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The spatial transcriptomic landscape of
non-small cell lung cancer brain metastasis

Qi Zhang 1,4 , Rober Abdo1,2,4, Cristiana Iosef2,3, Tomonori Kaneko 2,
Matthew Cecchini1, Victor K. Han3 & Shawn Shun-Cheng Li 2,3

Brain metastases (BrMs) are a common occurrence in lung cancer with a dis-
mal outcome. To understand the mechanism of metastasis to inform prog-
nosis and treatment, here we analyze primary and metastasized tumor
specimens from 44 non-small cell lung cancer patients by spatial RNA
sequencing, affording a whole transcriptomemap of metastasis resolved with
morphologicalmarkers for the tumor core, tumor immunemicroenvironment
(TIME), and tumor brainmicroenvironment (TBME). Our data indicate that the
tumor microenvironment (TME) in the brain, including the TIME and TBME,
undergoes extensive remodeling to create an immunosuppressive and fibro-
genic niche for the BrMs. Specifically, the brain TME is characterized with
reduced antigen presentation and B/T cell function, increased neutrophils and
M2-type macrophages, immature microglia, and reactive astrocytes. Differ-
ential gene expression and network analysis identify fibrosis and immune
regulation as the major functional modules disrupted in both the lung and
brain TME. Besides providing systems-level insights into the mechanism of
lung cancer brain metastasis, our study uncovers potential prognostic bio-
markers and suggests that therapeutic strategies should be tailored to the
immune and fibrosis status of the BrMs.

Brain metastases (BrMs) constitute the majority of central nervous
system (CNS)malignancies with lung cancer accounting for ~50% of all
brain metastases1. Despite favorable responses of some lung cancer
patients to immune checkpoint blockade (ICB) agents, the majority of
patients do not respond to ICB therapies. Moreover, once cancer has
spread to the brain, a frequent event in late-stage lung cancer, treat-
ment options are limited. Although antibodies blocking the pro-
gramed death 1/ligand 1 (PD-1/L1) and inhibitors targeting the disease-
driving tyrosine kinases have shown clinical benefits for cancer
patientswith brainmetastasis2–7, themedian 5-year survival rate for the
BrM patients is <5%8. Given the prevalence of BrMs and the associated
high morbidity and high mortality, there is an urgent need to identify
prognostic biomarkers for patient stratification, therapeutic targets
for intervention, and genomic and transcriptomic correlates of
therapeutic response. However, our incomplete understanding of the

molecular and cellular basis of brain metastasis has hampered efforts
to address this unmet clinical need.

While metastasis is the process of dissemination of cancer cells
from the primary lesion to distant locations, the tumor micro-
environment (TME), which includes the tumor stroma, blood vessels
and immune cells, plays an essential role in promoting cancer cell
migration and invasion of the basement membrane for the initiation
of metastasis, and facilitating the colonization and growth of the
cancer cells at the site of metastasis9. The human brain is an immu-
nologically privileged organ that provides a “hostile” environment
for the seeding and colonization of metastatic tumor cells compared
to other organs9,10. Nevertheless, recent studies have suggested the
presence of a brain metastatic niche, or tumor-supporting TME, that
sustains the survival of the metastatic cancer cells in patients11. The
intracranial tumormicroenvironment presents several challenges for
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metastasis, including the blood-brain barrier, a unique immune
environment, a complex network of cell–cell interactions, and spe-
cific metabolic constraints12. Therefore, to create a metastatic niche,
extensive reprogramming or remodeling would have to take place
for the tumor cells as well as cells in the TME, including the stromal
cells, associated immune cells, and adjacent brain cells. A recent
single-cell RNA-sequencing (scRNA-seq) analysis of metastatic lung
adenocarcinoma (LUAD), a main subtype of NSCLC, showed that the
cancer cells and cells in the TME indeed undergo extensivemolecular
and cellular reprogramming to create a pro-tumor and immuno-
suppressive environment conducive for metastasis13. Likewise, a
multi-omics study of 15metastatic cancers has demonstrated that the
brainmetastatic niches fromdifferent cancers are characterizedwith
an immune evasive TME featuring metastasis-associated macro-
phages (MAMs) and heterogeneous T-cell responses9. Furthermore,
the brain cells within the metastasis niche may be reprogrammed to
facilitate cancer cell proliferation; and the cancer cells, on the other
hand, may adopt certain characteristics of the brain cells to survive
and flourish in the intracranial environment. Indeed, metastatic
breast cancer cells have been found to display “neuronal” properties
in the brain14 or form gap junctions with astrocytes to evade
apoptosis15. Along the same line, a comparative study of BrMs with
glioma, a prevalent form of brain cancer, has uncoveredmany shared
TME features, thus blurring the boundary between these two types of
brain malignancies16.

While genomic, proteomic and/or transcriptomic profiling of
patient specimens has provided unprecedented insights into the
systems basis and regulatory mechanisms of brain metastasis,
studies to date have been focused on either the primary tumor or
the metastasized brain tumor. In contrast, paired analysis of pri-
mary and metastasized tumor specimens has been rare, making it
difficult to obtain a complete picture of the tumor biology and to
distinguish the roles of the cancer cells and the TME in metastasis.
Moreover, analysis of the whole tumor may overlook the immense
heterogeneity of the tumor and TME as information on cellular
location within the tumormicroenvironment is lost17. To overcome
these limitations of whole tumor analysis, methods that allow
spatial characterization of the tumor and TME have been devel-
oped, including the digital spatial profiling (DSP) technique
developed by NanoString18,19.

In this study, we apply the DSP approach to a cohort of NSCLC
patients to map the transcriptome landscape of the primary and
metastasized tumors, including the tumor core, the tumor-immune
microenvironment (TIME), and the tumor brain microenvironment
(TBME). Comprehensive analysis of the resulting spatial RNA-seq data
provides important molecular and cellular insights into the mechan-
ism of lung cancer brain metastasis with implications in the prognosis
and treatment of lung cancer and brain malignancies.

Results
Digital spatial transcriptomic profiling of lung tumors and
metastases
The study cohort included 44 NSCLC patients (Supplementary Data 1)
with metastases to the brain (n = 44). For each patient, tissue micro-
arrays (TMAs) were constructed that contained the primary lung car-
cinoma (L),metastatic lymphnode (mLN, if available), brainmetastasis
(LB), and tumor-adjacent brain tissue (TBME). Brain tissue samples
from seven patients without brain tumors were included in the TMAs
as controls (BC) (Fig. 1a). To evaluate intra-tumoral heterogeneity,
sections of the TMA were stained simultaneously with antibodies
against the leukocyte marker CD45 to demarcate the tumor-immune
microenvironment (TIME), the epithelial cell marker PanCK to mark
the tumor cores (L and LB), GFAP (glial fibrillary acidic protein) to
identify the tumor brain microenvironment (TBME), and SYTO83 to
mark the cell nuclei (Fig. 1a).

RNA sequencing using the NanoString GeoMx DSP platform
yielded expressing data for 18,694 genes across 119 regions-of-
interest (ROIs) identified based on histological analysis following
hematoxylin and eosin staining and immunostaining patterns for
the morphological markers. None of the ROI was sequenced
below 50% of saturation (Fig. 1b). The sequencing data were
normalized using the third quartile expression (Q3) and validated
to ensure quality; and the 0.75 quantile-scaled data were used for
all subsequent analysis (Fig. 1c). Principal component analysis
(PCA) and Uniform Manifold Approximation and Projection
(UMAP) (Fig. 1d, e) showed separation of the tumor core (LB and
L) from the TME, including TIME-L, TIME-B, and TBME. Specifi-
cally, the LB and L ROIs were clustered together with the mLN,
whereas the TIME-L and TIME-B ROIs formed a separate cluster. In
contrast, the TBME ROIs showed a dispersed pattern of dis-
tribution with one group neighboring the BC cluster and the
other mingled with the TIME-L/TIME-B cluster, suggesting a high
degree of heterogeneity for the tumor brainmicroenvironment in
individual patients.

Distinguishing features of the tumor microenvironment
between the primary tumor and metastases
We estimated the cell populations in the ROIs from the corresponding
gene expression data using SpatialDecon, an algorithm for quantifying
cell populations trained with spatially resolved single-cell RNA-
sequencing data20. In agreement with the PCA and UMAP patterns
(Fig. 1d, e), the cell abundance profiles showed a clear spatial separa-
tion. While the lung (L) and brain metastasis (LB) tumor cores were
dominated by epithelial cells, the lung and brain TME (TIME-L/B and
TBME) were enriched in macrophages and plasma cells (Fig. 2a). In
general, the TIME-L ROIs contained more T cells, B/plasma cells than
the TIME-B ROIs. Furthermore, the activation of T cells, B cells, sig-
naling by cytokines and chemokines, and antibody production were
found reduced in the TIME-B compared to TIME-L (Supplementary
Fig. 1a). This suggests that T-cell- and B-cell/antibody-mediated adap-
tive immune responses are compromised in the brain metastasis
environment.

A similar cell population profile was obtained when the RNA-seq
data were analyzed using Qlucore Omics Explorer13,21. Intriguingly,
theseanalyses identified anabundanceoffibroblasts (CAFs) in theTME
of both the primary tumor (i.e., TIME-L) and the BrMs (i.e., TIME-B and
TBME) (Fig. 2a, b), underscoring the importance of cancer-associated
fibroblasts (CAFs) and the tumor stroma in brain metastasis22. We also
analyzed the TMEbyMCP-counter23, a widely usedmethod to estimate
the population abundance of tissue-infiltrating immune cells and
stromal cell populations. This led to the identification of significantly
more T cells and B cells in the TIME-L compared to theTIME-B or TBME
(Fig. 2c, d). Cytotoxic lymphocytes, which play a critical role in tumor
cell-killing, were significantly increased in the TIME-L compared to
TIME-B. In contrast, significantly more neutrophils were found in the
TBME relative to the TIME-B/L (Fig. 2d). Further analysis of the T-cell
functional subgroups using the markers identified from scRNA-seq24

revealed that the brain TME (i.e., TBME and TIME-B) is compromised in
both activated and resting T cells compared to the TME of the primary
tumor (i.e., TIME-L) (Supplementary Fig. 1b). Collectively, these data
suggest that, compared to the primary lung tumor, the brain metas-
tasis environment is significantly immunosuppressed due to reduced
T-cell and B-cell abundance/activity and increased neutrophil
infiltration25.

Hallmarks of functional gene expression associated with
metastasis
To identify the functional genes associated lung cancer metastasis in a
systematic manner, we analyzed the spatial transcriptome data using
the knowledge-based functional gene expression signatures (Fges)
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Fig. 1 | Digital spatial profiling of primary NSCLC and metastasized tumor
tissues. a Schematic of studydesign andworkflow.NSCLCpatientswithmetastases
to the brain (n = 44) were represented in four tissue microarray (TMA) blocks
(LB-D1 to D4) for digital spatial profiling (DSP) of the whole transcriptome (18,694
genes). Regions-of-interest (ROI) for DSP were annotated based on histology by a
pathologist and immunofluorescence staining with the morphological markers
PanCK (for epithelial cells), CD45 (for hematopoietic cells), and GFAP (for brain
cells). A total of 119 ROIs (average 0.2mm2 each) were analyzed. The figure was
created with BioRender. The scale bar is 100 μm. b RNA-sequencing saturation

graph showing that none of the ROIs sequenced had counts below 50%.
c Normalization of the RNA sequencing data using the third (Q3) quartile count.
The limits of the violin plots represent the upper and lower quartiles, whereas the
dots indicate the median. (L) = 30 samples, (LB) = 27 samples, TBME = 19 samples,
TIME-L = 15 samples, TIME-B = 8 samples, mLN= 13 samples, BC= 7 samples.
d Principal component analysis (PCA) of the DSP data. e Uniform Manifold
Approximation and Projection (UMAP) analysis. Source data are provided as a
Source Data file.
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that represent the major functional and cellular components of the
tumor and TME26. Remarkable differences in the expression of specific
Fges were detected between the ROIs representing the tumor cores
(i.e., L and LB) and the TMEs (i.e., TIME-L/B and TBME) (Fig. 3a). Con-
sistent with the cell deconvolution data, the TIME-L/B and TBME ROIs
expressed more abundantly Fges for lymphocytes (eg., B cells, T cells,
and effector cells) and myeloid cells (eg., neutrophils, TAMs, myeloid-
derived suppressive cells or MDSCs), and pro-tumor cytokines
(Fig. 3a). Moreover, the TME was enriched in Fges for the CAFs,
extracellular matrix (ECM) and endothelium, suggesting that fibrosis

and angiogenesis play an important role in tumor progression and
metastasis. Intriguingly, tumor proliferation genes were reduced in
expression in the brain metastasis (LB) compared to the lung tumor
(L), suggesting that enhanced proliferation of the tumor cells is unli-
kely a contributing factor to metastasis. Analysis of the Fges for three
patients with paired primary lung tumor and brain metastasis tissues
revealed marked intra-patient heterogeneity in the tumor and tumor
microenvironment (Supplementary Fig. 2). A recent scRNA-Seq ana-
lysis has identified a partial epithelial-to-mesenchymal transition
(or pEMT) program associated with metastasis in multiple cancers27.

Fig. 2 | Spatial specificity of cellular composition and gene expression in the
primary tumor and metastases. a ROI-specific deconvolution of cell populations
based on the corresponding bulk RNA-Seq data by SpatialDecon. Related ROIs are
grouped together and identified on the x axis. b Deconvolution of cell populations
by Qlucore Omics Explorer based on average gene expression in the indicated
groups. c Cell deconvolution of the TME by MCP-Counter. d Violin plots showing
the differences in the indicated cell types between the TIME-L, TIME-B, and TBME.

The P values were based on nonparametric test (Kruskal–Wallis) followed by the
Dunn test for pairwise comparisons. The dashed and solid lines within the plots
indicate upper and lower quartiles and medians, respectively, n = 19, 15, and
8 samples in TBME, TIME-L, and TIME-B, respectively. Heatmaps colored from blue
to red according to Z-score scale −2 to 2. Source data are provided as a Source
Data file.
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Fig. 3 | Spatially resolved functional gene signatures of lung cancermetastasis.
aHeatmap of functional gene signatures (Fges) to show changes in the cellular or
extracellular components in the different regions of the primary and metasta-
sized tumors. ROIs from the same region are grouped together and distinguished
by different color codes at the top of graph. The boxeswith broken lines highlight
gene clusters with significant differences in expression between the TIME-L and
the TIME-B or TBME. The boxes with dotted lines denote gene clusters with

significant differences between the TBME and BC groups. b Heatmap of pEMT
signature genes across the ROIs. The box with broken lines highlights a gene
cluster with significant difference between the tumor cores (L, LB) and the tumor
microenvironment (TIME-L/B and TBME). The box with dotted lines denotes a
gene cluster with similar expression patterns between the TBME and BC. Heat-
maps colored from blue to red according to Z-score scale −2 to 2. Source data are
provided as a Source Data file.
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To find out if the samemechanism underlay the NSCLCmetastasis, we
compared the expression of the pEMT markers across the ROIs.
Indeed, the tumor cores (L and LB) were found to express numerous
pEMT genes at significantly greater levels than the TME, including the
laminins (LAMC1, LAMC2, LAMA3), integrins (ITGA2, ITGB1, ITGAV),
and inflammatory and neutrophil-attracting chemokines (CXCL8,
CXCL1). In contrast, the TBME ROIs were enriched in genes that were
also found highly expressed in the brain control samples (BC), but not
in L, LB, or mLN (Fig. 3b). This suggests that elevated expression of
tumor-intrinsic pEMTgenes is associatedwithNSCLCbrainmetastasis.

To identify TME-specific Fges for metastasis, we compared the
TIME-L with the TIME-B and TBME ROIs. We found that the B-cell and
MHC-1/2 genes were more highly expressed in the TIME-L than the
TIME-B or TBMEROIs, suggesting that antigen-presentation and B-cell-
mediated immune responses are compromised in the brainmetastasis
environment (Fig. 3a and Supplementary Fig. 3a). Because antigen
presentation and B cells (which may also present antigens to T cells)
are critical to antibody-mediated immune response, this finding rein-
forces the cell deconvolution data showing that the TIME-L contained
more plasma cells (Fig. 2a). In order to identify genes that mediate the
remodeling of the brain microenvironment, we compared the TBME
with BC. Themost striking differences were found in the CAF and ECM
markers, which were also significantly elevated in the TIME-L/B
ROIs (Fig. 3a). This suggests that increased deposition of extracellular
matrix proteins and fibrosis play an important part in creating a
metastasis niche in the brain. This assertion is corroborated by Gene
Ontology (GO) analysis of the differentially expressed genes (DEGs),
which showed that collagen-ECM mediated signaling pathways were
significantly elevated in TIME-B/L compared to LB/L (Supplementary
Fig. 3b–g). The DEG analysis also identified B-cell activation and anti-
gen presentation among the most significantly changed biological
processes between the TIME-L and TIME-B, corroborating with the
results from the functional gene signature analysis (Fig. 3a).

Fibrosis is a key feature of the tumor brain microenvironment
To define the role of the brain microenvironment in metastasis, we
compared gene expression between the TBME and BC. Volcano plots
identified 251 significantly differentially expressed genes or DEGs
(Log2FC > 1.5 or Log2FC < −1.5, FDR <0.01) between the two groups
(Fig. 4a). As expected, the most downregulated genes in the TBME
were the ones involved in brain structure or function. In contrast, the
most upregulated genes in the TBME were those involved in fibrosis,
including collagens, fibronectins, and vimentins (Fig. 4a). Analysis of
cell-specificmarkers indicate thatneurons, neuroblasts, astrocytes and
oligodendrocytes were downregulated in the TBME23. In contrast,
microglia, the primary innate immune cells of the central nervous
system, and pericytes, vascular mural cells embedded in the mem-
brane of blood microvessels28, were found upregulated together with
immune cells, endothelial cells, and fibroblasts (Fig. 4b). This indicates
that, compared to the control brain tissue, the tumor-adjacent brain
microenvironment is reprogrammed to be angiogenic and fibrogenic
at the expense of neural functions.

To ascertain that the increased fibroblast content in the TBME
correlated with fibrosis, we performed Masson trichrome stain on the
corresponding ROIs (Fig. 4c) and found that 11/19 ROIs displayed a
positive staining pattern (F+), whereas the remainder showed no
detectable fibrosis (F−). Within the fibrotic group, six were classified
with a high degree of fibrosis (F(h)) and five with low fibrosis (F(l))
(Supplementary Data 2). A total of 97 genes were found differentially
expressed between the F(h) and (F−) TBME groups (Log2FC > 1.5 or
Log2FC < −1.5, FDR <0.05) (Supplementary Fig. 4a). Intriguingly, the
expression pattern of 42 TBME DEGs identified in our study mirrored
that of BrM-specific genes in a previous study16 (Supplementary
Fig. 4b). To reveal the molecular underpinnings of the fibrosis-related
TBME subsets, we employed Gene Set Enrichment Analysis (GSEA)29,30

that identified a significant decrease in the neuronal genes and con-
comitantly, a significant increase in genes of the TGF-β signaling
pathway that plays a critical role in fibrosis, and enrichment of hall-
mark genes for EMT, angiogenesis, and hypoxia (Supplementary
Fig. 4c). Moreover, we found that the F(h) ROIs, in general, expressed
more CAF/ECM genes than the F(l) and/or F(−) ROIs (Supplementary
Fig. 4d, e). Of note, a significant increase was observed for the CAF
markers TGF-β1 (TGFB1), COL1A1, and COL3A1, and numerous ECM
remodeling genes, including metalloproteinase 2 (MMP2), metallo-
proteinase inhibitor 1 (TIMP-1), and macrophage mannose receptor 1
(MRC1) (Fig. 4d). COL3A1, a type III collagen, has been shown recently
to play an important role in regulating tumor dormancy and
reactivation31. A significant increase in MRC1 expression in the F(h)
TBME suggests an active role for macrophages in promoting fibrosis.

Besides theCAF/ECMregulators, several cytokines/growth factors
and downstream signaling components were differentially expressed
between the TBME and BC or between the different fibrous groups of
the TBME (Fig. 4e). Besides TGFB1, the platelet-derived growth factor
receptor PDGFRBwas significantly upregulated in the F(h) ROIs, which
agrees with increased CAFs and fibrosis in the corresponding tumor
microenvironment. IL4I1, or interleukin-4-induced-1, was elevated in
the TBME compared to BC. IL4I1, a metabolic immune checkpoint that
activates the aryl hydrocarbon receptor (AHR) through the generation
of indole metabolites and kynurenic acid, has been shown to promote
cancer cell mobility and metastasis and to suppress anti-tumor
immunity32. Elevated IL-6R and STAT3 expression in the TBME is con-
sistent with a role of the IL-6-IL-6R-STAT3 pathway in promoting
metastasis in general andbrainmetastasis throughneuroinflammatory
astrocytes33 and M2-type macrophages34 in particular. Both the CXCL-
12 and CXCR4 genes were more highly expressed in the F(h) ROIs. The
chemokine CXCL-12/stromal cell-derived factor 1may not only provide
chemotaxis for the recruitment of T cells and monocytes, its interac-
tion with CXCR4, which is expressed abundantly in the brain, may play
an important role in the neuro-immune interface that shapes the brain
microenvironment conducive for metastasis35. Moreover, the chemo-
kines CXCL9, CXCL10, CXCL11 and the chemokine receptorCCR5were
expressed at lower levels in F(h) relative to the F(−) TMBE (Supple-
mentary Fig. 4f). This was accompanied by a significant reduction in
the expression of effector T hallmark genes such as GZMB, GZMA,
IFNG and IL2 and B-cell markers in the F(h) TBME (Supplementary
Fig. 5a). Our result echoes a previous finding inwhichCAFswere linked
to low B-cell infiltration in lung adenocarcinoma36. Furthermore, GSEA
analysis revealed that the F(h) TMBE was enriched in gene signatures
for stress, metabolic fitness, translation, and protein secretion gene
signatures (Supplementary Fig. 5b).

The brain microenvironment is immune suppressed regardless
of its fibrosis status
The TBME, which occupies a niche between the metastasized tumor,
the tumor-immune microenvironment (TIME-B), and the brain, may
play a critical role in regulating immune responses by itself or through
interactions with the TIME-B. While T cells were present in the TBME,
the proportion of the CD4or CD8T cells differedwith the fibrosis state
(Supplementary Fig. 5c). Moreover, F(h) TBME contained markedly
more M2 macrophages than the F(−) or F(l) TBME (Supplementary
Fig. 5c). To understand the mechanism of immune modulation by the
TBME, we compared the expression of regulatory genes mediating: (1)
T-cell activation or inhibition, which plays a critical role in adaptive
immune response to the tumor; (2) antigen presentation, which reg-
ulates T-cell-mediated immune response; (3) metabolism, including
IDO1, IDO2 and TDO that play an important role in tumor-immune
escape16, and (4) phagocytosis, whichmay eliminate the tumor cells in
an antibody-dependent manner9. We found that, in general, these
regulatory genes were expressed more abundantly in the TBME than
BC, indicating that the tumor-adjacent brain microenvironment was
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Fig. 4 | The tumor brainmicroenvironment is fibrotic and immunosuppressed.
aVolcanoplot of differentially expressed genesbetween the TBME andBC. P values
were obtained from the Student t test (two-sided). b Estimated changes in cell
populations between the TBME and BC based on expression of cell-specific genes,
n = 19, 7 samples in TBME, and BC, respectively. c Representative images of H&E
and Masson trichrome staining to differentiate TBME samples based on fibrosis
status. F(−) no detectable fibrosis, F(i) intermediately fibrotic TBME, F(h) highly
fibrotic TBME. The scale bar is 100μm. d Violin plot depicting the expression of
representative CAF-ECM genes. P values shown were based on nonparametric
Mann–Whitney test (two-sided). The dotted lines indicate upper and lower quar-
tiles, whereas the dashed lines represent medians. e Cytokine/chemokine

expression across the TMBE and BC. Dot size indicates relative gene expression,
n = 8, 6, 5, and 7 samples in F(−), F(h), F(I), and BC, respectively. f Heatmap of
expression of regulatory genes for T-cell activation and inhibition. g Heatmap of
significantly altered T-cell regulatory genes between the F(h) and F(−) TBME.
h Violin plots showing significantly different gene expression in the fibrous vs. non-
fibrous TBME for a selection of immune checkpoint genes. P values are based on
Mann–Whitney test (two-sided). The dotted and dashed lines within the plots
indicate upper & lower quartiles and medians, respectively. b, c n = 26, whereas
n = 21 in (f). Heatmaps colored from blue to red according to Z-score scale −2 to 2.
Source data are provided as a Source Data file.
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reprogrammed for immune modulation (Fig. 4f). Intriguingly, the F(h)
and F(−) ROIs exhibited distinct gene expression patterns. While the
F(h) TBME expressed more abundantly the MHC-I/II genes, the F(−)
group had significantly higher expression of T-cell regulators. This is
consistent with the increased CD8+ T-cell infiltration in the nonfibrotic
TBME and increased tumor-associated macrophages in the fibrous
group (Supplementary Fig. 5c).

Given the critical role CD8+ T cells in tumor-killing, the above
analysis suggests that the absence of fibrosis might increase T-cell-
mediated immunes response against brain metastasis. This assertion
notwithstanding, we found the expression of T-cell inhibitors or
immune checkpoints significantly increased in the F(−) compared to
the F(h) TBME, suggesting that the T cells in the former were func-
tionally exhausted37 (Fig. 4f). Furthermore, the metabolic immune
checkpoints IDO1/2 and TDO2, which are known to suppress T-cell
activity by depleting tryptophan from the microenvironment8, was
increased in the nonfibrotic TBME.

Of the T-cell regulatory genes examined, 20 were found sig-
nificantly differentially expressed between the F(h) and F(−) TBME. Of
note, the F(−) TBME expressed significantly greater levels of several
inhibitory T-cell regulators, including PDCD1LG2 (programmed cell
death 1 ligand 2 or PD-L2), BTLA (B- and T-lymphocyte attenuator),
VTCN1 (V-set domain-containing T-cell activation inhibitor 1), and IDO1
(Indoleamine 2,3-dioxygenase 1) (Fig. 4g, h). Multiple members of the
tumor necrosis factor (TNF)-receptor (TNFR) family were also sig-
nificantly upregulated in nonfibrotic TMBE. Intriguingly, SIRPα
(SHPS1), a phagocytosis checkpoint in macrophages and other innate
immune cells38, was also significantly increased in the nonfibrotic
TBME. Collectively, these data suggest that both the adaptive (i.e.,
mediated by T cells) and innate immunity (i.e., mediated by myeloid
cells) are compromised in the TBME regardless of its fibrosis status.
For the non-fibrosis TBME, immune suppression is likely conferred by
exhausted T cells and deficient phagocytosis resulting from reduced
TAMs and antigen presentation. In contrast, poorer CD8+T-cell infil-
tration and TAM polarization to acquire the M2-type (vide infra) were
main contributors to the immunosuppressive environment associated
with the fibrous TBME.

Reprogramming of the macrophage-microglia axis shapes the
brain metastasis niche
Cell deconvolution based on differential gene expression showed
significant disparities in stromal cell composition, including CAF, EC
(endothelial cells), and M2-type macrophages, between the fibrotic
and nonfibrotic TBME groups (Supplementary Fig. 5c–d). Monocyte-
derived macrophages (MDMs) may be polarized to either the
inflammatory M1-type, which phagocytize and kill cells, or the
immune-suppressive M2 type, which participate in wound-healing
and tissue repair39. To define the role of M1/M2 macrophage polar-
ization in the TBME, we examined the expression of key M1 and M2
markers. We found that the F(−) TBME ROIs expressed a significantly
higher level of M1 markers than the F(h) group whereas the reverse
was true for the M2 markers (Fig. 5a). This result reinforced the cell
deconvolution data showing that the F(h) TBME was dominated by
M2-like macrophages (Supplementary Fig. 5c). Specifically, the non-
fibrotic TBME expressed significantly more inflammatory cytokines
and chemokines, including TNF, IL1B, and CXCL10. In contrast,
the F(h) TBME exhibited a significant increase in expression of
M2-specific genes, including CD163 and TGFB1. Moreover, SPI1, a
transcription factor essential for macrophage development and
polarization40, was expressed at a significantly greater level in the
F(h) TBME (Fig. 5b). Increased expression of TGFB1, which counters
inflammation, and the simultaneous activation of the wound-healing
pathway mediated by M2 macrophages, may play an important role
in conferring an anti-inflammatory, pro-fibrosismicroenvironment in
the F(h) TBME. A high level of CXCL10 expression in the F(−) TBME

may facilitate the recruitment of effector T cells in the non- or low-
fibrotic TBME, relative to the high-fibrotic TMBE (Supplemen-
tary Fig. 5a).

The association of theM1/M2macrophagemarkers with distinct
fibrous states of the TBME promoted us to investigate myeloid genes
more systematically41. It is evident that theTBME expressedmarkedly
more myeloid signature genes than the BC, confirming the results
from cell deconvolution (Fig. 2a). Intriguingly, the identities of the
myeloid cells were different between the F(h) and F(I)/F(−) TBME
groups (Fig. 5c). Tumor-associated macrophages (TAMs) are the
most abundant myeloid cells in the tumor microenvironment, which
in the brain, include both monocyte-derived macrophages (MDMs)
and microglia, the resident macrophages of the central nervous
systems42,43. To explore the role of microglia in the TBME, we com-
pared the expression of microglia signature genes44 between the
TBME and BC and between the highly fibrous and non-fibrous TBME.
Numerous genes were expressed significantly differently between
the TBME and BC (Supplementary Fig. 6a). Specifically, genes
involved in cell adhesion/synapse formation, including SNCA, MAPT,
APP, TMTC1, and ICAM5, were significantly downregulated in the
TBME, suggesting that normal functions of the microglia, such as
synaptic pruning, is compromised in the brain metastasis micro-
environment (Supplementary Fig. 6a). In contrast, genes associated
with inflammatory immune responses, including TLR6, TLR2, and
CSF1, were upregulated in the TBME (Supplementary Fig. 6a). Within
the TBME, remarkable differences in expression of a number of
microglia signature genes were observed between the F(h) and the
F(−) groups (Fig. 5d). Of note, the microglia-specific markers42

TMEM119, P2RY12, and CX3CR1 were expressed at significantly lower
levels in the F(h) group whereas the ones involved in phagocytosis or
antigen presentation, including CD68, ITGB2, and AIF1, were sig-
nificantly upregulated (Fig. 5e). Moreover, the signature genes for
BrM-associated myeloid cells derived from single-cell analysis45 were
found significantly enriched in the F(h) relative to the F(−) TBME or
BC (Supplementary Fig. 6b).

Collectively, these data suggest that the MDM–microglia axis
underwent significant reprogramming in the TBME such that the
residential microglia population assumed an immature and inflam-
matory phenotype, whereas the MDM population was polarized
toward the M2 phenotype in the highly fibrous TBME. It is also likely
that the residentmicroglia cell population has been replaced inpart by
the infiltrated MDMs. This assertion is supported by data from pre-
vious studies in mouse models and humans demonstrating that most
brain TAMs originate from circulating monocytes13,46.

Reprogramming of astrocytes and neurons in the TBME
Astrocytes, which constitute ~40% of all cells in the human brain, can
assume distinct functional states and transcriptional profiles
between healthy subjects and cancer patients47. To gain insights into
the role of astrocytes in shaping the brain metastasis environment,
we examined the astrocyte signature genes44,47 in the different TBME
groups. Compared to the BC, the F(h) TBME ROIs showed a
remarkable reduction in the expression of many astrocyte signature
genes (Fig. 6a). In contrast, the difference between the F(−) TBME and
BC was much less remarkable. To identify the functional difference
for the astrocytes, we compared the expression of signature genes
formature astrocytes47. Once again, we found that the F(h) TBMEwas
depleted of mature astrocyte signature genes. Intriguingly, distinct
gene expression patterns were observed between the F(−) TBME and
BC, implying functional differences between the corresponding
astrocytes (Fig. 6b). Of note, themature astrocytemarkers, including
SLC1A2 (excitatory amino acid transporter 2), ALDOC (fructose-
bisphosphate aldolase C), and GABRA2 (gamma-aminobutyric acid
receptor subunit alpha-2), were significantly decreased in the F(−)
TBME, suggesting that the astrocytes were reprogrammed to acquire
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an “immature” state, likely to confer more plasticity to the brain
metastasis niche (Fig. 6c). A significant reduction in several mature
astrocyte genes, including NTSR2, GABRA2, RYR3 and GFAP, was
detected in the F(h) TBME, relative to the F(−) TBME, suggesting that
the physiological function of the astrocytes was more severely
compromised by fibrosis (Fig. 6c).

Reactive astrocytes, a population of morphologically, molecu-
larly, and functionally remodeled astrocytes in response to CNS injury
or disease, have been associated with the brain metastasis of
cancer33,48. Tumor-associated reactive astrocytes have also been shown
to promote an immune-suppressive environment in CNSmalignancies
such as glioblastoma43. Therefore, we next investigated whether
reactive astrocytes contribute to the remodeling of the tumor brain
microenvironment by comparing the expression of reactive astrocyte

signature genes48,49 between the TBME and BC and between the dif-
ferent fibrous groups of the TBME. Drastic differences were seen
between the TBME and BC with the former, but not the latter,
expressing an abundance of reactive astrocyte markers (Fig. 6d),
suggesting that astrocytes in the TBME have been reprogrammed to
acquire a reactive or inflammatory phenotype. Within the TBME ROIs,
significant differences in a number ofmarkers were observed between
the F(h) and F(−) groups, suggesting functional divergence48 or a dif-
ference in abundance in the reactive astrocytes associated with the
different fibrous states. Intriguingly, OSMR (oncostatin-M-specific
receptor subunit beta) and STAT3, which are components of the IL-6-
gp130/OSMR-JAK-STAT3 signaling pathway for inflammation and tis-
sue repair50, andTHBS-1 (thrombospondin-1or TSP-1), a transcriptional
target of STAT3 with an important role in synaptic plasticity51,

Fig. 5 | Microglia–macrophage reprogramming in the TBME. a Heatmap of dif-
ferential expression of specific genes for theM1 andM2macrophages in the F(h) vs.
F(−) TBME. b Violin plots showing the significant differences in expression of
CD163, TGFB1, CXCL10, and SPI1 between the F(h) vs. F(−) TBME. The dashed and
solid lines within the plots indicate upper and lower quartiles and medians,
respectively. c Heatmap of differentially expressed myeloid signature gene in the
TBME and BCROIs, n = 8, 6, 5, and 7 samples in F(−), F(h), F(I), and BC, respectively.

d Heatmap of differential microglia signature gene expression in the F(h) vs. F(−)
TBME. e. Violin plots showing the significant differences in expression of selective
microglia markers, n = 8 and 6 samples in F(−) and F(h), respectively. The dotted
lines indicate upper and lower quartiles, whereas the solid lines representmedians.
a, c, d P <0.05, Student’s t test (two-sided). The P values in (b, e) were based on
Mann–Whitney test (two-sided). Heatmaps colored from blue to red according to
Z-score scale −2 to 2. Source data are provided as a Source Data file.
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were significantly overexpressed in the F(h) compared to the F(−)
TBME group. Similarly, we noted a dramatic increase in the expression
of CD44, a receptor for hyaluronic acid, collagens, and matrix metal-
loproteinases (MMPs), SERPING1, a serine protease inhibitor that

controls blood clotting and fibrinolysis, and VIM (vimentin), a
marker of fibrosis, in the F(h) (vs. the F(−)) TBME, suggesting that the
reactive astrocytes contribute to a fibrous tumor brain microenviron-
ment (Fig. 6e).

Fig. 6 | Reprogramming of astrocytes in the TBME. a Heatmap of differential
expression of astrocyte signature genes in the TBME and BC ROIs. P <0.05, Stu-
dent’s t test (two-sided). b Mature astrocyte markers were significantly down-
regulated in the TBME. P <0.05, Student’s t test (two-sided). c Violin plots showing
significantly different expression of a selection of mature astrocyte markers
between the fibrotic vs. nonfibrotic TBME. The P values were based on nonpara-
metric test (Kruskal–Wallis) followed by Dunn test for pairwise comparisons. The
dashed and solid lines within the plots indicate upper & lower quartiles and

medians, respectively.dHeatmapof expressionof reactive astrocytemarkers in the
TBME andBC. P <0.05, Student’s t test. eViolinplots showing significantlydifferent
gene expression in the fibrotic vs. nonfibrotic TBME for a selection of reactive
astrocyte markers. The dashed and solid lines within the plots indicate upper &
lower quartiles and medians, respectively. a, b, d P <0.05, Student’s t test. The P
values in (c, e) were based on nonparametric test (Kruskal–Wallis) followed by the
Dunn test for pairwise comparisons. Heatmaps colored from blue to red according
to Z-score scale −2 to 2. Source data are provided as a Source Data file.
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Fig. 7 | Gene association network analysis reveals TMEmodules for therapeutic
targeting. a–c Snapshots of the gene association networks in the TBME (a), TIME-B
(b), and TIME-L (c) based on the corresponding DEGs. Functional modules are
identified by broken circles. Network DEGs colored from blue to red according to

Log2FC scale −3 to 3. FC, fold change. d A ligand–receptor interaction network
between LB and TBME. e A list of FDA-approved drug targets identified from the
DEG and network analysis.
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Besides astrocytes, neuronal functions, including both excitatory
and inhibitory neurotransmission, were found severely compromised
in the TBME. Compared to the BC, the majority of the signature genes
for the excitatory neuron or GABAergic neuron were under-
represented or depleted in the TBME regardless of the fibrosis status
(Supplementary Fig. 6c, d). Collectively, these data indicate that
reprogramming of the astrocytes to acquire an “immature” and
inflammatory identity coupled with the loss of normal neuronal
functions are hallmarks of the brain metastasis microenvironment.

Gene association network analysis reveals TME modules for
therapeutic targeting
Our spatial transcriptomic profiling identified hundreds of DEGs in the
TBME (vs. BC), TIME-B (vs. LB), and TIME-L (vs. L) (FDR <0.01;
Log2(FC) > 1.5 or < −1.5; Supplementary Data 3). This allowed us to infer
the corresponding gene association network based on co-expression
of the DEGs at a given site52. Network analysis by STRING53 and visua-
lizationbyCytoscape54 uncovered several cardinal features of the gene
association networks in the lung and brain TME (Fig. 7a–c). First, the

Fig. 8 | Signature genes of metastasis predict patient outcomes. a Volcano plot
of DEGs between the L groupswith fast and slowmetastasis. P values were obtained
from the Student t test (two-sided). b Selective examples of Kaplan–Meier survival
analysis and Cox proportional hazards of the current cohort (n = 30) and the TCGA
LAUD cohort (n = 501) using individual metastasis signature genes. c Heatmap of
significantly up- or downregulated genes in the fast vs. slow metastasis L ROI
groups. P values were based on Student’s t test. d A set of genes within the
metastasis gene signature identified by multivariate Cox regression analysis and

their performances in predicting patient survival of the patient cohort in the cur-
rent study. P values were obtained from the Wald test (two-sided). e Selective
examples of Kaplan–Meier survival analysis and the associated hazard ratios of the
current cohort (n = 23) and the TCGA LGG cohort (n = 515) using the brain TME
network genes. f A graphical summary depicting the major changes in the tumor
core andmicroenvironment that underlie NSCLC brainmetastasis. Source data are
provided as a Source Data file.
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TME gene association networks for TBME, TIME-B, and TIME-L are
organized in a modular fashion and share two common modules that
are enriched in CAF-ECM and Immune Regulation genes, respectively.
As expected, the TBME network contains fewer genes in the Immune
Regulation module than the TIME-B/L networks. Nevertheless, all
contain the same set of complement genes, including C1S, C1R, C1QA,
C1QB, C1RC, and SERPING1, suggesting a critical role for complement
immunity in the TME55. A recent scRNA study has identified an
important role of complement-high TAMs in facilitating themetastasis
of pancreatic ductal adenocarcinoma56. It is likely that a similar TAM
populationwas involved in theNSCLCmetastasis.Moreover, the TBME
features an elaborate subnetwork of genes involved in antigen pre-
sentation that is coupled to the complement subnet, implying inter-
actions between the innate and adaptive immune responses57. The
CAF-ECMmodule is enriched in collagens, integrins, fibronectins, and
regulators of fibrosis and ECM remodeling genes. This module may
play a critical role in promoting not only fibrosis, but also angiogenesis
and tumor progression and metastasis13,58. Second, the most distin-
guishing feature of the TBME network is the Neural Function module
that comprises numerous downregulated genes involved in neural
structure and function. This is consistent with extensive remodeling of
the brain environment for metastasis. Third, the TIME-B and TIME-L
networks not only feature identical modules, but also share numerous
genes within each module. Both contain a Cell Adhesion module
characterized with downregulated genes involved in cell–cell junction
and adhesion, implying enhanced EMT potential. That the same
functional modules and genes are found in the TIME-B and TIME-L
networks suggests that the mechanism of tumor-immune interaction
in the primary lung tumor and the brain metastasis is conserved. The
identified interaction network modules intersect with a previously
published network that underscored the association of cell–matrix
adhesion, extracellular matrix organization, TGF-β receptor signaling,
and collagen fibril organization pathways with the presence of CAFs in
lung adenocarcinoma36.

To investigate the molecular interaction between the metasta-
sized brain tumor (LB) and the TBME, we identified the DEGs between
LB and L and between TBME and BC, respectively. A total of 103 LB (vs
L) DEGswere obtainedwith P <0.05 (Student’s t test) and Log2FC > 0.5.
In contrast, the TBME (vs BC) DEGs were extracted by applying
FDR <0.01 and log2 FC > 1.5 or log2 FC < −1.5, resulting in 275 genes.
Filtering the DEGs through the CellTalkDB receptor–ligand database59

yielded 63 interacting genes, of which 35 formed a ligand–receptor
interaction network between the LB andTBMEwhen a confidencefilter
of 0.7 was used in STRING (Fig. 7d).

There is currently noeffective treatment for brainmetastases.Our
network analysis suggests a network medicine strategy by targeting
the shared networkmodules and highly connected DEGs in the TME60.
Indeed, numerous potential therapeutic targets emerged from our
network and DEG analysis, many of which are listed in the DrugBank
database as FDA-approved targets61 (Fig. 7e). These include 42 that
target the TME in the brain metastasis environment (TBME +TIME-B)
and 19 that are directed against the TME in the lung tumor (TIME-L).
The majority of these targets are found in the CAF-ECM and Immune
Regulation modules identified above. Many targets, including PDGFR,
CD44, CSF1R and NTRK2, have small-molecule inhibitors approved for
clinical use or are currently under clinical trials for cancer treatment,
includingglioblastoma62,63. These inhibitorsmaybe repurposed for the
treatment of BrMs.

Signature genes of metastasis predict patient outcomes
An important impetus of our study was to identify predictive bio-
markers for metastasis and prognostic biomarkers for patient out-
come. We took two approaches to identify potential biomarkers. To
identify biomarkers of metastasis, we divided the current patient
cohort into two groups with fast (<10 months) or slow (>30 months)

metastasis and identified the significant DEGs between the two groups
based on the gene expression data of the L and TIME-L ROIs (Supple-
mentary Data 4). We focused our analysis mainly on the tumor core
because a larger number of ROIs were available for L (n = 30) than
TIME-L (n = 13) (Fig. 1a). A volcano plot and supervised clustering
identified 5 genes that were significantly increased and 15 that were
significantly decreased between the fast and slow metastasis L groups
(Fig. 8a). The majority of these genes have altered expression in >40%
patients in a cohort of lung adenocarcinoma (LUAD) samples (TCGA,
n = 501) (Supplementary Fig. 7). Because faster brain metastasis is
often associated with poorer outcomes, we wanted to find out if the
metastasis-associated DEGs would predict patient survival. Indeed,
seven genes in themetastasis signature gene set individually predicted
the survival of patients in both the current cohort and the LAUDcohort
(Log-rank P < 0.05 for survival; P <0.05 for the associated hazard ratio;
Fig. 8b and Supplementary Figs. 8 and 9a). Interestingly, solute car-
rier family 2 member 1 (SLC2A1) was recently found in a prognostic
prediction model for lung adenocarcinoma (LUAD) patients based
on a metabolism-associated gene signature64. Furthermore, the brain-
specific angiogenesis inhibitor 1 (ADGRB1) is an important tumor
suppressor in numerous malignancies, including lung cancer65. On the
other hand, N-myc downstream-regulated gene 1(NDRG1) has been
shown to promote tumorigenesis by inducing stem-like activity in
NSCLC66. Deploying univariate Cox proportional hazard regression
analysis on the 20 metastasis signature genes in the current cohort
reduced the signature to 16 significant genes (Fig. 8c).Multivariate Cox
regression analyses yielded a covariate model of five metastasis genes
(Fig. 8d). A certain expression pattern of the five genes was sig-
nificantly correlated with poor patient survival in our cohort (G-test
P value for the model <0.0001; Supplementary Fig. 9b) with median
survival around 20months compared to the baseline (150months). To
display the correlation between hazard ratio and themetastasis model
signature, we selected the two most statistically significant genes,
NDRG1 and ADGRB1, and applied the Nelson Aalen estimator method.
A high:low-expression pattern of these two genes was significantly
associated with a risker hazard ratio compared to the low:high-
expression pattern (Supplementary Fig. 9c).

To identify prognostic markers for BrMs, we took advantage of
the DEGs identified in the brain TME (i.e., TBME+TIME-B) network,
especially nodal genes that are highly connected in the CAF-ECM and
Immune Regulation modules. We found that decreased expression of
TIMP-1 alone or together with CTSB in the brain TME negatively cor-
relatedwith patient survival (Fig. 8e). Because an RNA-seq database for
lung cancer brain metastasis is currently unavailable, we tested the
TME networkmarkers with a cohort of low-grade glioma (LGG, n = 515,
TCGA), which has been shown recently to share many common TME
features with BrMs16. We found that increased expression of TIMP-1,
DCN, COL1A2, and FN1 in the CAF/ECM- module, MRC1, CD68, C1QA,
C1QC, and SERPING1 in the Immune Regulation module, and
decreased expression of SYN2 in the Neural Function module corre-
lated with poor outcome for the LGG patients (Fig. 8e and Supple-
mentary Fig. 10). Of note, increased TIMP-1 or SERPING1 expression
was strongly associated with short patient survival (Fig. 8e). Intrigu-
ingly, increased TIMP-1 expression in the TBME correlated moderately
with better survival of the study cohort. This discrepancy may be
reflective of the differences between BrM and LGG and the regions-of-
interest (TME of BrMs vs. tumor core of LGG) used in the RNA-seq
analysis. It is also likely that TIMP-1 plays different roles in different
tumor/cell contexts.

Discussion
It is not completely understood why many cancers, including NSCLC,
have a proclivity formetastasis to the brain, a relatively poor organ for
tumor cell colonization. Our whole-transcriptome profiling of distinct
regions of the primary and metastasized tumors suggests that the
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brain TME is extensively remodeled toprovide an immune-suppressive
and tumor-supportive metastasis niche for the BrMs (Fig. 8f). We
classified the brain TME into two interconnected components—the
TIME-B, which is enriched in TILs (tumor-infiltrated lymphocytes) and
TAMs and the TBME, which is enriched in brain cells. While the TIME-B
interfaceswith the tumor and the immune system, the TBME intersects
the TIME-B and surrounding brain tissue. Metastasis is initiated by the
intrinsic property of the cancer cells to migrate and invade, which is
regulated by the pEMT program, and via their interactions with the
TIME-L, which is enriched in TAMs and CAFs. Compared to the TIME-L,
the immune microenvironment in the brain (TIME-B) is characterized
with decreased infiltration and activation of B cells and cytotoxic
lymphocytes or CD8 T cells and reduced antigen presentation. In
contrast, the TBME is enriched in theM2-typeTAMs. This suggests that
both the adaptive and innate immune responses against the tumor are
suppressed in the brain TME.

A cardinal feature of the TBME is reprogramming of themicroglia
and astrocytes, which, together with increased CAFs and M2-type
TAMs, define an immune evasive and fibrogenic tumor environment in
the brain (Fig. 8f). Intriguingly, we found that more than half of the
TBME ROIs were fibrous, an uncommon event in CNS malignancies8.
Besides an abundance of CAFs and ECM components, the fibrous
TBME is enriched in M2-type macrophages which may play an impor-
tant part in promoting fibrosis and angiogenesis67,68. The fibrous TBME
also features reprogramming of the astrocytes to acquire a reactive
phenotype. Tumor-associated reactive astrocytes have been shown to
aid the evolution of the immunosuppressive environment in glioma43;
and it is likely that they contribute to immune evasion of the BrMs. In
contrast, the non-fibrous TBME is characterized with immature
microglia and immature astrocytes, and with elevated immune
checkpoint signaling that may stymie T-cell-mediated killing of the
tumor cells9 (Fig. 8f). Therefore, both the fibrotic and nonfibrotic
TBME feature comprehensive reprogramming of the brain cells, stro-
mal cells, and immune cells to create an immune-suppressive envir-
onment with enhanced angiogenesis and fibrosis potential (Fig. 8f).

In support of the critical role of fibrosis, immune evasion, and
remodeling of the brain cells in the BrMs, we found, from gene asso-
ciation network analysis, that the CAF-ECM, and Immune Regulation,
and Neural Function form three interconnected network modules in
the TBME. The former two modules are also found in the TIME-B and
TIME-L network, suggesting fibrosis and immune evasion are the fun-
damental features of lung cancer brain metastasis. That the same
network modules are perturbed in both the primary tumors and BrMs
suggests that the mechanisms of tumor-immune and tumor–stroma
interactions are conserved between lung cancer and brainmetastasis13.
The major difference between the lung and brain TME is that the for-
mer is characterized with decreased cell junction and adhesion to
facilitate tumor cell migration and dissemination, whereas the latter
featured reduced immune responses to the tumor and reprogrammed
astrocytes and microglia to create a favorable environment for
the BrMs.

It is remarkable that fibrosis was found in the majority of brain
metastases examined herein. Except for certain rare types, CNS can-
cers such as gliomas are generally considered nonfibrotic. Thus, our
observation that >50% of the BrMs in our cohort is fibrotic suggests
that fibrosis is likely a distinguishing feature between BrMs and other
brain tumors. The increased mechanical rigidity of the fibrotic tumors
is believed to allow them to more effectively invade and spread in the
solid surrounding healthy tissue69. Nevertheless, fibrosis does occur in
brain lesions, including in certain rare brain tumors. For example, a
recent study identified a critical role of pericytes and other PDGFRβ +
stromal cells in the formationof fibrotic scar in CNS lesions70. It is likely
that both vesicular pericytes and fibroblasts (CAFs) in the tumor
stroma play a part in BrM fibrosis. Indeed, both pericytes and CAFs
were found enriched in the TBME compared to the BC. Another

important driver of BrM fibrosis that we have identified is the M2-type
TAMs that are known for their role in wound-healing and scar forma-
tion. Fibrotic scarring may also be aided by reactive astrocytes in the
tumor brain microenvironment. Although not all TBME ROIs showed
positive Mason Trichrome staining, increased CAFs and ECM gene
expression have been observed in the nonfibrotic TBME, suggesting
fibrotic potential. Furthermore, fibrogenic factors, including PDGFRβ,
CXCR4, andTGFB1, whichmay be expressed by the stromal cells or the
reprogrammed brain cells, can potentiate fibrosis in the metastasis
brain environment which, in turn, contributes to increased angiogen-
esis and tumor growth13. These regulators are found elevated in the
TBME regardless of the fibrosis status.

Given the paucity of effective treatment for BrMs, it is important
to identify promising new targets for therapeutic intervention. Recent
clinical trials have shown that ICB-based immunotherapiesmay benefit
lung cancer patients with or without brainmetastasis2,4,5. However, not
all patients respond to immunotherapies, and effective biomarkers are
needed to identify those that would most likely benefit from the
treatment. Our work suggests that an immune-suppressive TME enri-
ched with CAFs/ECM, rather than the increased aggressiveness of the
tumor cells,may underly the ineffectiveness of the ICB therapies71. This
is not surprising given the poor T-cell infiltration in the fibrous TBME
and the upregulation of immune checkpoints in the non-fibrous TBME.
Furthermore, collagens, which play a critical role in fibrosis, can also
promote ICB resistance via CD8+ T-cell exhaustion72. The critical role
TMEplays inmetastasis suggests that therapeutic targeting of the cells
and regulatory mechanisms of the TME is a potential treatment strat-
egy for BrMs. Our data further suggest that the treatment must be
tailored to the fibrous status of the TME to be effective, and that it is
unlikely that a single strategy will fit all cases. For fibrous BrMs, tar-
getingfibrosis regulators, suchasTGFB, PGDFR, TIMP-1, individually or
together with the M1/M2 TAM regulators, may prove more effective.
For nonfibrotic TBME, however, combinatorial immune therapies co-
inhibiting multiple immune checkpoints, including PD-1/PD-L1/L2,
BTLA, and CD160, may be met with greater success than single PD-1/
PD-L1 blockade therapy.

M1/M2 microglia and macrophage polarization, which underlies
changes in the brain metastasis environment, including fibrosis,
immune suppression, angiogenesis and synaptic plasticity, suggests an
attractive strategy by targeting this axis to turn the pro-tumor M2 to a
tumor-suppressive M1 phenotype. For instance, targeting STAT3,
which plays a critical role in M1/M2 polarization and astrocyte activa-
tion, is a promising therapeutic strategy for brain metastasis33. Simi-
larly, targeting theTGFβ signalingpathway,which is upregulated in the
TBME, may be another attractive approach. TGFB1, which is sig-
nificantly increased in the TBME, has pleiotropic effects in inflamma-
tion and tissue remodeling during wound healing, in addition to its
role in immune suppression through TAMs and regulatory T cells.
However, it should be noted that the M2 phenotypes promote
regeneration to repair CNS lesions from the BrMs. Therefore, it may
not be desirable to rid of the M1 cells completely34.

Accurate prediction of metastasis potential and disease outcome
may help stratify patients for treatment. Our study discovered a sig-
nature gene cluster of metastasis that significantly predicted patient
outcome in the current cohort and a larger LUAD cohort. A recent
comparative RNA-seq analysis identified that many genes are com-
monly upregulated in both gliomas (eg., IDH wild-type) and BrMs,
including the angiogenic factor VEGFA, growth factors PDGFA, TGFB1,
SPP1, and the protease inhibitor TIMP-116. Indeed, these genes were
found significantly upregulated in the TIME-B/TBME in the current
cohort. TIMP-1 emerged from our study as a strong candidate for
predicting outcomes for BrMs and LGG. As a broad-spectrum inhibitor
of matrix metalloproteinases (MMPs) and a disintegrin and metallo-
proteinases (ADAMs), elevated TIMP-1 expression is expected to
increase ECM deposition and fibrosis73.
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Limitations of our study include the relatively small sample size
and incomplete genomic information because most of the primary
tumor sampleswere collectedmore than 15 years ago. It should also be
recognized that systemic therapy options for BrMs have changed
significantly compared to 15 years ago; therefore, the survival analyses
are only hypothesis-generating. Nonetheless, the correlation of radi-
ological imaging with pathological analysis of the BrMs where feasible
would facilitate the clinical translation of our findings.

In conclusion, our work provides a framework on which to
understand the spatial and functional heterogeneity of lung cancer
brain metastases, affords a valuable resource for the exploration of
biomarkers for NSCLC and certain brain malignancies, and identifies
numerous therapeutic targets for the development of molecularly
targeted or immunotherapies directed against the tumor micro-
environment (Table 1).

Methods
Study population
This study was approved by the Western University Health Science
Research Ethics Board (HSREB 111911). Patient-matched formalin-
fixed–paraffin-embedded tissue (FFPE) samples of lung carcinomas in
the lung and subsequent metastases in the brain between 2005 and
2015 were provided by the London Health Sciences Centre. The study
cohort included 44 patients (Supplementary Data 1) with metastatic
NSCLC (the majority of which was the adenocarcinoma phenotype)
disseminated to the brain (n = 44) and lymph nodes (n = 13). An addi-
tional cohort of seven cases with non-tumor human brain tissue sam-
ples was included in the study. The clinical–histological characteristics
of brain metastasis patients are described in Supplementary Data 1.

Clinical sample processing
The FFPE blocks of primary lung carcinoma and brain metastasis tis-
sues were reviewed by a pathologist upon staining with hematoxylin
and eosin (H&E) to demarcate tumor regions in the lung and brain. To
characterize the heterogeneity and spatial distribution of the tumor,
stroma, and immune cells within and between the primary or meta-
static tumors, tissue microarrays (TMAs) from the FFPE tissue blocks
were constructed. For each patient, three cores were arrayed that
contained the primary lung carcinoma (L), metastatic lymph node
(mLN, if available), the brain metastasis (LB), and the tumor-adjacent
brain tissues. We included two anatomically distinct metastatic sites
per patient to assess intraindividual heterogeneity. Three spatially
distinct regions were punched from each tumor and tumor-adjacent
brain tissue to evaluate tumor heterogeneity. In addition, seven non-
tumor brain (FFPE) tissue blocks derived from patients without brain
tumors were arrayed in the TMA, where each case was represented by
two cores.

GeoMx DSP profiling of the whole-transcriptome atlas (WTA)
TMA slides were processed following the GeoMx® DSP slide prepara-
tion user manual (MAN-10087-04). Before being deparaffinized and
hydrated by Leica Biosystems BOND RX, the slides were baked in oven
at 60 °C for at least 3 h, after which proteinase K was added to
digest the proteins. The slides were incubated with WTA probe mix
overnight. On the second day, the slides were washed with buffer and
stained with GFAP (Invitrogen, 53-9892-82), CD45 (Biolegend,
121302310), and PanCK (Novus, NBP2-33200AF647), and Syto83
(ThermoFisher, S11364) for 2 h. Regions-of-interest (ROIs) were placed
on 20X fluorescent images scanned by GeoMx® DSP. Oligoes from
PanCK+ and PanCK- regions were collected separately by UV-cleavage.
The oligoes then were uniquely indexed using Illumina’s i5 × i7 dual-
indexing system. PCR reactions were purified and libraries were
paired-end sequenced (2 × 75) on a NextSeq550 system (Illumina).
Fastq files were further process by DND system and raw and Q3 nor-
malized counts of all WTA targets in each ROI were obtained through

GeoMx® DSP data analysis software. GeoMx® DSP counts from each
ROI were scaled to the 75th percentile of expression. The ROIs were
categorized according to tissue and spatial groups for subsequent
analysis.

Principal component analysis (PCA) and uniform manifold
approximation and projection (UMAP)
PCA was used to visualize the dataset in a three-dimensional space
after filtering out variables with low overall variance to reduce the
impact of noise and centering and scaling the remaining variables to
zero mean and unit variance. The projection score74 was used to
determine the optimal filtering threshold, retaining N variables. The
PCA plot was generated with Qlucore Omics Explorer software 3.8.2.
We performed Uniform Manifold Approximation and Projection
(UMAP) on the normalized count data of all ROIs. UMAP was then
performed on the top 11,000 highly variable genes selected by
Benjamini–Hochberg method and generated with Qlucore Omics
Explorer 3.8.2 using default parameters75.

Deconvolution of cell composition from the RNA-seq data
For deconvolution of cell composition by SpatialDecon, cell mixing
proportionswere estimatedusing theRcodepublished inNanoString’s
Github site (https://github.com/Nanostring-Biostats/SpatialDecon)20.
The algorithm was run using a cell profile matrix derived from the
Human Cell Atlas adult lung 10X dataset. CIBERSORTx, a machine
learning method developed at Stanford University, was used to esti-
mate subsets of immune cells.

For deconvolution of the cellular composition with MCP-
counter76, the normalized gene expression matrix was utilized on
webMCP-counter to produce the absolute abundance scores for eight
major immune cell types (CD3+T cells, CD8+ T cells, cytotoxic lym-
phocytes, natural killer cells, B lymphocytes, monocytic lineage cells,
myeloid dendritic cells, and neutrophils), endothelial cells and fibro-
blasts. The deconvolution profiles were then compared across ROIs of
interest.

For deconvolution of the cellular composition with Qlucore
Omics Explorer, the epithelial markers (EPCAM, KRT19, KRT18, CDH1),
fibroblast markers (DCN, THY1, COL1A1, COL1A2), endothelial markers
(PECAM1, CLDN5, FLT1, RAMP2), T-cell markers (CD3D, CD3E, CD3G,
TRAC), B-cell markers (CD79A, IGHM, IGHG3, MS4A1), myeloid mar-
kers (LYZ, MARCO, CD68, FCGR3A) (Kim et al.13; Chan et al.21), and
astrocytes markers (GFAP, S100B, SLC1A2, SLC1A3) and NK cells
(KLRF1, GNLY, CD247, KLRG1) (PanglaoDB database, 2020) were used.

Identification of differentially expressed variables
The identification of significantly differential variables between the
subgroups of an ROI was performed by fitting a linear model for each
variable with the projected phenotype as a predictor and including the
city factor as a nuisance covariate. P values were adjusted for multiple
testing using the Benjamini–Hochberg method, and variables with
adjusted P values below 0.1 were considered significant. The analysis
was accomplished on Qlucore Omics Explorer software version 3.8.2
and resulted in (n) significant variables.

Gene enrichment analysis (GSEA)
Functional analysis wasperformedusingGene Set EnrichmentAnalysis
(GSEA)29 using the GSEA v4.2.1 software. CuratedMolecular Signatures
Database (MSigDB) Hallmark and Reactome gene sets were assessed.
Default settings were used with 1000 phenotype permutations to
generate the P and FDR values. Gene sets were considered significantly
differential between the compared groups with an FDR <0.1.

Gene-gene functional association network
The networks comprised significant DEGs in TIME-L, TBME, and TIME-
B identified fromthe comparisonsTIME-L/L, TBME/BC, andTIME-B/LB,
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respectively. The significance was determined using a two-sided Stu-
dent’s t test with the Benjamini–Hochberg method for adjusted P
value. The genes included in the network had log2FC > 1.5 or
Log2FC < −1.5 and FDR<0.1. The network was created with STRING53

and visualized on Cytoscape software 3.9.054, where the confidence
score cut-off was set at 0.7.

Identification of signature genes for metastasis
Primary NSCLC samples (n = 30) were split into two groups (n = 20)
regarding the time intervals of metastasis to the brain. The first group

(FastMetastasis, n = 10) was selected from the first tertile of the cohort
(metastasis interval less or equal to 10 months), whereas the second
group (Slow Metastasis, n = 10) was chosen from the third tertile
(metastasis interval higher than 30 months). Genes were selected as
signatures based on the statistical threshold (log2FC > 1.0 or log2FC <
−1.0 and two-sided Student’s t test P value <0.05).

Survival analysis
RNA-Seq V2 RSEM and clinical data from the samples of patients’ LGG
and LUAD were obtained from The Cancer Genome Atlas (TCGA)

Table 1 | Demographic and clinical information of the patient cohort of this study

Patient ID Age at NSCLC
diagnosis

Histological type/
subtype

Treatment of NSCLC Time interval brain
metastasis (months)

Location of brain
metastasis

Treatment of brain
metastasis

1 70s ADC/solid SR 12 Cerebellum SR + Rad

2 60s ADC/solid SR+Chemo 15 Cerebellum SR + Rad

3 60s ADC/NA SR+Chemo 67 Temporal lobe SR + Rad

4 50s ADC/solid SR 9 Frontal lobe SR + Rad

5 50s ADC/acinar SR +Chemo 7 Frontal lobe SR + Rad +Chemo

6 60s ADC/NA SR+ Rad +Chemo 14 Frontal lobe SR + Rad +Chemo

7 60s LCC/solid SR+Chemo 28 Temporal lobe SR + Rad

8 70s ADC/mixed-1 SR +Chemo 15 Frontal lobe SR + Rad

9 50s ADC/solid SR+Chemo 15 Frontal lobe SR + Rad

10 70s ADC/solid SR+ Rad +Chemo 18 Cerebellum SR

11 50s ADC/solid SR+ Rad +Chemo 120 Frontal lobe SR + Rad

12 50s ADC/solid SR+ Rad 14 Temporal lobe SR + Rad

13 70s ADC/mix-2 SR 44 NA SR + Rad

14 70s ADC/acinar NA 75 NA SR + Rad

15 50s ADC/acinar SR +Chemo 10 NA SR + Rad+Chemo

16 60s ADC/acinar SR +Chemo 9 Frontal lobe SR + Rad+TKIs

17 60s ADC/solid SR 19 NA NA

18 50s ADC/micropapillary SR +Chemo 65 Frontal lobe SR + Rad

19 70s ADC/acinar NA 10 NA NA

20 40s ADC/micropapillary SR +Chemo 14 NA SR + Rad

21 50s ADC/solid SR+Chemo 4 Frontal lobe SR + Rad

22 50s ADC/acinar SR 28 Cerebellum SR + Rad

23 50s ADC/mixed-1 SR +Chemo 0 Parietal lobe SR + Rad

24 60s ADC/acinar SR + Rad +Chemo 3 Cerebellum SR + Rad

25 70s ADC/solid SR+ Rad +Chemo 8 Frontal lobe SR + Rad

26 60s ADC/acinar SR + Rad 0 Occipital lobe SR + Rad+Chemo

28 70s ADC/acinar SR 11 Frontal lobe NA

29 60s ADC/solid SR+ Rad 33 Cerebellum SR + Rad

30 60s ADC/acinar SR + Rad 30 frontal lobe SR + Rad

31 60s ADC/acinar SR + Rad 15 NA NA

32 60s ADC/solid SR+ Rad +Chemo 16 frontal lobe SR + Rad

33 60s ADC/micropapillary SR + Rad 35 NA SR + Rad

34 60s ADC/NA SR+ Rad 0 Temporal lobe SR + Rad

35 70s ADC/acinar SR + Rad 1 NA SR + Rad

36 50s ADC/acinar SR + Rad +Chemo 39 NA SR + Rad

37 60s ADC/NA SR+ Rad 10 NA SR + Rad

38 90s ADC/acinar SR + Rad 44 NA SR + Rad

39 70s LCC/solid SR+ Rad 10 NA SR + Rad

40 50s ADC/NA SR+ Rad 4 NA SR + Rad

41 60s ADC/acinar SR + Rad 14 Occipital lobe SR + Rad

42 60s ADC/acinar SR + Rad 32 Cerebellum SR + Rad

43 50s ADC/NA SR+ Rad 0 Cerebellum SR + Rad

44 50s ADC/mixed SR+ Rad 43 Cerebellum SR + Rad

ADC adenocarcinoma, LCC large cell carcinoma, Mixed-1 acinar +micropapillary,mixed-2 acinar + solid, SR surgical resection, Rad radiation therapy, Chemo chemotherapy, TKIs tyrosine kinase
inhibitors.
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cohorts on the cBioPortal for Cancer Genomics (http://cbioportal.org)
platform77 under the studies of LGG (TCGA, Firehose Legacy) and
LUAD (TCGA, PanCancer Atlas). The analysis included one primary
sample per patient with documented overall survival/status informa-
tion. Accordingly, the analysis had (515) and 501) samples for LGG and
LUAD cohorts, respectively. Each candidate gene was split into two
groups- high expression vs. low expression across the cohort based on
the cut-off of the median expression. Survival curves were fitted using
the Kaplan–Meier formula inQlucoreOmics Explorer software, and a P
value of <0.05 was considered significant by performing a log-
rank test.

Univariate and multivariate Cox regression model
Univariate Cox proportional hazards regression analysis was con-
ducted on eachmetastasis signature gene to screen genes significantly
associated with overall survival. A multivariable model with significant
metastasis-related genes was constructed. Subsequently, the final
model was obtained with genes scoring a statistical significance. The
analysis was performed on GraphPad 9.3.1 and Qlucore Omics
Explorer 3.8.2.

Immunohistochemistry (IHC)
IHC was performed on 4-μm-thick sections from four TMA master
blocks. Slides were then immediately transferred to fresh 100%
xylene and processed through an ethanol hydration gradient (100,
90, 70, 50% ethanol solutions for 5min each) before immersion in
distilled water. After deparaffinization, sections were washed thrice
in phosphate buffer saline (PBS), boiled in 10mM sodium citrate
solution for antigen retrieval, blocked in PBS with 2.5% horse serum
for 1 h, washed thricewith PBS, and eventually incubatedovernight at
4 °C with primary (PanCK) antibody (Clones AE1/AE3, Dako GA05361-
2, 1/100).

Masson Trichrome staining
TMA blocks were sectioned into 4μm, deparaffinized, and mordant in
Bouin’s solution (VWR Cat # CA15204-240) for 1 h at 58 °C. Slides were
placed in Weigert’s Working Solution (equal mixed parts of Weigert’s
solution A which consists of hematoxylin with 95% ethanol and Wei-
gert’s solution B that contains distilled water, HCl, and 29% Ferric
Chloride) for 10min after cooling and washing with water. The back-
groundwas clearedby rinsing the slides in 1%HCl, followedbywashing
them with warm running water for 5–10min. Next, slides were sub-
merged in Biebrich Scarlet (Ponceau BS)/Acid Fuchsin mixture for
2min and then rinsed briefly in water. Sequentially, the slides were
placed in a solution of equal parts of phosphotungstic and phospho-
molybdic acids for 1min, drainedwithout a wash, and placed in 1% Fast
Green FCF in 1% acetic acid for 3min. Ultimately, the slides were dif-
ferentiated in 1% acetic acid until collagen retained green only
(approximately six dips) and rinsed quickly in 95% alcohol.

Pathology image analysis
TMA sections were digitized and analyzed using QuPath (https://
qupath.github.io/), an open-source software for digital pathology
image analysis. It can process whole slide images up to 40GB. and
evaluate staining. It averages a variation of staining intensity with the
ability to detect total tissue areas or areas of interest. QuPath provides
a percentage of a stained protein of interest relative to the annotated
area. For TMA stained with Masson trichrome, a pixel count function
on QuPath was utilized. A geometric region within the positive control
sample (desmoplastic tumor stroma in primary NSCLC) was assigned
as positive staining, and a geometric region within a pure tumor tissue
was assigned as negative staining. With DSP images’ guidance, TBME
regions were annotated onMasson Trichrome-stained TMA for further
quantification. Subsequently, fibrosis was scored in each annotated
TBME region and displayed as a percentage.

Statistical analysis
The statistical details of all analyses are reported in the main text,
figure legends, and figures, including the statistical test performed and
statistical significance. All statistical tests were performed within
GraphPad 9.3.1 and Qlucore Omics Explorer 3.8.2.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw and processed RNA-sequencing data generated in this study
are available in Gene Expression Omnibus (GEO) with the assigned
provisional Series accession number GSE200563. The LUAD cohort
(TCGA, PanCancer Atlas) and the LGG (TCGA, Firehose Legacy) were
obtained from CbioPortal.org. The FDA-approved therapeutic targets
were taken from the DrugBank database (drugbank.com). The gene
markers for astrocytes andNKcells were obtained from the PanglaoDB
database (https://panglaodb.se/). The remaining data are available
within the Article, Supplementary Information, or Source Data
file. Source data are provided with this paper.

References
1. Boire, A., Brastianos, P. K., Garzia, L. & Valiente, M. Brain metastasis.

Nat. Rev. Cancer 20, 4–11 (2020).
2. Hu, H. et al. Brainmetastases status and immunotherapy efficacy in

advanced lung cancer: a systematic review and meta-analysis.
Front. Immunol. 12, 669398 (2021).

3. Horn, L. et al. Ensartinib vs crizotinib for patients with anaplastic
lymphoma kinase-positive non-small cell lung cancer: a rando-
mized clinical trial. JAMA Oncol. 7, 1617–1625 (2021).

4. Goldberg, S. B. et al. Pembrolizumab for management of patients
with NSCLC and brainmetastases: long-term results and biomarker
analysis from a non-randomised, open-label, phase 2 trial. Lancet
Oncol. 21, 655–663 (2020).

5. Gadgeel, S. M. et al. Atezolizumab in patients with advanced non-
small cell lung cancer and history of asymptomatic, treated brain
metastases: exploratory analyses of the phase III OAK study. Lung
Cancer 128, 105–112 (2019).

6. Cho, B. C. et al. A phase 1/2 study of lazertinib 240 mg in patients
with advanced EGFR T790M-positive NSCLC after previous EGFR
tyrosine kinase inhibitors. J. Thorac. Oncol. 17, 558–567 (2022).

7. Zhou, Q. et al. Bevacizumab plus erlotinib in Chinese patients with
untreated, EGFR-mutated, advanced NSCLC (ARTEMIS-
CTONG1509): a multicenter phase 3 study. Cancer Cell 39,
1279–1291.e1273 (2021).

8. Sampson, J. H., Gunn, M. D., Fecci, P. E. & Ashley, D. M. Brain
immunology and immunotherapy in brain tumours. Nat. Rev. Can-
cer 20, 12–25 (2020).

9. Gonzalez, H. et al. Cellular architecture of human brainmetastases.
Cell 185, 729–745.e720 (2022).

10. Srinivasan, E. S., Deshpande, K., Neman, J., Winkler, F. & Khasraw,
M. The microenvironment of brain metastases from solid tumors.
Neurooncol Adv. 3, v121–v132 (2021).

11. Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging
biological principles of metastasis. Cell 168, 670–691 (2017).

12. Guan, Z. et al. Blood-brain barrier, cell junctions, and tumor micro-
environment in brain metastases, the biological prospects and
dilemma in therapies. Front. Cell Dev. Biol. 9, 722917 (2021).

13. Kim, N. et al. Single-cell RNA sequencing demonstrates the mole-
cular and cellular reprogramming of metastatic lung adenocarci-
noma. Nat. Commun. 11, 2285 (2020).

14. Neman, J. et al. Human breast cancer metastases to the brain dis-
play GABAergic properties in the neural niche. Proc. Natl Acad. Sci.
USA 111, 984–989 (2014).

Article https://doi.org/10.1038/s41467-022-33365-y

Nature Communications |         (2022) 13:5983 17

http://cbioportal.org
https://qupath.github.io/
https://qupath.github.io/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE200563
https://panglaodb.se/


15. Chen, Q. et al. Carcinoma-astrocyte gap junctions promote brain
metastasis by cGAMP transfer. Nature 533, 493–498 (2016).

16. Klemm, F. et al. Interrogation of themicroenvironmental landscape
in brain tumors reveals disease-specific alterations of immunecells.
Cell 181, 1643–1660.e1617 (2020).

17. Lewis, S. M. et al. Spatial omics andmultiplexed imaging to explore
cancer biology. Nat. Methods 18, 997–1012 (2021).

18. Gracia Villacampa, E. et al. Genome-wide spatial expression pro-
filing in formalin-fixed tissues. Cell Genomics 1, https://doi.org/10.
1016/j.xgen.2021.100065 (2021).

19. Brady, L. et al. Inter- and intra-tumor heterogeneity of metastatic
prostate cancer determined by digital spatial gene expression
profiling. Nat. Commun. 12, 1426 (2021).

20. Danaher, P. et al. Advances in mixed cell deconvolution enable
quantification of cell types in spatial transcriptomic data. Nat.
Commun. 13, 385 (2022).

21. Chan, J. M. et al. Signatures of plasticity, metastasis, and immuno-
suppression in an atlas of human small cell lungcancer.CancerCell
39, 1479–1496.e1418 (2021).

22. Hu, H. et al. Three subtypes of lung cancer fibroblasts define dis-
tinct therapeutic paradigms. Cancer Cell 39, 1531–1547
e1510 (2021).

23. Becht, E. et al. Estimating the population abundance of tissue-
infiltrating immune and stromal cell populations using gene
expression. Genome Biol. 17, 218 (2016).

24. Szabo, P. A. et al. Single-cell transcriptomics of human T cells
reveals tissue and activation signatures in health and disease. Nat.
Commun. 10, 4706 (2019).

25. Aarts, C. E. M. et al. Neutrophils as suppressors of T cell prolifera-
tion: does age matter. Front. Immunol. 10, 2144 (2019).

26. Bagaev, A. et al. Conserved pan-cancer microenvironment sub-
types predict response to immunotherapy. Cancer Cell 39,
845–865.e847 (2021).

27. Tyler, M. & Tirosh, I. Decoupling epithelial-mesenchymal transitions
from stromal profiles by integrative expression analysis. Nat.
Commun. 12, 2592 (2021).

28. Sweeney, M. D., Ayyadurai, S. & Zlokovic, B. V. Pericytes of the
neurovascular unit: key functions and signaling pathways. Nat.
Neurosci. 19, 771–783 (2016).

29. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression profiles.
Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

30. Mootha, V. K. et al. PGC-1alpha-responsive genes involved in oxi-
dative phosphorylation are coordinately downregulated in human
diabetes. Nat. Genet. 34, 267–273 (2003).

31. Di Martino, J. S. et al. A tumor-derived type III collagen-rich ECM
niche regulates tumor cell dormancy. Nat. Cancer https://doi.org/
10.1038/s43018-021-00291-9 (2021).

32. Sadik, A. et al. IL4I1 is ametabolic immunecheckpoint that activates
the AHR and promotes tumor progression. Cell 182,
1252–1270.e1234 (2020).

33. Priego, N. et al. STAT3 labels a subpopulation of reactive
astrocytes required for brain metastasis. Nat. Med. 24, 1024–1035
(2018).

34. Hu, X. et al. Microglial andmacrophage polarization-newprospects
for brain repair. Nat. Rev. Neurol. 11, 56–64 (2015).

35. Guyon, A. CXCL12 chemokine and its receptors as major players in
the interactions between immune and nervous systems. Front. Cell
Neurosci. 8, 65 (2014).

36. Min, K. W. et al. Cancer-associated fibroblasts are associated with
poor prognosis in solid type of lung adenocarcinoma in a machine
learning analysis. Sci. Rep. 11, 16779 (2021).

37. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell
exhaustion during chronic viral infection and cancer. Annu Rev.
Immunol. 37, 457–495 (2019).

38. Veillette, A. & Chen, J. SIRPalpha-CD47 immune checkpoint
blockade in anticancer therapy. Trends Immunol. 39,
173–184 (2018).

39. Anderson, N. M. & Simon, M. C. The tumormicroenvironment.Curr.
Biol. 30, R921–R925 (2020).

40. Qian, F. et al. The transcription factor PU.1 promotes alternative
macrophage polarization and asthmatic airway inflammation. J.
Mol. Cell Biol. 7, 557–567 (2015).

41. Zhang, Y. et al. Single-cell analyses reveal key immune cell subsets
associated with response to PD-L1 blockade in triple-negative
breast cancer. Cancer Cell 39, 1578–1593.e1578 (2021).

42. Li, Q. & Barres, B. A. Microglia and macrophages in brain home-
ostasis and disease. Nat. Rev. Immunol. 18, 225–242 (2018).

43. Henrik Heiland, D. et al. Tumor-associated reactive astrocytes aid
the evolution of immunosuppressive environment in glioblastoma.
Nat. Commun. 10, 2541 (2019).

44. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing
database of glia, neurons, and vascular cells of the cerebral cortex.
J. Neurosci. 34, 11929–11947 (2014).

45. Guldner, I. H. et al. CNS-native myeloid cells drive immune sup-
pression in the brain metastatic niche through Cxcl10. Cell 183,
1234–1248.e1225 (2020).

46. Schulz, M. et al. Cellular and molecular changes of brain
metastases-associated myeloid cells during disease progression
and therapeutic response. iScience 23, 101178 (2020).

47. Zhang, Y. et al. Purification and characterization of progenitor and
mature human astrocytes reveals transcriptional and functional
differences with mouse. Neuron 89, 37–53 (2016).

48. Escartin, C. et al. Reactive astrocyte nomenclature, definitions, and
future directions. Nat. Neurosci. 24, 312–325 (2021).

49. Zamanian, J. L. et al. Genomic analysis of reactive astrogliosis. J.
Neurosci. 32, 6391–6410 (2012).

50. West, N. R., Owens, B. M. J. & Hegazy, A. N. The oncostatin
M-stromal cell axis in health and disease. Scand. J. Immunol. 88,
e12694 (2018).

51. Tyzack, G. E. et al. Astrocyte response to motor neuron injury pro-
motes structural synaptic plasticity via STAT3-regulated TSP-1
expression. Nat. Commun. 5, 4294 (2014).

52. Wirojsirasak, W., Kalapanulak, S. & Saithong, T. Pan- and core- gene
association networks: Integrative approaches to understanding
biological regulation. PLoS ONE 14, e0210481 (2019).

53. Szklarczyk, D. et al. STRING v11: protein-protein association net-
works with increased coverage, supporting functional discovery in
genome-wide experimental datasets. Nucleic Acids Res. 47,
D607–D613 (2019).

54. Shannon, P. et al. Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome Res 13,
2498–2504 (2003).

55. Gadwa, J. et al. Complement C3a and C5a receptor blockade
modulates regulatory T cell conversion in head and neck cancer. J.
Immunother. Cancer 9, https://doi.org/10.1136/jitc-2021-
002585 (2021).

56. Kemp, S. B. et al. Pancreatic cancer is marked by complement-high
blood monocytes and tumor-associated macrophages. Life Sci.
Alliance 4, https://doi.org/10.26508/lsa.202000935 (2021).

57. Nielsen, C. H., Fischer, E. M. & Leslie, R. G. The role of complement
in the acquired immune response. Immunology 100, 4–12 (2000).

58. Sahai, E. et al. A framework for advancing our understanding of
cancer-associated fibroblasts.Nat. Rev. Cancer 20, 174–186 (2020).

59. Shao, X. et al. CellTalkDB: a manually curated database of ligand-
receptor interactions in humans and mice. Brief Bioinform. 22,
https://doi.org/10.1093/bib/bbaa269 (2021).

60. Barabasi, A. L., Gulbahce, N. & Loscalzo, J. Network medicine: a
network-based approach to human disease. Nat. Rev. Genet. 12,
56–68 (2011).

Article https://doi.org/10.1038/s41467-022-33365-y

Nature Communications |         (2022) 13:5983 18

https://doi.org/10.1016/j.xgen.2021.100065
https://doi.org/10.1016/j.xgen.2021.100065
https://doi.org/10.1038/s43018-021-00291-9
https://doi.org/10.1038/s43018-021-00291-9
https://doi.org/10.1136/jitc-2021-002585
https://doi.org/10.1136/jitc-2021-002585
https://doi.org/10.26508/lsa.202000935
https://doi.org/10.1093/bib/bbaa269


61. Wishart, D. S. et al. DrugBank 5.0: a major update to the
DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082
(2018).

62. Yan, D. et al. Inhibition of colony stimulating factor-1 receptor
abrogates microenvironment-mediated therapeutic resistance in
gliomas. Oncogene 36, 6049–6058 (2017).

63. Aldaz, P. & Arozarena, I. Tyrosine kinase inhibitors in adult glio-
blastoma: an (un)closed chapter? Cancers 13, https://doi.org/10.
3390/cancers13225799 (2021).

64. He, L., Chen, J., Xu, F., Li, J. & Li, J. Prognostic implication of a
metabolism-associated gene signature in lung adenocarcinoma.
Mol. Ther. Oncolytics 19, 265–277 (2020).

65. Liu, L., Chai, L., Ran, J., Yang, Y. & Zhang, L. BAI1 acts as a tumor
suppressor in lung cancer A549 cells by inducing metabolic
reprogramming via the SCD1/HMGCR module. Carcinogenesis 41,
1724–1734 (2020).

66. Wang, Y. et al. N-myc downstream regulated gene 1(NDRG1) pro-
motes the stem-like properties of lung cancer cells through stabi-
lized c-Myc. Cancer Lett. 401, 53–62 (2017).

67. Piersma, B., Hayward, M. K. & Weaver, V. M. Fibrosis and cancer: a
strained relationship. Biochim Biophys. Acta Rev. Cancer 1873,
188356 (2020).

68. Cox, T. R. & Erler, J. T. Molecular pathways: connecting fibrosis
and solid tumor metastasis. Clin. Cancer Res. 20, 3637–3643
(2014).

69. Sharma, V., Letson, J. & Furuta, S. Fibrous stroma: driver and pas-
senger in cancer development. Sci. Signal 15, eabg3449 (2022).

70. Dias, D. O. et al. Pericyte-derived fibrotic scarring is conserved
across diverse central nervous system lesions. Nat. Commun. 12,
5501 (2021).

71. Niesel, K. et al. The immune suppressive microenvironment affects
efficacy of radio-immunotherapy in brain metastasis. EMBO Mol.
Med. 13, e13412 (2021).

72. Peng, D. H. et al. Collagen promotes anti-PD-1/PD-L1 resistance in
cancer through LAIR1-dependent CD8(+) T cell exhaustion. Nat.
Commun. 11, 4520 (2020).

73. Arpino, V., Brock, M. & Gill, S. E. The role of TIMPs in regulation
of extracellular matrix proteolysis. Matrix Biol. 44–46, 247–254
(2015).

74. Fontes, M. & Soneson, C. The projection score–an evaluation cri-
terion for variable subset selection in PCA visualization. BMC
Bioinformatics 12, 307 (2011).

75. Becht, E. et al. Dimensionality reduction for visualizing single-cell
data using UMAP. Nat Biotechnol 37, 38–44 (2019).

76. Meylan, M. et al. webMCP-counter: a web interface for tran-
scriptomics-based quantification of immune and stromal cells in
heterogeneous human or murine samples. BioRxiv (2020).

77. Gao, J. et al. Integrative analysis of complex cancer genomics and
clinical profiles using the cBioPortal. Sci Signal 6, pl1 (2013).

Acknowledgements
This workwas supported by grants from theCanadian Institute of Health
Research and the Canadian Cancer Society (to SSCL). SSCL a Canada
Research Chair and Wolfe Medical Research Professorship in the Mole-
cular and Epigenetic Basis of Cancer. R.A. was supported by a Scho-
larship from the Breast Cancer Society of Canada. We thank Prof.
Wenqing He of Western University for his advice on statistical analysis.

Author contributions
Q.Z., S.S.C.L., and V.H. designed the project. R.A., Q.Z., and M.C. per-
formed the experiments. R.A., C.I., T.K., Q.Z., and S.S.C.L. analyzed the
data. S.S.C.L. and R.A. wrote the manuscript with inputs from Q.Z.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-022-33365-y.

Correspondence and requests for materials should be addressed to Qi
Zhang or Shawn Shun-Cheng Li.

Peer review information Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this
work. Peer reviewer reports are available.

Reprints and permission information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

Article https://doi.org/10.1038/s41467-022-33365-y

Nature Communications |         (2022) 13:5983 19

https://doi.org/10.3390/cancers13225799
https://doi.org/10.3390/cancers13225799
https://doi.org/10.1038/s41467-022-33365-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	The spatial transcriptomic landscape of non-�small cell lung cancer brain metastasis
	Results
	Digital spatial transcriptomic profiling of lung tumors and metastases
	Distinguishing features of the tumor microenvironment between the primary tumor and metastases
	Hallmarks of functional gene expression associated with metastasis
	Fibrosis is a key feature of the tumor brain microenvironment
	The brain microenvironment is immune suppressed regardless of its fibrosis status
	Reprogramming of the macrophage-microglia axis shapes the brain metastasis niche
	Reprogramming of astrocytes and neurons in the TBME
	Gene association network analysis reveals TME modules for therapeutic targeting
	Signature genes of metastasis predict patient outcomes

	Discussion
	Methods
	Study population
	Clinical sample processing
	GeoMx DSP profiling of the whole-transcriptome atlas (WTA)
	Principal component analysis (PCA) and uniform manifold approximation and projection (UMAP)
	Deconvolution of cell composition from the RNA-seq data
	Identification of differentially expressed variables
	Gene enrichment analysis (GSEA)
	Gene-gene functional association network
	Identification of signature genes for metastasis
	Survival analysis
	Univariate and multivariate Cox regression model
	Immunohistochemistry (IHC)
	Masson Trichrome staining
	Pathology image analysis
	Statistical analysis
	Reporting summary

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




