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Tracking changes in SARS-CoV-2
transmissionwith anovel outpatient sentinel
surveillance system in Chicago, USA

Reese Richardson 1,2, Emile Jorgensen2, Philip Arevalo3, Tobias M. Holden4,
Katelyn M. Gostic3, Massimo Pacilli2, Isaac Ghinai2, Shannon Lightner5,
Sarah Cobey 3 & Jaline Gerardin 4

Public health indicators typically used for COVID-19 surveillance can be biased
or lag changing community transmission patterns. In this study, we investigate
whether sentinel surveillance of recently symptomatic individuals receiving
outpatient diagnostic testing for SARS-CoV-2 could accurately assess the
instantaneous reproductive number R(t) and provide early warning of changes
in transmission.We use data from community-based diagnostic testing sites in
the United States city of Chicago. Patients tested at community-based diag-
nostic testing sites between September 2020 and June 2021, and reporting
symptom onset within four days preceding their test, formed the sentinel
population.R(t) calculated fromsentinel cases agreedwell withR(t) fromother
indicators. Retrospectively, trends in sentinel cases did not precede trends in
COVID-19 hospital admissions by any identifiable lead time. In deployment,
sentinel surveillance held an operational recency advantage of nine days over
hospital admissions. The promising performance of opportunistic sentinel
surveillance suggests that deliberately designed outpatient sentinel surveil-
lance would provide robust early warning of increasing transmission.

In the SARS-CoV-2 pandemic, the ability of public health agencies to
monitor disease incidence and trends in transmission has formed a
critical component of public health preparedness and response1–4.
Worldwide, policymakers have implemented staged regional mitiga-
tion systems, where the progression of a region from one stage of
mitigation policy to another is contingent upon certain indicators
surpassing a given threshold or relative rate of growth5–7. The time-
liness of mitigation measures is a decisive factor in their efficacy;
delaying the implementation of mitigation measures can drastically
increase prevalence, mortality, and the probability that healthcare
systems are overwhelmed amidst a surge in transmission8–12. Thus, it is
crucial that the indicators that inform these mitigation measures
represent a timely and accurate measure of trends in infection
prevalence.

Many common indicators of SARS-CoV-2 transmission are inher-
ently biased or delayed. Incident cases, the fraction of diagnostic tests
that return a positive result (test positivity rate, TPR), or any other
metric based on diagnostic testing in the general population is subject
to bias due to fluctuating access to, availability of, and demand for
diagnostic testing. These factors vary across time, geography, age, and
racial and ethnic groups, and the data needed to control for these
biases is often unavailable1,13–17. The timeliness of data can also be
hampered by long turn-around-times and delays in vendors’ reporting
of test results to health agencies14.

Severe outcomes, such as COVID-19 hospital admissions, emer-
gency department visits, and deaths, are more reliable indicators of
community transmission1. However, hospital admission can lag infec-
tion by as much as two weeks, and deaths can further lag hospital
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admission by another week (Table 1)18–23. Hospital- and death-based
indicators are thus inherently limited in their ability to report very
recent trends in transmission24. Furthermore, hospitalizations and
deaths are mostly composed of older populations that are more likely
to experience severe outcomes. As a result, these indicators provide
more statistical power for discerning trends inolder age groups than in
younger age groups and could prove misleading if taken to represent
the population at-large1. For instance, if a population-wide surge in
disease burden is initially driven by an increase in transmission in
younger age-groups, hospital-based indicators will not reflect this
change until this increase in transmission propagates to the older age
groups that drive admissions and ED visits. Additionally, if hospitali-
zations in older populations are greatly reducedby vaccination, signals
of trends in community transmissionderived fromhospital admissions
are further muddled.

Sentinel populations can be used to track changes in SARS-CoV-2
transmission in the general population and have previously been used
or proposed for monitoring seasonal and pandemic influenza25,26. As
long as testing criteria and sampling effort on the sentinel population
are predefined and do not change with time, COVID-19 surveillance on
the sentinel population should be less subject to selection bias than
diagnostic testing in the population at-large. Although not ideal, even
mobile or intermittently active sentinel surveillance sites may still be
able to inform changes in transmission.

This study used data from patients tested at community-based
testing programs operated by the Chicago Department of Public
Health (CDPH) and the Illinois Department of Public Health (IDPH) to
assess trends in SARS-CoV-2 transmission with minimal bias and lag in
the United States (US) city of Chicago (Fig. 1). These community-based
testing programs had been implemented to improve access to testing
in underrepresented groups, and this study opportunistically reused
the data to evaluate the potential utility of outpatient-based sentinel
surveillance. Recently symptomatic individuals (onset within 4 days of
test) were used as the sentinel population from which to estimate the
instantaneous effective reproductive number R(t), a measure of com-
munity transmission. In theory, this approach would provide

operational recency over hospital-based indicators, since symptom
onset occurs sooner after infection than hospitalization, allowing R(t)
to be estimated for more recent dates (Fig. 1, Table 1). Furthermore,
sentinel surveillance would provide information on trends in younger
populations than the hospitalized population, which, if changes in
transmission occur first in younger populations, could result in trends
in sentinel surveillance data leading trends in hospitalizations. The
extent to which sentinel surveillance captured gold-standard hospital
admission trends was evaluated and the lead time and operational
recency of sentinel surveillance data over hospitalization data was
assessed.

Results
From September 2020 to June 2021, CDPH and IDPH operated a
combined 10 static and 167 mobile community-based diagnostic test-
ing sites in the city of Chicago that collected data on symptom status
and date of symptom onset (Fig. 2A). These testing sites targeted
communities experiencing high COVID-19 incidence and demographic
groups and geographic areas underrepresented in testing by other
clinical providers27. Other than the Gately Park site, no static site was
operational through the whole study period. Testing sites focused
specifically on serving Hispanic/Latino residents because this popula-
tion had the highest daily incidence of COVID-19 of any racial/ethnic
group during the study period (Fig. 3). Diagnostic testing data from
CDPH and IDPH community-based sites were re-analyzed in this study
as outpatient sentinel surveillance. Of 324,872 total specimens col-
lected during the study period, 21,406 were from Chicago residents
with a valid recorded date of symptom onset, and 13,952 met the
criteria to be sentinel samples (residing in Chicago with symptom
onset date at most four days prior to specimen collection date, see
Methods and Supplementary Fig. S1). Of the sentinel samples, 5401
were collected atCDPH-operated static sites (Fig. 2, sites a–h), 7,478 at
IDPH-operated static sites (Fig. 2, sites i – j), and 1,073 at CDPH-
operated mobile sites. The volume of sentinel samples collected each
day fluctuated with the opening and closure of sites and decreased on
weekends (Fig. 2B, C, Supplementary Fig. S2). Cumulatively across the

Table 1 | Delays associated with each indicator traditionally used for SARS-CoV-2 surveillance and the theoretical operational
recency provided by outpatient sentinel surveillance

Indicator Presentation date Days from infection to presenta-
tion median (IQR) [source]

Days from presentation to
report during study period

Days from infection to report
(operational lag)

Cases Date of specimen collection 8 (4–14)28,49 ~2–3 ~10–11

Emergency department
(ED) visits

Date of ED visit 10 (7–14)18,21 ~1–2 ~11–12

Hospital admissions Date of admission 10 (7–14)18,21 ~5 ~15

Deaths Date of death 19 (13–27)18,21,51 ~1–30 ~20–57

Outpatient sentinel
surveillance

Date of symptom onset 5 (4–7)21 ~2 ~7

lead time

co
un

ts
 (n

or
m

al
iz

ed
to

 s
am

e 
sc

al
e)

time

Rt 
evaluation 
date

sentinel cases

hospitalizations

estimate Rt

time

Rt

Rt = 1

Rt assessed with
hospitalizations

today

operational recency

Rt assessed with 
sentinel surveillance

Rt 
evaluation 
date

Fig. 1 | Theoretical diagram of the instantaneous effective reproductive
number R(t) derived from hospitalizations (orange) and sentinel surveillance
(blue). Because symptom onset typically occurs sooner in the course of disease
than a visit to the emergency department or hospitalization, sentinel cases can

returnmore recent estimates of R(t) than hospital-based indicators.With sufficient
sample size, sentinel surveillance could also return more precise estimates of R(t)
(shaded regions show theoretical confidence intervals).
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Fig. 2 | Locations and volume of outpatient sentinel surveillance in Chicago
fromSeptember 27, 2020, to June 13, 2021. A Static sentinel testing site locations
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Hispanic Black (right map). B Total sentinel samples (blue, n = 13,952) and sentinel
cases (red, n = 3607) plotted by date of symptom onset. C Operating dates (black
bars) of static sentinel testing sites.
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Fig. 3 | Demographic characteristics of study population. Broken down by
A race/ethnicity and B age group for 2019 Chicago population estimates, all diag-
nostic tests, sentinel samples, COVID-19-confirmed emergency department (ED)
visits, and COVID-19-confirmed hospital admissions during the study period. Race/

ethnicity data was not available for ED visits. Three hospitalizations and 75 ED visits
were of unknown age, and are excluded from B. Sentinel samples were a subset of
all diagnostic tests (see Methods).
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study period, 3607 sentinel samples returned a positive diagnosis
(25.8%) and were considered sentinel cases (Fig. 2B, Supplementary
Fig. S1). Across all 324,872 specimens collected at sentinel sites during
the study period, 53,939 returned a positive diagnosis (Supplemen-
tary Fig. S3).

Compared with the general Chicago population and with all
diagnostic tests performed during the study period, sentinel samples
had a higher proportion of Hispanic/Latino residents (Fig. 3A). By
proportion, the sentinel population was more Hispanic/Latino than
COVID-19-confirmedhospitalizations, less non-Hispanic Black, and less
non-Hispanic White. The age distribution of sentinel samples (9.9%
greater than 60 years old) was younger than that of COVID-19-
confirmed hospitalizations (52.7% greater than 60 years old, two-tail
two-proportion Z = −77.5, p <0.001) and COVID-19-confirmed emer-
gency department (ED) visits (38.3% greater than 60 years old,
Z = −59.9, p <0.001), more closely resembling, but still younger than,
the age distribution of the population at large (18.9% greater than 60
years old, Z = −27.1, p < 0.001) and the age distribution of all diagnostic
tests (18.3% greater than 60 years old, Z = −25.6, p <0.001) (Fig. 3B).
Test positivity rates among sentinel samples was highest in ages 80+
and in Hispanic/Latino patients across the study period (Supplemen-
tary Fig. S4). Sentinel samples and all tests collected at sentinel sites
were demographically similar, although a slightly higher proportion of
sentinel samples were Non-Hispanic Black than among all tests col-
lected at sentinel sites (Supplementary Fig. S5). Sentinel sites per-
formed <10% of all diagnostic tests in Chicago during the study period
and only 0.4% of all diagnostic tests in Chicago were also sentinel
samples.

R(t) Estimation
Trends in transmission were evaluated from time series derived from
sentinel cases, sentinel test positivity rate (sentinel cases adjusted for
testing volume, see Methods), general population cases, COVID-like
Illness (CLI) emergency department visits (CLI ED), COVID-19-
confirmed emergency department visits (COVID ED), CLI hospital
admissions (CLI admits), and COVID-19-confirmed hospital admissions
(COVID admits) by estimating the time-varying instantaneous repro-
ductive number R(t) from each data series (data series in Supple-
mentary Fig. S6, R(t) series in Fig. 4A). R(t) was calculated with
epyestimv0.128, a Python implementation of themethod developed by
Cori et al.29. R(t) > 1 indicates a growing epidemic and R(t) < 1 indicates
a shrinking epidemic. The larger confidence interval for R(t) estimates
from sentinel cases toward the end of the study period reflects the
decline in testing demand and lower number of sentinel cases col-
lected in May-June 2021 (Fig. 2B). Assumed incubation periods and
onset-to-presentation delays are detailed in Methods.

The agreement between R(t) estimates derived from two data
series was defined as the percentage of the study period when both
median R(t) estimates were ≥1.0 or both were <1.0. Agreement was
highest between CLI ED, COVID ED, CLI admits, and COVID admits
(Fig. 4B, Supplementary Fig. S7). R(t) derived from sentinel cases
agreed with R(t) from COVID admissions on 84.7% of dates.
Adjusting sentinel case counts by the volume of sentinel samples
with the same day of symptom onset (sentinel TPR) did not improve
correlation with other indicators, producing an R(t) series with
68.2% agreement with COVID admits (Fig. 4B, Supplementary
Fig. S7). R(t) derived using sentinel samples as an indicator (analo-
gous to CLI) produced slightly worse agreement with hospital-
based indicators than R(t) derived from sentinel cases. Three major
inflection points occurred during the study period: the peak of the
Fall 2020 wave (Nov 2020), the valley preceding the Spring 2021
wave (Feb 2021), and the peak of the Spring 2021 wave (Mar 2021).
The dates of these inflection points in the sentinel cases R(t) curve
fall between 24 days behind to 11 days ahead of traditional indica-
tors (Supplementary Table S1).

R(t) derived from sentinel cases produced slightly better agree-
ment with hospital-based indicators in the latter half of the study
period (February–June 2021, Supplementary Fig. S8). Agreement
between all R(t) estimates worsened slightly when R(t) was calculated
with a seven-day smoothing window (Supplementary Fig. S9). When
R(t) was derived from indicators split into ages <60 and ≥60, agree-
ment remained high for R(t) derived from sentinel cases age <60 and
other R(t) series derived from indicators reflecting ages <60. Agree-
ment was lower between sentinel case R(t) and R(t) from other indi-
cators reflecting ages ≥60 (Supplementary Fig. S10).

Of 21,046 specimens meeting all other criteria to be sentinel
samples, 13,952 had a symptom onset date four or fewer days prior to
their specimen collection date (65.2%) and 16,271 hada symptomonset
date seven or fewer days prior to their specimen collection date
(76.0%) (Supplementary Fig. S11). Varying the inclusion criteria for
sentinel samples from symptom onset ≤3 days prior to specimen col-
lection to symptom onset ≤7 days prior to specimen collection did not
appreciably change retrospective agreement between R(t) derived
from sentinel cases and R(t) derived from other indicators (Supple-
mentary Fig. S12). During the first three months of deployment, var-
iation in testing volume was accounted for by employing a
subsampling technique wherein only sentinel cases from a random
sample of 40 sentinel samples collected each day were considered.
This technique did not improve retrospective agreement between R(t)
derived from sentinel cases and R(t) derived from other indicators
(Supplementary Fig. S13).

Evaluation of agreement between R(t) series with a continuous
metric (Spearman’s ρ) closely qualitatively matched findings by our
discrete agreement metric (Supplementary Figs. S7–S13).

Lead time estimation
The lead time of sentinel cases over all cases, ED visits, and hospital
admissions was evaluated by calculating cross-correlation functions
between each case, visit, or admission timeseries in relation to the
other timeseries. Changes in sentinel cases did not precede changes in
any hospital-based indicators by any identifiable lead time (Fig. 4C).
Changes in sentinel TPR returned positive lead times over cases and
hospital-based indicators, albeit with low correlation and high uncer-
tainty. Cases from the general population led COVID ED visits by about
four days [lead time of 3 (−1, 8) days, peak ρ =0.932]. CLI ED visits led
CLI admits by about four days [lead time of 4 (0, 7) days, peak
ρ = 0.961] and COVID ED visits led COVID admits by about three days
[lead time of 3 (−1, 6) days, peak ρ =0.973].

Operational recency evaluation
To evaluate operational performance of sentinel surveillance with
recently symptomatic patients, we first corrected for right-censoring
of sentinel cases using epidemic nowcasting30–35, drawing from
empirical data collected during the study period to estimate the pro-
portional completeness of recent data (Fig. 5A). We tested three
models of proportional completeness, drawing fromdata from the last
30 days (past month retrospective), all previous dates in the study
period (all-time retrospective), or all previous dates in the study period
on the same day of the week as the date being nowcasted (day-of-week
model). For each evaluation date in the study period, we applied each
model of proportional completeness, then evaluated R(t) (Fig. 5B).
Nowcasting was not performed for hospital admissions due to incon-
sistent backfilling of hospitalization data across the study period.
Where nowcasting can be applied to hospitalization data, counts are
right-censored over a much larger window than with sentinel surveil-
lance, engendering greater uncertainty in nowcasted estimates30,31.

Operationally, complete estimates of R(t) were available for a
given date nine days earlier with sentinel surveillance data than with
hospitalization data. With nowcasting, sentinel surveillance showed
increases in R(t) weeks before the same increase was registered by
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hospital data. For example, on an evaluation date of February 27, 2021,
nowcasted sentinel case counts suggested that R(t) had risen past 1.0
on February 20, 2021; for this particular increase in transmission,
COVID-confirmed admissions only returned R(t) > 1 on evaluation date
March 17, 2021, 18 days later. We calculated false positive and false

negative rates of real-time R(t) estimates by comparing against R(t)
values derived from uncensored sentinel case counts (Fig. 5C). Deriv-
ing R(t) from censored counts frequently underestimated recent
reproductive rates, with a false negative rate (R(t)censored < 1 whereas
R(t)uncensored ≥ 1) of 0.4 and a false positive rate (R(t)censored≥ 1 whereas
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R(t)uncensored < 1) of 0.0. Nowcasting decreased the false negative rate
at little expense to the false positive rate. Nowcasting with an all-time
retrospective model returned a lower false positive rate than now-
casting with a past-month retrospective or day-of-week model.

Discussion
This study used convenience data from community-based testing
programs to opportunistically evaluate a potential outpatient sen-
tinel surveillance system for COVID-19 based on the diagnostic
testing results of recently symptomatic individuals. Although the
daily volume of sentinel samples fluctuated substantially over the
study period and the sentinel population was not demographically
representative of Chicago’s population at-large, R(t) estimated from
sentinel cases was in good agreement with R(t) estimated from
hospital data in the general population. Since the COVID-19 pan-
demic did not affect various racial and ethnic groups to the same
extent in Illinois17, and the sentinel population was more Hispanic/
Latino than the general population, the small divergence between
sentinel R(t) and hospital-based R(t) could indicate true differences
in transmission dynamics between the sentinel and general popu-
lations. The larger proportion of Non-Hispanic Black Chicago resi-
dents in sentinel samples compared to all tests collected at sentinel
sites (Supplementary Fig. S5) also reflects the potential for demo-
graphic bias during the selection of sentinel samples. However, the
general agreement in sentinel R(t) and hospital admissions R(t) is
impressive given that the sampling frame of the sentinel cases is
more biased than hospital admissions (ignoring age bias) though
less biased than most other types of surveillance.

Generally, adjusting sentinel cases for testing volume (sentinel
TPR) did not improve agreement with other indicators. This could be
reflective of broader biases in using TPR as a metric. For instance, in
regular outpatient diagnostic testing, TPR can go up independent of
incidence because of decreases in test availability or in test demand
(e.g., during the snowstorms in Chicago in February 2021 when access

to testing was physically more challenging). This is because in periods
where testing is more restricted, only those that are most likely to test
positive (e.g., known prior contact or actively symptomatic) are likely
to access a test. Conversely, TPR may also fall independently of inci-
dence if a large volume of diagnostic tests is suddenly made available
to a population with limited access to testing. It is possible that the
lower agreement fromTPR in the earlier part of the study period is due
to more frequent changes in test site hours and locations (Fig. 1C,
Supplementary Figs. S2 and S8).

Because symptoms are expected to develop an average of 5.5 days
after infection and hospital admission occurs an average of 11.1 days
after infection18,21, the naïve expectation for retrospective lead time of
trends in sentinel cases over trends in hospital admissions was
5–6 days. Retrospective cross-correlation analysis revealed no identi-
fiable lead time between sentinel cases and hospital-based indicators.
A combination of factors could contribute to this observation. First,
the low number of daily counts obtained from sentinel surveillance
adds significant noise, obscuring potential trends in lead time. Second,
because delays between infection and symptom onset or between
infection and hospitalization both follow skewed distributions (Sup-
plementary Fig. S14), themedian leadwill be less than 5.5 days (i.e., less
than the mean lead time). Third, although the use of smoothing win-
dows was necessary in this analysis to remove day-of-week effects,
smoothing blurs temporal changes in each indicator, which could
complicate extracting trends through cross-correlation analysis.
Finally, it is possible that the true distributions of days from infection
to hospitalization and days from infection to symptom onset changed
over the courseof the study periodwith the arrival of different variants
in Chicago. Estimates of lead time between an adjusted sentinel case
timeseries (sentinel TPR) andhospital-based indicators, whilepositive,
were highly uncertain. Sampling effort fluctuated substantially during
the study period, and increasing the number of sentinel samples col-
lected relative to the size of the general population would likely pro-
duce more precise estimates of lead time.
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Fig. 5 | Operational performance of sentinel surveillance. A Sentinel case counts
for a representative evaluation date of February 27, 2021. Black dots: sentinel case
counts fully accessible on the evaluation date. Gray dots: sentinel case counts
partially accessible or not yet accessible on the evaluation date. Red dots: right-
censored sentinel case counts available on the evaluation date. Blue dots: median
nowcasted sentinel case counts with a past-month retrospective model. Blue sha-
ded region: 95% confidence interval for nowcasted counts. B R(t) derived from

uncensored sentinel cases, right-censored sentinel cases, nowcasted sentinel cases,
and COVID-confirmed admissions for an evaluation date of February 27, 2021. Solid
lines indicate median estimates of R(t). Shaded regions represent 95% confidence
intervals about the median. C False negative and false positive rates of R(t) derived
from right-censored and nowcasted sentinel cases when compared to R(t) derived
from uncensored case counts (n = 238 evaluation dates). Error bars represent the
sample proportion ±1 standard deviation of the sample proportion.
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R(t) estimates are sensitive to serial interval estimates. The serial
interval distribution and delay distributions used were derived from
empirical research conducted before the global emergence of the
Delta variant (Pango lineage B.1.617.2), which is suspected to spread
with a shorter serial interval than the strains in circulation at the timeof
these studies36,37. For the two-week period ending on June 5, 2021, the
CDC estimated the national proportion among incident infections of
all variants carrying a L452R spike protein substitution to be 15.3%,
suggesting that the Delta variant’s impact on the serial interval was
likely minor across the study period38. The serial interval is also
expected to change with implementation of non-pharmaceutical
interventions (NPIs), which included back-and-forth impositions and
relaxations of mask mandates and indoor dining restrictions during
the study period39. However, the actual extent to which NPIs changed
the behavior of Chicago residents is unknown, and it is unclear how to
include changes in NPIs in estimates of the serial interval. R(t) esti-
mates are also sensitive to delay distribution estimates, and erroneous
assumptions in the delay distribution of one indicator can harm the
accuracy of pairwise comparisons of R(t) and other indicators. For
instance, if trends in sentinel cases and admissions were identical, but
the assumed distribution from infection to symptom onset (the delay
distribution used for sentinel cases) were too short, increases in R(t)
derived from sentinel cases would appear later in time than increases
in R(t) derived from admissions.

The timeliness and accuracy of recent admission and ED visit data
is limited by the completeness and frequency with which individual
hospitals and hospital systems report their data to public health
agencies. Many COVID-confirmed hospitalizations are only reported
several weeks after admission; for instance, three months after the
conclusion of the study period, 6294 COVID-confirmed hospitaliza-
tions were newly recorded for dates during the study period. Sentinel
surveillancewith a trusted set of outpatient diagnostic testing vendors
would circumvent this issue, ensuring that case counts are complete as
soon as test results are returned and that the most recent estimates of
epidemic growth are timely and accurate.

The operational recency advantage of sentinel surveillance was
apparent duringdeployment inChicago.Acute carehospitals in Illinois
report emergency department and inpatient visit data to IDPH daily.
Once per week, IDPHmatches the hospital patients to the COVID cases
recorded in the Illinois National ElectronicDisease SurveillanceSystem
(I-NEDSS) and sends the results for Chicago residents to CDPH. Typi-
cally, CDPH is able to analyze the hospital data two days after the
match is performed. As a result, hospital admissions are developed
once per week and with about 5 days delay (e.g., a dataset made
available on Friday would only include hospital admissions up to the
preceding Sunday). On the other hand, complete data from sentinel
testing usually became available after about two days (e.g., a dataset
made available on Friday would include test results with specimen
collection dates up to the preceding Wednesday). Thus, on a typical
evaluation date, the most recent estimates of R(t) from hospital
admissions were for 16 days prior, whereas the most recent estimates
of R(t) from sentinel surveillance were for seven days prior. These
reporting lags added to the intrinsic lag between symptom onset and
hospitalization to create an aggregate advantage in operational
recency of nine days for sentinel surveillanceover hospital admissions.

IDPH submits de-identified information more frequently to the
National Syndromic Surveillance Program (NSSP) which CDPH can
access through the Electronic Surveillance System for the Early Noti-
ficationof Community-Based Epidemics (ESSENCE). However, Chicago
residents and non-Chicago residents cannot be disambiguated in this
data, as it is de-identified and aggregated at the hospital level. If
Chicago-resident-only data were available on a more frequent basis
such that the reporting delaywere only 1–2 days, as opposed to 5 days,
outpatient sentinel surveillance would retain an operational recency
advantage of about 5–6 days.

The operational recency of sentinel surveillance can be compro-
mised by atypical operational delays that do not affect other indica-
tors. During the study period, although typical wait times for complete
sentinel testing data were around two days, delays in test turnaround
time occasionally further extended this wait. In the most extreme
instance, in February 2021, inclement weather closed several sentinel
testing sites and prolonged the delivery of specimens to vendor
laboratories, causing wait times for sentinel data in excess of
seven days.

Deployment of outpatient symptomatic sentinel surveillance
relies on robust and consistent collection of symptom data (including
date of symptom onset) across time and across sites. Despite federal
guidance40, such symptom data has been very poorly collected at US
outpatient diagnostic testing sites. In this study, collectionof symptom
data was not consistent between community-based testing sites and
thus symptomatic individuals could only be identified by their own
reporting of a symptomonset date rather thanbymeeting a consistent
definition of “symptomatic”. Stringent standards for collection of
symptom data should be established prior to and enforced during
deployment of this method of sentinel surveillance. In settings where
symptom status is well-collected but symptom onset date collection is
relatively incomplete, date of symptom onset could feasibly be
imputed formissing values41. Even with these limitations related to the
sentinel population chosen for this study, estimates of community
transmission derived from sentinel cases approximated those of
established, hospitalization-based indicators – with a population
based sample and standardized collection of symptom information,
such as the UK’s Office for National Statistics Infection Survey42, the
performance and value of this sentinel surveillance model may be
enhanced. This approach could be aided by voluntary home-based,
app-enabled symptom data collection, such as with the UK’s ZOE
Health Study43, or an app that complements at-home antigen-based
testing and inquires about symptomonset. Integrating sequencing and
virus subtyping into a sentinel surveillance with consistent symptom
data collection would also rapidly provide information on symptom
presentation of emerging variants. Such a sentinel surveillance system
would be continuously useful for its advantage in operational recency
but would be especially useful in scenarios of low outpatient testing
availability (as symptomatic individuals would be far more likely to
seek a test) and in scenarios where mass vaccination lowers rates of
severe outcomes and limits the statistical power of hospital-based
indicators.

In Chicago, the low volume of sentinel samples ultimately limited
the precision of trends estimated from sentinel surveillance. However,
that even a low-volume, unrepresentative, and opportunistic out-
patient sentinel surveillance performed well strongly suggests that a
deliberate sentinel surveillance system, with high testing volume,
routine reporting of date of symptom onset, and representative sam-
pling of outpatient providers, would provide robust early warning.
With sufficient sentinel sampling volume and consistency of site
availability to residents over time, neighborhood-level R(t) estimations
should be possible. Under conditions of exponential growth, even
1–2 weeks’ early warning could save lives.

Methods
Data collection for sentinel surveillance
Chicago is an urban area of 2.7million people located in the central US
state of Illinois44. From May 13, 2020, CDPH and IDPH operated
community-based SARS-CoV-2 diagnostic testing sites throughout
Chicago. These sites were primarily intended to increase access to
diagnostic testing among communities disproportionately affected by
COVID-19 and thosewith the least access to diagnostic testing through
other providers27. This study focuses on the period from September
27, 2020, to June 13, 2021, when these sites held consistent hours and
reliably collected information on symptoms. In this period, CDPH-
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operated static sites at eight locations (Fig. 2, sites a–h) and IDPH
operated sites at two locations (Fig. 2, sites i–j). CDPH also held 167
single-day mobile testing site events during this period, during which
testing vans were positioned outside a community venue for 4–6 h.
Hours of operation varied by test site and day of week. In March 2021,
IDPH sites moved from offering testing all seven days a week to just
three days a week. All sites, mobile and static, solely offered anterior
nares molecular (PCR) diagnostic tests. All individuals receiving a test
were asked to report recent symptoms and provide the date of
symptom onset. Those testing at IDPH sites were asked to report the
presence or absence of symptoms from COVID-19 symptom list from
the Centers for Disease Control and Prevention (CDC)45. Those testing
at CDPH siteswere asked only to report the presence or absence of any
symptoms without reference to any list of expected symptoms of
COVID-19. Due to this discrepancy in the collection of symptom data,
symptom status for sentinel surveillance was determined by the pre-
sence of absence of a symptom onset date. All Chicago residents
reporting symptom onset within four or fewer days of their specimen
collection date were included in the sentinel samples. Sentinel cases
were defined as sentinel samples with a positive test result (Supple-
mentary Fig. S1). Specimens were collected at testing sites and trans-
ported to an off-site laboratory for processing via PCR. Testing
vendors notified patients of results electronically as soon as results
were available. During the study period, the median turn-around time
from specimen collection to result notification was 2 days, with 95% of
tests turned around between 1 and 4 days. Data was pulled on
July 6, 2021.

Other data sources
COVID−19-confirmed hospital admissions among Chicago residents,
COVID-like illness (CLI) emergency department visits among Chicago
residents, COVID−19-confirmed emergency department visits among
Chicago residents, and all cases among Chicago residents were
obtained from the City of Chicago Public Data Portal46,47. CLI admis-
sions among Chicago residents were obtained from IDPH on August
25, 2021. Demographic data by ZIP code and citywide were obtained
from the 2019 U.S. Census Bureau American Community Survey
through the City of Chicago Public Data Portal44.

Data on diagnostic tests in the general population were obtained
from the Illinois National Electronic Disease Surveillance System (I-
NEDSS) database and included PCR and antigen tests, but not ser-
ological tests, performed in Illinois on Chicago residents between
September 27, 2020, and June 13, 2021. Data were reported as daily
total tests by single year of age and race/ethnicity. Ages ranging from0
to 116 years were considered valid, and others were reassigned null
values. Racial/ethnic values included Hispanic/Latino, White non-His-
panic, Black or African American non-Hispanic, Asian non-Hispanic,
Native Hawaiian or Other Pacific Islander non-Hispanic, American
Indian or Alaskan Native non-Hispanic, Other non-Hispanic, and
Unknown. Due to small sample sizes, data rows indicating Native
Hawaiian or Other Pacific Islander, American Indian or Alaskan Native,
or multiple racial/ethnic categories were reassigned as Other non-
Hispanic.

R(t) estimation
R(t) was estimated from case time series with epyestim v0.128, a Python
implementation of the method developed by Cori et al.29. All R(t)
estimates used epyestim’s default SARS-CoV-2 serial interval distribu-
tion, derived from Flaxman et al.48, and a final rolling average window
of 14 days (r_window_size = 14). Without knowledge of the date of a
case’s actual date of infection, this R(t) estimationmethod attempts to
infer the date of infection for each case based on the case’s date of
presentation (e.g., date of symptom onset, date of specimen collec-
tion, date of hospital admission, etc). To estimate the date of infection,
epyestim uses a “reporting delay distribution”, which represents an

estimated distribution of days between infection and this presentation
date (defined in Table 1 for each data type). For sentinel data, the
reporting delay distribution is the time from infection to symptom
onset, which was approximated with a gamma distribution with shape
factor 5.807 and scale factor 0.948 (mean 5.51 days)21. The time from
symptom onset to hospitalization or emergency department visit was
approximated with a gamma distribution with shape factor 1.104 and
scale factor 5.074 (mean 5.60 days) (Supplementary Fig. S14)18. The
reporting delay distribution for hospital admissions and emergency
department visits represents the total time from infection to hospita-
lization andwas thusmodeled as the sumof the infection-to-onset and
onset-to-hospitalization distributions using a gamma distribution with
shape factor 3.667 and scale factor 3.029 (mean 11.11 days) (Supple-
mentary Fig. S14). For cases in the general population, the reporting
delay distribution represents the time from infection to test (date of
specimen collection). This was modeled with epyestim’s default
reporting delay distribution, derived from a convolution of the incu-
bation timedistribution and the onset to test distributionderived from
Brauner et al. (mean 10.33 days) (Supplementary Fig. S14)49.

To adjust for changing sentinel testing volume over the study
window, an additional sentinel time series, sentinel test positivity rate
(sentinel TPR), was calculated for each date of symptom onset by
dividing the total number of sentinel cases by the total number of
sentinel samples, multiplied by the average number of daily sentinel
samples across the study window (53.9 samples/day).

Lead time estimation
To estimate the lead time of one metric over another, pairwise cross-
correlation functionsweremadebetween counts timeseries of sentinel
cases, sentinel TPR, cases in the general population, CLI emergency
department visits, COVID-19-confirmed emergency department visits,
CLI hospital admissions and COVID-19-confirmed hospital admissions.
A seven-day centered moving average was applied to each raw time-
series to eliminate day-of-week effects. For each cross-correlation
function, one timeserieswas iteratively displacedby −25 to 25 days and
Spearman’s ρwas calculated between the displaced and non-displaced
timeseries. All calculations of Spearman’s ρ were supplemented with
1000bootstrapped estimates toproduce95%confidence intervals of ρ
at each lead time. The lead time at which Spearman’s ρ achieved its
maximum was considered the point estimate of lead time for that
comparison. The uncertainty in the lead time was estimated by taking
theminimumandmaximum lead times atwhich the97.5th percentile of
bootstrapped estimates of Spearman’s ρ were greater than the max-
imum nominal correlation.

Operational recency evaluation and nowcasting
Epidemic nowcasting30–35 was used to correct for recent under-
reporting in sentinel case counts. For each date t, we estimated the
proportional completeness of counts on dates t − 5, t − 4, t − 3, and
t − 2 at the time of evaluation to inflate the sentinel case counts on
those dates prior to calculating R(t). Proportional completeness was
estimated from a retrospective window of onemonth, all time, or by
day-of-week. For the past-month retrospective model, the retro-
spective window used was the 30 dates of symptom onset imme-
diately preceding t − 5. For the all-time retrospective model, the
retrospective window used was all dates in the study window pre-
ceding t − 5. For the day-of-week retrospective model, the retro-
spective window used was all dates in the study window preceding
t − 5 that shared the same day of the week as the date being now-
casted. If the censored count on any date to be nowcasted was zero,
a pseudo-count of 1 was used. Each proportional completeness
model was evaluated for every potential evaluation date in the study
period. On each date t, right-censored counts and all three sets of
nowcasted counts were used to estimate R(t). These estimates of
R(t) were compared to estimates of R(t) derived from uncensored
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counts. Instances where the most recent R(t)nowcast < 1 but the most
R(t)uncensored ≥ 1 were counted as false negatives. Instances where
the most recent R(t)nowcast ≥ 1 but the most recent R(t)uncensored < 1
were counted as false positives.

Ethical review
Research methods were performed in accordance with relevant
guidelines and regulations. The Northwestern University Institutional
Review Board has ruled that this study does not constitute human
subjects research.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Restrictions apply to the availability of sentinel surveillance data
and individual-level diagnostic tests from I-NEDSS, which contain
identifiable private health information. Interested parties should
complete CDPH (https://www.chicago.gov/city/en/depts/cdph/
provdrs/health_data_and_reports/svcs/data-request-form.html) or
IDPH (https://dph.illinois.gov/content/dam/soi/en/web/idph/files/
forms/formsoppsdischarge-data-request-form.pdf) data request
forms to inquire about access to the I-NEDSS database and data use
agreements; IDPH and CDPH will determine access on a case-by-
case basis. Public data on cases, testing, ED visits, and hospital
admissions are available from CDPH’s Public Data Portal (tests:
https://data.cityofchicago.org/Health-Human-Services/COVID-19-
Cases-Tests-and-Deaths-by-ZIP-Code/yhhz-zm2v, cases and hospi-
talizations: https://data.cityofchicago.org/Health-Human-Services/
COVID-19-Daily-Cases-Deaths-and-Hospitalizations/naz8-j4nc, ED
visits: https://data.cityofchicago.org/Health-Human-Services/
COVID-Like-Illness-CLI-and-COVID-19-Diagnosis-Emer/qwib-edaw).

Code availability
All code used for data analysis is available at https://github.com/
numalariamodeling/chicago_sentinel_surveillance (https://doi.org/10.
5281/zenodo.7041699)50.
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