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Adversarial attacks and adversarial
robustness in computational pathology

Narmin Ghaffari Laleh1, Daniel Truhn2, Gregory Patrick Veldhuizen3,
Tianyu Han 4, Marko van Treeck1, Roman D. Buelow 5, Rupert Langer6,7,
Bastian Dislich6, Peter Boor 5, Volkmar Schulz 4,8,9,10 &
Jakob Nikolas Kather 1,3,11,12,13

Artificial Intelligence (AI) can support diagnostic workflows in oncology by
aiding diagnosis and providing biomarkers directly from routine pathology
slides. However, AI applications are vulnerable to adversarial attacks. Hence, it
is essential to quantify and mitigate this risk before widespread clinical use.
Here, we show that convolutional neural networks (CNNs) are highly suscep-
tible to white- and black-box adversarial attacks in clinically relevant weakly-
supervised classification tasks. Adversarially robust training and dual batch
normalization (DBN) are possible mitigation strategies but require precise
knowledge of the type of attack used in the inference. We demonstrate that
vision transformers (ViTs) perform equally well compared toCNNs at baseline,
but are orders of magnitudemore robust to white- and black-box attacks. At a
mechanistic level, we show that this is associated with a more robust latent
representation of clinically relevant categories in ViTs compared to CNNs. Our
results are in line with previous theoretical studies and provide empirical
evidence that ViTs are robust learners in computational pathology. This
implies that large-scale rollout of AI models in computational pathology
should rely on ViTs rather than CNN-based classifiers to provide inherent
protection against perturbation of the input data, especially adversarial
attacks.

Artificial intelligence (AI) with deep neural networks can extract clini-
cally relevant information from digitized pathological slides of
cancer1–3. Over the last several years, hundreds of studies have shown
that diagnostic, prognostic, and predictive models can achieve accu-
racy which is comparable with gold standardmethods4–7. Most studies
investigate applications in cancer diagnostics and treatment, where a
pathological diagnosis is a cornerstone and slides are ubiquitous8–10. It
is widely expected that AI systems will increasingly be used in clinical
practice for cancer diagnostics and biomarker identification over the
coming years11,12. Ultimately, such AI systems have the potential not
only to make existing workflows more efficient, but also enable phy-
sicians to recommend improved treatment strategies for cancer
patients13–16.

Considering this, it is crucial to ensure that the AI systems are
robust before they are used in diagnostic routines. AI systems should
be resilient to subtle changes in input data and yield a stable perfor-
mance, even when the input signal is noisy. In particular, this includes
adversarial attacks to the input signal, i.e., willful modifications to the
input data by a malicious actor. Adversarial attacks are a vulnerability
of AI systemswhich is a concern inmany domains17. Themost common
of these attack types are called white-box attacks. In such attacks, the
adversary has full access to the model’s parameters18. In contrast,
black-box attacks hide the original model from the attacker. Adver-
sarial changes to the original data are usually undetectable to the
human eye but are disruptive enough to causeAImodels tomisclassify
samples.
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Cybersecurity is highly relevant for the development and regula-
tion of software in healthcare19. AI systems in healthcare are particu-
larly vulnerable to adversarial attacks20. This poses a significant
security risk: predictions of AI systems in healthcare have potentially
major clinical implications, and misclassifications in clinical decision-
support systems could have lethal consequences for patients. Thus, AI
systems in healthcare shouldbeparticularly robust against any attacks.
Yet, in computational pathology, only very few studies have explored
adversarial attacks21. To date, no established strategy has been devel-
oped tomakeAI systems in thefieldof digital pathology robust against
such attacks. The development of attack-resistant AI systems in
pathology is, therefore, anurgent clinical need,whichshould ideally be
resolved before these systems are widely deployed in diagnostic
routine.

Todate, convolutional neural networks (CNNs) are by far themost
used type of deep neural network in digital pathology22,23. CNNs are
capable of capturing high-level features such as edges from input data
by applying various kernels throughout the training process. As of late
2020, vision transformers (ViTs) have emerged as an alternative to
CNNs. ViTs use lower-dimensional linear embeddings of the flattened
small patches extracted from the original image as input to a trans-
former encoder24. Unlike CNNs, ViTs are not biased toward translation-
invariance and locally restricted receptive fields25. Instead, their
attention mechanism allows them to learn distal as well as local rela-
tionships. Although ViTs have outperformed CNNs in some non-
medical prediction tasks, the uptake of this technology is slow in
medical imaging. To date, only very few studies have investigated the
use of ViTs in computational pathology23,26,27. Technical studies have
described improved robustness of ViTs to adversarial changes to the
input data, but this has not been explored in medical applications28–32.

In this study, we investigated the robustness of CNNs in compu-
tational pathology toward different attacks and compared these
results to the robustnessof ViTs. Additionally,we trained robustneural
network models and evaluated their performances against the white-
and black-box attacks. We analyzed the attack structure for both
models and investigated the reasons behind their performances. We
validated our results in two clinically relevant classification tasks in
independent patient cohorts33–36. This study adheres to the MI-
CLAIM50 checklist (Suppl. Table 1).

Results
CNN and ViT perform equally well on clinically relevant classi-
fication tasks
Prediction of the main histological subtypes of renal cell carcinoma
(RCC) into clear cell carcinoma (ccRCC), chromophobe carcinoma
(chRCC), and papillary carcinoma (papRCC) is a widely studied task in
computational pathology23,33. We trained ResNet, a convolutional
neural network (CNN, Fig. 1A) and a ViT (Fig. 1B) on this task on TCGA-
RCC (N = 897 patients, Suppl. Fig. 1A). The resulting classifiers per-
formed well on the external test set AACHEN-RCC (N = 249, Suppl.
Fig. 1B), reaching a mean area under the receiver operating curve
(AUROC) of 0.960 [±0.009]. ViT reached a comparable AUROC of
0.958 [±0.010] (Fig. 1C and Suppl. Table 2), which was on par with and
not significantly different from the ResNet (p = 0.98). The image tiles
which were assigned the highest scores showed typical patterns for
each histological subtype, demonstrating that ResNet and ViT can
learn relevant patterns and generalize to an external validation cohort
(Fig. 1D). In addition, we evaluated the baseline performance of CNN
and ViT on subtyping of gastric cancer37,38. When trained on the TCGA-
GASTRIC cohort (N = 191 patients, Suppl. Fig. 1C) and tested on the
BERN cohort (N = 249 patients, Suppl. Fig. 1D), CNN and ViT achieved
mean AUROCs of 0.782 [±0.014] and 0.768 [±0.015] respectively
(Fig. 1E and Suppl. Table 2). Again, the highest-scoring tiles showed
morphological patterns which are representative of the diffuse and
intestinal subtype (Fig. 1F)39,40. Together, these data are in line with the

previous evidence23 and show that CNNs and ViTs performequallywell
for weakly-supervised classification tasks in our experimental pipeline.

CNNs are susceptible to multiple adversarial attacks
We attacked CNNs with adversarial attacks (Fig. 2A), evaluating white-
box and black-box attacks (Fig. 2B). By default, we used the most
commonly used gradient-based attack, Projected Gradient Descent
(PGD), and additionally tested five other types of adversarial attacks
(Fast Gradient Sign Method [FGSM], Fast Adaptive boundary [FAB],
Square attacks, AutoAttack [AA], and AdvDrop, Fig. 2C).We found that
with an increasing attack strength ɛ, the amount of visible noise on the
images increased (Fig. 2D). We quantified this in a blinded observer
study and found that the detection threshold for adversarial attacks
was ɛ = 0.19 for ResNet models and ɛ = 0.13 for ViT (Suppl. Table 3 and
Suppl. Fig. 2A, B). With increasing attack strength, the classifier per-
formance of a ResNet CNN on the test set decreased. Specifically, we
attacked with PGD with a low (ɛ =0.25e-3), medium (ɛ = 0.75e-3), and
high (ɛ = 1.50e-3) attack strength. The AUROC for RCC subtyping by
ResNet dropped from a baseline of 0.960 to 0.919, 0.749, and 0.429
(Fig. 3A and Suppl. Table 4). For the secondary classification task,
subtyping gastric cancer, the CNNmodels were evenmore susceptible
to adversarial attacks. Here, the PGD completely degraded classifica-
tion performance. The AUROC reached by the CNN dropped from a
baseline of 0.782 to 0.380, 0.029, and 0.000 for the images attacked
with low, medium, and high ɛ (Fig. 3B and Suppl. Table 5). Together,
thesedata show that CNNs are highly susceptible to adversarial attacks
in computational pathology.

Adversarially robust training partially hardens CNNs
We subsequently investigated two possible mitigation strategies to
rescue CNN performance. First, we evaluated adversarially robust
training, in which PGD is applied to the training dataset so that CNN
can learn to ignore the noise patterns. Although training a CNN with
PGD-attacked images (ɛ = 1.50e-3) slightly reduced the RCC classifica-
tion performance from baseline from 0.960 to 0.954 (Suppl. Table 2),
it improved the model’s robustness to attacks. For the PGD attack at
inference, this adversarially robustly trained CNN yielded an average
AUROC of 0.951, 0.944, and 0.932 for low, medium, and high ɛ,
respectively (Fig. 3A and Suppl. Table 6). Second, we investigated if the
effect of adversarially robust training of CNNs could be enhanced by
using a dedicated technique, dual-batch-normalized (DBN). The base-
line performance of this model was an AUROC of 0.946 [±0.028]
(p = 0.58) for RCC classification, which was not significantly inferior to
the original model (Suppl. Table 2). When we attacked the test dataset
with the PGD attack, DBN-CNNconveyed goodprotection at inference,
but did not beat the normal adversarially robust training (Fig. 3A and
Suppl. Table 6). In the secondary prediction task, adversarially robust
training slightly lowered the classification accuracy at baseline (on
non-attacked images) from 0.782 [±0.014] to 0.754 [±0.012], but
mitigated the vulnerability to attack, resulting in AUROCs of 0.731,
0.679, and 0.595 for low, medium and high ɛ (Suppl. Table 7). Toge-
ther, these data show that the attackability of CNNs can be partly
mitigated by adversarially robust training. Dual batch normalization
(DBN) did not convey any additional robustness to CNNs.

ViTs are inherently robust to adversarial attacks
Next, we attacked ViTs with adversarial attacks. We found that they
were relatively robust against adversarial attacks without any adver-
sarial pretraining and without any modifications to the architecture.
For low, medium, and high PGD attack strengths in RCC classification,
ViT AUROCs were slightly reduced from a baseline of 0.958 to 0.944,
0.908, and 0.827 (Suppl. Table 4), but ViT was significantly more
robust than Resnet (p =0.06, 0.04, and 0.01). For the secondary pre-
diction task of gastric cancer subtyping, the baseline performance was
lower for all classifiers when compared to RCC (Fig. 3B). Also in this
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task, ViTs were significantly more robust to attacks than ResNet
(p < =0.01 for low, medium and high attack strength, Suppl. Table 5).
Training a ViT in an adversarially robust way slightly reduced the
baseline performance for RCC classification from 0.958 [±0.01] to
0.938 [±0.007] (Fig. 3A), and reduced the performance of ViT under a
low-intensity PGD attack from 0.944 [±0.011] to 0.932 [±0.007].
However, for medium and high-intensity attacks, adversarially robust

training was beneficial for ViTs, slightly increasing the AUROC from
0.908 [±0.015] to 0.922 [±0.01] and from 0.827 [±0.032] to 0.906
[±0.016], respectively (Suppl. Tables 4, 6). Similarly, in the gastric
cancer classification task, adversarially robust training hardened ViTs:
they only slightly reduced their baseline AUROC of 0.737 to 0.724,
0.699, and 0.657 under low, medium, and high-intensity attacks,
respectively (Suppl. Table 7). Next, we investigated whether the

Fig. 1 | Cancer subtypingwithDeep Learning. A Image classification with ResNet,
B with a Vision Transformer (ViT). C Area under the receiver operating curve
(AUROC) for subtyping of renal cell carcinoma (RCC) into clear cell (cc), chromo-
phobe (ch), and papillary (pap). The box shows the median and quartiles of five
repetitions (points) and the whiskers expand to the rest of the distribution (n = 249
patients). We used a two-sided t-test without adjustments for the performance
comparison between the two models. D Representative highly scoring image tiles

for RCC, as selected by ResNet and ViT. E AUROC for subtyping gastric cancer into
diffuse and intestinal. The box shows the median and quartiles of five repetitions
(points) and the whiskers expand to the rest of the distribution (n = 249 patients).
We used a two-sided t-test without adjustments for the performance comparison
between the twomodels. FHighly scoring image tiles for gastric cancer, as selected
by ResNet and ViT.
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improved higher robustness of ViTs compared to CNNs extended to
other types of white and black-box attacks. To this end, we selected
450 tiles fromtheRCCsubtyping task and calculated the attack success
rate (ASR) for an overall 6 attacks under low, medium, and high attack
strength (ɛ =0.25e-3, 0.75e-3, and 1.50e-3) (Table 1). For all six types of
attacks, in baselinemodels and adversarially trainedmodels, ViTs had a
lower (better) ASR in themajority of experiments. For baselinemodels,
ViT outperformed ResNet for all the attack types and for all predefined
attack strengths ɛ (Suppl. Fig. 3). For adversarially trained models, the
margin was smaller, but ViT still outperformed ResNet in 9 out of
24 experiments (Table 1). In addition, we investigated whether the
higher robustnessof ViT compared toResNetwasdue to its pretraining

on a larger image set or its higher number of parameters. To this end,
we repeated our experiments with another CNNmodel, the BiT, which
is similar to the originalResNet, but hasmoreparameters and is trained
on more data during pretraining. We found that BiT was even more
susceptible to adversarial attacks than the baseline ResNet (Table 1)
and was similarly inferior to ViT for sub-visual attack strengths ɛ.
Finally, we evaluated attacks with a very high ɛ value of 0.1 (Table 1),
which resulted in a severe performance reduction for all models.
However, because 0.1 is at the threshold for human perception, these
attacks are potentially of low practical relevance. In contrast, attacks in
the low sub-visual range (e.g., ɛ 1.5e-3, asusedbyus andby the previous
studies41) are very hard to detect and still detrimental to the

Fig. 2 | Adversarial attacks on computational pathology. A Adversarial attacks
add noise to the image and flip the classification of renal cell carcinoma (RCC)
subtyping into a clear cell (cc), chromophobe (ch), and papillary (pap). Themodel’s
prediction confidence is shown on each image. B Experimental design for the
baseline (normal) training, white-box, and black-box attacks and for adversarially

robust training. C Different attack algorithms yield different noise patterns. We
used the Fast Gradient Sign Method (FGSM), Projected Gradient Descent (PGD),
Fast Adaptive boundary (FAB), Square attacks, AutoAttack (AA), and AdvDrop.
D The attack strength ɛ increases the amount of noise which is added to the image.
The average threshold for human perception is ɛ =0.19 for ResNet.
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performanceof convolutional neural networks, placing these attacks in
the focus of adversarially robust model development.

Mechanism of ViT robustness against adversarial attacks
To identify potential reasons for this higher robustness ofViTs towards
adversarial attacks, we analyzed the adversarial noise obtained with
white-box attacks on ViTs and ResNets. Quantitatively, we found that
the magnitude of the gradients was consistently lower for ViT than for
ResNet (Suppl. Fig. 4A). Qualitatively, in ViT, we observed a clear patch
partition boundary alignment while ResNet patterns were more spa-
tially incoherent (Suppl. Fig. 4B). We conclude that this observation
reflects the patch-based nature of ViTs, which causes learned features
to contain less low-level information such as lines and edges from an
input image and therefore making them less sensitive to high-
frequency perturbations. In addition, we analyzed the structure of

the latent space of the deep layer activations in ResNet and ViT, after
dimensionality reductionwith principal component analysis (PCA).We
found that for the original images in the RCC classification tasks, the
instances in the classes were visually more clearly separated for ViT
than for theCNN (Fig. 3C). Thiswas confirmed in themoredifficult task
of gastric cancer subtyping, in which also a clearer separationwas seen
(Fig. 3D). Quantitatively, the instances within a given class were
aggregated more tightly in the ViT latent space, and the distance
between the centers of the classes were larger (Suppl. Table 8). When
we attacked the images and used the baseline model to extract the
features, the differences were even more pronounced: the ResNet
latent space was more de-clustered than the ViT latent space (Fig. 3C,
D). Finally, we investigated which regions in input images were
assigned high importance by the ResNet and the ViT, respectively,
visualizing important regions with Grad-CAM. At baseline, the ResNet

Fig. 3 | Vision transformers are more robust to adversarial attacks than con-
volutional neural networks. A Micro-averaged AUROC for ResNet and ViT under
PGD attack for RCC subtyping without (left) and with (right) adversarially robust
training. Epsilon * 10E-3. This figure shows the mean AUROC of five experi-
ments ± the standard deviation. B AUROC for ResNet and ViT for gastric cancer
subtyping. ɛ * 10e-3. This figure shows the mean AUROC of five experiments ± the

standard deviation. C First two principal components of the latent space of ResNet
andViT before (original) and after the attack (perturbed) for RCCsubtyping, for 150
highest-scoring image tiles. ViT has better separation of the clusters before the
attack and its latent space retains its structure better after the attack. D Latent
space for the gastric cancer subtyping experiment.
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tended to focus on a single region of the input image, while ViT
assigned higher importance to multiple image regions. After adver-
sarial attacks, the ResNet region's importance was defocused and
included much larger, potentially irrelevant image regions. This effect
increased with increasing attack strength ɛ. In contrast, the important
image regions as highlighted by Grad-CAM in a ViT did not visibly
change during an attack (Suppl. Fig. 5). Based on these observations,
we conclude that the high robustness of ViT towards white-box
adversarial attacks, when compared with CNN, is associated with a
better separation of distinct classes in the latent space, and a more
stable focus on relevant image regions within image tiles.

Discussion
Machine learning (ML) based software as medical devices (SaMD) can
be a target of cyberattacks, which have the potential to cause sig-
nificant harm19. Adversarial attacks can manipulate AI systems into
giving false predictions20. The number of AI systemsused in healthcare
is massively increasing42. A particularly relevant domain of application
is computational pathology, where AI systems have been shown to
solve clinically relevant questions in the last few years4. Based on these
academicdevelopments, advanced AI algorithms have already entered
the market. Two recent examples are AI algorithms to predict the
survival of breast cancer (Stratipath Breast, Stratipath, Stockholm,
Sweden) and colorectal cancer patients (Histotype Px Colorectal,
DoMore Diagnostics, Oslo, Norway) directly from pathology slides.
Based on publicly available information, these algorithms are pre-
sumably based on CNNs, not ViTs. Ultimately, these algorithms offer
potential benefits in terms of efficiency and resource savings for
diagnostic stakeholders, while at the same time offering the possibility
of improved biomarkers for cancer patients. However, during this
potential large-scale rollout of AI systems, it is important to ensure the
robustness of these systems to artifacts and malicious interventions43.

Here, we show that CNNs in computational pathology are sus-
ceptible to adversarial attacks far below the human perception
threshold. We investigate two different and commonly used CNN
models, ResNet50 (pretrained on Imagenet) and BiT44, and show that
both are equally susceptible to attacks. We show that existing mitiga-
tion strategies such as adversarial training and DBN do not provide
universal mitigation. Addressing this issue, we explored the potential
of ViTs to confer adversarial robustness to AI models. We show that
ViTs perform on par with CNNs at baseline, and that they seem inher-
ently more robust against adversarial attacks. In line with previous
observations byMa et al.45, we also noticed that the biggermodels with
a higher number of trainable parameters are more vulnerable to
adversarial attacks, but ViT is robust despite its large number of para-
meters. Although no AI models are universally and fully attack-proof,
our study demonstrates that ViTs seem much more robust against
common white-box and black-box attack types and that this is asso-
ciated with a more robust behavior of the latent space compared to
CNNs. Our findings add to a list of theoretical benefits of ViTs over
CNNs and provide an argument to use ViTs as the core technology for
AI products in computational pathology. The selection of end-to-end
prediction pipelines in our study is motivated by the result of a recent
benchmarking study which compared multiple state-of-the-art meth-
ods for computational pathology and showed that ResNet and ViT are
outperforming many other common models in this field23. Also, our
findings are in linewith studies in non-medical domainswhich analyzed
the robustness of ViTs in technical benchmark tasks46,47.

A limitation of our study is the restriction to cancer use cases and
classification tasks. Amoredifficult task such as predicting the response
to therapywould have evenmore severe clinical implications and could
not even be directly checked by a pathologist (as could the diagnostic
classification tasks used in the study), since negative consequences for
prognosticmisclassifications have a timedelay. Futurework should also
address other types of adversarial attacks, such as physical-worldTa

b
le

1
|V

iT
s
ar
e
m
o
re

ro
b
us

t
to

ad
ve

rs
ar
ia
la

tt
ac

ks
th
an

R
es

N
et
s,

as
m
ea

su
re
d
b
y
th
e
at
ta
ck

su
cc

es
s
ra
te

(A
S
R
)
fo
r
th
e
R
C
C

cl
as

si
fi
ca

ti
o
n
ta
sk

ɛ
N
o
rm

al
m
o
d
el
s

FG
S
M

P
G
D

S
q
ua

re
FA

B
A
u
to
A
tt
ac

k
ɛ

A
d
vD

ro
p

R
es

N
et

B
iT

V
iT

R
es

N
et

B
iT

V
iT

R
es

N
et

B
iT

V
iT

R
es

N
et

B
iT

V
iT

R
es

N
et

B
iT

V
iT

R
es

N
et

B
iT

V
iT

0
.2
5
e-
3

13
.3
3%

16
.4
4
%

2.
22

%
14
.4
4
%

16
.2
2%

2.
22

%
5.
78

%
2.
22

%
0
.6
%

12
.6
7%

19
.7
8
%

2.
0
0
%

13
.5
6
%

19
.7
8
%

2.
0
0
%

20
6
8
.6
7%

6
3.
11
%

6
1.
5
6
%

0
.7
5
e-
3

32
.6
7%

35
.5
6
%

6
.4
4
%

34
.6
7%

33
.7
8
%

7.
3
3
%

13
.5
6
%

7.
56

%
2.
0
0
%

29
.7
8
%

4
35

6
%

6
.0
0
%

33
.1
1%

4
4
.4
4
%

6
.4
4
%

4
0

6
7.
56

%
6
8
.4
4
%

4
5
.1
1%

1.
5
0
e-
3

4
6
.0
0
%

4
6
.0
0
%

12
.8
9
%

50
.2
2%

4
5.
56

%
14

.4
4
%

24
.0
0
%

15
.7
8
%

3
.1
1%

4
4
.4
4
%

56
.4
4
%

12
.0
0
%

4
8
.6
7%

56
.8
9
%

13
.3
3
%

6
0

55
.7
8
%

70
.0
0
%

4
5
.1
1%

0
.1

6
4
.2
2%

6
2.
0
0
%

5
5
.1
1%

6
4
.0
0
%

6
3.
33

%
6
0
.8
9
%

5
4
.8
9
%

58
.0
0
%

55
.7
8
%

5
2.
0
0
%

58
.0
0
%

55
.1
1%

54
.8
9
%

58
.0
0
%

55
.7
8
%

-
-

-
-

A
d
ve

rs
ar
ia
ll
y
tr
ai
n
ed

m
o
d
el
s

0
.2
5
e-
3

0
.7
0
%

7.
11
%

0
.9
0
%

0
.7
0
%

7.
11
%

0
.9
0
%

0
.2
2%

1.
33

%
0
.4
4
4
%

0
.7
0
%

9
.1
1%

0
.9
0
%

0
.7
0
%

9
.1
1%

0
.9
0
%

20
6
8
.8
9
%

4
1.
78

%
58

.2
2%

0
.7
5
e-
3

2.
8
9
%

16
.0
0
%

2.
0
0
%

2.
8
9
%

15
.3
3%

2.
0
0
%

0
.6
7%

2.
8
9
%

0
.9
0
%

2.
8
9
%

23
.3
3%

2.
0
0
%

2.
8
9
%

24
.4
4
%

2.
0
0
%

4
0

75
.7
8
%

5
0
.2
2%

6
3.
78

%

1.
5
0
e-
3

6
.4
4
%

23
.3
3%

3
.5
6
%

6
.6
7%

20
.4
4
%

3
.7
8
%

2.
0
0
%

7.
56

%
0
.9
0
%

6
.6
7%

39
.3
3%

3
.7
8
%

6
.8
9
%

4
1.
56

%
3
.7
8
%

6
0

75
.7
8
%

5
1.
5
6
%

6
4
.4
4
%

0
.1

6
2.
0
0
%

4
2.
6
7%

51
.3
3%

72
.4
4
%

5
5
.1
1%

6
0
.6
7%

6
1.
56

%
4
7.
5
6
%

50
.8
9
%

6
0
.8
9
%

4
7.
5
5
%

54
.0
0
%

6
2.
0
0
%

4
7.
5
6
%

54
.2
2%

-
-

-
-

W
in
n
er

V
iT

V
iT

V
iT

V
iT

V
iT

-

t
[s
ec

]
0
.0
8
s

0
.1
3
s

0
.1
9
s

2.
51

s
3.
78

s
4
.3
6
s

31
.5
6
s

4
7.
72

s
30

.1
6
s

4
.1
0
s

4
.4
7
s

5.
0
9
s

5.
30

s
3.
56

s
6
.7
4
s

5.
10

s
2.
14

s
3.
4
6
s

Th
e
co

m
p
ut
at
io
n
tim

e
ti
s
th
e
tim

e
ne

ed
ed

to
ap

p
ly

th
e
at
ta
ck

to
ea

ch
im

ag
e.

Fo
r
p
ai
rw

is
e
co

m
p
ar
is
on

s
b
et
w
ee

n
R
es

N
et
,B

iT
,a

nd
V
iT

fo
r
th
e
sa
m
e
ex

p
er
im

en
ta
lc

on
d
iti
on

,t
he

on
e
w
ith

th
e
lo
w
er

(b
et
te
r)
A
S
R
is
p
ri
nt
ed

in
b
ol
d
.I
n
th
is
ex

p
er
im

en
t,
4
50

ra
nd

om
ly

se
le
ct
ed

til
es

fr
om

A
A
C
H
EN

-R
C
C
w
er
e
us

ed
(s
am

e
til
es

fo
r
al
le

xp
er
im

en
ts
).

Th
e
b
es

t
va

lu
e
in

ea
ch

ca
te
g
or
y
is
ty
p
es

et
in

b
ol
d
fo
nt
.

Article https://doi.org/10.1038/s41467-022-33266-0

Nature Communications |         (2022) 13:5711 6



attacks17 or one-pixel attacks48. The uptake of newer AI models, such as
text-imagemodels, could also open vulnerabilities toward new types of
adversarial attacks49. As multiple AI systems are nearing the diagnostic
market, hardening these tools against established and emerging
adversarial attacks should be apriority for the computational pathology
research community in academia and industry20.

Methods
Ethics statement
This study was performed in accordance with the Declaration of Hel-
sinki. We performed a retrospective analysis of anonymized patient
samples. In addition to publicly available data from “The Cancer
Genome Atlas” (TCGA, https://portal.gdc.cancer.gov), we used a renal
cell carcinoma dataset by the University of Aachen, Germany (ethics
board of Aachen University Hospital, No. EK315/19) and a gastric can-
cer dataset by the University of Bern (ethics board at the University of
Bern, Switzerland, no. 200/14). This study adheres to the MI-CLAIM50

checklist (Suppl. Table 1). The need for informed consent was waived
by the respective ethics commissions because this study was a retro-
spective anonymized analysis of archival samples and did not entail
any contact with patients of any sort.

Patient cohorts
We collected digital whole slide images (WSI) of H&E-stained tissue
slides of renal cell carcinoma (RCC) from two patient cohorts: TCGA-
RCC (N = 897 patients, Suppl. Fig. 1A), which was used as a training set
andAACHEN-RCC (N = 249, Suppl. Fig. 1B), whichwasused as a test set.
The objective was to predict RCC subtypes: clear cell (ccRCC), chro-
mophobe (chRCC), and papillary (papRCC). In addition, we obtained
H&E-stained slides of gastric cancer from two patient cohorts: TCGA-
GASTRIC (N = 191 patients, Suppl. Fig. 1C) for training and BERN-
GASTRIC (N = 249 patients, Suppl. Fig. 1D)51 for testing. The objective
was to predict the two major subtypes: intestinal and diffuse, accord-
ing to the Laurén classification. Samples with mixed or indeterminate
subtypes were excluded. Ground truth labels were obtained from the
original pathology report.

Image preprocessing
We tessellated the WSI into tiles (512 px edge length at 0.5 µm per
pixel) which were color-normalized with the Macenko method52. No
manual annotations were used. Background and blurry tiles were
identified by having an average edge ratio smaller than 4, using the
canny edge detection method, and were removed53. For each experi-
ment, we selected 100 random tiles fromeachWSI. We used a classical
weakly-supervised prediction workflow38,54 in which each tile inherited
the ground truth label from the WSI and tile-level predictions were
averaged over the WSI at inference. Before each training run, the total
number of tiles per class was equalized by random downsampling2.

Experimental design
First, we trained deep learning models on categorical prediction tasks
in the training cohort and validated the performance in the test
cohort.WeusedDeepLearningmodels, ResNet (specificallyResNet50,
version 1), BiT (Big Transfer Model, also called ResNet50-v2)55, a con-
volutional neural network (CNN), and Vision transformers (ViT)56.
Then, we assessed the susceptibility of the trained models toward
white- and black-box adversarial attacks. Finally, we evaluated miti-
gation strategies against adversarial attacks. One strategy was to
attack the images in the training cohort, termed adversarially robust
training. The other strategy, specific to CNNs, was to use dual batch
normalization, as introduced recently by ref. 57.

Implementation and analysis of adversarial attacks
For an image Xbelonging to classCi, an adversarial attack perturbs X in
such a way that the image is misclassified as Cj,i ≠ j. We used six

common types of attacks: (1) Fast Gradient SignMethod (FGSM)58–60, a
single-step gradient-based white-box attack; (2) Projected Gradient
Descent (PGD)61, a multi-step gradient-based white-box attack with
attack strength ϵ; (3) Fast Adaptive boundary (FAB)62, a more generic
type of gradient-based white-box attack; (4) Square attack63, a black-
box attack which places square-shaped updates at random positions
on the input image; (5) AutoAttack (AA)64, an ensemble of diverse
parameter-free attacks (PGD, FAB, and Square); and (6) AdvDrop65,
which creates adversarial examples by dropping the high-frequency
features from the image. To measure which amount of noise is
detectable by humans, we randomly selected three tiles from the
AACHEN-RCC dataset and attacked each of them with PGD with 50
different attack strengths (0 to 0.5). We presented these tiles to a
blinded human observer (medical doctor) who subjectively classified
the images as “no noise detectable” and “noise detectable”. Subse-
quently, we determined the detection threshold by fitting a logistic
regressionmodel to the data. This analysiswas run separately fornoise
generated with PGD on a ResNet and a ViT model. To visualize the
adversarial noise, we subtracted the perturbed image from theoriginal
image, clipped at the 10th and 90th quantile for each color channel,
and scaled between 0 and 255. In addition, we visualized the latent
space of deep layer activations of CNNs and ViTs. The activation fea-
ture vectors of ResNet50 (1 × 2048) and ViT (1 × 768) were reduced to
(1 × 2) by principal component analysis (PCA), and each component
was scaled between 0 and 1. To quantify the separation between
multiple classes in this latent space, we calculated the Euclidean
distance66 between all points of each class to the center of the corre-
sponding classes and between the centers of classes. Additionally, we
generated Gradient-weighted Class Activation Mapping (Grad-CAM)
visualizations and investigated the role of adversarial attacks on the
localization of important image regions by the models at baseline and
after attacks.

Statistics
Themain statistical endpointwas thepatient-wisemicro-averaged area
under the receiver operating curve (AUROC). 95% confidence intervals
were obtained by 1000-fold bootstrapping based on sampling with
replacement. The test dataset remained the same for the experiments
between different models. All experiments were repeated five times
with different random seeds. We reported the mean AUROC with
standard deviation (SD) and median AUROC with interquartile range
(IQR= q75th � q25th). Two-sided unpaired t-tests were used to compare
sets of AUROCs between different deep learning models for the same
experimental condition. No correction for multiple testing was
applied. Furthermore, we calculated the attack success rate (ASR). The
ASR quantified the effectiveness of an attack by calculating the degree
of misclassification: if the model’s prediction score for the perturbed
image changes, the attack was deemed successful. The ASR was cal-
culated for 450 randomly selected tiles per class from the AACHEN-
RCC set.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are mostly publicly
available, in part proprietary datasets provided under collaboration
agreements. All data (including histological images) from the TCGA
database are available at https://portal.gdc.cancer.gov/. The cohort
accession codes are TCGA-KIRC, TCGA-KIRP, TCGA-KICH, and TCGA-
STAD. Access to the proprietary data can be requested from the
respective study groups who independently manage data access for
their study cohorts: Rupert Langer for BERN-GASTRIC, Roman D.
Buelow and Peter Boor for AACHEN-RCC. The respective principal
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investigators will respondwithin 4 weeks and will decide, according to
the local institution’s standards, if the data can be shared for research
purposes under a dedicated collaboration agreement.

Code availability
All source codes are publicly available: for image preprocessing67,
codes are available at https://github.com/KatherLab/preProcessing;
for the baseline image analysis23, codes are available at https://github.
com/KatherLab/HIA, and for adversarial attacks, codes are available at
https://github.com/KatherLab/Pathology_Adversarial68. Additional
details are available in Supplementary Methods69–74.
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