the protein dataset. This revealed six pro-
teomics groups (PG; Fig. 4a, Supplementary Fig. 4a, b). T-distributed
stochastic neighbor embedding (t-SNE) and principal component
analysis supported the partition into these subgroups (Supplemen-
tary Fig. 4c, d).

Next, we analyzed if any genetic alterations were associated with
the different PGs. We found that four PGs represented trisomy 12/M-
CLL (Tris12M-PG, n = 9), trisomy 12/U-CLL (Tris12U-PG, n = 8), M-CLL
(M-PG, n = 18), and U-CLL (U-PG, n = 17, Fig. 4b; Fisher’s exact test,
FDR < 10%). Of note, one Tris12M-PG patient annotated as trisomy 12
negative, harbored a subclonal trisomy 12. Tris12M-PG, Tris12U-PG,
andM-PGwereenriched for untreatedpatients. Afifth subgroup, TP53-
PG, comprised only 4 patient samples, but three of the four samples
harbored a TP53 mutation (Fig. 4b; Fisher’s exact test, FDR < 10%). In
accordance with the discovery of LF9, which was exclusively active in
the proteomic layer, we additionally found a new proteomics-based
subgroup, which in contrast to all other subgroups did not show any
association with known recurrent genetic alterations (New-PG). Only
trisomy 12 was depleted in the new PG.

To relate theseproteomics-basedgroups to the transcriptome,we
performed consensus clustering of corresponding transcriptomedata.
The transcriptomic-based subgroups only partially overlapped with
the proteomic groups (Fig. 4c): There was correspondence between
RNA groups 1–3 and the proteomics groups Tris12U-PG, Tris12M-PG,
M-PG, and U-PG, but the new subgroup without a genetic annotation
(New-PG) andTP53-PG (TP53) were split acrossmultiple transcriptomic
subgroups.

We further investigated drug response profiles of all PGs.
Although effect sizes differed, the groups responded to themajority of
CLL-relevant drugs ex-vivo. Only the TP53-mutated group TP53-PG
exerted poor overall response to many drugs including chemother-
apeutic agents (Supplementary Fig. 4e, f).

The proteomic-based grouping separated patients with different
TTNT, demonstrating the clinical relevance of the subgroups (Fig. 4d).
Although the new PG was not enriched for high-risk factors such as
mutated TP53 and unmutated IGHV genes, it had the shortest TTNT
(Fig. 4d) and the fastest in vivo lymphocyte doubling time of all PGs,
which indicated an increased proliferative capacity of these tumors
(Kruskal–Wallis test, p = 0.009, Fig. 4e). In contrast, M-PG (M-CLL, no
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Fig. 3 | Multi-omics factor analysis (MOFA) of proteogenomics dataset. aMOFA
of proteome, transcriptome, and genome dataset identified 11 latent factors (LF)
each explaining at least 1.5% of variance. Explained variances per factor and dataset
are color-coded. b Hazard ratios from Cox regression of LFs with time to next
treatment (TTNT). LF1, LF2, and LF9 were significantly (FDR < 10%, blue) associated
with TTNT. P values (Wald-test) are shown on the right. Mean and 95% confidence
intervals are shown. n = 61 biologically independent patient samples. c Genes,

transcripts, and proteins with the strongest weights loaded onto LF1, LF2, and LF9.
Weights were scaled between genetics (divided by two), proteomics, and tran-
scriptomics (times ten) to achieve similar ranges. d Hazard ratios from Cox
regression for TTNT with genes and proteins with strong weights for LF1, LF2, and
LF9. Significant associations (p <0.05) are colored in blue. P values (Wald-test) are
shown on the right. Mean and 95% confidence intervals are shown. n = 72 biologi-
cally independent patient samples. Source data are provided as a Source Data file.
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trisomy 12) had a significantly longer TTNT than all other subgroups as
expected.

Taken together, unsupervised clustering of relative protein
abundances partitioned CLL patients into six biologically and clinically
relevant groups, of which five could be explained by known genetic
characteristics while a new subgroup with poor outcome was only
identifiable based on proteomics.

Dysregulated cellular processes of the new poor outcome pro-
teomics group ASB-CLL
The new poor outcome subgroup comprised approximately 20% of
our discovery cohort and could only be identified at the protein level.
To describe which pathways and processes were altered in this group,
we analyzed differential protein abundances between the new and
other PGs. Enrichment analysis identified BcR signaling proteins such
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as BTK, PLCG2, and PIK3CD among the most downregulated proteins
in the New-PG (Fig. 5a, Supplementary Fig. 5a, b, Supplementary
Data 2). Surprisingly, downregulation of these central BcR signaling
components in the New-PG was independent of the IGHV mutation
status, despite the latter being an important surrogate for BcR activity
in CLL34. We further measured the ex-vivo response of the samples to
ibrutinib in a co-culture model of stromal cells and CLL cells, which

suggested that the New-PG responded less to the BcR inhibitor ibru-
tinib (Supplementary Fig. 5c, Ibrutinib: 40 nM, Wilcoxon signed-rank
test p =0.01). Additionally, phosphorylation levels of BcR signaling
proteins exhibited a similar downregulation in the New-PG (Fig. 5c).

The New-PG was further characterized by upregulation of
enzymes involved in the degradation of branched chain amino acids
(BCAA; Supplementary Fig. 5d, e) and downregulation of proteasomal
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Fig. 5 | Characterization of the new proteomics group ASB-CLL. a Heatmaps of
scaled log2 protein abundances for selected BcR proteins and b spliceosome
components. Patients were grouped according to PG and the proteins were clus-
tered hierarchically. Based on these profiles the group “New-PG” was renamed to
“ASB-CLL” (Altered Spliceosome, low BcR signaling proteins CLL) c The mean
relative intensity of phosphorylated peptides uniquely mapping to proteins whose
corresponding genes belong to the gene set: KEGG_B_CELL_RECEPTOR_SIGNALING
and which could be quantified in at least 50% of TMT-channels were calculated per
sample. 12 biologically independent ASB-CLL patient samples were compared to 56
other biologically independent patient samples. d Mean percent spliced-in (PSI)
value per patient calculated from the 1000 most variable exon skipping events

across all patients of the discovery cohort. 9 biologically independent ASB-CLL
patient samples were compared to 50 other biologically independent patient
samples. Boxplots are represented as first and third quartiles with a median in the
center.Whiskers aredefined as 1.5 times the interquartile range (c andd).eNumber
of significant differential exon skipping events between ASB-CLL and all other
groups for the actual PG assignment (blue line) and randomPG permutations (gray
distribution). f Peptide-baseddifferential exon usage per PG (FDR 1%, |logFC| > 0.5).
One-sided fisher exact test corrected for multiple testing using the FDR method
was used to assess differences between the groups (each group vs all others). For
ASB-CLL the adjusted p value = 1.89E−239. Source data are provided as a Source
Data file.
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proteins (Supplementary Fig. 5f, g). Most importantly, proteins asso-
ciatedwith the spliceosomeweremost significantly upregulated in the
New-PG (Fig. 5b, Supplementary Fig. 5h, i, Supplementary Data 2). We
therefore named this group ASB-CLL (Altered Spliceosome, low BcR
signaling proteins CLL). We and others observed very low correlation
between protein- and corresponding mRNA levels of components of
the spliceosome14,17 (median ρ = −0.015; Supplementary Fig. 6a), which
might explain why ASB-CLL was not detectable at the
transcriptome level.

Splice factor mutations (e.g. SF3B1 mutations) are recurrent in
CLL10; however, mutations of SF3B1 were neither enriched nor deple-
ted in ASB-CLL (BH adjusted p = 0.39). SF3B1 protein levels were not
different between SF3B1-mutated and wild-type CLL cases, but were
significantly higher in ASB-CLL than in other subgroups (Supplemen-
tary Fig. 6b, c). It has recently been reported that themain tumorigenic
effect of SF3B1mutations is mediated by inclusion of a poison-exon in
the tumor suppressor gene BRD9 followed by downregulation of
BRD935. We could confirm mis-splicing (Supplementary Fig. 6d) and
downregulation (Supplementary Fig. 6e) of BRD9 in SF3B1-mutated
cancers, but neither mis-splicing nor downregulation of BRD9 was
detected for ASB-CLL (Supplementary Fig. 6f, g). For ten out of the
twelve ASB-CLL patients we further performed whole-exome sequen-
cing of tumor and matched normal controls, to explore whether any
additional somatic mutations in spliceosomal proteins could be found
for this subgroup. Except for a DDX5 mutation in a SF3B1-mutated
patient we could not detect any other splice factor mutations (Sup-
plementary Fig. 6h). Together these results suggest that the increased
spliceosomal protein abundance detected in ASB-CLL is independent
of mutations in the spliceosome.

To further characterize if upregulation of the spliceosome in ASB-
CLL had any functional consequences, we analyzed alternative splicing
onmRNA andpeptide level for this group.We startedwith anunbiased
approach and annotated all possible alternative splicing events across
all patients using the transcriptome data and rMATS36. Within each
category (skipped exons, 3′ and 5′ alternative splice site usage,
retained introns, mutually exclusive exons) we calculated the per
patient mean percent spliced-in (PSI) values from the 1000 alternative
splicing events that showed the highest variability across all patients
(Supplementary Fig. 6i). Comparisons between ASB-CLL and all other
subgroups revealed a distinct exon usage profile for ASB-CLL, with
fewer skipped exons, and more 3′ and 5′ alternative splice site usage
(Fig. 5d, Supplementary Fig. 6i). Moreover, we observed a statistically
significant correlation between the average spliceosomal protein
abundance and the aforementioned mean PSI values (SE: ρ =0.34,
p =0.008; 3′ASS: ρ =0.44, p =0.0005; 5′ASS: ρ = 0.42, p =0.0009; also
note the similar patterns in Supplementary Fig. 5i and Supplementary
Fig. 6i). This observed statistical association may be the consequence
of an underlying causal relation, which needs to be explored in future
studies. In total, we detected 427 exon skipping events with a sig-
nificantly distinct alternative splicing pattern of ASB-CLL versus all
other proteomics subgroups (FDR < 1%, absolute difference of group-
wise mean PSI values >0.1, Supplementary Data 3). These exon skip-
ping eventswere significantlymore frequent in ASB-CLL than expected
by chance (permutation test, p <0.0172, Fig. 5e). No preference of the
differential exon skipping events for coding or untranslated regions
wasobserved (Fisher’s exact test;p value =0.45). Significantly different
exon usage by ASB-CLL was also detected on peptide level (Fig. 5f,
Supplementary Data 3).

Thus, ASB-CLL was characterized by low abundance of BcR
pathway components, lower phosphorylation levels of BcR compo-
nents, and altered spliceosome function.

Validation of ASB-CLL in independent cohorts
We confirmed the existence and prognostic relevance of the ASB-CLL
PG in additional cohorts of CLL patients (Fig. 6a): We validated the

proteomics signature associated with ASB-CLL by performing pro-
teomics using data-independent acquisition (DIA) based mass spec-
trometry analysis of 165 patients (Validation1_DIA). We also confirmed
the proteomics signature in an independent, previously published
cohort (Validation2_Eagle)24. We further validated the splicing sig-
nature characteristic for ASB-CLL in an independent cohort of 169 CLL
patients (Validation3_RNA cohort).

To robustly detect ASB-CLL in DIA proteomics, we trained a k-top
scoring pairs (k-TSP) classifier on all BcR and spliceosomal proteins in
the HiRIEF dataset. We applied the classifier to the Validation1_DIA
cohort and identified 28ASB-CLL patients (10 untreated, 15 pretreated,
3 unknown), corresponding to 17% of patients. This proportion of ASB-
CLLwas similar to the training dataset. As expected, BcRproteins were
down- and spliceosomal proteins were upregulated in ASB-CLL
(Fig. 6b, c; Supplementary Fig. 7, Wilcoxon signed-rank test p = p <
3.7 × 10−8, p < 2.3 × 10−7). Additionally, ASB-CLL was characterized by
upregulation of BCAA proteins and downregulation of proteasomal
proteins, which is in accordance with the findings observed in the
discovery cohort (Supplementary Fig. 8a, b; Wilcoxon signed-rank test
p =0.002 and p < 2.2 × 10−6). Most importantly, ASB-CLL patients had
significantly worse overall survival (log-rank test, p <0.0088; Fig. 6d)
and this was independent of the risk associated with TP53 aberrations
(del(17)(p13) orTP53mutations) andunmutated IGHVgenes (Fig. 6e, f).
The poor overall survival of ASB-CLLwas confirmed in the subgroup of
samples obtained from treatment-naive patients (log-rank test,
p =0.041; Supplementary Fig. 8c). Application of the k-TSP classifier to
an independently published cohort by Eagle and colleagues
(Validation2_Eagle)24 comprising nine U-CLL and nine M-CLL patients
identified a subgroup of five patients with a genetic and proteomics
profile similar to ASB-CLL (Supplementary Fig. 8d–g). Further, we
applied the ktsp classifier to a proteomics dataset comprising patients
overlapping with our study (30 out of 91 CLL patients), but which was
independently generated in a different laboratory using DIA
proteomics27. In total 9 of the 91 CLL samples (10%) were classified as
ASB-CLL and we could confirm the poor outcome of patients char-
acterized by an ASB-CLL proteome profile (overall survival, log-rank
test, p <0.001).

Additionally, we used an independent cohort of patients (Valida-
tion3_RNA) for which paired-end RNA-sequencing was performed to
validate the splicing signature detected for ASB-CLL. A partial least
squares discriminant analysis (PLS-DA) classifier was trained on the
discovery cohort samples using the previously identified 427 sig-
nificantly differential exon skipping events as predictors (Fig. 6g).
Predictive performance of the PLS-DA model was assessed by leave-
one-out cross validation, which gave an estimate of 0.97 for the area
under the classifier’s ROC curve. The PLS-DA model was then applied
to the Validation3_RNA cohort to classify each of its 169 patients as
either belonging to or not belonging to ASB-CLL. As observed in the
training cohort, significantly larger mean PSI values of exon skipping
events were detected for patients identified as belonging to ASB-CLL
than for other patient groups (two-sided Wilcoxon rank-sum test,
p = 4.3e−12, Fig. 6h). The ASB-CLL samples in the Validation3_RNA
cohort exhibited the same splicing pattern as in the discovery cohort
and also demonstrated a significantly shorter TTNT (log-rank
test, p < 0.00037, Fig. 6i) and overall survival (log-rank test,
p <0.033, Fig. 6j).

Cell of origin influences the effect of trisomy 12 on the proteome
and clinical outcome
Plotting of the latent factors 1 and 2 from our MOFA resulted in the
separation of four distinct groups (Tris12M-PG, Tris12U-PG, M-PG,
U-PG), which were strongly associated with IGHV mutation status and
trisomy 12 (Fig. 7a, b). Initially, we aimed to understand the functional
consequences of this interaction for the proteome and subsequently
used the association of these groups with trisomy 12 and IGHV
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mutation status to investigate survival differences between these
subgroups in three independent datasets (Fig. 7a).

It is noteworthy that few cases fell into Tris12M-PG andTris12U-PG
although they were tested negative for trisomy 12 with a clone size of
more than 20%. Interestingly one of these cases harbored a subclonal
trisomy 12 lesion. Thesemisclassifications could introduce a bias if the
subgroups are identified based on the genetic features only.

To understand the global influence of IGHV status and trisomy 12
on the proteome, we performed a correlation network analysis15 of all

samples in the discovery cohort independently of the subgroups to
identify the most important biological modules of the CLL proteome
(Fig. 7c). This revealed six biological modules (N1-N6) that were
affected in all screened CLL patient samples. Next, we performed
enrichment analysis for these modules and quantified the importance
of each module in each PG (Fig. 7c, Supplementary Fig. 9a). All trends
were confirmed by the networks with relative protein abundances
from theDIA proteomics dataset of the Validation1_DIA cohort (n = 165
CLL patients, Supplementary Fig. 9b). As expected, the two trisomy
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12 subgroups Tris12M-PG and Tris12U-PG displayed elevated levels of
proteins located on chromosome 12 and proteins involved in BcR
signaling (N2). We further assessed functional consequences of this
upregulation for ex-vivo drug response and found that Tris12M-PG and
Tris12U-PGwere significantlymore sensitive to BcR pathway inhibitors
(e.g. ibrutinib, idelalisib) measured in an ex-vivo co-culture model of
stroma- and CLL cells (Supplementary Fig. 9c).

Despite these similarities, there were also biologically relevant
differences between Tris12M-PG and Tris12U-PG depending on the
IGHVmutation background. Themodule containing proteins involved
in chemokine and cytokine signaling (N6), was significantly more
abundant in Tris12U-PG. By adjusting for U-CLL/M-CLL differences in
cases without trisomy 12 we noted that U-CLL cases, in the context of
trisomy 12, exhibited increased levels ofMAPK signaling proteinswhile
M-CLL cases had increased levels of cell adhesion molecules (Supple-
mentary Fig. 9d). We could also identify differences in the BcR sig-
naling pathway between M-CLL and U-CLL, specific to the context of
trisomy 12; withU-CLL, trisomy 12 cases exhibiting a further increase of
the intracellular components of the pathway (e.g. NFKB1, MAPK13),
and M-CLL, trisomy 12 exhibiting an increase of membrane-bound
components (e.g. CD21, CD79A/B, Supplementary Fig. 9e). This was
also evident on the phosphorylation level where membrane-bound
and membrane proximal proteins exhibited increased phosphoryla-
tion in the Tris12M-PG (e.g. CD19, LYN), while phosphorylation of
intracellular components (e.g. MAP2K2, NFATC2, AKT2) was elevated
in Tris12U-PG (Supplementary Fig. 9f).

Occurrence of trisomy 12 in M-CLL was associated with low
abundance of proteins in N5, which have been shown to be related to
cell survival37 (Supplementary Fig. 9a). In contrast, occurrence of tris-
omy 12 in U-CLL did not change protein levels in this module.

We further sought to investigate the impact of trisomy 12 on the
natural course of M-CLL and U-CLL independently of any treatment
context using time to first treatment (TTFT) as the endpoint. Trisomy
12 did not alter TTFT in U-CLL patients, but significantly decreased
TTFT within theM-CLL patients (Validation1_DIA; Fig. 7d; log-rank test,
p =0.05). This could be confirmed in a cohort of 620 untreated CLL
patients (Validation4_untreated; Fig. 7e; log-rank test, p = 0.01).

Interestingly, a faster progression of Tris12M-PG patients was not
observed in a cohort of 463 CLL patients uniformly treated with
ibrutinib (Validation5_ibrutinib; Fig. 7f; log-rank test, p =0.69). This
was true for patients who received ibrutinib as firstline treatment as
well as relapse treatment (Supplementary Fig. 9g, h). However,
patients with trisomy 12 had a better response to ibrutinib in vivo38 and
ex-vivo (Supplementary Fig. 9c). Therefore, we hypothesize that the
better response rate of trisomy 12 patients to BcR inhibitors balances
out the faster progression observed in untreated Tris12M-PG patients.

These proteogenomics findings exemplify how the influence of a
genetic alteration on the proteome varies depending on the cellular
background inwhich it occurs, andhow this interaction could translate
into different clinical outcomes.

Discussion
Cancer proteogenomic studies integrate proteomic and genomic data
to gain understanding of the impact of genetic alterations on the
proteome, both on particular proteins and proteome-wide effects. As
proteins are considered the main effectors of many cellular processes
this approach has recently been used to improve the understanding of
the drivers of selected cancer entities14–20.

We applied in-depth mass spectrometry-based proteomics, using
HiRIEF fractionation and data-dependent acquisition, to thoroughly
characterize the disease biology of CLL, followed by data-independent
acquisition proteomics to validate previously unknown cancer sub-
groups. Our approach demonstrates how these proteomics methods
can complement each other to combine the benefits of deep and high-
throughput proteomic profiling. This is especially relevant for asso-
ciation studies with clinical outcome, which require large cohort sizes
to provide sufficient statistical power.

This studywas conducted using cryopreserved cells thatmay vary
from fresh, never frozen cells. For future development of clinical
proteomics workflows, the impact of sample handling will need to be
addressed further in order to ensure robust implementation. However,
in this study, wedemonstrated that both data-independent acquisition
and data-dependent acquisition LC-MS/MS can be used to stratify
patients based on proteome subtypes using cryopreserved samples.

Our work comprehensively illustrates that proteomic profiling of
cancer cells has the ability to improve the understanding of clinically
relevant diseasebiology beyond transcriptomic andgenomicprofiling.
We linked proteomic and transcriptomic profiles to important recur-
rent genetic aberrations in CLL. This revealed, for instance, that RNA
and protein levels were disconnected for important CLL drivers like
TP53 and XPO1 mutations, while the biologically meaningful informa-
tion was primarily contained in the proteome.

We utilized amethod to simultaneously detect covariances across
multiple omics layers and discovered a proteomic profile of CLL
without a corresponding genetic or transcriptomic profile, which was
strongly associated with clinical outcome. Proteomics was able to
provide a better prognostic split even in the untreated subset of
patients. So far, few integrative multi-omics studies have managed to
find new associations of proteomic profiles with clinical
outcome21,26,39,40. Our results demonstrate that this poor prognostic
signature is stable across patient cohorts and can be determined by
different techniques. These findings highlight that proteomic profiling
of cancer can improve molecular stratification of cancer patients.

This biological axis of CLL discovered by proteomics could be
identified in approximately 20% of CLL patients. This subgroup was
named ASB-CLL and was characterized by a high proliferative capacity
and poor overall survival. We found it to be independent of conven-
tional risk factors such as TP53 aberrations41 and IGHV mutation
status5. These findings illustrate the added value of proteomics for a
better understanding of the clinically relevant disease biology of CLL.
Our example using CLL as a model disease entity shows that clinical

Fig. 6 | Validation of the ASB-CLL group. a A classifier was trained from the
proteomics dataset of the discovery cohort and applied to a DIA proteomics vali-
dation dataset (Validation1_DIA cohort, 165 patients; left part of figure) and a
published cohort (Validation2_Eagle, 18 patients)24. An additional classifier was
trainedon the splicing signatureof ASB-CLLusing the transcriptomics dataset from
the discovery cohort and applied to a transcriptomic validation dataset (Valida-
tion3_RNA cohort, 169 patients). Violin plots of BcR protein abundances (b) and
spliceosomal proteins (c) comparing the subgroup identified as ASB-CLL in the
Validation1_DIA dataset (n = 28) to all other patients (n = 134). Two-sided Wilcoxon
signed-rank test, central bar denotes first and third quartile, central dot denotes
median.dOverall survival (OS) of Validation1_DIA cohort, divided intoASB-CLL and
all other patients. Log-rank test, p =0.0088. Hazard ratios from Cox regression of
OS in a model including either TP53 aberrations (del(17)(p13) or TP53 mutations),
ASB-CLL, and their interaction (TP53:ASB-CLL) (n = 158) (e) or IGHV mutation

status, ASB-CLL, and their interaction (IGHV:ASB-CLL) (n = 154) (f). P values (Wald-
test) are shown on the right. Mean and 95% confidence intervals are shown. Arrows
indicate that the confidence interval extends beyond the shown length. g Patient
samples of the discovery cohort plotted in the plane of the first two components
computed by the partial least squares discriminant analysis (PLS-DA) of the dis-
covery cohort. The predictive performance of the classifier was assessed using
leave-one-out cross validation with the area under the ROC curve being estimated
as 0.97. h Mean PSI value per patient of the Validation3_RNA cohort based on the
427 significant differential exon skipping events identified in the discovery cohort.
Boxplots are represented as first and third quartiles with a median in the center.
Whiskers are defined as 1.5 times the interquartile range. Time to next treatment
(TTNT) (i) andOS (j) of patients from the Validation3_RNA cohort, classified asASB-
CLL or other based on the characteristic splicing signature of ASB-CLL. Log-rank
test, p =0.00037 (i), p =0.033 (j). Source data are provided as a Source Data file.
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Fig. 7 | Relevance of the cell of origin for the influence of trisomy 12 on the CLL
proteome and clinical outcome. a Validation strategy for Tris12M-PG, Tris12U-PG,
M-PG, andU-PG.bPlot of loadings on LF1 andLF2of individualpatients. LF1 andLF2
could classify patients into 4 groups according to IGHV status and trisomy 12. cCLL
protein correlation network analysis of HiRIEF dataset based on 1047 high-variance
proteins. Protein groups were defined and color-coded based on modularity clus-
tering (N1-N6) and enrichments detailed in Supplementary Fig. 9. A Heatmap of
log2 mean relative protein abundances for all PGs for each modularity cluster (N1-
N6) and node-cluster mean protein abundances for Tris12M-PG, Tris12U-PG, M-PG,
and U-PG are shown. d Time to first treatment of patients from Validation1_DIA
cohort, stratified into groups by IGHV mutation status and trisomy 12 (tris12).

Trisomy 12 M-CLL patients had significantly faster disease progression than M-CLL
patients without trisomy 12 (log-rank test, p =0.05). e Time to first treatment of
untreated patients from Validation4_untreated cohort, stratified into groups by
IGHV mutation status and trisomy 12 (tris12). Trisomy 12 M-CLL patients had sig-
nificantly faster disease progression than M-CLL patients without trisomy 12 (log-
rank test, p =0.01). f Time to progression of patients uniformly treated with ibru-
tinib (Validation5_ibrutinib), stratified into groups by IGHV mutation status and
trisomy 12 (tris12). Trisomy 12 M-CLL patients did not have significantly faster
disease progression than M-CLL patients without trisomy 12 (log-rank test,
p =0.69). Source data are provided as a Source Data file.
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implementation ofmass spectrometry-based screening, using the data
from this study as a template, can aid not only in identifying patients at
particular risk for aggressive diseasebut also in tailoring treatment and
clinical monitoring accordingly. Our cohort was not enriched for high-
risk genomic aberrations. Further studies are therefore necessary to
investigate how ASB-CLL relates to high-risk genomic features such as
TP53 and how it could be integrated with genomic features to guide
clinical treatment.

ASB-CLL was characterized by low abundances of major BcR sig-
naling proteins and high abundances of components of the spliceo-
some. This directly translated into an altered splicing pattern with
increased exon-inclusion andwas independent ofmutations in SF3B135.
These results describe that deregulated splicing in CLL occurs as a
result of splicing factor upregulation rather than splicing factor
mutation. Phosphoproteomic analysis of our data also supported that
the decreased levels of BcR signaling proteins was followed by a con-
current decrease in phosphorylation levels of the pathway. Future
mechanistic studies are needed to clarify how spliceosomal protein
abundance is regulated in this subgroup of CLL and how intracellular
signaling pathways are affected by this.

Trisomy 12 and IGHV status explained four of six subgroups with
distinct proteomic profiles, suggesting that the interaction of these
genetic factors drives the biological differences between these sub-
groups. While the IGHV mutation status is known to influence the
strength of BcR signaling and response to BcR inhibitors42, the biology
of trisomy 12 is still insufficiently understood. Our results improve the
current understanding of trisomy 12 and demonstrate that trisomy
12 significantly increases the abundance of BcR signaling proteins and
BcR activity. In accordance with a previous study we showed that
treatment-naive M-CLL patients without trisomy 12 had an indolent
disease course while M-CLL patients with trisomy 12 had a faster dis-
ease progression43. The accelerated progression dynamics of trisomy
12 positive M-CLL was not observed in ibrutinib-treated CLL patients,
which implies that inhibition of trisomy 12 mediated BcR activation
compensated for this disadvantage. Future clinical studies should
explore how to best exploit this new insight and whether trisomy 12
M-CLL patients benefit from a BcR inhibitor treatment algorithm
designed for U-CLL. These results exemplify the importance of genetic
marker combinatorics for gene expression, protein abundance, drug
response and disease progression.

Our integrative multi-omics analysis of CLL provides a compre-
hensive overview of the interplay between genetic alterations, the
transcriptome, and the proteome, alongwith functional consequences
for drug response and clinical outcome. The detailed analysis of our
dataset improves our understanding of the biological heterogeneity of
CLL and provides molecular phenotype-based subtypes that will
improve patient stratification and personalized treatments. Through
our web application, we provide this comprehensive dataset as a
valuable and easily accessible resource to the research community
(https://www.dietrichlab.de/CLL_Proteomics/).

Methods
Our research complies with all relevant ethical regulations. Written
consent was obtained from patients according to the declaration of
Helsinki. The collection of samples and clinical data was approved by
the ethics commission of the medical faculty of the University of
Cologne (13-091), the department of hematology Heidelberg (Ethics
vote S-686/2018), and the Stockholm Regional Ethics Board (2006/
964-31/2 and 99-154).

Experimental procedures
Study design. The purpose of this study was to investigate the rela-
tionships between the proteome, transcriptome, and genetic aberra-
tions to clinical parameters (notably TTNT) and drug sensitivity in CLL.
The proteome of CLL cells from 68 patient samples was analyzed by

HiRIEF-LC–MS/MS, the transcriptome of 59 patients by RNA-sequen-
cing, and mutations of 68 samples by DNA panel sequencing. To
minimize the introduction of biases all of these datasets were acquired
from the same aliquot of cells. Drug sensitivity was assessed by
microscopy-based ex-vivo drug screening and clinical parameters
(TTNT) were determined from patient records.

The results obtained from this discovery cohort were validated in
five independent CLL cohorts.

Discovery cohort: patient samples. Written consent was obtained
from patients according to the declaration of Helsinki. Leukemia cells
were isolated from blood using Ficoll density gradient centrifugation.
Cells were viably frozen and kept on liquid nitrogen until use. 45 CLL
patients were untreated at sample collection and 23 had received prior
treatment with immuno-chemotherapy (n = 17) or with novel
drugs (n = 6).

Discovery cohort: sample preparation for proteomics, RNA, and
panel sequencing. Cells were thawed, allowed to recover in RPMI
medium (Thermo Fisher Scientific) containing 10% human serum
(Sigma Aldrich) for 3 h, and filtered through a 40 µm cell strainer for
removal of dead cells from the thawing process. Viability was assessed
with Trypan Blue. Only samples with a viability above 90% were
included. Tumor cells were collected by Magnetic-activated cell sort-
ing (MACS) usingCD19beads (Miltenyi Biotec). Sampleswere split into
aliquots for proteomics analysis (1 × 107 cells), RNA sequencing
(5 × 106–1 × 107 cells), and panel sequencing (5 × 106 cells). Pellets for
proteomics analysis were washed twice with PBS and snap frozen in
liquid nitrogen. DNA for panel sequencing was extracted using the
DNeasy Blood & Tissue Kit (Qiagen). For RNA sequencing RNA was
isolated using QIAzol Lysis Reagent (Qiagen), QIAshredder (Qiagen),
and the RNeasy Mini Kit (Qiagen).

IGHV mutation status analysis. RNA was isolated and cDNA synthe-
sized using high-capacity cDNA Reverse Transcription Kit (Thermo
Fisher Scientific). PCR reactions and analyses were performed with
minor modifications44 (see supplementary methods for additional
details).

DNA copy-number variants. DNA copy numbers were assessed using
Illumina CytoSNP-12 and HumanOmni2.5-8 microarrays and read out
using the iScan array scanner. Fluorescence in situ hybridization (FISH)
analysis was performed for del(11)(q22.3), del(17)(p13), del(13)(q14),
trisomy 12, gain(8)(q24), and gain(14)(q32). Only alterations present
and absent in at least three patients were considered for analyses.

Discovery cohort: HiRIEF proteomics. Cell pellets were lysed by 4%
SDS lysis buffer and prepared for mass spectrometry analysis using a
modified version of the SP3 protein clean-up and digestion protocol45.
Peptides were labeled with TMT10-plex reagent according to the man-
ufacturer’s protocol (Thermo Fisher Scientific) and separated by
immobilized pH gradient - isoelectric focusing (IPG-IEF) on 3–10 strips28

Extracted peptide fractions from the IPG-IEF were separated using an
online 3000 RSLCnano system coupled to a Thermo Fisher Scientific Q
Exactive-HF.MSGF+ and Percolator in the Galaxy platformwere used to
match MS spectra to the Ensembl92 human protein database46. For
phosphorylation an additional search was performed where phos-
phorylationwas allowed as a variablemodification on serine, threonine,
and tyrosine. The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PXD028936.

Discovery cohort: panel sequencing. For gene mutation analysis we
designed a customized Illumina™ TruSeq Custom Amplicon (TSCA)
panel with two independent primer sets for redundant coverage29.
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Mutations in the genes ATM, BIRC3, EGR2, FBXW7, MYD88, NFKBIE,
POT1, TP53, BRAF, NOTCH1, RPS15, SF3B1, and XPO1 were covered.
Library preparation was performed using TruSeq Custom Amplicon
Assay Kit v1.5 and sequenced on an Illumina MiSeq flowcell. For ana-
lysis a custom bioinformatics pipeline was used. See supplementary
methods for additional details.

Discovery cohort: mRNA Sequencing. Stranded mRNA sequencing,
using a TruSeq Stranded Total RNA Library Preparation Kit, was per-
formed on a Illumina NextSeq 500. Reads were aligned to GRCh37.75/
hg19 using STAR (v2.6.0c;47) and counted with htseq-count48. Library
size normalization, variance stabilizing transformation and differential
expression callingwere performedusingDESeq2 (version 1.28.1)49. The
data are available through the European Genome-Phenome Archive
(EGA) under accession number EGAS00001005746.

Discovery cohort: Ex-vivo drug sensitivity screen. Drug response
profiles were obtained for 68 leukemia samples and 43 drugs (Sell-
eckchem) in 3 concentrations (Supplementary Data 4). Cells were
thawed and seeded in DMEM medium (Thermo Fisher Scientific)
containing 10% human serum (Sigma Aldrich), 1% penicillin/strepto-
mycin (Thermo Fisher Scientific) and 1% glutamine (Thermo Fisher
Scientific) at 2 × 104 cells/well into a CellCarrier-384 Ultra Microplate
(Perkin Elmer). Cells were incubated at 37 °C in a humidified atmo-
sphere and 10% CO2 for 3 days.

Cells were stained with 4 µg/ml Hoechst 33342 (Thermo Fisher
Scientific). Images were taken using an Opera Phenix High Content
Screening System (Perkin Elmer) and processed with Harmony (Perkin
Elmer). Cells were segmented and the nuclear area was calculated.
Based on a threshold of 23.8 µM2 nuclear area cells were classified into
alive and dead. The percentage of alive cells was calculated and nor-
malized by dividing through the mean percentage of alive cells across
all solvent (DMSO) controls.

Validation1_DIA cohort: DIA proteomics. For DIA based proteomics
cell pellets were digested and cleaned as described above. Unlabeled
peptides from individual sampleswere separated using anonline 3000
RSLCnano systemcoupled to a ThermoFisher ScientificQ Exactive-HF.
Data-independent acquisition (DIA) was employed using a variable
window strategy. Spectronaut was used to analyze the spectral files
using the Direct-DIA option and files were searched against the
ENSEMBL database (see supplementary methods for additional
details). In total 203 samples were analyzed by DIA, 36 from the ori-
ginal discovery cohort and 167 validation samples, 2 validation sam-
ples (CLL_DIA_209 and CLL_DIA_165) were excluded from further
analysis due to low proteome coverage (<3000 proteins quantitated).
The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository with
the dataset identifier PXD024544.

Validation2_Eagle cohort. For an additional validation of the exis-
tence of ASB-CLL in an external cohort, we took advantage of the
cohort of 18 CLL patient samples published by Eagle et al.24. Presence
of trisomy 12 was estimated by calculating the mean abundance of
proteins located on chromosome 12 and defining the 20% of patients
with highest abundances as harboring trisomy 12.

Validation3_RNA cohort: RNA Sequencing. To validate the splicing
signature of ASB-CLL we took advantage of a cohort of 169 CLL
patients forwhopaired-end sequencing, using an Illumina TruSeqRNA
sample preparation kit v2, was performed on an Illumina HiSeq2000
with 300 bp insert size50. No overlap between the samples of the dis-
covery cohort, the Validation1_DIA cohort or the Validation3_RNA
cohort existed. The data is available through the European Genome-
Phenome Archive (EGA) under accession number EGAS00001001746.

Validation4_untreated cohort. For the evaluation of the effect of the
interaction between trisomy 12 and IGHV mutation status in an
untreated context, we took advantage of the CLL cohort published by
Tissino et al.51. All the cases were from a single institution, i.e. the
Hematology Unit of the University of Tor Vergata in Rome, and ana-
lyzed at the CRO in Aviano for IGHV gene status, FISH categories
(del(17p), del(11q), trisomy 12, and del(13q)) and TP53 mutations. This
comprised in total 620patients. Time to first treatmentwas used as the
clinical endpoint.

Validation5_ibrutinib cohort. For the evaluation of the effect of the
interaction between trisomy 12 and IGHV mutation status in an
ibrutinib-treated context we took advantage of a retrospective study
cohort of 463 CLL patients homogeneously treated with ibrutinib at
the Ohio State University.

Statistical analyses
All statistical analyses were performed in R (version 4.0.2). Statistical
tests were performed as indicated in the text and figures. Wilcoxon
signed-rank tests were always two-sided. Boxplots are defined as fol-
lows: center line, median; box limits, upper and lower quartiles;
whiskers, 1.5x interquartile range. The code used is available at
github52.

Analysis of differential proteins and mRNA. Differential protein
abundance between samples with different genetic alterations was
assessed with limma (version 3.44.3)53 and DEqMS (version 1.6.0)54

(differential proteins defined as adjusted p < 0.001 and |log2FC| > 0.5)
(github code: “limmaProteomics”52). Differential gene expression was
performed on the raw count values using DESeq249 (differential genes
defined as adjusted p < 0.001 and |log2FC|>1.5; github code:
“RNASeq”52).

For samples with known trisomy 12 and IGHV mutation status
(nsamples = 59), we estimated the proteome-wide (nproteins = 7311) rela-
tive effect of trisomy 12 in the context of IGHV status by using the
following designmatrix inDeqMS: ~ IGHV +Trisomy 12+IGHV:Trisomy,
and extracted results with respect to the interaction coefficient.
Enrichment analysis was performed in the sorted by fold-change gene
vector using fgsea55 R package and MSigDB KEGG canonical
pathways56.

For overlappinggene symbols and samples in transcriptomics and
proteomics data (n = 6310, m = 50), we estimated mRNA—protein
correlation for each gene i using the first coefficient in the following
model:

lm scaledmRNA

� �
i ~ ð½scaledprotein�i + IGHV+Trisomy12+ IGHV : Trisomy12

� �

ð1Þ

Significant correlated pathways were identified by two-sided t-
tests between the mRNA–protein coefficients of leading edge genes
(≥5) versus all genes at a Benjamini–Hochberg FDR level of 0.01.

Protein-mRNA correlation. For each protein-mRNA pair in the dis-
covery cohort the Spearman correlation was calculated. Cumulative
distribution functions of the correlation coefficients were compared
using a two-sided Kolmogorov–Smirnov test (github code:
“RNASeq”52).

Multi-omics factor analysis. The multi-omics factor analysis was
performed on genetics, transcriptomics, and proteomics datasets
using the MOFA R package (version 1.0.0)33. Only the 2000 proteins
with the highest variance were used. The MOFA model was calculated
10 times and themodel with the highest evidence lower bound (ELBO)
was chosen. The convergence threshold was set to 0.01. Only factors
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that explained at least 1.5% of variance were kept for further analysis
(github code: “perfom_MOFA_analysis”52).

In vivo lymphocytegrowth rate. Patientswhohad lymphocyte counts
available for less than four time points between the sample collection
date and the time of the next treatment and patients currently in
treatment were excluded, leaving 35 patients. Lymphocyte growth
rateswere calculated by fitting a linearmodel to the log10 transformed
lymphocyte counts versus the period of time.

Analysis of outcome
Time to next treatment. Patients for which no clinical follow-up data
was available were excluded. Time to next treatment (TTNT) was cal-
culated from the date of sample collection to subsequent treatment
initiation. Patients without treatment initiation during observation
time and patients who died before treatment initiation were censored
at the latest follow-up contact. Proportional hazards regression (Cox
regression) was used to explore the potential impact of protein
abundances on TTNT using the R package survival (version 3.2-3). To
draw Kaplan–Meier curves the survminer package (version 0.4.8) was
used (github code: “CoxRegr”52).

Time to first treatment. Patients for which no clinical follow-up data
was available were excluded. Time to first treatment was calculated
from the date of diagnosis to subsequent treatment initiation. Patients
without treatment initiation during observation time and patients who
died before treatment initiation were censored at the latest follow-up
contact. To draw Kaplan–Meier curves the survminer package (version
0.4.8) was used.

Overall survival. Patients for which no clinical follow-up data was
available were excluded. Overall survival (OS) was calculated from the
date of sample collection to the date of death. Patients who did not die
within the observation period were censored at the latest follow-up
contact. Proportional hazards regression (Cox regression) was used to
explore the potential impact of protein abundances on OS using the R
package survival(version 3.2-3). To draw Kaplan–Meier curves the
survminer package (version 0.4.8) was used.

TTNT or OS were used as the primary metrics for outcome ana-
lysis for groups identified by proteomic or transcriptomic data. For
groups stratified from genetic alterations (e.g. IGHV status and Tris-
omy 12) TTFT or progression free survival (PFS) was used.

Dimensionality reduction and consensus clustering. Consensus
clustering on proteins or transcripts was performed using the Con-
sensusClusterPlus package (version 1.52.0)57 (github code:
“ConsensusClustering”52). The optimal number of clusters was deter-
mined based on cluster stabilities (Supplementary Data 5). This sup-
ported clustering of proteomic data into 4-6 clusters. As the increase
from 5 to 6 clusters led to the subdivision of trisomy 12 patients into
U-CLL andM-CLL, indicating biologicalmeaningfulness of the clusters,
6 clusters were chosen. mRNA level clustering into less than 5 groups
was not justifiable from the relative change in area under the CDF
curve (Supplementary Data 6). Clustering into more than 5 subgroups
led to splitting off of individual patients. Therefore, 5 clusters were
chosen as optimal.

Dimensionality reduction was done by T-distributed stochastic
neighbor embedding (t-SNE; Rtsne package, version 0.15),
principal component analysis (stats package), and hierarchical clus-
tering (pheatmap package, version 1.0.12) (github code:
“DimensionReduction”52).

Analysis of differential splicing
RNA level. For the alternative splicing analysis of the discovery
cohort, 59 single-read stranded total RNA-seq samples were

processed. First, RNA-seq reads were aligned to the human reference
genome (build hs37d5, based on NCBI GRCh37, hg19) using STAR
(v2.5.2a) with standard parameters. Aligned RNA-seq data were then
subjected to quality control by RNASeQC (v1.1.8) to ensure the
integrity of the transcriptome dataset. The same procedure was
applied to the Validation3_RNA cohort of 169 paired-end RNA-seq
samples.

Our alternative splicing analyses largely rely on rMATS, which we
employed to identify exon skipping events, mutually exclusive exons,
alternative 5′ and 3′ splice sites, and intron retention in individual CLL
patient RNA-seq samples. The rMATS tool was also used to quantify
alternative splicing activity by calculating estimates for the percent
spliced-in (PSI) values associated with each event in a given sample.
The entirety of PSI values for a specific samplewill be referred to as the
sample’s splicing profile in the following and can be seen as char-
acterizing alternative splicing activity in the corresponding CLL
patient.

In the case of the discovery cohort, where samples were inde-
pendently assigned a proteomics group label, rMATS was additionally
used to perform a statistical analysis of differences in alternative spli-
cing patterns between ASB-CLL patients and the remaining samples.
Based on the results of such a differential alternative splicing analysis
within the skipped exon category, we selected the most interesting
events in terms of statistical significance (BH-adjusted p value smaller
than 1%) and effect size (absolute difference of groupwise mean PSI
values larger than 0.1) for further consideration. Additionally, we
excluded events with too low a coverage in read counts (average
number of raw inclusion counts across all samples not larger than 20).
A total of 430 exon skipping events satisfied all three constraints, 427
of which were also detected in the Validation3_RNA cohort. Reading
rMATS output into R and selecting events was done with the help of
the maser package.

In order to assess the probability that the observed number of
significant exon skipping events was purely due to chance, we
performed a permutation test. Specifically, we uniformly drew nine
samples from the total list of 59 CLL samples in the discovery cohort
without replacement and labeled them as “ASB-CLL”. The remaining
50 samples were labeled as “other”. We then ran rMATS on these
randomly labeled samples using the same parameters as in the
original analysis and again determined the number Ne of significant
exon skipping events. This process was repeated for multiple such
label permutations, thus generating an estimate for the null dis-
tribution of Ne. The tested null hypothesis is that there is no dif-
ferential splicing between ASB-CLL and the other proteomics
groups.

Apart from the supervised selection of exon skipping events
described further above, we performed unsupervised exploratory
analysis for each alternative splicing event category in the discovery
cohort. We did so by using the 1000 most variable events across all
patients in each category. For each patient sample, we then calculated
the mean PSI value based on those 1000 events. In order to quantify
whether the mean PSI values from ASB-CLL samples tend to be dif-
ferent from those in all other PGs, we performed a two-sidedWilcoxon
rank-sum test. The outcome of that test gave us an idea about overall
alternative splicing differences in the given category.

In order to capture the characteristic splicing profile of ASB-CLL
samples, we used the caret package to train a partial least squares
discriminant analysis (PLS-DA) model on the discovery cohort using
the PSI values from the 427 selected exon skipping events as pre-
dictors. All predictors were centered and scaled prior to training. The
PLS-DA classifier has one tuning parameter, namely the number Nc of
components in the dimensionally reduced space. We determined the
optimal value for Nc via leave-one-out cross validation using the area
under the ROC curve as the measure of predictive performance to be
optimized.

Article https://doi.org/10.1038/s41467-022-33385-8

Nature Communications |         (2022) 13:6226 14



Peptide level. Peptide sequences were stripped of modifications and
merged by the median followed by mapping to genomic coordinates
using the Splicevista.py function58 and assigned to Ensembl exon IDs
(GRCh38, v92). Each peptidewas assigned to exon(s)—in case of splice-
junction—based on the initial master protein assignment, but later
distributed to multiple proteins supported by the exon(s). Splice-
junction-covering peptides were treated as single instances to
accommodate the unique quantitative profile deriving from both
putative assignments. As such, exons heredenote unique coding units,
but we follow the exon term for simplification.

Differential splicing was investigated using the limma diffsplice R
function53. Specifically, for exons quantified inmore than twoTMTsets
(18 samples), we estimated log fold changes of ‘this-cluster-vs-the-rest’
contrasts via moderated t-tests of ‘this-exon-vs-the-rest’ comparisons.
Exon-level significance was determined by t-test (FDR corrected p
value < 0.01 and |log2FC| > 0.5). Enriched groups for significant hits
were identified using one-sided Fisher’s exact tests as described above
(github code: “CLL_exon_centric_diffSpiced_diffQuant”52).

Gene ontology and KEGG gene set enrichment analyses. Enrich-
ment analysis was performed against KEGG gene sets59 using GSEA
(version 4.0.3)56. For GO term enrichment60 of proteins loaded onto
latent factor 9 the MOFA33 internal function runEnrichmentAnalysis
was used. The required GO terms were downloaded from MSigDB61

(v7.0) and the FDR cut-off was set to >5%.

Protein–protein correlation. For the protein core complex analysis
protein–protein Pearson correlations were calculated for CORUM
complex members and converted into a pairwise interaction matrix15.

For the generation of the protein correlation network proteins
with a high standard deviation were selected and pairwise Pearson
correlations were calculated (github code: “ppi_network”52). The
resulting network was visualized in Gephi 0.9.2 and nodes were fil-
tered using a kcore setting of 3. Modularity clustering of the nodes
was carried out with a resolution of 0.8. Annotation of themodularity
clusters was done by first extracting all proteins belonging to a
cluster. Next, any protein in the full overlap dataset (n = 7313) with a
Pearson correlation above 0.7 to any of the cluster members was
included in the target gene set for that cluster. Enrichment was car-
ried out against the MSigDB and the R packages msigdbr and Clus-
terProfiler were used to calculate enrichments (github code:
“enrichment_of_network-msigdb”52). See supplementary methods for
additional details.

Validation of ASB-CLL using DIA based proteomics. To validate the
existence of ASB-CLL we analyzed 167 new patient samples from
Sweden and Germany using DIA based proteomics (Validation1_DIA
cohort) as well as 36 samples from the original discovery cohort. Four
samples were excluded after quality control assessment due to either
poor correlation to the in-depthdata (2 samples, discovery cohort) or a
low number of identifications (2 samples, Validation1_DIA). We trained
a k-TSP based classifier on the relative MS2-level quantifications of all
identified proteins from the KEGG “Spliceosome” and “B-cell receptor
signaling” pathways which were identified by at least 3 spectral mat-
ches in the training set. After optimization 8 k-TSP pairs were chosen.
36 of the original 68 samples analyzed by HiRIEF were run on DIA and
samples with a correlation between the DIA and HiRIEF data of >0.4
were used as a training set. RepeatedMonte carlo cross validation was
used to optimize both the number of pairs and to identify the pairs
which best separated ASB-CLL.

For additional validation of ASB-CLL the published proteomics
dataset by Eagle et al.24 was used (Validation2_Eagle cohort). The k-TSP
classifier trained above was used on the Eagle et al. dataset. One TSP-
pair had to be excluded due to lack of overlap and the classification
threshold was lowered by 1 as a consequence. Mean protein

abundances for the genes in the KEGG gene sets “Spliceosome”, “B-cell
receptor signaling”, “proteasome”, and “Valine, leucine and isoleucine
degradation” were calculated and compared between the ASB-CLL
cluster and all other patients.

Validation of Tris12M-PG, Tris12U-PG, M-PG, and U-PG. For the
confirmation of the clinical relevance of Tris12M-PG, Tris12U-PG, M-PG,
and U-PG multiple validation cohorts were used. Patients from the
Validation1_DIA cohort (n = 165), the Validation4_untreated cohort
(n = 620), only comprising untreated CLL samples, and the Validatio-
n5_ibrutinib cohort (n =463), only comprising ibrutinib-treated sam-
ples, were split into four groups based on IGHV status and trisomy 12.
This was possible because Tris12M-PG, Tris12U-PG, M-PG, and U-PG
strongly associated with these two genetic alterations. To assess the
native disease progression differences in time to first treatment
between the four groups were assessed in the Validation1_DIA and the
Validation4_untreated cohorts using Kaplan–Meier curves and log-rank
test. To test differences between the groups in the context of treatment
with ibrutinib time to progression was evaluated in the Validation5_i-
brutinib cohort using Kaplan–Meier curves and log-rank test.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository with
the dataset identifiers PXD028936 (Discovery set) and PXD024544 (DIA
Validation set). The Eagle et al. dataset is available as supplementary
information alongside the original article24. The RNAseq data for the
discovery cohort is available through the European Genome-Phenome
Archive through accession number EGAS00001005746 and for the
Validation3_RNAcohort throughaccessionnumber EGAS00001001746.
As the RNA Sequencing data has the potential to reveal patient-sensitive
information the data is under restricted access. Access will be granted
within one week by Sascha Dietrich (sascha.dietrich@embl.de) to non-
profit studies which remove patient-sensitive information. The data can
be easily explored through our web application: https://www.
dietrichlab.de/CLL_Proteomics/. Source data are provided with
this paper.

Code availability
The code not accessing patient-sensitive information has been depos-
ited on github: https://github.com/DietrichLab/Proteogenomics_and_
drug_response_CLL52.
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