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Circuit analysis reveals a neural pathway for
light avoidance in Drosophila larvae

Altar Sorkaç 1,2,5, Yiannis A. Savva1,2,3,5, Doruk Savaş 1,2,5,
Mustafa Talay 1,2,4 & Gilad Barnea 1,2

Understanding how neural circuits underlie behaviour is challenging even in
the connectome era because it requires a combination of anatomical and
functional analyses. This is exemplified in the circuit underlying the light
avoidance behaviour displayed by Drosophila melanogaster larvae. While this
behaviour is robust and the nervous system relatively simple, the circuit is only
partially delineated with some contradictions among studies. Here, we devise
trans-Tango MkII, an offshoot of the transsynaptic circuit tracing tool trans-
Tango, and implement it in anatomical tracing together with functional ana-
lysis. We use neuronal inhibition to test necessity of particular neuronal types
in light avoidance and selective neuronal activation to examine sufficiency in
rescuing light avoidance deficiencies exhibited by photoreceptor mutants.
Our studies reveal a four-order circuit for light avoidance connecting the light-
detecting photoreceptors with a pair of neuroendocrine cells via two types of
clock neurons. This approach can be readily expanded to studying other
circuits.

Neural circuits underlie all brain functions including processing sen-
sory information and controlling behaviour. Understanding circuit
mechanisms necessitates the use of a multi-pronged approach
encompassing anatomical and functional analyses. The gold standard
in anatomical analysis is electron microscopy (EM) reconstruction
generating a connectome, and much effort has been devoted to pro-
ducing connectomes of various nervous systems of organisms with
increasing complexities. However, even when studying a simple
behaviour in a simple organism, analysis of several layers of connected
neurons is necessary, a significant challenge when using the con-
nectome data. Further, to truly understand the flowof information in a
circuit, one must use functional approaches to manipulate elements
within the circuit and observe the consequences. The light avoidance
behaviour, or photophobia, exhibited by larvae of Drosophila mela-
nogaster is an example of a robust behaviour in a relatively simple
organism. Nevertheless, our knowledge about the neural circuit

mediating photophobia is patchy, and at times contradictory1,2. To
initiate photophobia, light is detected by Rh5 photoreceptors in the
larval eye, the Bolwig Organ1,3. In the central brain, the prothoracico-
tropic hormone (PTTH)-expressing neurons are essential for
photophobia4,5. How these two neuronal types are connected is
less clear.

Here, we establish trans-Tango MkII, a modified version of the
transsynaptic tracing tool trans-Tango and show that it works effec-
tively in Drosophila larvae. We then use trans-Tango MkII to reveal the
connections between Rh5 photoreceptors and PTTH neurons in the
neural circuit underlying light avoidance behaviour. We corroborate
our findings by circuit epistasis analysis that includes neuronal silen-
cing to test for necessity, and activation to assess sufficiency to rescue
defects in light avoidance exhibited by Rh5 null mutants. Since trans-
TangoMkII fills a gap in larval circuit tracing, our approach constitutes
a general framework for studying neural circuits in Drosophila larvae.
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Results
Establishing trans-Tango MkII
The information regarding light detection by Rh5 photoreceptors
could be conveyed to PTTH neurons either directly through synaptic
connections or indirectly via other neurons. To reveal whether Rh5
photoreceptors are presynaptic to PTTH neurons, we decided to use
trans-Tango, a transsynaptic circuit tracing, monitoring and manip-
ulation tool6,7.

While trans-Tango has been effectively used to reveal synaptic
connections in the adult Drosophila nervous system, background
noise in larvae limits its utility in most larval circuits6 (Supplementary
Fig 1a). We reasoned that this problem might arise from ectopic
expression of the ligand in the larval ventral nerve cord (VNC). The
ligand construct in trans-Tango comprises the intracellular and
transmembrane domains of dNRXN1 to localise it to the presynaptic
sites, and the extracellular domain of hICAM1 that spans the synaptic
cleft to deliver the ligand (hGCG) to its cognate receptor on the
postsynaptic membrane (Supplementary Fig 1b). It is, thus, con-
ceivable that the sequences encoding hICAM1 or dNRXN1 lead to
misexpressionof the ligand fusion protein. To solve themisexpression
problem, we screened different ligand fusion proteins that would
localise to the presynaptic site. We then assayed these versions of the
ligand fusion proteins in the olfactory system, initiating the system
from a subset of larval olfactory receptor neurons (ORNs). Since the
signal in trans-Tango is temperature dependent6, we conducted these
experiments at 18 °C and 25 °C. Of the presynaptic proteins we tried,
full-length dNRXN1 (Supplementary Fig. 1b) yielded the best signal to
noise ratio at 18 °C (Supplementary Fig. 1c). However, we could still
observe reduced, albeit visible, background noise in the absence of a
driver (Supplementary Fig. 1c). By contrast, when we reared the flies at
25 °C, we observed strong signal with virtually no background noise
(Supplementary Fig. 1d). We termed this new version trans-Tango
MkII. We, then, set out to characterise trans-Tango MkII in different
circuits, in both larvae and adults.

Since the EM reconstruction of the olfactory system of the first
instar larvae is available8, we compared the trans-Tango MkII results
in the olfactory system of the third instar larvae with the EM recon-
struction data. When we initiated trans-Tango MkII from a subset of
ORNs expressing the receptor Or42a, we counted an average of 22 ± 3
neurons in each side of the brain in five brains (Supplementary
Fig. 1e). According to the EM reconstruction, 14 neurons (16 including
single synapse connections) are postsynaptic to Or42a-expressing
ORNs in one side of the brain, and 16 neurons (20 including single
synapse connections) in the other side8. In the same brains, we
counted six to seven projection neuron (PN) axons in each side
(Supplementary Fig. 1f). The EM reconstruction identified five PNs as
postsynaptic toOr42a-expressingORNs in first instar larvae8. The fact
that we see more neurons via trans-Tango MkII might be due to
changes in the connections between first and third instar larvae.
However, although some of the neurons identified by the EM recon-
struction have processes in the suboesophageal zone, the density of
the innervation in this areamightmean that trans-TangoMkII exhibits
some false positive signal. Nonetheless, trans-Tango MkII reveals the
expected connections in this circuit.

Having successfully used trans-Tango MkII to trace connections
from the periphery to the CNS, we next wished to implement it to
reveal connections within the CNS. One such easily identifiable con-
nection exists in the mushroom body calyx between the PNs and the
Kenyon Cells9,10. To access a subset of PNs, we employed the com-
monly used GH146 driver that also expresses in cells outside the
olfactory circuit11–13. When we initiated trans-Tango MkII from GH146-
expressing PNs we observed postsynaptic signal in Kenyon cells as
expected (Supplementary Fig. 1g, h). While trans-Tango MkII works
well in the larval nervous system, we observed strong background
signal when we used it in the adult brain (Supplementary Fig. 2).

To further characterise trans-Tango MkII, we turned to the larval
visual system. EM reconstruction of the visual system of the first instar
larva reveals nine strong and two or three weak postsynaptic partners
for Rh5 photoreceptors in each side of the brain. For Rh6 photo-
receptors, there are six strong and two or three weak postsynaptic
partners14. When we initiated trans-Tango MkII from Rh5 photo-
receptors of the first instar larvae, we revealed an average of ten neu-
rons per side that were labelled as postsynaptic in three brains
(Supplementary Fig. 3a). The equivalent experiment from Rh6 photo-
receptors resulted in postsynaptic signal in an average of five neurons
per side in four brains (Supplementary Fig. 3b). These results suggest
that in the first instar stage, trans-Tango MkII labels approximately the
same number of neurons as identified by the EM reconstruction. It is
noteworthy that when we initiate trans-Tango MkII from Rh6 photo-
receptors in first or second instar larvae, we observe signal also in non-
neuronal tissue (Supplementary Fig. 3b, d). This likely originates from
the activation of trans-Tango during embryonic development, espe-
cially since Rh5 and Rh6 are expressed in late-stage embryos15. We
observed that more neurons were labelled when trans-Tango MkII sig-
nal was analysed in the second (Supplementary Fig. 3c, d) or third
(Supplementary Fig. 3e, f) instar stages. These results are difficult to
interpret since it is not clear whether photoreceptors in second and
third instar larvae have more postsynaptic partners than in first instar
larvae, or whether these are false positives. However, it is noteworthy
that these experiments highlight the specificity of trans-Tango MkII in
the third instar larvae. Initiating trans-Tango MkII from Rh5 photo-
receptors reveal both the four pigment-dispersing factor-expressing
lateral neurons (Pdf-LaNs) and the Pdf-negative lateral neuron (5th-LaN)
as postsynaptic partners. By contrast, driving trans-Tango MkII from
Rh6 photoreceptors reveals only the Pdf-LaNs but not the 5th-LaN
(Supplementary Figs. 3e, f and 4a). These results are in accordance with
the EM reconstruction of the visual system in the first instar larva,
suggesting that these specific connections persist through the third
instar stage. These experiments indicate that while the postsynaptic
partners revealedby trans-TangoMkIImay include some false positives,
the technique can be reliably used in third instar larvae raised at 25 °C.

PTTH neurons get light information via Pdf-negative clock
neurons
With a version of trans-Tango thatworks well to trace circuits in larvae,
we turned back to the neural circuit underlying larval photophobic
behaviour. Using trans-TangoMkII, we found that Rh5 photoreceptors
are not presynaptic to PTTH neurons (Supplementary Fig. 4b), indi-
cating the existence of an indirect route. Which neurons connect the
Rh5 photoreceptors to PTTH neurons? The pacemaker clock neurons
in the larval visual system are attractive candidates since they were
previously implicated in light avoidance1. Expression of the genes
timeless and period (per) reveals that the larval visual system comprises
nine pacemaker clock neurons: four Pdf-LaNs, the 5th-LaN, and two
pairs of dorsal neurons: DN1s andDN2s (Fig. 1a)16. Inhibition of all clock
neurons via expression of the open rectifier truncated potassium
channel dORK-ΔC1 or of the inward-rectifying potassium channel Kir2.1
(Fig. 1b) results in decreased light avoidance at 1100 or 550 lux (205
μW/cm2), respectively. This observation indicates that at least one of
the clock neurons mediates the photophobic behaviour. Indeed, this
functional effect is corroborated anatomically as driving trans-Tango
MkII from the clock neurons reveals that PTTH neurons receive direct
synaptic input from them (Fig. 1c).

Pdf-LaNs are viable candidates for relaying light information from
the Rh5 photoreceptors to PTTH neurons since they are postsynaptic
to Rh5 photoreceptors (Supplementary Fig. 4a). Further, they have
been reported to directly synapse onto PTTH neurons4. We therefore
sought to silence the Pdf-LaNs by expressing Kir2.1 under the control
of two different Pdf-Gal4 drivers. Remarkably, these experiments
revealed that Pdf-LaNs are not required for light avoidance behaviour
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(Fig. 1b). Therefore, these cells are unlikely the link between Rh5
photoreceptors and PTTH neurons. Indeed, our trans-Tango MkII
experiments indicate that PTTH neurons are not postsynaptic to Pdf-
LaNs (Fig. 1d). This result contradicts an earlier study that reports
synaptic connectivity based on GFP reconstitution across synaptic
partners (GRASP) experiments. However, it is important to note that
this study used a version of GRASP that is not synaptic17, allowing for
GFP reconstitution between axons in proximity. When we performed
GRASP experiments using a synaptic version the technique, t-GRASP18,
we did not observe any signal for reconstituted GFP (Supplementary
Fig. 5), in line with our trans-Tango MkII experiments.

5th-LaN and DN2s relay light information to PTTH neurons
To reveal which of the remaining clock neurons are presynaptic to
PTTH neurons, we initiated trans-Tango MkII from different subsets.
Wegenetically accessed the 5th-LaN using twodrivers from the FlyLight
collection19. In the brain, these drivers are expressed strongly in the
5th-LaN alongside weak and unreliable expression patterns in other
neurons14,20 (Supplementary Fig. 6). Initiating trans-Tango MkII with
either driver revealed a faint postsynaptic signal in one of the PTTH
neurons, suggesting a potential albeit weak connection with the

5th-LaN (Fig. 2a and Supplementary Fig. 7)20. We next wished to
examine the two pairs of dorsal neurons. However, the drivers used to
accessDN1s (cry)21 or DN2s (Clk9m)22 also label Pdf-LaNs.Nevertheless,
since Pdf-LaNs do not form synapses with PTTH neurons, any post-
synaptic signal observed in these neurons would indicate direct
synaptic input from DN1s or DN2s. Indeed, initiating trans-Tango MkII
with either driver reveals that both DN1s and DN2s are presynaptic to
PTTH neurons (Fig. 2b, c).

We next sought to functionally explore the role of each subset of
clock neurons in photophobia using Kir2.1. In accordance with pre-
viously published results2, we observed that silencing the 5th-LaN or
DN2s leads to decreased photophobia, suggesting that these neurons
are necessary for proper light avoidance. By contrast, silencing of DN1s
did not affect light avoidance at 550 lux (205μW/cm2; Fig. 3a).

We reasoned that the weak direct connection between the 5th-LaN
and the PTTH neurons may not be sufficient to convey the light infor-
mation from Rh5 photoreceptors. Because DN2s are presynaptic to
PTTHneurons andarenecessary forproper light avoidance,we initiated
trans-TangoMkII from the 5th-LaN to examinewhetherDN2s constitute
an indirect link. We dissected the larvae at zeitgeber time (ZT) 0 when
staining with antibodies against PER reveals all clock neurons16.
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Fig. 1 | Input from Pdf-negative clock neurons into PTTH neurons mediates
light avoidance. a Schematic of clock neurons in theDrosophila larval brain. b The
effect of Kir2.1-mediated neuronal silencing on light avoidance at 550 lux. Silencing
of all clock neurons or PTTHneurons decreases photophobia, silencing of Pdf-LaNs
has no effect. Boxplots indicate median (middle line), 25th and 75th percentile
(box), bars representmaximumandminimum.One-wayANOVA, ns: not significant,

***p <0.001, ****p <0.0001. n = 15 trials for each group. c Expression of the trans-
TangoMkII ligand in all clock neurons reveals postsynaptic signal in PTTHneurons.
d trans-TangoMkII reveals that PTTH neurons are not postsynaptic to Pdf-LaNs. In
panels c and d, presynaptic GFP (cyan), postsynaptic mtdTomato-HA (magenta),
and PTTH (green) are shown. Scale bars, 10μm. Source data are provided as a
Source Data file.
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We observed that DN2s are postsynaptic to the 5th-LaN whereas DN1s
are not (Fig. 3b). We confirmed these findings at ZT12 (Supplementary
Fig. 8) when PER immunoreactivity is only observed in DN2s16. In con-
clusion, both our trans-TangoMkII and neuronal silencing experiments

revealed a possible anatomical pathway connecting Rh5 photo-
receptors and the PTTH neurons via the 5th-LaN and DN2s. To further
examine this flow of information, we performed functional rescue
experiments by activating these subsets of neurons in Rh5 nullmutants.

Rescuing the light avoidance deficiency in Rh5 mutants
Rh5 mutant larvae are deficient in light avoidance1–3,23. We reasoned
that if the 5th-LaN and DN2s are indeed downstream of Rh5 photo-
receptors, their activation should rescue this deficiency. To test this,
we expressed the light-activated cation channel CsChrimson in dif-
ferent clock neurons in the Rh5 null background. CsChrimson can be
excited at red wavelengths that are mostly not visible to Drosophila24.
Hence, the red light used to activateCsChrimsondoes not, itself, cause
photophobia (Supplementary Fig. 9). In the functional rescue experi-
ments, we tested the larvae in a modified photophobia assay where
half of the plate was dark, and the other half was illuminated with red
light (635 nm − 451μW/cm2) to activate CsChrimson. As we antici-
pated, larvae expressing CsChrimson in the 5th-LaN avoided the red-
light half of the plate, whereas control animals did not exhibit any
preference for either side of the plate. These results suggest that the
activation of the 5th-LaN is indeed sufficient to induce aversion, and
thus, to rescue the light avoidance deficiency of Rh5 null larvae
(Fig. 4a). Likewise, we expected that expressionofCsChrimson inDN2s
would induce aversion since these neurons connect the 5th-LaN to
PTTH neurons. However, to our surprise, we did not observe aversion
to red light whenCsChrimsonwas expressed using our driver forDN2s
and Pdf-LaNs (Fig. 4b). Therefore, we decided to examine whether
larvae expressing CsChrimson inDN1swould avoid the red-light half of
the plate as DN1s are also presynaptic to PTTH neurons. We observed
that these animals did not avoid the red-light part of the plate either
(Fig. 4c). As is the case for DN2s, our driver for DN1s also expresses in
Pdf-LaNs. Hence, we hypothesised that a potential phenotype caused
by activation of the Pdf-LaNs might have masked the effects of DN1 or
DN2 activation. Indeed, activation of the Pdf-LaNs alone resulted in a
slight preference for the red-light half of the plate, rather than avoid-
ance (Fig. 4d), supporting our hypothesis.

To test the effects of DN2s or DN1s exclusively, we restricted the
expression of CsChrimson using the corresponding Gal4 drivers in
conjunction with the Gal4-suppressor, Gal80, in Pdf-LaNs (Supple-
mentary Fig. 10). Selective activation of DN2s was sufficient to elicit
aversion (Fig. 4e), effectively rescuing the light avoidance deficiencyof
Rh5 null larvae. These results confirm the neural circuit that connects
Rh5 photoreceptors to PTTH neurons through the 5th-LaN and DN2s.

Interestingly, selective DN1 activation also led to avoidance of
the red-light half of the plate (Fig. 4f). We were puzzled by these
results because DN1s are dispensable for photophobia at 550 lux
(205 μW/cm2) (Fig. 3a) and their activation reduces photophobia at
750 lux2. Thus, DN1 activation may cause an ectopic aversion phe-
notype or affect a different form of photophobic behaviour. Light
intensity (i.e. dim versus bright light) is an important factor in light
aversion25. Thus, it is conceivable that DN1s mediate photophobic
response to dim light. To test this possibility, we silenced DN1s at 100
lux (42μW/cm2), and indeed observed that DN1s, but not other clock
neurons, may play a role in avoidance of this light intensity (Sup-
plementary Fig. 11). Thus, DN1s may be part of another circuit that
mediates avoidance of dim light.

Discussion
Our study revealed a circuit consisting of four orders of neurons that
connect the Rh5 photoreceptors to PTTH neurons via the 5th-LaN and
DN2s (Fig. 4g). While this circuit mediates the response to bright light,
our observation that DN1s are necessary for photophobic response
only to low light intensity indicates the existence of an additional
pathway for dim light. It is noteworthy that a third, independent sys-
tem has been reported in which a gustatory receptor mediates
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Fig. 2 | PTTH neurons receive direct input from 5th-LaN, DN1 and DN2 clock
neurons. aOnlyoneof the PTTHneurons receives input from the 5th-LaN.b, cBoth
PTTH neurons are postsynaptic to DN1s (b) and DN2s (c). In all panels, presynaptic
GFP (cyan), postsynaptic mtdTomato-HA (magenta) and PTTH (green) are shown.
Scale bars, 10μm.
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photophobic response to high-intensity light in class IV multidendritic
neurons26. We do not have any information as to at which level these
pathways might meet, if at all, upstream of the motor neurons.

Our results clarify several earlier studies regarding the role of Pdf-
LaNs in light avoidance1–3. In our experiments, Pdf-LaNs are dis-
pensable for light avoidance, yet their activation is attractive. A
potential explanation is that Pdf-LaNs may modulate larval photo-
phobia via inhibition4,5, especially since adult Pdf-LaNs are
glycinergic27. In addition, our results contradict a previous study
reporting that Pdf-LaNs are presynaptic to PTTH neurons4. This study
relied on a version of GRASP that is in fact not synaptic17. Thus, the
proposed connection could have been the result of a non-synaptic
reconstitution of GFP due to proximity especially since we do not
observe reconstituted GFP using a synaptic version of GRASP. This
result, however, does not rule out a Pdf-LaN-mediated inhibition of the
light avoidance circuit from the Rh5 photoreceptors to PTTH neurons.
It is conceivable that, alongside their roles in alternative circuits that

mediate this behaviour5, Pdf-LaNs play inhibitory roles in this circuit as
well. Indeed, ablating Pdf-LaNs increases the activity in PTTH neurons
as revealed by the GCaMP signal4.

Our analysis of the robust light avoidance response in larvae
exemplifies the importance of employing a comprehensive approach
combining circuit tracing together with neuronal inhibition and acti-
vation to test necessity and sufficiency. Our circuit epistasis analysis
was made possible by trans-Tango MkII, a new version of trans-Tango
that allows researchers to trace and manipulate neural circuits in
Drosophila larvae. The combination of a robust and user-friendly
genetic tool such as trans-Tango MkII with careful functional analysis
constitutes a powerful approach that can be readily expanded to
studying other circuits and behaviours.

Methods
Fly strains
All fly lines used in this study were maintained at 25 °C on standard
cornmeal-agar-molasses media in humidity-controlled incubators
under 12 h light/dark cycle, unless otherwise stated. Fly lines used in
this study are in Table 1.

Generation of transgenic fly lines
The plasmid trans-Tango MkII was generated using HiFi DNA
Assembly (New England Biolabs #2621) and was incorporated into
the attP40 locus using the ΦC31 system as described in the original
trans-Tango paper6. Briefly the hICAM1::dNrxn1 sequences in the
trans-Tango plasmid were replaced by dNrxn1 sequence amplified
from the cDNA clone LP14275 (DGRC #1064347) using the following
primers: 5′-atggtaacgggaatactagtCTAGATGGATCGCAAAACTCCTTC
TAC-3′ and 5′-ttgttattttaaaaacgattcatggcgcgccTTACACATACCACT
CCTTGACGTC-3′. The resulting PCR product was subsequently
cloned via HiFi Assembly into the trans-Tango plasmid. All new fly
strains will be deposited to Bloomington Drosophila Stock Center.

Immunohistochemistry, imaging, and image processing
Larval dissections, immunohistochemical experiments, and imaging
were performed as described in the original trans-Tangopaper6. Unless
otherwise stated, foraging third-instar larvae of either sex, or 20 day-
old adult males were dissected at specified temperatures. If the tem-
perature was not specified, the animals were reared at 25 °C. The
antibodies used in this study are: anti-PDF rabbit28 (a gift fromHeinrich
Dircksen, 1:3000), anti-PTTH guinea pig29 (a gift from Michael O’Con-
nor, 1:400), anti-PERmouse30 (a gift from James Jepson, 1:50,000), anti-
GFP rabbit (Thermo Fisher Scientific, A11122; 1:1000), anti-HA rat
(Roche, 11867423001; 1:100), anti-Brp mouse (nc82; DSHB; 1:50), don-
key anti-rabbit Alexa Fluor 488 (Thermo Fisher Scientific, A-21206,
1:1000), goat anti-rat Alexa Fluor 555 (Invitrogen, A21434, 1:1000),
donkey anti-mouse Alexa Fluor 647 (Thermo Fisher Scientific, A-31571,
1:1000). Since the trans-Tango signal was tooweak with R54D11-Gal4 at
25 °C, those crosses were set at 18 °C for optimisation (Figs. 2a, 3b and
S4). Resultant images from trans-Tango experiments were processed
using the Zen software (Zeiss, version 2.1) setting white, black and light
corrections in all channels to provide better contrast. In trans-Tango
figures zoomed-out images represent the maximum projection of the
Z-stacks throughout the brains whereas the zoomed-in images were
formed using subsets of the Z-stacks for clarity.

Light avoidance behavioural assay
All animals used in the light avoidance behavioural assay have been
6X backcrossed to BDSC_5905. Briefly, foraging early third instar
larvae of either sex were collected from the food, washed with
phosphate buffered saline (PBS) twice and let dry on a surface for
3min. In all, 13 to 16 animals were then transferred along the midline
between dark and light halves of a 10-cm round petri dish with 15mL
1.5% agar solution. Half of the lid was covered with a black tape to
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light avoidance. a The effect of Kir2.1-mediated silencing of clock neuron subsets
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provided as a Source Data file.
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form the dark half. The plates were exposed to 100 or 550 lux (42 μW/
cm2 or 205μW/cm2, respectively, measured with UDT instruments
model s471 optometer, Sensor 221, aperture 1 cm2) of white light from
above and experiments were run for ten minutes at 25 °C. At the end
of the tenminutes, larvae on either half of the platewere counted and
the preference index was calculated as (# of larvae in the dark)-(# of
larvae in the light)/(total # of larvae). For each genotype/condition, at
least twelve trials were run over a three-day period.

Optogenetic rescue experiments
Optogenetic rescue experiments were run in a similar manner to light
avoidance assays with necessary modifications to accommodate for
optogenetics. Instead of white light, the light half of the plates were
exposed to a 635 nm LED red-light with an intensity of 1600
lux (451μW/cm2 measured with OPHIR PD200, aperture 1 cm2).

In addition, parental crosses to obtain experimental animals were set
up on standard medium supplemented with 400 µM all-trans-retinal
(ATR, Sigma #R2500) food or on a standardmediummixed with 100%
ethanol for no ATR controls. All animals were kept in 24 h dark.

Statistics and reproducibility
For all immunochemistry experiments a representative image out of
five independent brains is shown in figure panels.

The experimenter was blinded to all genotypes in the light
avoidance behavioural assays. For the rescue experiments no blinding
could be accommodated due to the presence of visible chromosomal
balancer phenotypes. No statistical method was used to predetermine
the sample size. No data were excluded from the analyses. Individual
animals for each genotype were chosen randomly out of a group of
larvae.
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Fig. 4 | Activation of the 5th-LaN, DN2s or DN1s rescues the light avoidance
defect exhibited by Rh5 mutant larvae. a–f Rescue of the light avoidance defect
of Rh5 mutant larvae via CsChrimson mediated activation of specific subsets of
clock neurons. Activation of the 5th-LaN (a), DN2s (e) or DN1s (f) results in light
avoidance. Activation of Pdf-LaNs results in light preference (d). No effect is
observedwhen Pdf-LaNs are activated alongsideDN2s (b) orDN1s (c). ATR: all-trans
retinal. Boxplots indicatemedian (middle line), 25th and 75th percentile (box), bars
represent maximum and minimum. One-way ANOVA, ns: not significant, *p <0.05,

**p <0.01, ***p <0.001, ****p <0.0001. The number of trials for each group is indi-
cated below each box. g A schematic showing the flow of information in the neural
circuit that mediates the light avoidance behaviour. Bright light activates Rh5
photoreceptors that convey this information to PTTH-neurons via the 5th-LaN and
DN2s to mediate light avoidance. Dim light indirectly activates DN1s that convey
this information to PTTH neurons to mediate light avoidance. Source data are
provided as a Source Data file.
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Analysis and determination of significance in behavioural assays
was performed using One-way ANOVA. Experimental groups were
compared to all control groups to determine significance, the lowest
pairwise significance is indicated on the figures. For analysis of Sup-
plementary Fig. 9, one sample t-test was used. For statistical analyses,
Prism 9 (GraphPad) was used.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data are available in the main text or the supplementary materials.
Source data are provided as a Source Data file. Raw data is available
within two weeks upon request from the corresponding
author. Source data are provided with this paper.
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