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Noise-resilient and high-speed deep learning
with coherent silicon photonics

G.Mourgias-Alexandris 1,2 ,M.Moralis-Pegios1,2, A. Tsakyridis1,2, S. Simos 1,2,
G. Dabos 1,2, A. Totovic 1,2, N. Passalis1, M. Kirtas 1, T. Rutirawut 3,
F. Y. Gardes 3, A. Tefas1 & N. Pleros1,2

The explosive growth of deep learning applications has triggered a new era in
computing hardware, targeting the efficient deployment of multiply-and-
accumulate operations. In this realm, integrated photonics have come to the
foreground as a promising energy efficient deep learning technology platform
for enabling ultra-high compute rates. However, despite integrated photonic
neural network layouts have already penetrated successfully the deep learning
era, their compute rate and noise-related characteristics are still far beyond
their promise for high-speed photonic engines. Herein, we demonstrate
experimentally a noise-resilient deep learning coherent photonic neural net-
work layout that operates at 10GMAC/sec/axon compute rates and follows a
noise-resilient trainingmodel. The coherent photonic neural network has been
fabricated as a silicon photonic chip and its MNIST classification performance
was experimentally evaluated to support accuracy values of >99% and >98% at
5 and 10GMAC/sec/axon, respectively, offering 6× higher on-chip compute
rates and >7% accuracy improvement over state-of-the-art coherent
implementations.

The proliferation of Deep Learning (DL) workloads in today’s compu-
tational systems has triggered a new era in computing systems pro-
moting the use of brain-inspired non-von-Neumann architectures,with
the DL accelerators being currently considered as a key enabler for the
efficient deployment of such workloads1. Among the researched DL
accelerator technologies, neuromorphic integrated photonic circuits
are constantly gaining interest due to their proven credentials to
support time-of-flight latencies and THz bandwidths thatmay result to
orders of magnitude higher computational and footprint
efficiencies2–4. In this context, research efforts have mainly focused on
the deployment and demonstration of the constituent building block
technologies5 likeweightingbanks6,7 and activation functions8–11 aswell
as of complete linear neuron layouts12–19 that have so far largely relied
on two broad architectural categories: (i) non-coherent setups, where
typically one distinct wavelength is required per axon and optical
power addition techniques are utilized for the summation

functionality, leading to neuron layouts where the number of optical
resource requirements scales linearly with its fan-in20, and (ii) coherent
interferometric setups, where a single wavelength feeds the entire
layout and the light carrier phase is employed for realizing signed
weight values16,21–23.

The energy and area efficient promise of integrated photonic
neural networks can, however, materialize only when significantly
higher compute rates per axon are utilized compared to respective
electronic Neural Network (NN) engines2–4,12,13. Recent analysis has
indicated that the optimal Multiply-And-Accumulate (MAC)/sec/axon
compute rates in optical setups should go well beyond the GHz
regime2–4 in order to bring energy consumption down to the sub-pJ/
MAC area. At the same time, high computational speeds have to be
accommodated though on-chip elements for all constituent linear
neuron functions in order to reap the benefits of low energy and low
footprint integrated optics, including input vector generation,
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weighting and summation. Although the staggering computational
power advances enabled by neuromorphic photonic circuitry, when
using >10GMAC/sec/axon processing speeds, have been already wit-
nessed through proof-of-concept demonstrations15, these have been
realized through non-coherent architectures employing still non-
integrated fiber-pigtailed building blocks for crucial NN functions. At
the same time, their requirement for integrating and accurately con-
trolling multiple resonant elements in high fan-in NN setups forms a
significant hurdle towards their fully integrated version.

Fully on-chip optical neural networks have been so far only
feasible through coherent architectural schemes, where, however,
computational speeds are still far below the necessary targets and
are struggling to enter the MHz regime16,22,23. On top of that, the
accuracy values obtained by experimental coherent layouts
reported so far have been limited to 90% and 76% for MNIST
classification22 and vowel recognition16, respectively. Their rather
limited performance in terms of both computational speed and
accuracy is in direct relation to the overall noise that is inevitably
present in any analog DL engine24–31, which is probably strength-
ened by the employed coherent architecture that comprises mul-
tiple cascaded Mach-Zehnder Interferometers (MZIs). Analog DL
platforms have to cope by default with both deterministic and non-
deterministic noise sources and the amount of noise increases
significantly with operational speed. In the case of the experi-
mental coherent-based layouts reported so far as neuromorphic
platforms, their noise-resistive behavior is additionally counter-
acted by their circuit design that relies on Singular Value Decom-
position (SVD) techniques applied over unitary optical layouts,
which in turn comprise a mesh of multiple cascaded MZI following
the Reck32 and Clements33 designs. In this way, the programming of
multiple cascaded MZIs even for defining the weights of a single
neuron is required, creating an increased sensitivity to fabrication
errors that degrades the circuit fidelity and acts as an additional
noise source.

In this work, we demonstrate experimentally noise-resilient deep
learning at a record-high 10GMAC/sec/axon compute rate by utilizing a
coherent silicon integrated circuit that combines a noise-tolerant lin-
ear neuron architectural scheme with noise-aware training methods.

The silicon Coherent Photonic Neural Network (CPNN) circuit relies on
the dual-IQ-modulator-based coherent linear neuron architecture
recently proposed by us21,34, where a single on-chip weight value is
simply defined by a phase shifting followed by an amplitude mod-
ulating element, significantly improving in this way its noise-tolerant
characteristics compared to respective coherent layouts with cas-
caded MZIs. On-chip input vector data generation is realized by
electro-optic travelling-waveMach-ZehnderModulators (MZM),with a
single thermo-optic MZM and a single phase shifter providing the on-
chip weighting per axon. Its performance has been validated within a
DL layout that was trained with a noise-aware method35,36 for classify-
ing hand-written images from the MNIST dataset, with its last two NN
layers being implemented in the optical domain. Experimentally
obtained accuracy values of >99% and >98% at 5 and 10GMAC/sec/
axon compute rates, respectively, were obtained, even in the presence
of highly noisy signals with a standard deviation of σ =0.4. This vali-
dates the strong credentials of our integrated CPNN architectural
scheme to combine its noise-tolerant design with noise-aware training
models for leading to high-performance photonic DL layouts, out-
performing state-of-the-art coherent-based demonstrations by 6
orders of magnitude with respect to on-chip compute rates per axon
and by >7% with respect to obtained accuracy metrics.

Results
Concept and CPNN architecture
The layout of the CPNN designed for classifying MNIST images is
illustrated in Fig. 1a. It comprises 2 cascadedReLU convolutional layers
(L1, L2) equippedwith 32 and 64 3 × 3 kernels respectively, followed by
a fully-connected ReLU feed-forward layer employed for data flatten-
ing (L3).A 4 × 2photonic layer is employed as the L4, followedbya2 × 1
photonic output layer denoted as L5. Both photonic layers utilize the
sin2(x2) as activation function, so as to comply with respective optically
implemented activations that rely on the use of a photodiode followed
by a Mach-Zehnder Modulator (PD-MZM)20 at the output of an inter-
ferometric coherent architecture. A close-up view of the two photonic
layers is depicted in Fig. 1b, where two identical silicon photonic chips
are used for implementing the L4 and one additional chip is used for
implementing the output layer L5. Each photonic neuron is identical
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Fig. 1 | CPNN architecture and implementation. a Layout of the proposed CPNN,
(b) a close-up view of its integrated photonic part based on the dual-IQ coherent
linear neuron architecture, with the electro-photonic activation function module

being highlighted with the red-dashed box and c the layout of the integrated 4-fan-
in dual-IQ coherent linear neuron.

Article https://doi.org/10.1038/s41467-022-33259-z

Nature Communications |         (2022) 13:5572 2



and relies on the dual IQ architecture proposed in21, with its silicon-
based deployment incorporating a 4-fan-in setup, as shown in Fig. 1c. A
single CW laser source is split at the chip front-end to feed the bias
branch as well as four axons. The CPNN design of Fig. 1a required the
utilization of two silicon photonic axons at every chip for imple-
menting the (x1, x2, Σ1) and (x3, x4, Σ2) layers within the L4 and the
output layer L5. As shown in Fig. 1c, the input signals xa and xb of each
axon are imprinted on the respective laser copies via an electro-optic
MZM operating in the GHz regime. The weighting of each signal is
performed individually via a thermo-optic phase shifter and a thermo-
optic MZM that are responsible for the s(wi) sign and the weight
absolute value |wi | , respectively, with i = a, b. Despite the low band-
width of few MHz that thermo-optic elements can achieve, during the
inference their values are static, thus the computational rate of the
CPNN is dictatedonlyby the electro-opticMZMsoperating inGHz. The
main advantage of using thermo-optic elements is their lower insertion
loss compared to the electro-optic elements, maintaining in this way
the overall insertion loss at reasonable levels. The carrier of the rea-
lized dot product xawa + xbwb interferes then with the bias signal
before reaching the PD that has also a high bandwidth in the GHz
regime, so that the dot product sign information imprinted on the
phase of the summed signal can transform into an amplitude quantity
where positive and negative values emerge as optical pulses above and
optical dips below the bias signal, respectively21. The phase and the
amplitude of the bias branch can be controlled by the s(wbias) and the |
wbias | , respectively. Finally, the electrical output of the PD is amplified
through anelectrical amplifier in order to drive the next layer, realizing
at the same time the sin2(x2) activation function by exploiting the non-
linearity of theMZM transfer function20, as shown in the inset of Fig. 1b.
The non-injective behavior of the sin2(x2) is similar to the ReLU, which
is also non-injective for x < 0, while the non-linear part has similarities
with the sigmoid. The appropriate training framework for such acti-
vation functions has been published in36.

Figure 2a illustrates a photo of the packaged Si-pho prototype,
with the photonic chip mounted on an electrical Printed Circuit Board
(PCB) that allows seamless electronic access to all the DC driven
photonic components. A close-up microscope photo of the fabricated
4-fan-in Si-pho coherent neuron is depicted in Fig. 2b, highlighting
with red lines the interferometric structures that were utilized simul-
taneously in the experimental implementation of the network shown
in Fig. 1a (see S1). The electro-optic response of the travelling-wave
MZMs used for the on-chip input vector data generation was char-
acterized by measuring their frequency response, with an indicative
measurement for one of the four MZMs depicted in Fig. 2c, revealing a
3 dB bandwidth of 7 GHz.

MNIST classification at 10GMAC/sec/axon
Figure 3 depicts the experimental results obtained when the CPNN
architecture was trained for MNIST classification tasks considering a
noise-free hardware and signal environment, so as to validate the
noise-related characteristics of the experimental CPNN platform
through the comparative analysis between the expected and obtained
waveforms. The time traces of Fig. 3a–g illustrate the signals origi-
nating from the software inferenced NN and their experimentally
obtained counterparts with blue and red solid lines, respectively. More
specifically, the time traces in Fig. 3a, b depict the x1 and x2 signals,
while Fig. 3c illustrates the weighted sum of x1 and x2, denoted as Σ1.
The Mean-Squared-Error (MSE) for x1, x2 and Σ1 signals was 0.28, 0.16
and 0.63%, respectively. Figure 3d–f illustrate the respective time tra-
ces for the x3, x4 and Σ2 signals of the 2nd neuron, with the corre-
spondingMSE values being 1.13, 0.81 and 1.93%, respectively. The time
trace ofΣout signal that carries the sumof theweighted Σ1 and Σ2 values
utilizing the weighting stage of the last NN layer is depicted in Fig. 3g,
where the MSE was equal to 1.41%. Figure 3h, i and j depict the noise
distribution of Σ1, Σ2, and Σout, respectively, as well as the zero-mean
best fit Gaussian distribution for each data batch, highlighted in red.
Finally, the obtained classification accuracies and the calculated SNR
values are depicted in Fig. 3k. The CPNN achieved an accuracy of
99.47% for the MNIST classification task when all its layers were
implemented in a softwareenvironment, denotedby the dashed line as
“software accuracy” in Fig. 3k. Its experimental validation with the last
two layers implemented over the silicon photonic chip revealed an
accuracy of 99.3% and 97.8% and a SNR of 14 and 12.4 dB at 5 and
10GMAC/sec/axon, respectively, confirming the low-noise character-
istics of the proposed CPNN that allowed for only 0.17% and 1.67%
degraded accuracy performance, respectively, compared to the soft-
ware accuracy obtained within a noiseless environment. It is worth
mentioning that the contribution of the software- and the hardware-
implemented NN is analyzed in detail in supplementary note 2, where
the whole NN has been implemented in software with noisy building
blocks without any significant accuracy degradation.

Noise-resilient CPNN
Following the performance validation of the baseline CPNNmodel, the
last two NN photonic layers were retrained following a noise-aware
training model35 after introducing Additive White Gaussian Noise
(AWGN). The AWGN had a mean value and a standard deviation that
were set to be equal to the experimentally obtained noise character-
istics of the silicon photonic circuitry. Figure 4a illustrates schemati-
cally how AWGN was inserted at every xi in the CPNN layout in both
photonic layers within the NN training model, in order to emulate the
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Fig. 2 | Siliconphotonic neuron. a Photo of the packaged Si-Pho coherent neuron,
bMicroscope top-view photo of the SiPho chip, with the utilized part of the circuit

highlighted in red and c Frequency response of the push-pull traveling-wave MZM,
revealing a 3 dB bandwidth of 7 GHz.
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signal impairments originating by the photonic hardware platform. As
can be seen, AWGN noise was considered to be added on every axon,
so that a signal equal to y = (x + n) ×w emerges from a single axon at
the neuron output. The retraining procedure was implemented in the
PyTorch software model of the CPNN, for a noise with a zero mean
value and a standarddeviation ofσ =0.4, revealing a software accuracy
of 99.3% on the MNIST classification task.

Figure 4b–e illustrates the obtained experimental results of the
baseline model when used with different experimental conditions and
associated noise levels on the MNIST classification task, with Fig. 4f, g
depicting the respective experimental results when the noise-aware
training model was enforced. Figure 4b depicts the time trace of the
CPNN output layer when the baseline model is applied, with the

received optical power being equal to 0dBm. The blue solid line
represents the signal expected at the CPNN output when the network
performs in software, while the red solid line shows the experimentally
obtained pulse trace when an optical signal power of 0 dBm reaches
the PD. The difference between the two waveforms had the distribu-
tion illustrated in Fig. 4c along with its Gaussian fitting, presenting a
σ =0.21 and a MSE = 2.49%. Figure 4d shows again the software-
expected and experimentally obtained pulse traces when the optical
signal gets attenuated by 7 dB prior reaching the photodiode,
increasing in this way the noise of the photonic system that is primarily
dominated by the Rx Trans-Impendence Amplifier (TIA) thermal noise
contribution. In this case, the experimentally obtained waveform
deviates even more from the expected software-based pulse trace,
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being the result of the higher system noise within a noise-agnostic
baseline training. An increasedMSEof 3.85%andaσ =0.4 areobtained,
with its distribution depicted in Fig. 4e. However, enforcing the noise-
aware training model over the two photonic layers can significantly
improve performance for the same noise level conditions, as can be
verified by the time trace captured at the CPNN output layer and
shown in Fig. 4f. The same −7 dBm optical power level was retained
also in this case at the PD input so as to ensure identical noise levels
with the respective results of Fig. 4d, e, with the distribution of the
difference between the acquired and expected signals shown in Fig. 4g
and validating a significantly improved performance over the baseline
model, with σ and MSE values reducing to only 0.23 and 1.58%,
respectively.

A quantified comparison between the noise-aware MNIST classi-
fication model versus its baseline counterpart for different AWGN
levels with a standard deviation ranging from σ =0 up to σ = 0.6 was
carried out both in software and experimental environment and the
results of this analysis are illustrated in Fig. 5. The solid lines were
derived from the software simulation model and the scatter points
were derived from the experimentally validated DL platform, where
increasing AWGN levels were obtained by attenuating the power level
of the neuron output signal prior reaching the receiver. Figure 5a
depict the achieved classification accuracies for the MNIST dataset at
5GMAC/sec/axon, with the blue and red points representing the
experimentally obtained results from the baseline and noise-aware
trained platform, respectively. As can be observed, the experimentally
derived values follow closely the theoretically expected curves in both
cases, validating the robustness of both the developed software fra-
mework and the effectiveness of the noise-aware model. The perfor-
mance benefits of the noise-aware platform are revealed when the
noise standard deviation exceeds the value of σ = 0.25, where the

accuracy of the baselinemodel starts to degrademuch faster reaching
an accuracy of 95% at a σ =0.4. At the same time, the accuracy of the
noise-aware platform starts to degrade at significantly higher noise
levels, remaining at >99% values even for noise standard deviations up
toσ =0.4. This implies that the performanceadvantages offeredby the
noise-aware platform can be either acquired as accuracy improvement
over its baseline training model when the two schemes are evaluated
for identical noise levels or as optical power savings when the same
accuracy values are targeted by both schemes. More specifically, the
5GMAC/sec/axon noise-aware platform offers an accuracy improve-
ment of 5.93% compared to the baselinemodel when the system noise
has in both cases a standard deviation value of σ = 0.4. Alternatively,
the noise-aware model can be considered as requiring a −11.7 dBm
input optical power at the PD for ensuring the same 97.27% classifi-
cation accuracywith the respective baseline scenario, where, however,
a −7 dBm PD input optical power is needed. This highlights that the
noise-aware platform can yield a power budget improvement of 4.7 dB
thatmay translate into respective energy consumptionbenefitswhen a
certain accuracy performance is targeted. Figure 5b depicts the same
set of results for the case of a 10GMAC/sec/axon performing NN.
Similar improvements are reported for noise values with a σ >0.25,
with the accuracy of the noise-awareplatformremaining above 98%up
to σ values of 0.4, revealing a best-case accuracy improvement of
2.54% or, alternatively, a power budget saving of 1.8 dB compared to
the baseline scenario. It should be mentioned that the noise resiliency
of the noise-aware method has been validated in detail in supple-
mentary note 2, where the proposed training scheme enhances the
noise resilience of the network using at the same time the least pos-
sible photonic hardware. This fact has been also verified on the CIFAR-
10 dataset, where the usage of the noise-aware training allowed to
approach the performance of traditional ReLU-based NN
implementations.

Discussion
The speed and accuracy performance benefits enabled by the pro-
posed noise-resilient silicon photonic coherent DL platform can be
clearly outlined when comparing with respective state-of-the-art
coherent-based experimental layouts employed so far in neuro-
morphic applications. Figure 6 provides a pictorial representation of
the combined MAC/sec/axon compute rate and accuracy metrics
reported by coherent-based demonstrations so far23,16, and22, revealing
that the experimental accuracy performance accomplished so far was
only 72%, 76.7% and 90.5%, with the compute rate per axon never
exceeding 10 kHz. All these coherent-based deployments relied on the
use of cascaded MZI meshes following the SVD-based design over the
unitary optical layouts proposed by Reck32 andClements33. Ourwork is
the first to follow an alternative on-chip coherent neuromorphic
photonic architecturewhere a single columnofweight values required
by a single neuron can be enforced via a single respective column of

(a) (b)

4.7dB
1.8dB

Fig. 5 | noise-aware training: simulation vs experiment. Accuracy on MNIST
classification task versus noise standard deviation at a 5 and b 10GMAC/sec/axon.

The solid lines represent the numerically simulated results and the points the
experimentally acquired measurements.
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Article https://doi.org/10.1038/s41467-022-33259-z

Nature Communications |         (2022) 13:5572 5



optical components, avoiding in this way the use of cascaded photonic
stages and safeguarding higher noise tolerance. Combined with a
noise-aware DL training framework, the proposed silicon coherent
neuromorphic platform allowed for the first time for 10GMAC/sec/
axon on-chip compute rates and >98% accuracy values, outperforming
all state-of-the-art coherent neurons by ~6 orders of magnitude in
terms of per axon processing rates and by >7% in terms of accuracy
performance. This brings its accuracy performance very close to the
standards of state-of-the-art GPUplatforms, as can be revealed in Fig. 6
by the classification performance metrics accomplished by a Nvidia
DGX-A100 platform that executes the baseline MNIST classification
model using the sameNN architecture that was followed for the CPNN
layout. Taking into account that the compute rate per axon in the latest
Nvidia GPU is, however, one order ofmagnitude lower than the 10GHz
compute rate supported by the proposed silicon photonic neuro-
morphic platform (Fig. 6), the proposed CPNN equipped by noise-
aware trainingmodels designates a promising framework for elevating
DL performance metrics beyond state-of-the-art specifications of well-
established DL technologies. This dual-IQ-modulator-based archi-
tecture, demonstrated here as a rather elementary silicon integrated
chip that performs dot product operation between input and weight
vectors, can also scale to input vector-weight matrix multiplication
functions without sacrificing its noise-resilient properties37. This can
pave the way towards a highly promising coherent neuromorphic
photonic layout that may lead the race towards high-speed and high-
accuracy chip-scale photonic DL engines, forming a promising alter-
native even to current well-established DL technology platforms. In
doing so, a crossbar configuration seems to be the most promising
candidate to realize up to 64-by-64 photonic vector by matrix multi-
pliers with record-low loss and unitary fidelity (see S3).

We demonstrated experimentally a noise-resilient CPNN
deployed as a silicon-integrated photonic chip and trained within a
noise-aware feed-forward DL training framework, demonstrating the
highest classification accuracy and the fastest compute rate per axon
among all coherent linear neurons reported so far. The proposed
photonic neuron architecture can be extended to support on-chip
vector-matrix multiplication for implementing multi-neuron layers at
chip-scale37 and can be also applied to alternative DL training models
supporting Convolutional Neural Network (CNN) and Recurrent
Neural Network (RNNs) configurations38. Moreover, its 10GMAC/sec/
axon compute rate performance can be eventually increased by
replacing the silicon MZM with a higher electro-optic bandwidth on-
chip input vector data generation technology.

Methods
Design and fabrication of COLN
The COLN has been designed by using explicitly designed and tested
photonic building blocks that are available at CORNERSTONE’s Pro-
cess Design Kit (PDK). The chip has been fabricated in Cornerstone’s
Silicon Photonic 220 nm platform and wire-bonded on a custom PCB.
Each electro-optic MZM responsible for the generation of xi signal
relies on a push-pull asymmetric structure with 1.8mm long phase
shifters,while the heating elements are 560 um long. The insertion loss
of the electro-optic MZMs is 8 dB, requiring 4.4 V on each arm to
achieve a π-phase shift, while the thermo-optic MZMs has an insertion
loss of 2 dB.

Software-hardware interface
An in-house software tool was developed for interfacing the software
and the hardware part of the proposed CPNN. Towards the software-
hardware conversion, each signal was upsampled in order to achieve
the required baud rate. Then, the signal was pre-equalized bymeans of
11-tapFeed-ForwardEqualizer (FFE) andquantizedwith an8-bit format
before reaching a M8195a AWG from Keysight with 65GSa/s sampling
rate, 8-bit precision and 25GHz 3 dB bandwidth. The output of the PD

is sampled by means of an DSOZ634a real-time oscilloscope with
33GHz 3 dB bandwidth, 80GSa/s sampling rate and 10-bit resolution.
Afterwards, the hardware-software interface performs time recovery
to the captured waveform and then a Gaussian-shaped filter is applied.
The filtered signal is downsampled to 1 sample before entering the
software-based NN.

Noise-aware training model
Τhe CPNN was implemented in software by means of PyTorch frame-
work. All models were initialized using the Xavier initialization with a
gain of 2 and the weights were optimized for 20 epochs using a variant
of stochastic gradient descent, i.e. the Adamoptimizer. Finally, the size
of each batchwas equal to 256 and the learning rate was set to 0.0001.
For the training of noise-aware model, the experimentally measured
standard deviation and the distribution of system’s noise was used to
emulate the experimental conditions. The experimental measure-
ments of noise were performed within a certain range of received
optical power, resulting in different σ values ranging in [0, 0.7]. Then,
the CPNNwas trained by introducing noise on each axon based on the
experimental findings, resulting in three different models trained with
σ =0.2, 0.4 and 0.7. The simulation and the experimental validation of
three models shown that the model with σ =0.4 has the best perfor-
mance across the range of σ = [0, 1], establishing this model towards
the experimental validation of noise-resilient capabilities of the CPNN.
Note that the noise during the training procedure was generated by
using the randn() function of PyTorch.

Data availability
The data that support the findings of this study are available from the
corresponding authors on reasonable request.

Code availability
The code that used for training the ML models is available on GitHub:
https://github.com/georgemourgias/noise_aware_cpnn.
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