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Human papillomavirus integration perspec-
tive in small cell cervical carcinoma
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Xiaodong Cheng13, Qing Zhang14, Xiaobing Han15, Huaxiong Pan16, Yuan Zhang16,
Lili Cao7, Yiqin Wang6, Shaoping Ling 17, Lihua Cao17, Hui Xing18, Chang Xu 3,
Long Sui5, Shixuan Wang1,2, Jianfeng Zhou 2, Beihua Kong14, Xing Xie13,
Gang Chen 1,2 , Shuaicheng Li 3 , Ding Ma 1,2 & Shuang Li 1,2

Small cell cervical carcinoma (SCCC) is a rare but aggressivemalignancy. Here,
we report human papillomavirus features and genomic landscape in SCCC via
high-throughput HPV captured sequencing, whole-genome sequencing,
whole-transcriptome sequencing, and OncoScan microarrays. HPV18 infec-
tions and integrations are commonly detected. Besides MYC family genes
(37.9%), we identify SOX (8.4%), NR4A (6.3%), ANKRD (7.4%), and CEA (3.2%)
family genes as HPV-integrated hotspots. We construct the genomic local
haplotype around HPV-integrated sites, and find tandem duplications and
amplified HPV long control regions (LCR). We propose three prominent HPV
integrationpatterns: duplicatingoncogenes (MYCN,MYC, andNR4A2), forming
fusions (FGFR3–TACC3 andANKRD12–NDUFV2), and activating genes (MYC) via
the cis-regulations of viral LCRs. Moreover, focal CNA amplification peaks
harbor canonical cancer genes including the HPV-integrated hotspots within
MYC family, SOX2, and others. Our findings may provide potential molecular
criteria for the accurate diagnosis and efficacious therapies for this lethal
disease.

The morbidity and the number of new cases occurring from cervical
cancer are still high in developing countries1,2. As a rare subtype that
accounts for only 0.9% of invasive cervical cancers3, SCCC has an
aggressive phenotype with rapid metastases. The 5-year survival rates
for squamous cell carcinoma (SqCC) and adenocarcinoma (Adc) of
cervical cancer reach 70%, however, those for advanced stages of
SCCC stand at a mere 0–14%4,5. Compared with SqCC or Adc, SCCC is
associated with a high rate of lymph node metastases and lymph vas-
cular space invasion even in early-stage disease, and recurrence arises
rapidly in the vast majority of cases. Due to the rarity of cases, so far,

the genomic aberrations influencing the carcinogenesis of SCCC and
its relationship with HPV integration remain largely elusive. Clinically,
early molecular diagnosis and effective therapeutic schemes for SCCC
are almost nonexistent.

To understand the genomic attributes contributing to the patho-
genesis andmalignancy of SCCC, a large-scale, nationwidemulticenter
study was initiated in China, encompassing 214 rare biological samples
(Supplementary Data 1, Supplementary Table 1, and Supplementary
Note 1). We performed high-throughput HPV captured sequencing
(VCS) on 150 formalin-fixed paraffin-embedded (FFPE) tumor samples,
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whole-genome sequencing (WGS) on 16 fresh tumor-control paired
tissues at a median coverage of 51.25× (range: 45.5–58.9×), whole
exome sequencing (WES) on 10 tumor samples (median coverage,
165.17×), and whole-transcriptome sequencing (RNA-seq) on 19 fresh
tumors and 18 fresh non-tumor-control samples (Supplementary
Tables 2 and 3, Supplementary Data 2 and 3, Supplementary Fig. 1,
SupplementaryNotes 2–4).Moreover, copy number alterations (CNAs)
were evaluated in 132 FFPE tumor samples through OncoScan assays.
Furthermore, long-range 10× linked-reads sequencing was applied to
validate the local haplotypes surrounding HPV-integration sites in four
fresh tumor samples (Supplementary Table 4).

Results
HPV infection and integration rates in SCCC
HPV18 was regarded as the major subtype, and HPV18 infection was
identified at exceedingly high rates in SCCC patients by parallel
methods (Supplementary Table 1, Supplementary Data 4 and 5, Sup-
plementary Figs. 2a, b, 3 and 4a–c), including mass spectrum HPV
typing (92.0%, 191/208), VCS (83.3%, 125/150), and WGS (68%, 11/16).
Meanwhile, the HPV16 infection rates were 38.0% (79/208) by mass
spectrum, 38.7% (58/150) by VCS, and 18.8% (3/16) by WGS, respec-
tively. Different from SqCC and Adc6,7, HPV18 or 16 subtypes were
dominated in each SCCC case, and other subtypes were rarely detec-
ted (Fig.1, Supplementary Table 1, Supplementary Data 1, 4, and 5).

From the eligible FFPE VCS data (81 samples, Supplementary Note 5),
2,269 credible HPV integrations were identified (HPV18: 63.29%;
HPV16: 36.71%), fromwhich 326major cases were selected for the next
analysis (see method, Supplementary Data 6 and 7). A total of 55 HPV
integrations were detected and validated by using WGS data from
14 samples (87.5%, 14/16; HPV18: 83.6%, 46/55; HPV16: 83.6%, 11/55;
Supplementary Fig. 2c, d, Supplementary Data 7 and 8; Supplementary
Notes 6–8 and 9). Collectively, over half of the HPV-integration loci
(64.8%, 247/381; P <0.001, Chi-square test; Supplementary Data 6 and
8) harbored micro-homologous bases (MH) or small insertions at the
junction. This supports an MH-mediated integration mechanism, as
previously proposed6.

SCCC subtypes annotated by HPV-integrated hotspot genes
HPV integrations mostly occurred in the intergenic (54.6%, 208/381)
and intronic (33.6%, 128/381) regions, and exclusively enriched in five
gene families (Fig. 1, SupplementaryData 6–8, Supplementary Figs. 4d,
5, and 6, and Supplementary Note 5). A total of 36 samples (37.9%, 36/
95) had HPV-integrated breakpoints situated in MYC family genes (30
inMYC; 3 inMYCN; 3 inMYCL),which is amuchgreater percentage than
those from SqCC/Adc cases (12/123, 9.7%, P <0.001, Chi-square test)6,
indicating the prevalent deregulation of MYC family in the develop-
ment of SCCC7. The four gene families related to other cancers
tumorigenesis8–12, including the SOX family (8.4%, SOX2 and other

Fig. 1 | SCCC subtypes annotated by HPV-integrated hotspot genes. Hotspot
gene families and groups that underwent major HPV integrations in 95 SCCC
samples (81VCS and 14WGS)aredisplayed. Sample subgroupsare annotatedbased
on the mutually exclusive patterns of HPV-integrated genes. SOX (others) means
genes except for SOX2 in the SOX family. CancerCensus (others) and

CancerDepMap (others) mean remains of the relevant gene groups, which did not
include gene families mentioned above. Samples that have two or more HPV-
integrated cancer-related genes are denoted, and CAECAM gene-cluster integrated
samples aremarkedbywrite asterisks. Infections ofHPV16 andHPV18 in all samples
are denoted in Meta Data.
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paralogs), theNR4A family (6.3%,NR4A2 andNR4A3), theANKRD family
(7.4%), and the CEA family (3.2%, gene cluster at cytoband 19q13.2),
were new HPV-integrated hotspots identified in the large cohort of
SCCC (Fig. 1). Interestingly, HPV18 tends to integrate within the MYC
family, while HPV16 prone to integrate within the SOX2 and NR4A
family genes (P < 0.01, Chi-square test, Fig. 1). Furthermore, HPV-
integrated hotspots common to SqCC/Adc6, namely, within the FHIT
and LRP1b genes, were not detected in SCCC samples. In addition, two
public cancer gene sets, Cancer Census13 and Cancer Dependence
Map14, even excluded gene families mentioned above, were still fre-
quently located nearby the HPV integrations sites, including 43 (45.3%)
and 37 (38.9%) of SCCC cases, respectively. According to the affected
gene families and gene sets, eight subgroups were divided in SCCC
samples (Fig. 1), including others cases where HPV integrations
occurred at dispersed genomic loci (16.8%, Supplementary Data 7 and
Supplementary Note 5). Intriguingly, we found that nearly half of all
samples (45.3%) had the adjacent HPV integrations in at least two
cancer-related genes (Fig. 1), indicating that such double effects may
help explain why SCCC is more aggressive.

The presentative local haplotype of HPV-integration sites
All genomic loci with HPV integrations demonstrated significant DNA
amplification signals in the fourteen WGS samples, suggesting that
viral integration might have triggered genome instability6. Moreover,
flanking segments, displaying diverse copy numbers, were precisely
separated by the breakpoints from viral integrations and structural
variants15 (SVs). We constructed the genomic local haplotype around
HPV-integration loci in all of the HPV-integrated WGS samples (sim-
plest type, Fig. 2a–c and Fig. 3, Supplementary Figs. 7–20, Supple-
mentary Data 9, and Supplementary Notes 10 and 11). In addition, 10×
long-range sequencing data from four samples supported their local
haplotypes (Random-Best type, Pearson ratio: 0.90–0.99, Supple-
mentary Figs. 21–26, Supplementary Data 10 and 11, and Supplemen-
tary Notes 12 and 13). All of the local haplotypes contained 41 tandem
duplications of host genome segments with considerably varied
repeated counts. HPV genomes concatenated the host segments
located in the most of tandem duplications (82.9%, 34/41). Further-
more, the pairwise integration sites of the viral inserts were captured
and significantly enriched forMHs and small insertions at the junction
sites (77.4%, P =0.038, Chi-square test; Supplementary Data 12),
implying that the DNA-repair process might be hijacked in HPV-
integration events6. Numerous transcription factor-binding sites were
identified in the duplicated human segments of the local haplotypes
(SupplementaryData 13), suggesting that the dramatic amplificationof
these host regions might contribute to abnormal regulation of gene
expression through transcriptional machinery. In addition, several
deletions and replacement insertions were also detected within the
local haplotypes. Arm-level duplications and deletions of haplotype-
related chromosomes were identified in 64.3% samples (9/14), imply-
ing a potentially disordered sister-chromatid segregation16. The viral
long control regions (LCRs) were preserved in the local haplotypes of
all samples, strongly suggesting that they might serve as a focal reg-
ulatory hub for the expression of local human and/or virus genomes17

(Fig. 3 and Supplementary Figs. 3 and 20).

HPV–human fusion transcripts and ASEs analysis
In addition, 83 fusion events of HPV with the human genome
sequences were identified, of which 91.6% (76/83) were successfully
validated (Fig. 2d and Supplementary Figs. 7–19, Supplementary
Data 14, and Supplementary Note 14). These fusions were divided into
three categories: (1) Thirty-two fusion transcripts were consistent with
the junction DNA sequence of HPV integrations. (2) Forty fusions were
generated through RNA splicing processes via the canonical motif GU-
AG. All upstream partners of the spliced fusions were viral sequences,
suggesting that transcription might initiate at viral segments such as

the LCR regions or promoters preserved in the local haplotypes. Three
5-prime splicing hotspots were found on the HPV18 genome, con-
forming to the canonical donor splicing motif (Supplementary
Note 14). (3) Eleven fusions might have originated from HPV integra-
tions that were missed byWGS due to inadequate detection limitation
or low variant frequency; the amplified signal from the transcription
process may have enabled their detection by RNA-seq. Moreover, 204
allele-specific expressions (ASEs) were detected in all HPV-integrated
local haplotype regions, a majority of which (77.0%, 157/204) were
heterozygous SNPs in tumor genomes (Fig. 2e and Supplementary
Figs. 7–19, and Supplementary Data 15). According to the imbalance of
DNA allele frequency, the overexpressed alleles were phased in the
HPV-integrated local haplotypes, indicating a specific expression
activatingmechanism induced by theHPV insertions16 (Supplementary
Note 15). Furthermore, the activated alleles phasing with the local
haplotypeswere all supportedby the 10x linked-reads sequencing data
(83 ASEs in four samples, 100% supported, SupplementaryData 16 and
17 and Supplementary Note 16).

Main patterns of HPV-integrated local haplotypes in SCCC
The functional regulations of HPV-integrated local haplotypes were
classified into three prominent patterns (Fig. 3, Supplementary Fig. 20,
and Supplementary Note 10). In the first pattern, oncogenes such as
MYCN, MYC, and NR4A2 were overexpressed due to duplications
associated with HPV integrations18 (Fig. 3 and Supplementary Figs. 7
and 8). In the second pattern, tandem duplications resulted in the
elevated expression of fusion genes such as FGFR3–TACC3 and
ANKRD12–NDUFV2 (Supplementary Figs. 9 and 10). In the third pattern,
the amplified HPV18 LCR regions were inserted upstream of MYC
(within 500 kb), which might be activated by cis-regulation of the
epithelium-specific viral enhancer19 (Supplementary Figs. 11–14). This
cis-regulation of HPV18 integration was also proposed for HeLa cells16,
where the MYC gene showed broad amplification. Similar amplifica-
tions were also found in our samples (Supplementary Note 10). Fur-
thermore, the epithelium-specific viral enhancer was amplified in the
majority of duplicated contigs in all local haplotypes, and the related
transcription factor genes were universally expressed in tumors19

(SupplementaryData 9, 12, and 13). Toour knowledge, this is a study to
describe how HPV-integration patterns affect local genomes and gene
expression in SCCC, which no one has reported before.

Mutational signatures operative in SCCC
Inactivating mutations in the tumor suppressor genes TP53 and RB1
were detected at a frequency of only 4.3% in SCCC samples (Sup-
plementary Fig. 27a and Supplementary Data 18 and 19), while uni-
versal bi-allelic inactivation of TP53 and RB1 was found in nearly all
small cell lung carcinoma (SCLC) samples20. Furthermore, five
mutational signatures (Signatures 1–5) were extracted (Fig. 4a,
Supplementary Fig. 27b–o, and Supplementary Note 17). We gauged
the contribution ofmutational signatures with respect to clonal and
subclonal mutations in high purity SCCCs and observed that Sig-
natures 2 and 4 made significantly greater (Wilcox test, P = 0.001)
contributions to subclonal mutation; whereas Signature 3 and Sig-
nature 5 is less represented in subclonal mutation (Wilcox test,
P = 0.0225). In addition, clonal and subclonal mutations attributed
to Signature 3 and 5 exhibited linear relationships, respectively
(Supplementary Fig. 27f, h).

Moreover, focal CNA amplifications encompassed genomic peaks
that harbored canonical cancer genes including those found at HPV-
integrated hotspots (MYC, MYCN, MYCL, SOX2, NR4A2, and ANKRD12),
and others (CCNE1, SMAD2, BCL2L1, and GNAS). Focal deletions con-
sisted of the FHIT and FGFRL, respectively (Fig. 4b–e, Supplementary
Fig. 28a, b, SupplementaryData 20–23, and SupplementaryNote 18). In
our study, focal amplification of MYC was found to be significantly
associated with the 5-year overall survival (OS) and disease-free
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survival (DFS) rates in the OncoScan assay for the SCCC cohort
(P = 0.010 and P =0.021, log-rank test; Supplementary Fig. 29).

HPV-integrated signaling pathways in SCCC
The comprehensive analysis of host genetics and HPV integration pro-
vided novel insights into perturbed signaling pathways in SCCC (Fig. 4f).

Besides the major module of the cell cycle circuit, the gene networks
related to neuroendocrine differentiation also enriched dysregulation
(DEGs: INSM1, ASCL1, and NOTCH2; CNA gain and HPV-integrated hot-
spots: the MYC and SOX2 family genes; Supplementary Figs. 30–33,
Supplementary Data 24–25, Supplementary Table 5, and Supplementary
Note 19, 20). Furthermore, the mRNA expression levels of MYC, ASCL1,
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and INSM1 increased along with HPV integrations (Supplementary
Table 6).

Discussion
In summary, we identified HPV-integration perspective and asso-
ciated genomic alterations in SCCC which no one has reported
before. Different from SqCC or Adc, SCCC is clinically associated
with a high rate of lymph node metastases in the early stage and
much poorer long-term outcomes. We found that HPV18/16 infec-
tions and integrations were almost dominated in SCCC cases.
Moreover, 37.9% SCCC samples had a much greater percentage of
HPV-integrated breakpoints situated in MYC family genes than
those of SqCC/Adc cases (9.7%, P < 0.001, Chi-square test). In
addition, almost half of all samples (45.3%) had double effects may
help explain why SCCC is more aggressive. We successfully con-
structed the local haplotype of HPV-integrated genomic regions,
and tandem duplications and amplified HPV long control regions
(LCR) were found in all local haplotypes. Considering the high copy
number of repeated units in local haplotypes, we do not rule out the
possible existence of double minutes21,22. Three prominent HPV-
integration patterns were investigated, including duplicating
oncogenes (MYCN, MYC, and NR4A2), forming fusions
(FGFR3–TACC3 and ANKRD12–NDUFV2), and activating genes (MYC)
via the cis-regulations of viral LCRs. Moreover, focal CNA amplifi-
cation peaks harbored canonical cancer genes including the HPV-
integrated hotspots within MYC family, SOX2, et al. In light of dis-
crepancies with regards to small cell carcinomas originating from
other epithelial tissues, it is important to note that SCCC is a special
subtype of cervical cancer due to HPV18/16 integrations and geno-
mic alterations. Our findings could be used as potential molecular
criteria for accurate diagnosis and targets for efficacious therapies
of this lethal disease.

Methods
This study was approved by the Ethics Committee of Tongji Hospital,
Tongji Medical College, Huazhong University of Science and Tech-
nology, P. R. China. All patients provided written informed consent.

SCCC samples and DNA and RNA extractions
We collected fresh frozen or FFPE samples of 214 SCCC patients pro-
videdbymultiple collaborating institutions inChina from2007 to 2015
(Supplementary Note 1), approved by the Institutional Review Board
approval and with written informed consent. All SCCC cases were
reviewed by at least two independent pathologists. DNA and RNA
nucleic acid was extracted and sequenced according to standard
protocols (Supplementary Fig. 1, Supplementary Notes 2 and 4). The
DNA quality was confirmed to be of high molecular weight by agarose
gel electrophoresis with high molecular weight (>10 kb for
fresh–frozen samples, >1 kb for FFPE samples). The RNA quality was
assessed by Agilent 2100 Bioanalyzer and samples with quantity
≥400 ng, concentration ≥5 ng/μL, RNA integrity number (RIN) ≥7.0,
28 S/18 S ≥ 1.0, a smooth baseline and normal 5 S peak in the electro-
pherogram were further analyzed by RNA sequencing.

HPV genotyping
PCR-based mass spectrometry system for high-risk HPV was used for
detectingHPV6, 11, 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, and 68
in a total of 208 fresh–frozen or FFPE tumor samples (Supplementary
Fig. 2b, Supplementary Data 1, and Supplementary Note 3)23.

Sequence data generation
Sixteen pairs SCCC fresh–frozen samples (tumor andmatched control
samples) for whole-genome library construction, and complementary
DNA from 37 samples (19 tumors and 18 non-tumor controls) was
subjected to transcriptome library construction, according to stan-
dard methods (Illumina Inc.). In addition, DNA from ten paired FFPE
samples (tumor-normal paired tissues) was subjected to Agilent Sure-
Select Human All Exon 51M (v4.0; Agilent Technologies) followed by
exome library construction for Illumina sequencing. All libraries were
sequenced with Illumina HiSeq 2500 (WGS, WES and RNA-seq) and X
Ten (WGS) instruments (Supplementary Note 4). HPV fragments
enrichment and VCS sequencing were launched (Supplementary
Note 4D).

Construction of individual HPV genome
Unmapped reads and soft-clipped reads were extracted from align-
ment results of WGS and VCS data, and aligned to HPV reference
databasedownloaded fromNCBI nucleotide database (Supplementary
Notes 5 and 6). The HPV variant with the most counts of uniquely
aligned reads and at least 20% coverage was selected as themajor one.
Mutations (SNV and InDel) were detected in an iterative process, and
used to modify individual HPV genome, till no more mutations could
be identified (Supplementary Note 6). Individual HPV genomes were
applied in the following analysis.

HPV integrations on cancer genome
We applied FuseSV (in-house software) to gather reads mapped to
individual HPV genome and detect HPV integrations (Supplementary
Notes 5 and 7). FuseSV seeks two types of supporting reads, span-reads
and junction-reads, and generates putative junction library to obtain
candidate integrations, and also visualizes integration cases.

Features of the HPV-integration sites
At the HPV-integration sites, micro-homology bases at least 3-nt long
in 5-nt radius and small insertions were investigated. DNase-I clusters
and transcription factors binding sites of ENCODE project were
downloaded from UCSC (http://genome.ucsc.edu/encode/
downloads.html). Other databases were same as what we used
before6, including repeat elements on genome, fragile sites of human
chromosome, and Non-B regions of DNA helix.

Major HPV-integration selection and annotation from VCS data
For one given sample, its HPV integrations detected from VCS data
were sorted by number of junction-reads numerically in descending
order, and top five integrations were selected as major HPV integra-
tions (Supplementary Note 5). The integrated host breakpoints were
annotated based on Ensembl database (release 75). As HPV

Fig. 2 | Presentative local haplotype ofHPV18 integration sites in sample T008.
a Human genomic region flanking HPV18 integrations are divided into segments
(A–K, indifferent resolutions) byviral insertions (red solid line) andSVs (reddashed
line). Breakpoints are noted by circled numbers. Sequencing-depth spectrum (red
for tumor, light blue for control) is displayedwith copynumbersof segments. Dark-
blue lines denote the average depth of segments. Segments with similar copy
numbers are in the identical color. For each segment junction, microhomologies in
bilateral twenty base-pairs (pink for 1 bp size; red for larger) and small insertions at
the junctions are shown (in boxes). Connection orientations of segments are noted
by circled plus orminus symbol in red.bConstructedHPV18 genome is segmented
(a–c) by breakpoints with circled numbers corresponding to the boxes above.

c Resolved alleles of Simplest type local haplotype are indicated as colored seg-
ments connected string, including reference allele (1st) and that harbors HPV18
integrations (2nd), with copy times. The circular junction denotes HPV genome
circular loop site. d Transcript abundance across the local haplotype aremeasured
from RNA-seq. Validated HPV–human fusion transcripts are shown with Sanger
sequences. The position of viral splicing hotspot is in red. e Alleles abundance of
allele-specific expressions onMYCN from control-DNA, tumor-DNA, and tumor-
RNA, respectively. ASE position in red indicates a considerable shift between the
observed frequency in NGS data and experimental validation (Supplementary
Data 15).
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integrations were considered as strong cis-interaction elements16 and
recent study showed that the sizes of chromatin loops range to
750 kb24, genes located <750 kb from the HPV-integrated positions
were considered to be potentially affected.

Construction of local haplotypes
We segmented the genomic regions flanking the SVs and HPV
integrations with the breakpoints. Based on the purity and ploidy of
tumor tissue reported by ABSOLUTE25 and Patchwork26, the depth of
these segments was adjusted to the pure tumor cells. Combining
with the purity and ploidy of tumor samples calculated by
Patchwork26, the copy numbers of segments were determined.
Segments were connected to form contigs based on SVs and viral
integrations. Contigs were then connected to construct HPV-
integrated local haplotype with different copy times, which cost
minimum changes on copy number of segments27 (Supplementary
Notes 10 and 11).

10× long-range linked-reads library preparation, sequencing
DNA was isolated using the Recoverease Genome DNA isolation kit
(Agilent PN 720203), and 1 ng of isolated DNA from each sample was
quantitated and denatured for chromium library preparation. The
library preparation was done following the manufacturer protocol
(Chromium Genome v1, PN-120229). The barcoded libraries were
sequenced on Illumina HiSeq Xten system. The BCL files were demul-
tiplexed and converted to fastq files via bcl processor (v2.0.0; Sup-
plementary Note 4E).

10× long-range sequencing data analysis
The high-quality barcoded-reads were generated after filtration of
raw sequencing data. LongRanger (v2.1.2) was utilized to confirm
credible barcode of each paired-end reads. Reads with credible
barcodes were aligned to the human genome (Supplementary
Note 12). From the alignment results, individual HPV genomes and
HPV integrations were identified by FuseSV. Gathering barcoded-
reads supporting breakages (SVs and HPV integrations) in local
haplotypes, the shared barcodes of all pairwise anchors were con-
sidered as the linkage. Pearson ratio of the observed linkages and
proposed linkages from resolved local haplotypes were calculated
for Simplest Local Haplotype and Random-Best Local Haplotype
(Supplementary Note 13). Similarly, linkage of ASEs and breakages
were computed and compared with the allele expression imbalance
(Supplementary Note 16).

Mutation detection and deciphering mutational signatures
The high-quality reads were aligned to the NCBI human reference
genome (hg19) using BWA (v0.7.12)28 with the default parameters.
Picard (v1.54; https://broadinstitute.github.io/picard/) was employed
to mark duplicates and followed by Genome Analysis Toolkit3
(v1.0.6076;GATK IndelRealigner)29 to improve alignment accuracy.We
employedMuTect30 to detect single nucleotide substitutions and short
insertions and deletions, and CHASM to hunt for driver point
mutations31. The minimum depth for set to 10× for both tumor and
germline genomes, whereas the minimum number of mutations sup-
porting reads in the tumor genome was set to 4x. All high confident
mutations were annotated with ANNOVAR32. We applied computa-
tional framework proposed by Alexandrov33 to decipher mutational
signatures (Supplementary Note 17).

Copy number alteration (CNA)
After finishing sequence alignment, we used patchwork26 to per-
form CNA segmentation, followed by GISTIC234 to identify sig-
nificantly altered focal amplification and deletion. Specifically, the
human genome was segmented into fixed windows of 200 bp in
size; eachwindowwas taken as a probemarker. The log2 copy ration

was calculated in tumor versus germline genome by adjusting for
GC content. Adjacent 50 windows were merged to smooth the data.
The circle binary segmentation implemented in DNAcopy35 was
employed to perform copy number segmentation. In addition,
allelic imbalance in each segmented genomic region was computed
to estimate tumor ploidy and purity, as well as absolute copy
number for each segment. We next used GISTIC2 to identify sig-
nificantly amplification and deletion. A significant amplification or
deletion genomic segment was called if the absolute value of
G-score >0.1 and associated q-value <0.25.

Oncoscan CNV FFPE assay
A total of 132 FFPE tumor samples were performed using Affymetrix
Oncoscan®CNV FFPE Assay Kit, a whole-genome copy number assay
(Affymetrix, Santa Clara, CA, USA; Supplementary Note 18). The data
were analyzed with Chromosome Analysis Suite (ChAS) software and
Nexus Copy Number Version3 (standard edition, BioDiscovery,
Inc. 2014).

Identification of structural variation
In particular, complex SVs, from short sequencing reads is challenging.
In this study, we used Meerkat22 to identify structural variations to
characterize SV (Supplementary Data 26). The accuracy ofMeerkat has
also been confirmed in our recent study on depicting SVs in esopha-
geal squamous cell carcinoma36. We applied the computational fra-
mework proposed by Alexandrov33 to decipher SV signatures
(Supplementary Note 17).

Analyses of RNA-seq data
We used the highly efficient splicing alignment tool HiSAT37 to carry
out RNA-seq data alignment and StringTie38 to perform transcript
assembly and quantification. The ballgown R package was used to
perform differential gene expression analysis by comparing gene
expression levels in the tumor samples with a super-control of non-
tumor cervical samples. The SOAPfuse39 pipeline was employed to
identify and visualize human endogenous gene fusions (Supplemen-
taryData 27). FuseSVwas applied to analyzeHPV–human fusion events
(Supplementary Note 14). The allele-specific expressions (ASEs) loca-
ted in the resolved local haplotypes were investigated. Alleles were
required to have at least two reads from forward and reversed map-
ping, respectively (Supplementary Note 15).

The verification of HPV integrations and fusion genes
To validate HPV integrations, HPV–human fusion, and human endo-
genous gene fusions, the PCR primers were designed in the region
covered by supporting reads (Supplementary Notes 7 and 9). Genomic
DNA (10 ng; for HPV integrations) or cDNA (0.5 µl, reverse transcribed
from 2 µg total RNA; for fusions) was amplified using the primer pairs.
PCR product (50 ng) was sequenced from both the 5’ and 3’ ends by
Sanger sequencing. Sanger sequences were aligned by WEB BLAST to
verify the correct cases.

Immunohistochemical staining
The immunohistochemical staining for MYC, ASCL1, INSM1, INPP4B,
NR4A2, CHGA, NCAM1, SYP, and ENO2 was detected with 4-μm FFPE
sections according to the manual immunohistochemistry staining
methods40,41. Then, the immunohistochemical score of each sample
was measured based on staining intensity and percentage of the cells
stained40,41. Information of the samples subjected to immunohisto-
chemical staining is summarized in detail in Supplementary Data 1.

Survival analysis
Survival analyses were performed using the R package-survival (v2.40-
1). Categorical variables are presented as frequencies and percentages,
and continuous variables are presented asmeans ± standard deviation
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(SD). P value of less than 0.05 was considered to indicate statistical
significance. Overall survival (OS) and disease-free survival (DFS) rates
were calculated using the Kaplan–Meier method, and the log-rank test
was used to compare survival curves.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw sequence data reported in this paper have been deposited in
the Genome Sequence Archive (Genomics, Proteomics & Bioinfor-
matics 2021) in National Genomics Data Center (Nucleic Acids Res
2022), China National Center for Bioinformation/Beijing Institute of
Genomics, Chinese Academy of Sciences (GSA-Human: HRA002655)
that are publicly accessible at https://ngdc.cncb.ac.cn/gsa-human. All
the other data supporting the findings of this study are availablewithin
the article and its supplementary information files.

Code availability
The algorithm code to construct HPV-integration local haplotype is
available in the GitHub repository (https://github.com/deepomicslab/
FuseSV)27.
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