arising from S. Chakrabarti et al. Nature Communications https://doi.org/10.1038/s41467-021-24433-w (2021)
Chakrabarti et al.1 need to be complimented for their thorough analyses, to the extent that is possible with national datasets, to determine whether India’s school feeding program (the mid-day meal, MDM) has led to intergenerational nutrition benefits. However, given the nature of the analysed data and modelling, it is possible for the conclusions to be misleading or overreaching. The overreach is potentially adverse, as we show in the last paragraph of this matter arising from the publication.
The problem is that the same level of MDM exposure is attributed to all mothers within a state SES and birth cohort cell; its variability therein is not considered. The main result reported in the Abstract states: “height-for-age z-score (HAZ) among children born to mothers with full MDM exposure was greater (0.40 SD) than that in children born to non-exposed mothers”. This estimate and its precision should be considered with caution because it is based on 0–100% increase in MDM exposure, whereas the “real” benefit from the observed average increase in exposure was about one-third of that. Chakrabarti et al.1 also report the “real” population-wide effects of considering a 32% expansion in MDM, but highlighting the 0.4 SD increase as the main result seems an overreach.
In a local context, the proportion of primary school children covered with Mid-Day Meal (MDM) program (exposure) could be a marker of favourable socio-demographic or developmental characteristics (for example, maternal education or empowerment, household wealth, income, water supply and sanitation facilities, caste, religion, etc.) that are associated with greater height-for-age Z (HAZ) scores (outcome). The Controlled Interrupted Time Series design cannot eliminate this potential for allocation bias. Maternal height and education were not included in the final model since they were taken as mediating variables. However, a mediation analysis could have been attempted to draw estimates of the mediated effect of MDM through height and education (and other mediating variables), thus being able to analyse the intergenerational pathway in a better manner, such that their true variability and contribution to attained offspring height could be quantified. Perhaps, stratified analysis by maternal height would be helpful, notwithstanding the challenges of accounting for confounding.
Evidence supports the plausibility of an alternative hypothesis. First, in comparison to the control group, the intervention (MDM) group due to allocation bias had participants with favourable socio-demographic characteristics, which are associated with higher child HAZ, resulting in larger mothers who bore taller children. In this study too, the child HAZ was lower (overlapping 95% CI) among control mothers prior to the expansion of MDM (Fig. 5b1). Further, a unique comparison of the heights of children with that of their parents at corresponding ages from the New Delhi Birth Cohort, endorses this contention2. The parents were born between 1969–1972 and all had reached the age of 10 years by 1982, much before the MDM scheme was introduced nationally. The parent’s (father or mother) height at corresponding age was the strongest independent predictor (beta-coefficient: 0.53; 95% CI 0.43, 0.66) of attained height of the child3. Second, the hypothesised cycle above may be amplified by the intergenerational continuation of these favourable socio-demographic characteristics. “The India Human Development Surveys show that a household generally only moves up by one or two Socio-Economic-Status (SES) deciles over 7 years, if they move at all” (relatively static), and that “MDM coverage within states does not fluctuate greatly with small increments of SES classes”1.
The authors have attempted to control for several confounders and perform robustness checks. However, with more granular adjustments (birth year and state-specific SES fixed effects) or substituting the relatively time-invariant caste and religion for SES (Supplementary Fig. 41), MDM was not significantly (P > 0.05) associated with child HAZ. While not belabouring the P value, it is important to note that confidence in the observed estimates, and thereby their translation, is attenuated. Further robustness checks would have been useful, including a correction for multiple testing and consideration of fathers along with mothers. It is also difficult to contemplate that a few years of exposure to a single intervention in an individual mother during her childhood, that is, a comparison of those who did or did not receive MDM (0% vs 100%), can lead to an average difference of 0.4Z in her child’s height.
An additional critique of this paper’s interpretation1 comes from examining the change in spatial distribution of the state under-five stunting prevalence, between NFHS-3 and NFHS-4 (Fig. 1). The spatial distribution of reduction in stunting is comparable across states, except for Chhattisgarh and Arunachal Pradesh. While Chhattisgarh was part of the MDM intervention group, Arunachal Pradesh was not: yet both showed a reduction in the prevalence of stunting between the two surveys. Indeed, stunting actually increased in Jharkhand, which did have the MDM introduced as an intervention. Thus, the modelled MDM intervention that was expected to disrupt the trend in stunting prevalence is not observed. Aggregate data-based outcome interpretation of state-specific changes in nutritional intake attributed to MDM, should therefore be made with abundant caution.
The spatial distribution of reduction in stunting is comparable across states, except for Chhattisgarh and Arunachal Pradesh. While Chhattisgarh was a part of the MDM intervention group, Arunachal Pradesh was not: yet both showed a reduction in the prevalence of stunting between the two surveys. Indeed, stunting actually increased in Jharkhand, which did have MDM introduced as an intervention.
Finally, there is a real need for caution in interpretation. India is witnessing a rapid nutrition transition in tandem with an improvement in socio-demographic and economic indicators. Extreme caution is required in extending the school feeding programs beyond primary school, as hinted by the authors1. Recent data from the quality-controlled Comprehensive National Nutrition Survey from India show that among 5-19-years-old children and adolescents, “metabolic obesity” (dysglycemia or dyslipidemia) was present in 56% of participants4. Importantly, the prevalence was similar in anthropometrically undernourished (54% of thin and 59% of stunted) participants, and among the poor and rural inhabitants4. Ironically, in direct opposition to the objective of the school feeding program, the recommended core interventions5 for these metabolic perturbations, such as dietary restrictions and active lifestyle, are directed towards inducing a negative energy balance. This concern is underlined in the recent Indian nutrient recommendations6, where adult energy requirements have been revised downwards, in part based on low physical activity, and similarly, lower energy requirements have been suggested for sedentary children, since low physical activity levels were documented in 8–9-year-old Indian children6,7. Overenthusiastic feeding programmes, especially with low-quality cereal-dominated diets that are not unusual at national scale8, have the potential to fuel the ongoing epidemic of Non-Communicable Diseases and could result in disproportionate allocation for feeding subsidies in preference to other facets of development.
Data availability
All data used for the maps in figure are from the state level estimates of stunting in National Family Survey-Rounds 3 and 4 which are available at http://rchiips.org/nfhs/.
References
Chakrabarti, S. et al. Intergenerational nutrition benefits of India’s national school feeding program. Nat. Commun. 12, 4248 (2021).
Sinha, S. et al. Intergenerational change in anthropometry of children and adolescents in the New Delhi Birth Cohort. Int. J. Epidemiol. 51, 291 (2022).
Sinha, S. Intergenerational change in childhood anthropometry and its relation to grandmother’s age at child birth. Submitted in partial fulfilment of the requirement for the award of the degree of Doctor of Philosophy to University School of Medicine and Para Medical Health Sciences Guru Gobind Singh Indraprastha University, Delhi (2017).
Sachdev, H. S. et al. Intraindividual double-burden of anthropometric undernutrition and “metabolic obesity” in Indian children: a paradox that needs action. Eur. J. Clin. Nutr. 75, 1205 (2021).
Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents; National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics 128, S213 (2011).
ICMR-NIN Expert Group on Nutrient Requirement for Indians, Recommended Dietary Allowances (RDA) and Estimated Average Requirements (EAR). ICMR-National Institute of Nutrition Hyderabad 500 007, India. 2020.
Krishnaveni, G. V. et al. Relationship between physical activity measured using accelerometers and energy expenditure measured using doubly labelled water in Indian children. Eur. J. Clin. Nutr. 63, 1313 (2009).
Deodhar, S. Y. et al. An evaluation of mid day meal scheme. J. Indian Sch. Pol. Econ. 22, 33 (2010).
Author information
Authors and Affiliations
Contributions
H.S.S. conceived the idea for the research. C.O. and T.T. contributed to data analysis and manuscript preparation and writing. A.V.K. and H.S.S. provided inputs to analysis and wrote the manuscript. All co-authors read and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Sachdev, H.S., Osmond, C., Kurpad, A.V. et al. Intergenerational nutrition benefits of India’s national school feeding program: Reality or a bridge too far?. Nat Commun 13, 6351 (2022). https://doi.org/10.1038/s41467-022-33338-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-022-33338-1
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.