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Square-root higher-order Weyl semimetals

Lingling Song 1, Huanhuan Yang 1, Yunshan Cao1 & Peng Yan 1

The mathematical foundation of quantum mechanics is built on linear
algebra, while the application of nonlinear operators can lead to outstanding
discoveries under some circumstances, such as the prediction of positron, a
direct outcome of the Dirac equation which stems from the square-root of
the Klein-Gordon equation. In this article, we propose amodel of square-root
higher-orderWeyl semimetal (SHOWS) by inheriting features from its parent
Hamiltonians. It is found that the SHOWS hosts both “Fermi-arc” surface and
hinge states that respectively connect the projection of the Weyl points on
the side surface and arris. We theoretically construct and experimentally
observe the exotic SHOWS state in three-dimensional (3D) stacked electric
circuits with honeycomb-kagome hybridizations and double-helix interlayer
couplings. Our results open the door for realizing the square-root topology
in 3D solid-state platforms.

Nearly all the operators encountered in quantummechanics are linear
(or antilinear) operators, such as the rotation, translation, parity, time
reversal, etc, which allows us to construct the mathematical basis of
quantum mechanics formulated on linear algebra. Square-root
operator is one of the few exceptions. Historically, Paul Dirac
derived the Dirac equation through a square-root operation on the
Klein-Gordon (KG) equation todescribe all spin-12massive particles that
inherit the Lorentz-covariance of the parent KG equation1–3. The
approach has inspired Arkinstall et al.4 to propose the concept of
square-root topological insulator (TI) by taking the nontrivial square-
root of a tight-binding (TB) Hamiltonian in periodic lattices. The most
appealing feature of square-root TI is that it inherits the nontrivial
nature of Bloch wave function from its parent Hamiltonian. The
square-root TI was subsequently observed in a photonic cage5.
Recently, the square-root operation has been applied to higher-order
topological insulators (HOTIs) that allow topologically robust edge
states with codimension larger than one6–16. Besides the gapped solu-
tion, e.g., the electron-positron pair, the Dirac equation allows another
crucial gapless ormassless solution calledWeyl fermion17 that plays an
important role in quantum field theory and the standard Model.
Althoughnot yet observed among elementaryparticles,Weyl fermions
are shown to exist as collective excitations in Weyl semimetals18–21.
For the conventional Weyl semimetal, the three-dimensional (3D)
topology features two-dimensional (2D) gapped surface states that
connect the projection ofWeyl points on the surface18–21. Very recently,

higher-order Weyl semimetal was reported which supports both
the 2D surface Fermi arcs and the one-dimensional (1D) hinge state22–29.
It is thus intriguing to ask if the square-root operation can apply to
semimetals30 or higher-order semimetals, and particularly how to
realize these exotic states in experiments.

In this article, we propose a TBmodel of the square-root higher-
order Weyl semimetal (SHOWS) by a vertical stacking of 2D square-
root HOTIs with interlayer couplings in a double-helix fashion. It is
found that the SHOWS hosts both 2D surface arc states and 1D hinge
states with the topological feature being fully characterized by the
quantized bulk polarization or edge invariant. We construct the TB
model in stacked honeycomb-kagome (HK) hybridized inductor-
capacitor (LC) circuit networks. By performing both the impedance
and voltagemeasurements, we identify the fingerprint of the SHOWS
by directly observing the Weyl points, the “Fermi arc” surface states,
and the hinge states. It is revealed that both the surface states and the
hinge states ideally connect the projections of the Weyl points
on side surface and arris respectively, consistent with theoretical
calculations.

Results
Model
Figure 1a shows the lattice structure of the proposed model, the
square of which can be viewed as the direct sum of a stacked hon-
eycomb and a breathing kagome lattices (Fig. 1b and the analysis in
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Supplementary Note 1). The TB Hamiltonian is given by
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where a† (a), b† (b), c† (c), d† (d), and e† (e) are the creation (annihila-
tion) operators on the site 1-5, respectively, 〈m, n〉 and 〈〈m, n〉〉 label
the nearest-neighbor and next-nearest-neighbor coupling, respec-
tively, and ta, tb, and tz are the hopping parameters. H.c. represents
the Hermitian conjugate. In Fig. 1a, the nearest-neighbor sites of
node 1(2) are nodes 3,4,5 with ta, tb being the intralayer hopping
parameters. The next-nearest-neighbor sites of node 2 are nodes 2, 3
and 4 in the adjacent layer with tz being the interlayer hopping
parameter. Without loss of generality, we assume all hopping
paramaters are positive. In momentum space, the Hamiltonian can
be expressed as

H=
O2,2 Φy

k

Φk O3,3

 !
, ð2Þ

whereO2,2 andO3,3 are the 2 × 2 and 3 × 3 zeromatrix, respectively, and
Φk is the 3 × 2 matrix

Φk =

ta tb +2tz cosðk � a3Þ
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ta ½tb + 2tz cosðk � a3Þ�e�ik�a2

0
B@

1
CA: ð3Þ

Here k = (kx, ky, kz) is the wave vector, and a1 =
1
2 x̂ +

ffiffi
3

p
2 ŷ, a2 = �

1
2 x̂ +

ffiffi
3

p
2 ŷ and a3 = ẑ are three basic vectors.
By taking the square of the original Hamiltonian (2), we can con-

veniently obtain the dispersion relation of ½H�2 (see Supplementary
Note 1)
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with t0b = tb +2tz cosðkzÞ and ΔðkÞ= ð1 + eik�a1 + eik�a2 Þ=3. The band
structure of the original Hamiltonian is thus given by εk = ±

ffiffiffiffiffiffi
Ek

p
. It is

found that the band structure closes at the twofold degenerate
points K± = (4π/3, 0, ± kzw), as shown in Fig. 1c, with kzw =
arccos[(ta − tb)/(2tz)] when ∣ta − tb∣ < 2tz. It is straightforward to verify
that their time-reversal counterparts are G0

± = ð�4π=3,0, ± kzwÞ, and
their equivalence points locate at G±, G

00
± , K

0
± , and K

00
± , as shown in

Fig. 1d. By evaluating the topological charge CFS, we find that the
hollow and solid circles plotted in Fig. 1d denote theWeyl points with
opposite topological charges, i.e., + 1 and − 1, respectively (see
Supplementary Fig. 1). In addition, we derive the low-energy effective
Hamiltonian near the degeneracy points, and obtain a linear crossing
in the vicinity of the Weyl points (Supplementary Note 2). The
computation of Berry curvatures are plotted in Supplementary
Fig. 1c, d, which indeed demonstrates that the Weyl points manifest
as singularities (source and drain), a close analog to the magnetic
monopole in momentum space.

For a system with the rotational symmetry (it is C3 in our model),
the bulk polarization is the appropriate invariant to characterize the
topological features. For the nth band, the bulk polarization7 as a
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Fig. 1 | 3D stacked HK TB model. a Illustration of an infinite 3D stacked HK TB
model. The unit cell including five nodes is represented by the dashed black
rhombus. The intralayer hoppings are ta (green) and tb (blue) in the x − y plane,
whereas the interlayer double-helix hopping is tz (brown). Insets: Right view of the
cell. b The equivalence between the squared Hamiltonian of the HK circuit and its

parents. c The bulk dispersion along the kz direction with (kx, ky) = (4π/3, 0). The
dashed blue line indicates the position of the degenerate points. d The first Bril-
louin zone and the distribution of the Weyl points. The hallow and solid circles
represent the Weyl point with the charge ± 1. e Bulk polarization p1 as a function of
kz. For TB calculations in c and e, we set ta =0.5, tb = 1, and tz =0.5.
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function of kz is written as

2πpnðkzÞ= arg θnðkÞ ðmod 2πÞ, ð5Þ

where k = (4π/3, 0, kz), and θnðkÞ= uy
nðkÞUkunðkÞ with un(k) the nth

eigenvector and the U-matrix
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Here we are particularly interested in the 1st (or 5th) band,
because the Weyl points only appear in the intersecting between the
first and second energy bands (or between the fourth andfifth energy
bands). As shown in Fig. 1e, p1 takes 1/3 for ∣kz∣ < ∣kzw∣, and 0 for ∣kz∣ >
∣kzw∣. The topological phase transition occurs at kz = ± kzw. A non-
vanishing p1 indicates the very presence of the higher-order topolo-
gial states. As a comparison, we also calculate the edge topological
invariant following the method of10,31. We identify the same phase
transition point at ± kzw, as shown in Supplementary Fig. 3b. The
present model unambiguously demonstrates the bulk-hinge corre-
spondence and manifests itself as an ideal SHOWS (Supplementary
Fig. 2d). It is noted that a pair of Weyl points emerge with opposite
wave vectors (Fig. 1c) because of the inversion-symmetry breaking in
our model. It is worth mentioning that the present model also allows
a 3D square-root HOTI phase (Supplementary Fig. 2e–g). Electronic
circuits are an excellent platform to study topological physics32–43. In
what follows, we construct the TB SHOWSmodel in 3D stackedHK LC
circuits.

Circuit realization of SHOWS
We consider a stacked 10-layer HK circuit with N =2860 nodes,
as depicted in Fig. 2a. The dots and lines represent nodes and
capacitors, respectively. The circuit dynamics at frequency ω
obeys Kirchhoff’s law Ia(ω) =∑b Jab(ω)Vb(ω), with Ia the external

current flowing into node a, Vb the voltage of nodeb, and Jab(ω) being
the circuit Laplacian
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with J0A = 3iωCA − 1/(iωLA), J0B = 3iω(CB + 2CZ) − 1/(iωLB), J0C = iω(CA +
CB + 2CZ) − 1/(iωLC), JA = iωCA, JB = iωCB, JZ = iωCZ and the subscript of
the dots indicating the column/row numbers. Under the resonance
condition ω0 = 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3CALA

p
= 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3CB +6CZ ÞLB

p
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ðCA +CB +2CZ ÞLC

p
,

the circuit Laplacian (7) exactly recovers the TB Hamiltonian by the
following one-to-one correspondence: −ω0CA↔ ta, −ω0CB↔ tb, and −
ω0CZ↔ tz. To explore the square-root topological semimetal phase, we
set CA =CB/2 = 0.5 nF, CZ =0.5 nF and LA = 30μH, LB = 7.5μH, and
LC = 18μH in the following calculations, if not stated otherwise.

To facilitate the detection of thehinge states through adirect two-
point impedance measurement39, we connect a grounded inductor
LG = 22μH to all nodes to move the hinge modes to the zero admit-
tance without modifying their wave functions6. By measuring the
impedance, one can precisely characterize the wave function of the
zero-admittance hinge states in circuit6,39. Figure 2b exhibits the cor-
responding admittance spectrum, where the red, blue, and black dots
represent the hinge, surface, and bulk states, respectively. One can see
the three-fold degeneracy of the in-gap hinge states due to the C3

symmetry and generalized chiral symmetry6. In addition, the time
reversal symmetry dictates the bulk/surface states being singlet or
double-degenerate. The spatial distributions of eachmode are plotted
in Fig. 2c–e, from which one can straightforwardly distinguish them.

The photograph of 3D LC electric circuits fabricated on a printed
circuit board (PCB) is displayed in Methods. Our circuit is designed
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Fig. 2 | Finite-size circuit model. a Top view of a stacked 10-layer HK circuit with
2860 nodes. The green and blue segments represent the capacitors CA and CB,
respectively, and each node is grounded by capacitors and inductors with the
configurations shown in the insets. The finite-size equilateral triangular structure
with the zigzag edgewas chosen because one requires a uniformonsite admittance
for all nodes of the breathing kagome block that appears upon squaring the

Laplacian. b Admittances for CA =CZ =CB/2 = 0.5 nF, LA = 30μH, LB = 7.5μH, LC = 18
μH, and LG = 21.829μH. The red, blue, black symbols represent the hinge, surface,
bulk states, respectively. Spatial distribution of the wave functions of the normal-
ized hinge state (jn = 3.534 × 10−7Ω−1) (c), surface state (jn = −0.0003762Ω−1) (d),
and bulk state (jn =0.001042Ω−1) (e).
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by Altium Designer. The connection between different layers of the
circuit boards is through flexible flat cable. We choose electric ele-
ments CA =CB/2 = 0.5 nF, CZ =0.5 nF and LA = 30μH, LB = 7.5μH, LC =
18μH and LG = 22μH, the same as those for theoretical computations
above, but with a practical 2% tolerance. The resonant frequency is
then f c = 1=ð2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3CALA

p
Þ= 755 kHz. We first measure the impedance

between three representative nodes and the ground as a function of
the exciting frequency with the impedance analyzer (Keysight
E4990A). Experimental results are shown in Fig. 3b, which agree well
with theoretical calculations plotted in Fig. 3a. Here we select the
1432nd, 1564th, and 1711st nodes (specified in Fig. 3c) to characterize
the properties of the hinge, surface, and bulk states, respectively. We
then measure the spatial distribution of the impedance and voltage
over the circuit (Fig. 3d, f), which compare reasonably well with the
theoretical results plotted in Fig. 3c, e.

To characterize the hinge states more carefully, we project the
dispersion to the kz axis, as shown by the color map in Fig. 4a. In
theoretical calculations, one can conveniently set different admit-
tances jn and analyze the spectrum. For circuit experiments, we can
shift an arbitrary admittance to zero by adjusting the value of LG. This
is what we have done formeasuring the hinge states. To demonstrate
another experimental technique, we, alternatively, tune the fre-
quency to measure the Fermi-arc surface state with the same circuit
structure. Fortunately, by mapping Kirchhoff’s law to the Schrö-
dinger equation in circuit40,41, we obtain the frequency dispersion
(see Supplementary Note 5) that significantly facilitates our experi-
mental measurements. A continuous variation of the frequency can
be seen as an adiabatic transformation of ourmodel, with everything
else kept constant. Experimentally, we impose a voltage source in the
middle of one hinge of the circuits, and scan the voltage distribution
along the hinge. Specifically, we input a signal vs(t) = 5sin(ωt) V at a
hinge node with the arbitrary function generator (GW AFG-3022),
and then collect the voltage v(ω, z) with frequency f =ω/(2π) ranging
from 500 kHz to 1600 kHz by using the oscilloscope (Keysight
MSOX3024A). We perform the Fourier transformation on the v(ω, z)
and obtain the projected dispersion along the kz direction, shown by
the color map in Fig. 4b. It can be seen that the hinge states connect

two Weyl points at a resonant frequency around 860 kHz and
1441 kHz, which perfectly agrees with the simulation results marked
by the solid red circles.

Furthermore, it is known that the “Fermi arc” surface state is an
unique feature of Weyl semimetals. The Weyl points emerge at jn = ±
0.004082Ω−1 (shown in Fig. 4a), which corresponds to frequencies
f = 835 and 1441 kHz in Fig. 4b. However, f = 1441 kHz deviates a lot
from the working frequency of our selected electric components,
because the component values suffer a drastic change (the values of
electric components depend on the frequency). So, we only consider
f = 835 kHz to display the complete “Fermi arc” (Fig. 4d). Figure 4c
shows the “Fermi arc” surface dispersion at jn =0.004082Ω−1. Fig-
ure 4d shows the “Fermi arc” surface dispersion at f = 835 kHz. Here, we
determine kx by kx = 2πm/N, with m = 1, 2, 3, . . .N − 1, and N being the
number of grid points in the x̂ direction. The geometry used for the
experimental measurement in Fig. 4d is a side face of the triple prism.
We consider periodic boundary condition along ẑ direction and open
boundary condition along both x̂ and ŷ directions. The color map
represents the measured data and the white circles denote the simu-
lated equal-admittance contour, whereas the hollow and solid dots
denote the projections of Weyl points with opposite topological
charges + 1 and − 1, respectively. Our experiment therefore unam-
biguously supports the bulk-hinge correspondence and identifies the
emergence of SHOWS.

Discussion
To summarize, we proposed a TB model of the SHOWS and con-
structed it in 3D double-helix stacked LC circuits. Through the impe-
dance and voltage measurements, we directly observed both the 1D
prismatic states and the 2D “Fermi arc” surface states connecting the
projection ofWeyl points on the arris and side surface respectively, the
fingerprint of SHOWS. Comparing with the normal Weyl semimetal18,
the SHOWS supports robust hinge states, besides the arc surface
states. The emergence of Weyl pairs in SHOWS with both positive and
negative energies marks its difference from the conventional higher-
order Weyl semimetals22–29. One of the parent sublattices, i.e., the
honeycomb lattice, originally does not support any hinge states or flat-
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Fig. 3 | Impedances spectra, impedances and voltage distributions.
a Theoretical impedance versus the driving frequency in a disordered circuit.
bMeasured impedance as a functionof the frequency. Calculated (c) andmeasured

(d) impedance distribution of hinge state over the system. Hinge-state voltage
distribution in theory (e) and experiment (f).
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band states. The square-root operator, however, makes it inherit these
exotic states from the other parent sublattice. When the square-root
operation is applied, the spectra of the blocks are necessarily
degenerate44 and the degenerate boundary modes of the honeycomb
lattice are not topological but impurity states, stemming from onsite
energy offsets at the boundary nodes11. In the present model, by
adjusting the interlayer hopping tz to be breathing, we envision the
emergence of third-order corner states45.

From the application perspective, both hinge states and
surface states can be used to design robust solid-state devices. For

example, one can transmit the signal with extremely low loss46 and
devise the multiplexing47 and imaging48 with these topologically
boundary modes. Recently, it is shown that the topological LC circuit
can be fully integrated by complementarymetal-oxide-semiconductor
(CMOS) technology49,50, which may solve the outstanding challenges
met in the chip industry. Our findings may stimulate the effort in the
broad physics and materials community to look for real materials
that support SHOWS, since we have provided a rather general frame-
work to construct the Hamiltonian. It can be utilized to conduct
electric charge with faster velocity17,51. Since Weyl particles are

  

 

0

max

 

Fig. 4 | Hinge states and Fermi arcs. a The projected admittances along kz axis.
b Hinge-state dispersion connecting the projection of the Weyl points on kz axis.
The red dots and the color map in a and b represent the theory and experimental
hinge spectrum, respectively. c The numerical “Fermi arc” of the surface states at

jn =0.004082Ω−1, connecting the projections of the Weyl points on kx-kz surface.
d “Fermi arc” of the surface states at 835 kHz. The color map and the white circles
represent the experimental and theoretical results, respectively.

Fig. 5 | The printed circuit board. Side a and top b view of the printed circuit board in experiment.
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topologically protected from scattering19,20, they could be useful in
quantum information science. Onemayuse the square-rootmethod to
explore many interesting new ideas for further study. For example, in
electrical circuits, onemay discover the enchanting phenomenonwith
square-root operations in higher dimensions, e.g., four-dimension
(4D)52. One may apply square-root operation to the Floquet TIs or
semimetals, sustained by time-dependent periodic Hamiltonians50,53.
Beyond the square-root, one can generalize the approach to the 2n-
root weak, Chern, and higher-order topological insulators, and 2n-root
topological semimetals11,15. Our results thus pave the way to realizing
the square-root higher-order topological states in electric circuits, and
may inspire the exploration in other solid-state systems, such as cold
atoms, photonic crystals, and elastic lattices.

Methods
Circuit Laplacians and PCB images in experiments
The circuit dynamics at frequency ω obeys Kirchhoff’s law Ia(ω) =
∑b Jab(ω)Vb(ω), with Ia the external current flowing into node a, Vb the
voltage of node b, and Jab(ω) being the circuit Laplacian

JabðωÞ= iHabðωÞ= iω �Cab + δab

X
n

Can �
1

ω2La

 !" #
, ð8Þ

where Cab is the capacitance between a and b nodes, La is the
grounding inductance of node a, and the sum is taken over all
nearest-neighboring nodes. For a finite circuit, the Laplacian of the
circuit can be written as Eq. 7 in the main text. Considering the
resonance condition ω =ω0, one can obtain all eigenvalues jn
(admittances) and eigenfunctions ψn (n= 1,2,:::,N ). The geometry
used for the experimental is a triangular prism shown in Fig. 5a.
The geometry used for the theoretical calculations in Fig. 4a, b is
also a triangular prism (open boundary condition in kx − ky plane
and periodic boundary condition along kz direction) including 286
nodes in each layer. The geometry used for the theoretical results
in Fig. 4c, d, Supplementary Fig. 3a, Supplementary Fig. 4 and
Supplementary Fig. 5 is a slab (open boundary condition along ky
direction and periodic boundary condition along both x̂ and ẑ
directions) containing 155 nodes.

Table 1 lists electric elements used in experiments.
In the calculation of Fig. 2 in the main text, we consider the ideal

situation that all inductors and capacitors have no loss and disorder.
Considering the practical loss and tolerance of capacitors and induc-
tors, we introduced 2% disorder to each capacitor and inductor in
theoretical calculations thereafter. In experiments, we stacked ten
identical 2D printed circuit boards (PCBs) along the ẑ direction, as
shown in Fig. 5a. Figure 5b shows the top view of the PCBwith the inset
zooming in the design details of the electrical circuit.

Data availability
The data that support the plots within this paper and other findings of
this study have been deposited in the Zenodo database : https://doi.
org/10.5281/zenodo.6976420.

Code availability
We used the commercial software MATLAB to perform the numerical
calculations. Requests for the computation details can be addressed to
the corresponding author.
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