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Persistent activity in human parietal cortex
mediates perceptual choice repetition bias

Anne E. Urai 1,2,3 & Tobias H. Donner 1,2,4

Humans and other animals tend to repeat or alternate their previous choices,
even when judging sensory stimuli presented in a random sequence. It is
unclear if and how sensory, associative, and motor cortical circuits produce
these idiosyncratic behavioral biases. Here, we combined behavioralmodeling
of a visual perceptual decisionwithmagnetoencephalographic (MEG) analyses
of neural dynamics, across multiple regions of the human cerebral cortex. We
identified distinct history-dependent neural signals in motor and posterior
parietal cortex. Gamma-band activity in parietal cortex tracked previous
choices in a sustained fashion, and biased evidence accumulation toward
choice repetition; sustained beta-band activity in motor cortex inversely
reflected the previous motor action, and biased the accumulation starting
point toward alternation. The parietal, not motor, signal mediated the impact
of previous on current choice and reflected individual differences in choice
repetition. In sum, parietal cortical signals seem to play a key role in shaping
choice sequences.

The tendency to systematically repeat or alternate choices is ubiqui-
tous in decision-making under uncertainty. Repetition effects in choice
sequences have been called decision inertia1 or perseveration bias2.
The terms intertrial dependence3, sequential choice bias4 and choice
history bias5–8 more generally refer to both repetition and alternation
tendencies in choice sequences. Such choice history biases are pre-
valent even when observers judge weak sensory stimuli presented in a
random sequence9–11, and they generalize from humans1,3,6,12 to
monkeys13–15 and rodents8,16–22. Choice history biases can be adapted to
the correlation structure of stimulus sequences5,6,8, and they depend
on the previous decision’s confidence4,6,12,22.

Choice history biases seem to be shaped by sensory and motor,
but in particular by central processing stages. Sensory stimuli6,8,20,23

and motor responses24 both tend to repel subsequent choices. Yet,
reporting a choice with the same or different motor act seems to have
little effect on choice history biases1,6,25,26. Behavioral analyses suggest
that the biases are dominated by observers’ previous perceptual
interpretation of the sensory input, rather than the sensory input or
motor act per se1,6,23,25.

Neural signatures of previous choices have been identified in
primate visual cortex14,27, although their causal role has been
disputed28. The state of human motor cortex reflects previous motor
acts24,29,30 and, in certain task protocols, predicts an individual’s ten-
dency towards choice alternation24. In animals, associative areas of
posterior parietal cortex18–20,31 and prefrontal cortex15,32 carry history
information that seems to play a causal role in choice history biases.
Critically, however, previous studies of the neural bases of choice
history bias have commonly focused on a single brain region. Thus, it
has remained unclear how neural history signals in different (sensory,
associative, or motor) cortical areas conspire to shape behavioral
choice sequences.

Here we disentangled neural choice history signals across the
visuo-motor cortical pathway, and linked them to distinct dynamic
computations underlying the formation of a visual decision. We ana-
lyzed MEG and behavioral data from 60 observers who discriminated
small changes in visualmotion strength.Wedelineatedmultiple neural
signals reflecting choice and action history, expressed in different
cortical areas and frequency bands. Notably, choice history biases in
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the face of random stimulus sequences are highly idiosyncratic, lead-
ing some observers to systematically alternate, and others to system-
atically repeat their choices7,12. Thus, we also asked whether any of the
so-identified neural history signals mirrored these idiosyncratic
behavioral patterns. We found that gamma-band activity in higher-tier
areas of posterior parietal cortex mediated idiosyncratic biases
towards choice repetition, but not alternation.

Results
Participants (n = 60) performed a two-interval motion coherence dis-
crimination task (Fig. 1a). Throughout each trial, observers viewed
dynamic random dot patterns of varying motion coherence. In two
successive intervals, called “reference” and “test” stimulus (onset of
each stimulus cued by an auditory beep), some dots moved in one of
the four diagonal directions (fixed per observer). The reference
coherence was 70% in all trials. The test coherence differed (toward
stronger or weaker) from 70% by a small amount that yielded a
threshold accuracy (about 70% correct) for each individual (see
“Methods”). Observers judged whether the coherence of the test was
stronger or weaker than that of the reference. Auditory feedback was
presented after a variable delay.

As observed previously7,12, choice behavior in this task revealed
stable, idiosyncratic choice history biases (Fig. 1b–d). By design, sti-
mulus categories (test stronger vs. weaker than reference) were largely
uncorrelated across trials (Fig. 1b, left). The autocorrelation in choice
sequences was considerably larger, with observers ranging from
alternating to repeating their past choices (Fig. 1b, right). In line with
previous reports12,33, these individual differences were relatively stable
across two experimental sessions 13–30days apart (Fig. 1c). For further
analyses, we divided participants into two sub-groups based on their
choice repetition probability collapsed across both sessions (Fig. 1d).
One observer had a repetition probability of exactly 0.5, and was

excluded from subgroup analyses. In what follows, we label these two
sub-groups as “repeaters” (N = 34) and “alternators” (N = 25), without
implying a statistically significant deviation from 0.5 within each
individual of these groups. Yet, repetition probabilities differed from
0.5 so consistently across blocks that they were statistically significant
(p < 0.05, t test) in a substantial number (N = 12 each) of individuals
from each group (large symbols in Fig. 1d). Detecting more subtle
individual deviations from 0.5 may require more within-subject data.

Choices frommultiple past trials contributed to the history biases
(Fig. 1e, f). Regression modeling uncovered an effect of choices made
more than one trial back, specifically for repeaters (Fig. 1e). Notably,
repeaters and alternators were solely differentiable based on the ker-
nels quantifying the impact of previous choices (Fig. 1e, compare
orange and purple), rather than of previous stimuli or of combinations
of both (e.g., win-stay/lose-switch strategy; Supplementary Fig. 1a, b).
In line with previous reports1,8, we also observed a build-up of the
history bias across multiple trials, forming a streak of the same choice
(Fig. 1f). This was evident in an interaction between sequence length
and final choice: when streaks ended in a single alternation, repetition
biases disappeared or even reversed (Fig. 1f). This interaction was
specifically expressed in repeaters, but not in alternators (Fig. 1f, with a
significant group difference: mixed model, interaction sequence
length × sequence end × subgroup F(4) = 5.664, p <0.001; “Methods”).
These streak effects were independent of trial outcomes (Supple-
mentary Fig. 1c).

Stimulus- and action-related dynamics across the visuo-motor
pathway
To pinpoint neural signatures of choice history bias in our task, we
focused on established MEG signatures of visual motion processing
and action planning, within well-defined cortical regions and fre-
quency bands30,34–38. We first replicated these signatures in our current
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Fig. 1 | Behavioral task and choice history biases. a Behavioral task. b Probability
of repeating the previous stimulus category (left) or choice (right). c Correlation
between individual P(repeat) in the first and second MEG sessions (Pearson’s
r =0.5134, p =0.00003). d Choice repetition separately for alternators (N = 25,
orange circles) and repeaters (N = 34, purple triangles). One observer had a repe-
tition probability of exactly 0.5, and was excluded from subgroup analyses. Large
markers indicate those individuals whose block-wise repetition probability was
significantly different from 0.5, as determined by a t test. e Impact (regression
weights) of several previous choices on current bias. T test against 0 within each

subgroup and lag: significant for repeaters on lags 1–7; significant for alternators on
lag 1. f Build-up of history bias across multi-trial choice streaks (i.e., successive
repetitions of same choice), for both groups. Sequenceswere separatedbywhether
they end in a repeating (red purple) or an alternating (black) choice. “Repeating
bias” was quantified as shift in decision criterion into the direction of final choice
(i.e., “X“ for red sequences, “Y” for black sequences).Main effects (Sequence length:
p = 4.14e−8, sequence end: p = 1.71e−7) and interaction (p = 1.14e−25) from a
repeated-measures ANOVA (see “Methods”). Data are shown as mean+/− 95%
bootstrapped confidence intervals (n = 60).
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measurements (Figs. 2 and 3). This laid the ground for delineating, and
functionally characterizing, choice history signals within the same
areas and frequency bands.

During both intervals containing coherent motion (i.e., reference
and test), we observed occipital enhancement of high-frequency
power (from 30–100Hz, including a steady-state response at 60Hz,
Supplementary Fig. 2), which was accompanied by a suppression of
low-frequency power (<30Hz) (Fig. 2a). Our subsequent analyses
focused on the modulations of high gamma band power (65–95Hz),
which may reflect broadband population spiking36,39,40. As in previous
work34, we found enhanced visual gamma-power responses and alpha-
power suppression to stronger versus weaker motion coherence
(Fig. 2b), in visual cortical areas known to be involved in visual motion
processing, such as area V3A/B (Fig. 2d, “Methods”). Thus, both signals
tracked the subtle sensory signal relevant for the near-threshold
discrimination task.

Also in line with previous work24,35,38, inmotor cortex we observed
gradual build-up of the lateralization of alpha- and beta-band power
suppression contralateral vs. ipsilateral to the upcoming response.
This signal rampedupduringdecision formation, from the test interval
up until the execution of the button press (Fig. 3a). Then, the signal
flipped from contralateral suppression to contralateral enhancement
(“beta rebound”, ref. 42), an effect that carried over to the next trial
(Fig. 3b, c) and wasmost prominent in the hand area of primarymotor
cortex (M1, Fig. 3c; cf. ref. 24).

Choice history signals in parietal cortex
Having replicated these established spectral signatures of sensation
and action at sensory andmotor processing stages of our task, we next
sought to identify history-dependent neural signatures across a num-
ber of precisely delineated cortical areas covering the visuo-motor
pathway37,38: a hierarchically ordered set of dorsal visual field maps
(from V1 into intraparietal cortical area IPS2/3), plus parietal and
frontal regions carrying action-selective activity (Table 1; Fig. 2c).

The stimulus category (stronger vs. weaker motion) modulated
high gamma-band responses in all visual field maps up to IPS0/1
(Fig. 4a, top). Critically, in IPS2/3, gamma-band activity tracked the
previous trial’s choice, being enhanced after a “stronger” choice, both
in the reference (Fig. 4b) and test intervals (Fig. 4c). This effect was
only present in repeaters but not for alternators, and differed sig-
nificantly between groups of subjects (Fig. 4d, top). The effect in
repeaters was present even when randomly subsampling 25 observers
(the same number as in the group of alternators: effect of previous
choice = 0.919, CI [0.363, 1.475],p =0.001), andwhen testedonly in the
12 repeaters whose repetition probabilities significantly differed from
0.5 (effect of previous choice = 1.0686, CI [0.25196, 1.8853],
p =0.0103).

Likewise, choice history affected alpha-band power in the same
direction in neighboring area IPS0/1 (the first in the visual hierarchy
where the stimulus category did not modulate alpha-band power;
Fig. 4a, bottom), but only during test (Fig. 4c, bottom) and not during
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Fig. 2 | Task-related MEG dynamics in visual cortex. Time–frequency repre-
sentation of MEGpowermodulations relative to pre-trial baseline a across trials, or
b contrasting task-relevant stimulus categories (strong vs weak motion). Inset:
occipital sensors, selected based on the visual motion-dependent gamma-band
response. Shading indicates significant clusters in time-frequency space, as

determined by a cluster-based permutation test on preselected sensors (see
“Methods”). c Regions of interest for source reconstruction, displayed on the
inflated cortical surface. d Gamma-band activity in motion-selective visual areas,
such as V3A/B, scales with the strength of coherent motion presented on the
screen. Data are shown as mean +/− 95% confidence intervals (n = 60).
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reference (Fig. 4b, bottom; only effect during this interval in V2–4).
Differently from the IPS2/3 gamma signal, the IPS0/1 alpha signal did
not distinguish between alternators and repeaters (Fig. 4d, bottom).
The alpha signal exhibited a superposition of two signals: a specific
enhancement of alpha-power in IPS0/1 after incorrect “stronger”
choices (Supplementary Fig. 3b, bottom) and a global, error-related
alpha-suppression unrelated to the previous choice (Supplementary
Fig. 3c, bottom). For all subsequent analyses, we used an isolated
measure of the choice history-specific component (Methods).

Several patterns in the two parietal history effects, expressed in
IPS2/3 gamma and IPS0/1 alpha, suggests distinct underlying pro-
cesses. First, the effect of previous choices on IPS2/3 gamma-band
power in repeaters was sustained throughout the trial (Fig. 5a). By
contrast, the IPS0/1 alpha history signal (Fig. 5b) first emerged tran-
siently during the processing of that decision (i.e., test stimulus
interval; Figs. 5 and S1, left) and then re-emerged during the inter-trial
interval (Supplementary Fig. 5b). Second, both parietal history signals
showed an opposite dependency on the previous outcome, with the
IPS2/3 gamma effect only present after correct trials, and the IPS0/1
alpha effect only after error trials (compare Supplementary Figs. 3a
and S3b). Third, and most importantly, only the IPS2/3 gamma-band
effect differentiated between subgroups of repeaters and alternators.

Therewas a tendency for the IPS2/3 gamma-bandeffect to build up
over streaks of successive repetitive choices (Supplementary Fig. 4b),
similar as observed for the behavior (Fig. 1f). Specifically, there was a
significant interaction between sequence length and sequence end
(repetition vs. alternation) on build-up of IPS2/3 gamma-band, for
repeaters but not alternators (Supplementary Fig. 4b). In other words,
also the across-trial behavior of the history signal in IPS2/3 gamma in
repeaters reflected this group’s overall behavioral pattern (Fig. 1f, right).

Action history signals in parietal and motor cortex
Because the mapping between choice (“stronger” vs. “weaker”) and
motor action (left vs. right button press) varied between participants,
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Fig. 3 | Action-related MEG dynamics in motor cortex. a Time–frequency
representation of action-related MEG power lateralization (contralateral vs. ipsi-
lateral to button press) over motor cortex. Inset: motor sensors, selected based on
pre-movement beta-band lateralization. Shading indicates significant clusters in
time-frequency space, as determined by a cluster-based permutation test on

preselected sensors (see “Methods”). b As a but now lateralization contralateral vs.
ipsilateral to the previous motor action. c Time course of beta-band (12–36Hz)
lateralization in the hand area of M1, separately for previous contra- and ipsilateral
motor actions. Data are shown as mean+/−95% confidence intervals (n = 60).

Table 1 | Region of interest definition

Cluster Functional areas Source

V1 Dorsal and ventral parts of V1 ref. 54

V2–V4 Dorsal and ventral parts of V2, V3, V4

V3A/B V3A, V3B

MT+ MT, MST

IPS0/1 IPS0, IPS1

IPS2/3 IPS2, IPS3

aIPS aIPS1 ref. 55

IPS/PostCeS IPS/post-central sulcus

M1 M1 (hand area)

PMd/V 55b, 6d, 6a, FEF, 6v, 6r, PEF ref. 78
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we could disentangle the described effects of choice history from
effects of action history (i.e., the previous motor response) in our
group analysis. Signatures of action preparation in beta-band later-
alization (Fig. 3a) were present in multiple parietal and frontal cortical
areas beyond the M1 hand area: IPS0-3, anterior intraparietal cortex
(aIPS), the junction of intraparietal and postcentral sulci (IPS/PostCeS),
and dorsal/ventral premotor cortex (PMd/v; Fig. 4e, bottom). By con-
trast, gamma lateralization was confined to IPS/PostCeS, PMd/v, and
M1 (Fig. 4e, top). The effect of action historywas present inM1, PMd/v,
and IPS/PostCeS during reference (Fig. 4f, bottom), but less robustly
during test (Fig. 4g, bottom). Action history signatures (beta-power
lateralization pooled across IPS/PostCeS, PMd/v, andM1) did not differ
between repeaters and alternators (Fig. 4h). The action history signal
wasonly present after correct choices (Supplementary Fig. 3d, e). It did

not correlate with IPS2/3 gamma choice history signals (across-parti-
cipant correlation: r = 0.075, p =0.5689, Bf10 = 0.1191). None of the
cortical history signals reflected choices or actions beyond one past
trial (Supplementary Fig. 4e). Action history signals in motor cortex
decayed from the start of the trial, no longer significant by the time the
next trial’s test stimulus is presented (Fig. 5c). Since observers were
allowed to blink their eyes and make small movements during the
inter-trial interval (thereby minimizing ocular and muscle artifacts
during the trial), we could not track the emergence of choice or action
history signals between trials.

In sum, we identified three neural signals that encoded different
aspects of the previous choice: the perceptual decision and the motor
act used to report that decision. Following “stronger” compared to
“weaker” choices, both (i) gamma-band activity in IPS2/3 during test
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and reference intervals, and (ii) alpha-band activity in IPS0/1 during the
test stimulus interval, were enhanced. Additionally, (iii) beta-band
activity in motor areas (IPS/PostCeS, PMd, and M1) was stronger con-
tralateral than ipsilateral to the previous motor response, only during
the reference interval. These three signals had dissociable anatomical,
temporal and frequency profiles, and differed in their sensitivity to the
outcome (correct or error) of previous choices. For brevity, we refer to
these as IPS2/3-gamma, IPS0/1-alpha, and motor-beta (average of IPS/
PostCeS, PMd, and M1), respectively. Note that the former two were
extracted during the test stimulus interval, during which the decision
was computed. The motor-beta signal was extracted from the refer-
ence interval, as its historymodulation hadvanishedby the timeof test
stimulus viewing. Crucially, only the IPS2/3 gamma-band signal dif-
fered between subgroups of alternators and repeaters, suggesting it as
a prime candidate for dominating behavioral choice history
tendencies.

Impact of cortical history signals on behavioral choice
We then aimed to pinpoint the functional roles of these distinct neural
history signals. We first ran a mediation analysis based on single-trial
regressions (Fig. 6). In our model, the current choice was a categorical
response variable (all regressions on that variable were logistic, see
Methods), previous choice was a (categorical) regressor, and IPS2/3-
gamma, IPS0/1 alpha, and motor-beta signals were included as candi-
date mediators of the impact of previous on current choice (Fig. 6a).
Only the IPS2/3-gamma signal (t(59) = 3.971, p =0.0002) but none of
the other two signals (IPS0/1 alpha: t(59) = 1.592, p = 0.1167; motor
beta: t(59) = 1.178, p =0.2434) mediated (partially) the effect of pre-
vious choice on current choice (Fig. 6b). While significant for the

complete group, this effectwas specifically expressed in repeaters, not
alternators (Fig. 6). This group difference was most strongly driven by
the effect of previous choices on IPS2/3-gamma (the a-path), rather
than by the effect of this neural signal on the next choice (the b-path)
(Supplementary Fig. 7). The mediating effect on choice of IPS2/3
gamma was present also when calculated selectively for previous
choices that were correct, but not incorrect (Supplementary Fig. 8).
The lattermay reflect a lack of power due to the lower number of error
trials, which is also suggestedby the similarpattern for thedirect effect
(Supplementary Fig. 8). The direct path was also significant
(t(59) = 2.148, p = 0.0358; Fig. 6b, right), indicating that the IPS2/3-
gamma signal did not fully explain choice history biases (“partial
mediation”). This is not surprising given that single-trial MEG signals
are coarse population proxies of the cellular signals that drive
behavior.

In our task, the parietal IPS2/3 gamma signal dominated overt
choice history biases and its individual differences (differentiating
between repetitive and alternating strategies), and mediated choice
sequences. This was not the case for the motor beta lateralization,
contradicting previous results: Pape and Siegel ref. 24 found that
motor beta lateralization predicts choice alternation, in a motion dis-
crimination task where perceptual choices and motor actions were
decoupled on a trial-by-trial basis. Given this previous work, we won-
dered if the pre-stimulus motor beta signal had any effect on choice
history behavior in our task. Specifically, this neural signal may have
had a subtle influence on decision-making only visible in the dis-
tributionof reaction times,which, given the longoverall decision times
in our task,maynot necessarily translate into biases in thefinal choice7.
We next tested this idea by means of computational modeling of
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reaction times and choices, using the different neural history signals as
single-trial physiological regressors42,43.

Parietal andmotor cortical signals playdistinct roles in evidence
accumulation
Current models of decision dynamics posit the temporal accumula-
tion of sensory evidence, resulting in an internal decision variable
that grows with time44–47. When this decision variable reaches one of
two bounds, a choice is made and the motor response is initiated.
Different history-dependent neural signals may be the source of
distinct biases in evidence accumulation that we have previously
uncovered through behavioral modeling7. One possibility is that
biased activity states in motor circuitry add to accumulated evi-
dence, without interacting with the accumulation process per se.
Alternatively, biases in neural circuitry upstream from the evidence
accumulator38,48 may bias the evidence accumulation process
directly. These scenarios can be disentangled behaviorally using
accumulation-to-bound models, such as the widely used drift diffu-
sion model (DDM). In this model, choice bias can arise from two
different sources (Fig. 7a). On the one hand, an offset prior to the
decision (and independent of the accumulation process) shifts the
decision variable closer to one of the two decision bounds (starting
point bias). On the other hand, the input to the evidence accumulator
can be biased throughout decision formation, affecting the decision
process just like a bias in the physical stimulus, and producing a
stimulus-independent asymmetry in the rate of accumulation
towards one versus the other bound (drift bias). These mechanisms
can produce the same bias in choice fractions, but have distinct
effects on the shape of reaction time distributions (Fig. 7a). Specifi-
cally, starting point biases most strongly drive choices that are made
quickly, whereas drift biases accumulate over time and predict
biased choices also when reaction times are slow7,49,50.

We reasoned that the parietal signals (IPS2/3-gamma and/or IPS0/
1-alpha) during test interval may bias evidence accumulation toward
choice repetition, while themotor beta signal (average of IPS/PostCeS,
PMd, and M1) at the start of the trial (reference interval) may bias the
startingpoint towards choice alternation. Theunderlying rationalewas
that the parietal signals were present during decision formation,
occurred in regions that were likely to be upstream from a putative
evidence accumulator51 and (for IPS0/1) encoded the decision-relevant
sensory signal. The parietal signals also went in the direction of choice
repetition (i.e., same sign as the effect of previous stimulus category).
By contrast, the beta signal in action-related areas was expressed only

before decision formation, and pointed toward choice alternation
(opposite sign as the effect of previous choices, Fig. 4f).

Wefitted sequential samplingmodels to theneural andbehavioral
data to test these hypotheses and quantified the impact of trial-to-trial
neural signals on drift bias and starting point (Methods). In line with
previous work7, the data were best captured by a nonlinearly collap-
sing bound (Supplementary Fig. 10a, “Methods”), and showed the
expected strong effect of stimulus category on drift (Supplementary
Fig. 10d). We replicated the main result from previously reported,
standard DDM fits7. Specifically: (i) at the group level, previous choices
had a negative effect on starting point (i.e., towards choice alternation)
and a positive effect on drift (i.e., toward repetition; Supplementary
Fig. 10e); (ii) individual differences in overt repetition behavior were
better explained by the effect of choice history on drift bias, rather
than starting point (Supplementary Fig. 10f). We then replaced the
previous choice predictor with three single-trial neural signals, to
assess if they predicted trial-to-trial variations in starting point or drift.

Parietal and motor signals mapped onto distinct components of
evidence integration. IPS2/3-gamma predicted a positive modulation
of drift bias (p = 0.0426) (i.e., in the direction of choice repetition), but
had no effect on starting point (p = 0.1484; Fig. 7b). This effectwas also
present when using neural data from the reference interval (Supple-
mentary Fig. 11a), and itwas robust to removal of the impact of current
stimulus category from the single-trial neural signals (by subtracting
meanneural signal for each stimulus category; Supplementary Fig. 11b)
and inclusion of a regressor for the previous choice (Supplementary
Fig. 11c). In contrast, motor-beta during reference predicted a negative
modulation of starting point (p =0.0448) (i.e., in the direction of
choice alternation), but no effect on drift bias (p =0.1543; Fig. 7d), an
effect that was neither significant during the delay interval, nor during
the test interval (Supplementary Fig. 12). The residual IPS0/1-alpha
signal did not predict either computational parameter (Fig. 7c). There
was no significant interaction between the group (repeaters vs. alter-
nators) and these neural regression patterns (Supplementary Fig. 13).

Previous behavioral modeling work has shown that adjustments
of decision bounds play a key role in mediating the effects of
outcome52 and/or subjective confidence53 from the previous trial on
current decision formation.We, therefore, fitted furthermodels to test
if any of the history-dependent neural signals (IPS0/1-alpha, IPS2/3-
gamma, motor-beta) or the previous choice per se modulated the
bound height. There was no evidence for a trial-by-trial adjustment of
decision bounds by previous choices (Supplementary Fig. 14) nor by
history-dependent neural signals (Supplementary Fig. 15).
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Discussion
Even in the face of random stimulus sequences, the tendency to sys-
tematically repeat or alternate previous choices is ubiquitous in
decision-making3,7,9–11. Recent studies have begun to identify neural
traces of choice history in brain regions implicated in perceptual
decision-making1,13,14,17,20,24,27,31, but these studies have commonly
focused on one brain region at a time. Here, we combined humanMEG
recordings with behavioral modeling to dissect and compare multiple
neural choice history signals that were distributed across the cortical
sensory-motor pathway for an elementary visual decision and
expressed in choice- or action-selective band-limited activity that
persisted fromone trial to the next.We focused onmultiple visual field
maps in occipital, temporal, and parietal cortex (Wang et al.54) and
anterior parietal and frontal areas involved in action preparation37,38,55.
To constrain the functional interpretation of the thus identified neural
history signals, we compared themwith establishedMEG signatures of
sensory encoding and action preparation in the above regions.

Our approach uncovered a neural signature of choice repetition
bias: persistent gamma-band activity in the intraparietal sulcus (higher-
tier visualfieldmaps IPS2/3). This parietal gamma-band signal encoded
previous choices (“stronger” vs. “weaker” motion) in a sustained
fashion from the previous choice up into the subsequent decision
interval, forming an active bridge between successive decisions. The
signal was strongly related to idiosyncratic features of sequential
behavior: it was only expressed in observers with a tendency to repeat
their choices. Critically, in these repeaters, it mediated choice repeti-
tion bias. Replicating a previous study24, we also found that the sus-
tained lateralization of beta-band activity in motor cortical areas (IPS/
PostCeS, PMd/v, and M1) encoded the motor act (left vs. right button
press) used to report the perceptual judgment on the previous trial.
However, this action history signal had a negligible effect ofmediating
choice history biases and did not differ between observers with repe-
titive vs. alternating behavior. Using neurally informed accumulation-
to-bound models, we found that the motor-beta signal biased the
starting point of evidence accumulation toward choice alternation,
while the parietal-gamma signal biased the rate of evidence accumu-
lation toward choice repetition. This starting point effect of themotor-
beta signal extends a previous demonstration of this signal’s

involvement in choice alternation24 by linking it to a specific compu-
tational parameter. Taken together, our results indicate that persistent
activity in intraparietal cortex reflect action-independent choice his-
tory signals, which shape choice repetition behavior. Posterior parietal
cortex may thus integrate and sustain decision-relevant information
not only within45, but also across trials, providing a bridge between
sensory responses and longer-lasting beliefs about the structure of the
environment.

Neural correlates of decision biases have commonly been studied
in the context of explicit experimental manipulations of e.g., stimulus
probabilities, rewards or single-trial cues. By contrast, the biases we
describe here are intrinsic and highly idiosyncratic. They arise despite
verbal instructions to focus only on sensory stimuli, cannot fully be
eliminated with extensive training3,13, and are strongly idiosyncratic7.
The ultimate source of these individual differences remains a target for
speculation. Agentsmaydiffer in their representation of the stability of
the environment, yielding distinct different history biases56. The IPS2/3
gamma signal identified here was specific to observers who tended to
repeat their choices, pointing to a potential role in implementing an
idiosyncratic assumption of environmental stability.

Our findings corroborate recent demonstrations of choice history
signals in the posterior parietal cortex ofmice17,18,31 and rats19,20. History
biases in rodents may specifically depend on PPC neurons that project
to the striatum, rather than motor cortex31, highlighting how specific
populations of neurons may be involved in distinct decision-making
computations. Because of the diminished sensitivity of our MEG
recordings57 for subcortical regions, we did not analyze subcortical
areas in the present study. The correlative nature of our recordings
precludes strong inferences about the causal role of human parietal
history signals28, but optogenetic inactivation of rodent posterior
parietal cortex reduces history dependencies in behavior18,20. Notably,
thiswasobservedonly for inactivationprior todecision formation, and
parietal inactivation during the next stimulus left choice history biases
unaffected18,20,58. The latter observation, obtained in rodents and dif-
ferent tasks, seems to be at odds with our finding that the human IPS2/
3-gamma signal during stimulus viewing was a significant mediator of
choice history biases. This apparent inconsistency points to the need
for combined inactivation and recording studies and more direct
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cross-species comparisons, in order to better understand the specific
role of parietal cortical dynamics in shaping choice sequences.

Our behavioral task was designed so that we could exploit a pre-
viously established motion coherence-dependent MEG signals34 as
selective markers for the encoding of the near-threshold task-relevant
sensory signals (difference in motion strength; Fig. 2). Further, differ-
ent from two-interval discrimination tasks used in the somatosensory
and auditory domains20,59,60 we kept the reference stimulus constant
across trials. Participants could thus use a stable categoryboundary for
“stronger” vs. “weaker” (learned by practice before the MEG record-
ings), instead of working memory representation that was newly
formed on each trial. We reasoned that this might render choice his-
tory effects in our task less dependent on working memory of the
reference. This assumption was supported by the persistent nature of
choice history signals observed in IPS2/3, which were largely unin-
terrupted by the reference (Fig. 5, top), as well as by the lack of
behavioral effect of trial-by-trial variations in persistent activity during
the delay interval, over and above the long-lasting signal inherited
from the previous trial (Supplementary Fig. 9). Taken together, these
features of the taskdesign enabled us toprecisely relate the spatial and
spectral properties of choice history signals to the encoding of deci-
sion evidence, and show that attractive history biases are also present
in tasks where working memory is not needed, extending recent
rodent work20.

A biasing effect of a sustainedneural signal on the rate of evidence
accumulation (“drift bias”) may reflect a biased encoding of the sen-
sory information61. Our results argue against this possibility: such an
effect would have to be expressed in a region and frequency band that
also encodes the stimulus itself. IPS2/3 was the first visual field map in
the hierarchy where this was not the case. Another possibility is a non-
sensory bias signal that feeds into the accumulator together with the
stimulus information, adding a history-dependent bias to the accu-
mulation process. The IPS2/3-gamma is consistent with this scheme,
specifically for subjects with a tendency to repeat. Such a scheme
would also translate into the observed stimulus-independent drift bias
and resulting bias in choice behavior.

Previous behavioral work has pointed to a link between response
preparation and the starting point of evidence accumulation25,49,50.
Action-specific beta-power lateralization in the cortical motor system
pushes the motor state away from the most recent response24,29.
Combining physiology with single-trial behavioral modeling enabled
us to show that this motor beta signal specifically biased the starting
point of evidence accumulation toward response alternation. This beta
signal is also found in pure motor tasks that do not entail decision-
making, and it likely reflects idling in motor circuits41 that prevents
action repetition. In our task, this signal did not have a detectable
effect on overt choice sequences. This is largely in line with previous
work: repetitive choice history biases persist even with variable sti-
mulus response mapping1,6,24,26, and inactivation of PPC-M2 projection
neurons does not abolish choice history bias in mice18. In our experi-
ment, the choice-response mapping was fixed within individuals, dif-
ferent from the variable mapping used by Pape and Siegel24. This may
have caused the motor history signal to decay as participants formed
the next decision, reducing the impact of the beta rebound on sub-
sequent choices. The dominant effect of accumulation biases (toward
repetition) over starting point biases (toward alternation) on choices
may arise from their temporal dynamics: the slower the decision, the
more drift biases dominate over starting-point biases in their effect on
choices7,49,50. So, we could only identify the effect of motor beta-
rebound on starting point by jointly fitting choices and response time
distributions.

Our modeling approaches could be extended in several instruc-
tive ways. First, the DDM is a simplified model of the dynamics of
evidence integration44. For example, it is unlikely that integration is
non-leaky and that drift biases are constant. We previously established

that even in such cases, choice history most strongly affects the
accumulation bias, rather than the starting point of evidence
integration7. Future work could combine time-resolved sensory inputs
with fitting of more complex decision-models7,47,62, to help refine the
within-trial time course of choice history biases across cortical areas.
Second, although history effects on behavior were long-lasting, we
here only used the previous trial’s choice as a proxy. Various
reinforcement-learning models have been used to account for choice
history bias1, its dependence on confidence22,63 and its response to
environmental statistics56,64. Another important avenue would be to
relate model-derived single-trial estimates of behavioral history bias15

and/or drift65 to the rate of decision-related cortical build-up
activity35,37,38,66.

In conclusion, our results show that choice history is an important
source of trial-to-trial variability in cortical dynamics, which in turn
biases subsequent decision computations and choice behavior. These
results contribute to our understanding of how decision processes
arise from a rich interplay of sensory information and contextual fac-
tors across the cortical hierarchy.

Methods
Participants
Sixty-four participants (aged 19–35 years, 43 women and 21 men)
participated in the study after screening for psychiatric, neurological
or medical conditions. All participants had normal or corrected to
normal vision, were non-smokers, and gave their informed consent
before the start of the study. The experiment was approved by the
ethical review board of the University Medical Center Hamburg-
Eppendorf (reference PV4648). Before each experimental session,
participants were administered a pill containing donepezil (5mg Ari-
cept®), atomoxetine (40mg Strattera®) or placebo (double-blind
cross-over design). These pharmacological manipulations did not
affect behavioral choice history biases7, and were therefore not
incorporated in the analyses presented here.

Threeparticipants didnot complete all sessions of the experiment
and were thus excluded. After rejecting trials with excessive recording
artifacts (see below), we discarded one additional participant with
fewer than 100 trials per session remaining. In total, 60 participants
were included in the analysis.

Behavioral task
Participants were asked to judge if the coherence of a random-dot
motion stimulus in a so-called test interval was stronger or weaker
than a preceding reference stimulus, which was shown afresh on
each trial at 70% coherence (Fig. 1a). A red “bulls-eye” fixation target
of 0.6° diameter67 was present in the center of the screen
throughout the experiment. Each trial started with a baseline
interval of 500–1000ms of randomly moving dots (0% coherence).
A beep (50ms, 440 Hz) indicated the onset of the reference sti-
mulus (70% coherence) that was shown for for 750ms. The refer-
ence was followed by a variable (300–700ms) delay (0%
coherence). An identical beep indicated the onset of the test sti-
mulus, whose motion coherence deviation from the 70% reference
toward stronger or weaker coherence. The deviation was individu-
ally titrated prior to the main experiment (see below). A counter-
balancing scheme ensured that each stimulus category (weaker or
stronger) was followed by the same or the other category equally
often68. During both non-zero coherence (i.e., reference and test)
intervals, dots moved in one of the four diagonal directions, coun-
terbalanced across and constant within participants. After the offset
of the test stimulus, observers reported their judgment (“stronger”
vs. “weaker”) by pressing a buttonwith their left or right index finger
(response deadline of 3 s). The hands used to report “weaker” and
“stronger” judgments were counterbalanced across participants.
Feedback (correct/incorrect) was then indicated by a tone of 150ms
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(880 or 200 Hz, feedback-tone mapping counterbalanced between
participants).

Stimuli
Random dot kinematograms were presented in a central annulus
(outer radius 14°, inner radius 2°) around fixation. The annulus was
defined by a field of dots with a density of 1.7 dots/degrees2. Dots were
white with 100% contrast from the black background and 0.2° in dia-
meter. Signal dots were randomly selected on each frame,movedwith
11.5°/second in one of four diagonal directions and had a limited
“lifetime” of four consecutive frames, after which they were replotted
in a random location. Signal dots that left the annulus wrapped around
and reappeared on the other side. Noise dots were assigned a random
location within the annulus on each frame, resulting in “random
position” noise with a “different” rule69. Moreover, three independent
motion sequences were interleaved on subsequent frames to pre-
vent tracking of individual signal dots70.

Experimental procedure
Before their first MEG session, participants received instructions and
then did one behavioral session to determine their 70% correct
threshold for the main experiment. First, 600 trials with test stimuli
containing 1.25, 2.5, 5, 10, 20, and 30% coherence difference (from the
70% coherence reference) were randomly interleaved. The inter-
stimulus interval was 1 s, and participants took a short break after each
set of 125 trials. They did not receive feedback. Stimuli were presented
on an LCD screen at 1920 × 1080 resolution and 60Hz refresh rate,
60 cmaway from theparticipants’ eyes. Todetermine each individual’s
psychometric threshold, we fit a cumulative Weibull as a function of
absolute coherence difference c, defined as

ψ cð Þ=δ+ 1� δ� γð Þ 1� e�
c
αð Þβ

� �
ð1Þ

where δ is the guess rate (chance performance), γ is the lapse rate, and
α and β are the threshold and slope of the psychometric Weibull
function, respectively71. While keeping the guess rate δ bound at 50%
correct, we fit the parameters α, β, and γ using a maximum likelihood
procedure implemented byminimizing the logarithmof the likelihood
function. This was done using a Nelder–Mead simplex optimization
algorithm as implemented in Matlab’s fminsearch function. The indi-
vidual threshold was taken as the stimulus difficulty corresponding to
a 70% correct fit of the cumulative Weibull.

Second, participants performed another 100 trials using a 2-up 1-
down staircase procedure. This procedure accounted for any learning
effects or strategy adjustments during thresholding. The coherence
difference between the two stimuli started at their 70% correct
threshold as obtained from the Weibull fit. It was increased by 0.1%
coherence on making an error, and decreased by 0.1% on giving two
consecutive correct answers. Thresholds from this staircase ranged
from 3.3 to 13.4% (mean 6.9%) motion coherence difference.

Participants then performed the task at their individual motion
threshold for a total of 1.200 trials during twoMEG sessions (600 trials
each, 13–30 days apart). Between these two MEG sessions, they per-
formed three practice sessions (1500 trials each, on separate days)
outside the MEG. In the behavioral practice sessions, we presented
feedback immediately after the participants’ response. An ISI of 1 s was
observed before continuing to the next trial. Participants completed
training on 4500 trials, over 3 separate sessions, between the twoMEG
recordings. The training data are not used in our current analyses.

Quantification of choice history weights
Wequantified individual choice history strategies by fitting an extended
logistic regression model, as described in3,6,12. This approach extends
the psychometric function with a history-dependent bias term δhist (ht),

reflecting was a linear combination of previous stimuli and choices

P rt = 1∣est , ht

� �
= γ + 1 � γ � λð Þg δ ht

� �
+ α est

� �� � ð2Þ

where λ and γ were the probabilities of stimulus-independent errors
(“lapses”), est was the signed stimulus intensity, g xð Þ= 1=ð1 + e�xÞ was
the logistic function, α was perceptual sensitivity. The bias term δ(ht)
was the sum of the overall bias δ0 and the history-dependent bias
δhist ht

� �
=
PK

k = 1ωkhkt , where ωk were the weights assigned to each
previous stimulus or choice. We set K = 7, and included both previous
stimuli and previous choices. Each set of seven past trials was
convolved three exponentially decaying basis functions3. Positive
history weights ωk then indicated a tendency to repeat the previous
choice, or to make a choice that matched the previous stimulus.
Negative weights described a tendency to alternate the corresponding
history feature. All parameters were fit using an expectation
maximization algorithm3.

Behavioral streak analysis
Following ref. 1, we analyzed multi-trial build-up of choice history bias
by extracting choice repetition sequences of increasing length. This
was first done separately for the two choice identities (“stronger” vs.
“weaker”). We then quantified “repeating” bias as the shift in SDT cri-
terion on the subsequent trial t + 1, taking into account that trial’s sti-
mulus category. To quantify a repeating bias irrespective of the choice
identity, we afterwards sign-flipped those criterion values that fol-
lowed a “weaker” choice. This resulted in a value that, at sequence
length 1, reflected each individual’s repetition probability (as in Fig. 1c).
We then extended this to longer sequences of repeated choices, where
the last trial was either again a repetition or the first trial to deviate
from the repetition streak. To additionally test for a potential reset of
choice history bias after errors8, we repeated the analysis after sub-
selecting for the last trial being either correct or incorrect (Supple-
mentary Fig. 1c).

MEG data acquisition
MEGwas recorded using a 275-channel CTF system in a shielded room.
Horizontal and vertical EOG, bipolar ECG, and an electrode at location
POz (about 4 cm above the inion) were recorded simultaneously. All
signals were low-pass filtered online (cut-off: 300Hz) and recorded
with a sampling rate of 1200Hz. To minimize the displacement of the
subject’s head with respect to the MEG sensors, we used online head-
localization72 to show the head position to the subject inside the MEG
chamber before each block. Participants were then asked to move
themselves back into their original position, correcting slow drift of
their head position during the experiment. Between the two recording
days, the original head position from day one was used as a template
for day two.

Stimuli wereprojected into theMEGchamber using abeamerwith
a resolutionof 1024 × 768pixels and a refresh rate of60Hz. The screen
was positioned 65 cm away from participants’ eyes. Horizontal and
vertical gaze position and pupil diameter were recorded at 1000Hz
using an MEG-compatible EyeLink 1000 on a long-range mount (SR
Research) at 60 cm from the subject’s eye. The eye tracker was cali-
brated before each block of training.

Structural MRI
Structural T1-weighted magnetization prepared gradient-echo images
(TR= 2300ms, TE= 2.98ms, FoV = 256mm, 1mm slice thickness, TI =
1100ms, 9° flip angle) with 1 × 1 × 1mm3 voxel resolution were
obtained on a 3 T Siemens Magnetom Trio MRI scanner (Siemens
Medical Systems, Erlangen, Germany). Fiducials (nasion, left and right
intra-aural point) were marked on the MRI.
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Preprocessing of MEG data
MEG data were analyzed in Matlab using the Fieldtrip Toolbox73 and
custom scripts.MEGdata were first resampled to 400Hz and epoched
into single trials from baseline to 2 s after feedback. We removed trials
where the displacement of the head was more than 6mm from the first
trial of each recording. Trials with SQUID jumps were detected by fitting
a line to each single-trial log-transformed Fourier spectrum, and reject-
ing trialswhere the interceptwasdetected as anoutlier basedonGrubb’s
test. To remove the effect of line noise on the data, we computed the
cross-spectrum of the data at 50Hz, resulting in a complex matrix of
size n-by-n, where n was the number of channels. We applied singular
value decomposition to this cross-spectrum and took the first eigen-
vector (corresponding to the largest singular value) as the spatial topo-
graphy reflecting line noise. The two-dimensional space spanned by the
real and imaginarypartsof this eigenvectorwas thenprojectedoutof the
data, effectively suppressing any signal that co-varied with activity at
50Hz. Line noise around 50, 100 and 150Hz was then removed by a
band-stop filter, and each trial was demeaned and detrended.

We also removed trials containing low-frequency artifacts from
cars passing by the scanner building, muscle activity, eye blinks, or
saccades. These were detected using FieldTrip’s automated artifact
rejection routines, with rejected thresholds determined per recording
session by visual inspection.

Spectral analysis of MEG data
We computed time-frequency representations for each of the four
epochs of interests, analyzing low and high frequency ranges sepa-
rately. For the low frequencies (3–35Hz in steps of 1 Hz), we used a
Hanning window with a length of 400ms in steps of 50ms and a
frequency smoothing of 2.5 Hz. For high frequencies (36–120Hz in
steps of 2Hz), we used the multitaper technique with five discrete
proloid slepian tapers74 a window length of 400ms in steps of 50ms,
and 8Hz frequency smoothing. For sensor-level analyses, the data
from each axial gradiometer were decomposed into two planar gra-
dients before estimating power and combined afterwards, to simplify
the topographical representation of task-related power modulations.

The time–frequency representations were converted into units of
percent power change from the pre-trial baseline. The baseline power
was computed as the across-trial mean from −300 to −200 ms before
reference onset, separately for each sensor and frequency. The
resulting time-frequency representationswere further averaged across
trials and sensors of interest.

MEG source reconstruction
We estimated power modulation values for a set of cortical regions of
interest (ROIs, see below) based on source-reconstructed voxel time
courses from a sliding window DICS beamformer75,76. A source model
with 4mm resolution was created from each individual’s MRI, and
warped to the Colin27 brain77 using a nonlinear transformation for
group averaging.

Within the alpha (8–12 Hz), beta (12–36Hz), and high-gamma
(65–95Hz) bands, we computed a common filter based on the cross-
spectral density matrix estimated from the first 2 s of each trial,
starting from the start of the baseline timewindow. For eachgrid point
in the brain, we then applied the beamformer (i.e., spatial field) in a
sliding window of 250ms, with steps of 50ms. The resulting source
estimates of band-limited power were again converted into units of
percent power change from the trial-average baseline, as described
above. Rare outliers with values larger than 500 were removed. All
further analyses and modeling were applied to the resulting power
modulation values.

Selection of MEG sensors exhibiting sensory or motor signals
To select sensors for the unbiased quantification of visual responses,
we computed powermodulation in the gamma-range (65–95Hz) from

250 to 750ms after test stimulus onset, and contrasted trials with
stronger vs. weaker visualmotion.We then selected the 20most active
sensors at the group level, in the first and second session separately.
This procedure yielded stable sensor selection across sessions (Fig. 2b,
inset). 18 sensors were selected in both sessions (circles), two were
selected only in the first session (downward-pointing triangles) and
one was selected only in the second session (upward-pointing
triangle).

Similarly, for sensors corresponding to response preparation, we
contrasted trials in which the left vs. the right hand was used to
respond. We computed power in the beta range (12–36Hz) in the
500msbeforebutton press35, and used the same split-half approach to
define the 20 most active sensors for the contrast left vs. right, as well
as the 20 most active sensors the for opposite contrast, to extract left
and right motor regions (Fig. 3a, inset).

For each session, we then extracted single-trial values from the
sensors defined on the other session. Note that sensor selection was
only used for visualizing TFRs, not for the beamformed signals that we
later use for statistics and modeling (see below).

Definition of cortical ROIs
Following previous work37,38, we defined a set of ROIs spanning the
visuo-motor cortical pathway from the sensory (V1) to the motor (M1)
periphery. The exact delineation of ROIs was based on anatomical
atlases from previous fMRI work, specifically: (i) retinotopically orga-
nized visual cortical field maps54 along the dorsal visual pathway up to
IPS3; (ii) three regions exhibiting hand movement-specific lateraliza-
tion of cortical activity: aIPS, IPS/PostCeS and the hand sub-region of
M155; and (iii) a dorsal/ventral premotor cluster of regions from a
whole-cortex atlas78. We grouped visual cortical field maps with a
shared foveal representation into clusters79 (Table 1), thus increasing
the spatial distance between ROI centers and minimizing the risk of
signal leakage (due to limited filter resolution or volume conduction).
We selected all grid points located within each grouped ROI, and
averaged their band-limited power signals. PySurfer (https://pysurfer.
github.io/) was used to visualize each ROI on an inflated cortical
surface.

Time windows and signals of interest
We selected two time-windows for in-depth statisticalmodeling: (i) the
test interval during which the decision was formed (0–750ms after
test stimulus onset); and (ii) for pre-decision state, the reference
interval (0–750ms after reference stimulus onset). For each trial, we
averaged thepowermodulation values across all timebinswithin these
two time-windows, and used the resulting scalar values for further
analyses.

The general linearmodeling (see below) was applied to each ROI
individually. For subsequent mediation and drift diffusion modeling,
we further focused on three signals of interest: IPS2/3 gamma during
the test stimulus (reflecting choice history), IPS0/1 alpha during the
test stimulus (reflecting choice history after error trials), and motor
beta (pooled across IPS/PostCeS, M1 and PMd/v) during the refer-
ence (reflecting action history). Choice-action mapping was coun-
terbalanced across participants. We flipped motor lateralization
signals for half of the participants, so that the lateralization was
always computed with respect to the hand reporting “stronger”
choices.

The choice history-dependent IPS0/1-alpha signal was super-
imposed by a spatially non-specific suppression of alpha power fol-
lowing error feedback, which was shared by all cortical ROIs but not
related to specific choice history (Supplementary Fig. 3). We averaged
this global signal across all visual field map ROIs except IPS0/1, and
removed it from the IPS0/1-alpha power modulation values via linear
projection80–82. We used this residual IPS0/1-alpha, unconfounded by
the global signal, for all subsequent behavioral modeling.
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Statistical assessment of power modulation values
At the sensor-level (see definition of sensors of interest above) we used
cluster-based permutation testing across the group of participants83 to
find clusters, for which trial-averaged power modulation values dif-
fered across the group of participants for a given contrast of interest.
For the assessment of full time-frequency representations of power
modulation, clusters were two-dimensional, defined across time and
frequency.

We used general linear mixed effects models (GLMEs, using
Matlab’s fitglme) to quantify the effect of choice history on single-trial
power modulation values across all source-level ROIs, frequency ran-
ges and the above-defined time windows. The model included a ran-
dom intercept for each participant:

n ~ 1 + s + c�1 + ð1∣pÞ ð3Þ

where n was the single-trial neural data (at a specific time window,
region of interest and frequency band), s indicated the stimulus
category [−1, 1], c−1 indicated the behavioral choice [−1, 1] on the
preceding trial, and p was a participant identifier.

We also tested if the effect of previous choices differed
between participants with choice repetition probabilities larger
(“repeaters”) or smaller (“alternators”) than 0.5. We first estimated
effect sizes and confidence intervals separately for these two
groups, using the model above. This was repeated after randomly
sub-selecting 25 “repeaters,” to match the number of participants
between the two groups. We also fitted the group interaction term
explicitly:

n ~ 1 + s + g*c�1 + ð1∣pÞ ð4Þ

where g was coded as [−1, 1], reflecting if a participant showed overall
alternation vs. repetition behavior. All estimated effects (with con-
fidence intervals and FDR-adjusted p values) are available as a
Supplementary File, see “Data availability.”

Statistics
We tested for the effect of sequence length (1–5) and sequence end (a
matching or non-matching final trial) on behavioral and neural repe-
tition biases. Within each subgroups this was done using pingouin’s
repeated-measures analysis of variance (ANOVA)84. Toadditionally test
for the between-subjects factor of subgroup, we used the mixed
repeated-measures ANOVA in JASP85.

Throughout, error bars show 95% confidence intervals. These
were obtained through bootstrapping (behavioral and mediation fig-
ures) or from the GLME model fits (neural signals). For the neural
GLMEs, p-values were corrected for multiple comparison across all
ROIs, frequency bands and time windows by controlling the False
Discovery Rate, the fraction of false positives, at 0.0586. All statistical
tests reported are two-sided.

Mediation modeling
To estimate the causal effect of trial-by-trial neural signals on choice
behavior, we performed a mediation analysis using the lavaan
package87. We fit the following regression equations

β ~ a1c�1 + s1s

α ~ a2c�1 + s2s

γ ~ a3c�1

c ~ b1β+b2α +b3γ + c0c�1 + s0s

ð5Þ

where γwas the single-trial IPS2/3 gamma, αwas the single-trial IPS/01
alpha residual, βwas the single-trial pooled motor-beta, cwas a vector
of choices, and swas a vector with stimuli (−1 “weak” vs. 1 “strong”). We

then defined our effects of interest as follows:

indirect:=ab

direct:= c0

total:=ab+ c0
ð6Þ

We fit the model separately for each participant using a WLSMV
estimator, and then computed group-level statistics across the stan-
dardized individual coefficients. Data were analyzed with pandas and
pingouin84 and visualized with seaborn88.

Drift diffusion modeling
To fit a set of Hierarchical Drift Diffusion models with trial-by-trial
MEG regressors, we used the HDDMnn package42,43. In each model,
we fit a stimulus-dependent drift rate v, starting point z, boundary
separation a, and nondecision time t. First, we assessed if our data
was best described by a static, linearly collapsing, or collapsing
bound. The latter, best-fitting bound collapse was described by a
Weibull function

b t; a, α, βð Þ= a * eð�
tα
β Þ ð7Þ

We then let both the starting point and drift bias of the DDM
depend on single-trial neural data:

v ~ 1 + s +nγ +nα +nβ ð8Þ

z ~ nγ +nα +nβ ð9Þ

where vwas the drift, z the starting point, s the stimulus category [−1,1],
and nx were vectors of single-trial neural signals of interest (IPS2/
3 gamma, IPS0/1 alpha, and motor beta lateralization), each z-scored
within participant. The model used “stimulus coding,” which fits
response time distributions for “stronger” vs. “weaker” choices (rather
than for correct vs. incorrect choices) in order to capture a selective
choice bias.

For each model, we ran a Markov Chain Monte Carlo procedure
with 10,000 samples, of which a tenth was discarded as burn-in. Five
percent of trials were assumed to be outliers in the fitting procedure.
Statistics were computed on the group-level posteriors.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The processed behavioral and ROI data generated in this study have
been deposited in the OSF database under accession code https://osf.
io/v3r52/. The raw MEG data are under restricted access (due to the
consent form used at time of data collection), and are available upon
request from AEU.

Code availability
All codes used to run the task, process data, and generate figures are
available at https://doi.org/10.5281/zenodo.6949711.
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