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Structural basis for APE1 processing DNA
damage in the nucleosome

Tyler M. Weaver1,2, Nicole M. Hoitsma1, Jonah J. Spencer1, Lokesh Gakhar 3,4,5,
Nicholas J. Schnicker 4 & Bret D. Freudenthal 1,2,6

Genomic DNA is continually exposed to endogenous and exogenous factors
that promote DNA damage. Eukaryotic genomic DNA is packaged into
nucleosomes, which present a barrier to accessing and effectively repairing
DNA damage. The mechanisms by which DNA repair proteins overcome this
barrier to repair DNAdamage in the nucleosome and protect genomic stability
is unknown. Here, we determine how the base excision repair (BER) endonu-
clease AP-endonuclease 1 (APE1) recognizes and cleaves DNA damage in the
nucleosome. Kinetic assays determine that APE1 cleaves solvent-exposed AP
sites in the nucleosome with 3 − 6 orders of magnitude higher efficiency than
occluded AP sites. A cryo-electron microscopy structure of APE1 bound to a
nucleosome containing a solvent-exposed AP site reveal that APE1 uses a DNA
sculpting mechanism for AP site recognition, where APE1 bends the nucleo-
somal DNA to access the AP site. Notably, additional biochemical and struc-
tural characterization of occluded AP sites identify contacts between the
nucleosomal DNA and histone octamer that prevent efficient processing of the
AP site by APE1. These findings provide a rationale for the position-dependent
activity of BER proteins in the nucleosome and suggests the ability of BER
proteins to sculpt nucleosomal DNA drives efficient BER in chromatin.

GenomicDNAof eukaryotic cells is packaged into chromatin through a
fundamental repeating unit called the nucleosome. The nucleosome
consists of ~147 bp of DNA wrapped around a core octameric histone
protein complex, containing two copies each of histone H2A, H2B, H3,
and H41. The compact structure of the nucleosome and the robust
contacts of the histone octamerwith the nucleosomalDNAgenerates a
barrier to accessing the genomic DNA sequence. Importantly, this
nucleosome barrier must be overcome during critical cellular pro-
cesses such as transcription, DNA replication, and DNA repair.

Both chromatinized and non-nucleosomal DNA are susceptible to
endogenous and exogenous sources of DNA damage. One of the most
common forms of DNA damage is the baseless sugar moiety known as
apurinic/apyrimidinic (AP) sites, with an estimated ~10,000 AP sites

generated in each cell per day2,3. These AP sites are generated through
spontaneous depurination and depyrimidination, as well as through
the excision of damaged DNA bases by damage-specific DNA glyco-
sylases. Repair of AP sites is critical for maintaining genomic stability4

as they lack coding information during DNA replication5, are prone to
generating cytotoxic DNA breaks6, and form DNA-protein crosslinks
(DPCs) in the nucleosome7,8. The primary enzyme tasked with locating
and processing genomic AP sites is the multifunctional nuclease AP
endonuclease 1 (APE1), which is a key component of the base excision
repair (BER) pathway9. During BER, APE1 functions as an AP-
endonuclease by cleaving the DNA phosphodiester backbone 5′ of
the AP site generating a 5′-nicked BER intermediate. The 5′-nicked BER
intermediate is then processed by additional BER proteins, which
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ultimately restore the codingpotential of theDNA tomaintain genome
stability. The biological importance of APE1, and the processing of
genomic AP sites, is highlighted by the embryonic lethality of APE1
knockout inM. musculus10, and the sensitivity of APE1-deficient cells to
DNA damaging agents11,12.

The mechanisms used by APE1 and other BER enzymes to repair
DNA damage in non-nucleosomal DNA are well-established9,13,14. How-
ever, how these enzymes function in the context of nucleosomes and
higher-order chromatin remains poorly understood. In-vitro studies
using recombinant nucleosomes have shown the activity of APE1 is
highly dependent on the position of the DNA damage (i.e., the AP site)
in the nucleosome, where solvent-exposed AP sites are more readily
processed than occluded AP sites15–18. This position-dependent activity
in the nucleosome is not exclusive to APE1 and is shared among other
proteins in the BER pathway18–27. Consistent with these in-vitro obser-
vations, genome-wide repair of nucleosomalDNAbase damage byBER
proteins is also dependent on the position of the DNA damage in the
nucleosome28–30. To date, the mechanisms BER proteins use for
recognition and processing of DNA damage in the nucleosome, and
the molecular basis for the position-dependent DNA repair activity
remains unknown. Here, we utilize biochemical assays and cryo-
electron microscopy (cryo-EM) to determine the mechanism used by
APE1 to process nucleosomal AP sites and provide mechanistic insight
into the position-dependent repair of nucleosomal DNA damage.

Results
APE1 AP-endonuclease activity is position-dependent in the
context of the NCP
To investigate how the nucleosome impacts the AP-endonuclease
activity of APE1, we generated three recombinant NCPs that each
contain a single tetrahydrofuran AP site analog. These three AP sites
are positioned at distinct locations within the NCP described in terms
of the position of the AP site relative to the nucleosome dyad, or
superhelical location (SHL) (Fig, 1a and Supplementary Fig. 1a).
Moreover, the AP sites also represent different rotational orientations,
whichdictateswhether the phosphate backboneof theAP site is facing
outwards away from the histone octamer (solvent-exposed) or facing
inward towards the histone octamer (occluded). One nucleosome
contains an AP site in a solvent-exposed rotational orientation near
the nucleosome entry/exit site at SHL−6, referred to as AP-NCP−6. The
second nucleosome contains anoccluded AP site near the nucleosome
entry/exit site at SHL−6.5, referred to as AP-NCP−6.5. The third nucleo-
some contains an occluded AP site one bp adjacent to the nucleosome
dyad at SHL0, referred to as AP-NCP0.

To quantitatively characterize the position-dependent activity of
APE1 on AP-NCPs, we performed single-turnover pre-steady state
enzyme kinetics on AP-NCP−6, AP-NCP−6.5, and AP-NCP0 substrates
(Fig. 1b and Supplementary Fig. 1c–e). Under single-turnover condi-
tions, where APE1 is in excess of the AP-NCP substrate, the kinetic time
course corresponds to the first enzymatic turnover and can be fit to
determine the APE1 DNA cleavage rate (kobs). APE1 exhibits biphasic
kinetics with each of the AP-NCPs, which indicates the presence of two
distinct cleavage rates (Fig. 1c and Supplementary Fig. 1b). Here, we
discuss the cleavage rate determined for the major population for
each AP-NCP substrate as this likely represents the biologically
relevant rate for AP-endonuclease activity. For AP-NCP−6, the observed
rate constant for APE1 was 500 ± 40 s−1, which is similar to the kobs of
441 ± 40 s−1 for APE1 on non-nucleosomal duplex DNA31. When the AP
sitewas placed in an occluded position near the nucleosomeentry/exit
site, AP-NCP−6.5, we observed a decrease in APE1 cleavage rate com-
pared to the solvent-exposed AP-NCP−6. The APE1 cleavage rate for AP-
NCP−6.5 was 0.12 ± 0.01 s−1, which is a 3,650-fold decrease compared to
non-nucleosomal duplex DNA. The largest reduction in APE1 activity
was observed for the occluded AP site near the nucleosome dyad, AP-
NCP0. TheAPE1 cleavage rate forAP-NCP0was 1.30×10

−4 ± 0.23×10−4 s−1,

which is a 3,400,000-fold reduction compared to non-nucleosomal
duplex DNA. To determine the specificity of APE1 cleavage for the
nucleosomal AP sites, we generated a non-damaged nucleosome (ND-
NCP) that lacks an AP site (Supplementary Fig. 1f). Importantly, APE1
cleavage activity was not observed for ND-NCPs, confirming the clea-
vage specificity of APE1 for nucleosomal AP sites (Supplementary
Fig. 1g). Together, these pre-steady state kinetic measurements indi-
cate that APE1 rapidly cleaves solvent-exposed AP sites at the nucleo-
some entry/exit site (AP-NCP−6). In contrast, occluded AP sites at the
nucleosome entry/exit (AP-NCP−6.5) and dyad (AP-NCP0) are cleaved
with moderate and low efficiency, respectively.

To determine if the observed differences in APE1 cleavage
observed at the three AP site positions is the result of reduced sub-
strate binding, we performed electrophoretic mobility shift assays
(EMSAs) with APE1 and ND-NCP, AP-NCP−6, AP-NCP−6.5, and AP-NCP0
(Fig. 1d and Supplementary Fig. 1h-k). EMSAs with ND-NCPs identified
APE1 robustly interacts with the NCP (Kd,app of 71 ± 10 nM) even in the
absence of an AP-site (Supplementary Fig. 1k,l). Analysis of the EMSAs
for AP-NCPs yielded Kd,app of 17 ± 3 nM for AP-NCP−6, 20 ± 7 nM for
AP-NCP−6.5, and 20 ± 8 nM for AP-NCP0, a modest ~3.5 fold higher
affinity than ND-NCPs (Fig. 1e). Importantly, the similar affinities of
APE1 for all three AP-NCPs indicates the differences in catalytic effi-
ciencies for AP-NCP−6, AP-NCP−6.5, and AP-NCP0 are not the result of
reduced nucleosome binding by APE1. However, we cannot rule out
subtle differences in specific binding of APE1 to each individual AP-
site within the nucleosome due to the non-specific binding observed
between APE1 and non-damaged nucleosomal DNA in our EMSA
assays.

Mechanism for APE1 processing solvent-exposed AP sites in the
nucleosome
The pre-steady state kinetics measurements indicate that APE1 rapidly
processes a solvent-exposed AP site at SHL−6. To obtain mechanistic
insight into how APE1 efficiently binds and processes the solvent-
exposed AP site at SHL−6, we generated and purified anAPE1-AP-NCP−6
substrate complex for structure determination by cryo-EM (Supple-
mentary Fig. 2a). A subset of 58,854 particles was used to generate a
3.4 Å cryo-EM reconstruction of the APE1-AP-NCP−6 complex (Fig. 2,
Supplementary Fig. 2, Supplementary Table 1). Both APE1 and the AP-
NCP-6 are well-resolved in the cryo-EM map, with local resolutions of
~4.5–6Å for APE1 and ~3–4Å for AP-NCP−6 (Supplementary Fig. 2c, d).
Interestingly, only the catalytic core of APE1 (residues 43–318) was
observed in the APE1-AP-NCP-6 reconstruction despite utilizing full-
length APE1 during cryo-EM grid preparation. The inability to resolve a
large portion of the APE1 N-terminal domain (residues 1–42) in our
cryo-EM reconstruction is likely due to significant conformational
flexibility and suggests it does not form a stable interaction with the
nucleosome when bound at this AP site location. This conformational
flexibility of the N-terminal domain is consistent with prior structural
studies of APE132.

In the APE1-AP-NCP−6 structure, APE1 is engaged with the
nucleosome at the entry/exit site with a ~10 base-pair footprint that
spans the nucleosomal DNA between SHL-5.5 to SHL−6.5 (Fig. 3a).
Importantly, APE1 only interacts with the nucleosomal DNA and no
direct contacts between APE1 and the core histone octamer are
observed. The interaction between APE1 and the nucleosome occurs
through three distinct molecular interfaces that make extensive con-
tacts with both the non-damaged and damaged strands of the
nucleosomalDNA (Fig. 3b). The first interface consists of the positively
chargedAPE1 side chains (R73, K78, K98, andK103) that coordinate the
phosphate backbone of the non-damaged DNA strand at SHL-5.5.
(Fig. 3c). The second interface consists of a series of positively charged
APE1 lysine side chains (K224, K227, K228) that are in position to
interactwith the phosphate backboneof the non-damagedDNA strand
near SHL−6.5 (Fig. 3d). The third interface is the APE1 active site, which
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interacts extensively with the nucleosomal DNA at SHL-6. The APE1
active site encompasses the nucleosomal DNA at SHL-6 by wedging
R177 and the intercalating loop (residues 269 - 271) into the major and
minor grooves of the nucleosomal DNA, respectively (Fig. 3e). This
positions the APE1 active site in a conformation to make extensive
interactions with the damaged DNA strand surrounding the AP site
(Fig. 3e, discussed below). Notably, the interactions observed for APE1
and the nucleosomal DNA between SHL−5.5 to SHL−6.5 are similar to
those previously reported for non-nucleosomal DNA, indicating a
common mechanism for engaging both DNA substrates33,34.

APE1 utilizes a DNA sculpting mechanism for AP site recognition
and catalysis in non-nucleosomal duplex DNA, where the DNA is bent
~35o to evict the AP site from the DNA helix into the APE1 active site33,34.

To determine if APE1 sculpts nucleosomal DNA, we obtained a 3.0 Å
cryo-EM reconstruction of the AP-NCP-6 in the absence of APE1 (Sup-
plementary Fig. 3 and Supplementary Table 1). Comparison of the
APE1-AP-NCP-6 and AP-NCP-6 structures revealed significant distortion
of the nucleosomal DNA upon APE1 binding (Fig. 4a). APE1 binding
induces an additional ~20o bend in the nucleosomal DNA from SHL−5.5
to SHL-6.5 that results from a ~7 Å movement of the nucleosomal DNA
away from the histone octamer at SHL-6. In addition, APE1 binding
results in significant widening of the minor groove of the nucleosomal
DNA containing the AP site. The APE1-induced DNA bending does not
cause significant structural rearrangements of the histone octamer,
and contacts made between the histone octamer and the nucleosomal
DNA at SHL-5.5 and SHL−6.5 remain intact (Supplementary Fig. 4a–c).
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Fig. 1 | APE1 endonuclease activity is position-dependent in the nucleosome.
a Structure of a nucleosome core particle (PDB:4JJN) with the AP site positions at
SHL-6, SHL-6.5, and SHL0 labeled. b Representative gels for APE1 single turnover
kinetic (STK) experiments with substrate and product bands detected using the
6-FAM label. c Quantification with fits for the AP-NCP-6, AP-NCP-6.5, and AP-NCP0
single turnover kinetic (STK) experiments. The data shown are themean ± standard
error of themean from three replicate experiments. The error bars are includedbut

are smaller than the circles used to represent the data points d Representative gels
for the APE1 EMSA experiments with the free AP-NCP and APE1-bound AP-NCP
(complex) bands detected using the 6-FAM label. e Quantification with fits for the
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In addition to DNA bending, significant variability in the APE1
position relative to the histone octamer was observed during 3D
classification of the cryo-EM data (Supplementary Fig. 2b). Sub-
sequent 3D variability analysis of the APE1-AP-NCP-6 particles
revealed a substantial translational movement of APE1 around the
nucleosomal DNA that is centered on the AP site, suggesting con-
formational heterogeneity during AP-site recognition in the
nucleosome (Supplementary Fig. 4d).

The APE1-inducedDNA bending facilitates displacement of the AP
site from within the nucleosomal DNA helix into the APE1 active site
(Fig. 4b). Importantly, this extrahelical conformation of the AP site is
different than the predominantly intrahelical conformation seen in the
AP-NCP−6 structure (Supplementary Fig. 4e). The void in the DNA helix
generated by the extrahelical AP site is filled by R177, which wedges
into the major groove of the nucleosomal DNA near SHL−6 (Fig. 4c). In
this conformation, R177 sits across from the orphan DNA base of the
non-damaged DNA strand and likely stabilizes the extrahelical con-
formationof theAP site. TheAPE1 active sitemakes additional contacts
with thenucleosomalDNAat SHL-6 through intercalating loop residues
Y269, M270, and M271, which wedge into the minor groove of the
nucleosomalDNA (Fig. 4d).While several APE1 side chains were readily
observed in the cryo-EM map, we did not observe clear density for all
the side chains within the APE1 active site involved in catalysis. The
remaining side-chain conformations for APE1 catalytic residues were
modeled using high-resolution X-ray crystal structures of APE133,34.
Importantly, the APE1 side chains that coordinate the nucleophilic
water (residues D210 andN212) and catalyticmetal (residues D70, E96,
and D308) are in position to perform catalysis on the nucleosomal AP
site (Fig. 4e), suggesting our structure represents APE1 in a catalytically
competent conformation. Additional structural comparison of our
APE1-AP-NCP-6 structure with a high-resolution crystal structure of
APE1 bound to non-nucleosomal duplex DNA containing an AP site
(APE1-AP-DNA, PDB:5DFI) revealed a similar mode of interaction with
both substrates (Supplementary Fig. 4f)33,34.

To obtain additional insight into the catalytic mechanism APE1
uses to cleave solvent-exposed AP sites in the nucleosome, we gen-
erated three APE1 active site mutations (E96Q/D210N, R177A, and
Y269A). In the APE1 AP-endonucleolytic cleavage reaction, residues
E96 and D210 are critical for coordinating the catalytical metal and
nucleophilic water35–37, respectively, R177 can act as a surrogate base
to stabilize the extrahelical conformation of the AP site33,38, and Y269
is involved in APE1-mediated DNA sculpting39. We used a product
formation assay to determine how well each APE1 mutant performs
cleavage of AP-NCP-6 (Fig. 4f and Supplementary Fig. 5a). The APE1
E96Q/D210Nmutant did not result in appreciable product formation
for AP-NCP-6, suggesting this mutant is catalytically dead. The APE1
R177A mutant resulted in a significant decrease in product formation
for AP-NCP-6, whereas Y269A had a minimal effect on product for-
mation for AP-NCP-6 compared to WT APE1. This suggests that
coordination of the catalytic metal and nucleophilic water, as well as
stabilization of the extrahelical AP site conformation are important
for APE1 cleavage of nucleosomal AP sites. Importantly, the E96Q/
D210N, R177A, and Y269Amutants all maintain the ability to bind AP-
NCP-6, though subtle differences in binding pattern were observed
(Supplementary Fig. 5b). This indicates the reduction in product
formation is not due to an overall reduction in APE1 nucleosome
binding.

Mechanism for APE1 processing occluded AP sites in the
nucleosome
To further understand themechanismAPE1 uses to bind and cleaveAP-
NCP-6.5 and AP-NCP0, we attempted to determine structures of APE1
bound to AP-NCP-6.5 and AP-NCP0. Despite multiple attempts, we were
unable to obtain a reconstructionofAPE1 bound to eitherAP-NCP-6.5 or
AP-NCP0 (Supplementary Fig. 6a and 7a, see “Methods” section). The
exact reason for this is unclear, but likely indicates a high level of
heterogeneity in APE1 binding position for AP-NCP-6.5 and AP-NCP0. To
obtain additional insight into the catalytic mechanism APE1 uses to
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cleave APE1-AP-NCP-6.5 and APE1-AP-NCP0, we utilized the product
formation assay to test the cleavage ability of the APE1 active site
mutants (E98A/D210N, R177A, and Y269A) for AP-NCP-6.5 and AP-NCP0
(Fig. 5a and Supplementary Fig. 5c,e). The E96Q/D210N mutation
completely abrogated APE1 endonuclease activity for AP-NCP-6.5 and
AP-NCP0, whereas the APE1 R177A and Y269A mutations resulted in a
moderate decrease in product formation for AP-NCP-6.5 and AP-NCP0.
Importantly, the differences in product formation for AP-NCP-6.5 and
AP-NCP0 are not due to reduced nucleosome binding, though subtle
changes in binding patterns were observed (Supplementary Fig. 5d, f).
The overall trends in the product formation assay for APE1 E96Q/
D210A and R177A mutants cleaving AP-NCP-6.5 and AP-NCP0 are con-
sistent with what was observed for AP-NCP-6, suggesting APE1 uses the
same general catalytic mechanism for cleavage of all three AP-NCPs
(compare Figs. 5a and 4f). However, the Y269Amutant had a small but
significant decrease in product formation for AP-NCP-6.5 and AP-NCP0,
which was not observed for the solvent-exposed AP-NCP-6.

The product formation assays indicate APE1 uses a similar cata-
lytic mechanism for cleaving all three AP-NCPs. This suggests the dif-
ferences in APE1 cleavage rate for each AP-NCP may result from the
inability of APE1 to access AP sites in the nucleosome. To determine
any structural differences between the three AP-NCPs, we obtained
two additional cryo-EM reconstructions of AP-NCP-6.5 and AP-NCP0
at 3.4Å and 4.0Å, respectively (Supplementary Fig. 6, 7 and

Supplementary Table 1). Structural comparison of the AP-NCP-6, AP-
NCP-6.5, and AP-NCP0 revealed minimal changes to the overall struc-
ture of the nucleosome, indicating the three different AP sites do not
induce large-scale conformational changes in the nucleosome (Sup-
plementary Fig. 8a). In all three AP-NCP structures the AP site adopts a
major conformation that is intrahelical, though we cannot rule out
heterogeneity in the AP site conformation (Supplementary Fig. 8b).
Closer inspection of three AP-NCP structures revealed significant dif-
ferences in how extensive the nucleosomal DNA surrounding the AP
sites interacts with the core histone octamer. The AP site at SHL-6 is
completely solvent-exposed and no direct contacts between the his-
tone octamer and damaged strand of the nucleosomal DNA are
observed (Fig. 5b). In contrast, thedamagedDNAstrand containing the
AP sites at SHL-6.5 and SHL0 make extensive interaction with the his-
toneoctamer. TheAP site and surroundingnucleosomalDNAat SHL-6.5
interacts with the αN-helix of histone H3 and is in close proximity to
the C-terminal tail of histone H2A (Fig. 5c). Similarly, the nucleosomal
DNA surrounding theAP site at SHL0 is adjacent to theH3-H3′ interface
at the nucleosomedyad (Fig. 5d). Subsequentmodeling of APE1 bound
at these occluded AP site positions revealed significant clashes
betweenAPE1 and thehistoneoctamer that are incompatiblewithAPE1
binding and DNA sculpting (Supplementary Fig. 8c). Together, this
indicates large-scale structural rearrangements in the nucleosomal
DNA and/or histone octamer are needed for processing occluded AP
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sites, which explains themoderate and low APE1 cleavage rates for AP-
NCP-6.5 and AP-NCP0 (Fig. 1c and Supplementary Fig. 1b).

Discussion
The cellular repair of AP sites is critical for maintaining genomic
stability4–6. Our work describes how the essential BER protein APE1
recognizes and cleaves AP-sites in the nucleosome, providing a foun-
dation for understanding how DNA repair occurs in chromatin. Our
kinetic analysis revealed APE1 rapidly cleaves a solvent-exposedAP site
near SHL-6, with a cleavage rate similar to non-nucleosomal DNA. The
cryo-EM structure of the APE1- AP-NCP-6 complex provides a
mechanistic basis for this observation. Nucleosomal AP site recogni-
tion by APE1 is accomplished through a DNA sculpting mechanism,
where APE1 bends the DNA and flips the AP site out of the DNA helix

and into its active site. The nucleosomal DNA sculpting by APE1
occurs without a direct interaction with histones or large structural
rearrangements of the histone octamer, when the AP-site is in a
solvent-exposed position. The mode of DNA sculpting and AP site
recognition are similar to that previously observed for APE1 for non-
nucleosomal DNA33,34, consistent with APE1 using a common
mechanism for processing solvent-exposed AP sites in the nucleo-
some and AP sites in non-nucleosomal DNA. Interestingly, similar
nucleosomal DNA distortion was recently observed during nucleo-
some engagement by multiple pioneer transcription factors40,41,
indicating this may be a common mechanism for accessing binding
sites within nucleosomal DNA.

In contrast to the solvent-exposed AP site, the APE1 cleavage rates
at occluded AP sites near SHL-6.5 and SHL0 are significantly lower,
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Fig. 4 | Mechanism of nucleosomal AP site recognition by APE1. a Structural
overlay of the APE1-AP-NCP-6 complex and AP-NCP-6. Focused view of the nucleo-
somal DNA between SHL−5.5 and SHL−6.5 without APE1 shown highlighting changed
in the nucleosomal DNA upon APE1 binding. b Focused nucleosomal DNA view of
the AP site in the APE1 active site. The cryo-EMmap is shown as a transparent gray
surface. c Focused view of R177 in the APE1 active site at SHL−6. d Focused view of
the APE1 intercalating loop at SHL-6. The cryo-EM map is shown as a transparent
blue surface for (c and d). e Focused view of and the nucleophilic water and metal
coordinating residues in the APE1 active site. The nucleophilic water and metal

locations from PDB:5DFI are labeled. f Representative gel of the AP-NCP-6 product
formation assays forWT, E96Q/D210N, R177A, and Y269AAPE1 (left). The substrate
(S) and product (P) bands were detected using the 6-FAM label. Quantification of
the AP-NCP-6 product formation assays for WT, E96Q/D210N, R177A, and Y269A
APE1 (right). The data shown are the mean ± standard deviation from the three
replicate experiments. The * denotes values that are significantlydifferent (p <0.01)
than WT APE1 as determined by two-tailed student t test. P values: WT vs E96Q/
D210N (p-0.0001),WT vs R177A (p-0.0011). Source data for this figure are provided
as a Source Data file.
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which is due to extensive interactions between the nucleosomal DNA
and histone octamer that prevent efficient AP site binding, DNA
sculpting, and catalysis by APE1. In this way, the histone octamer can
serve as a barrier to DNA repair at the occluded AP site positions
consistent with genome-wide BER profiles28–30. While the details
remain unknown, it is likely that both intrinsic nucleosome dynamics
that enhance access to the DNA damage and/or extrinsic protein fac-
tors that alter the structure of the nucleosome are required for APE1 to
overcome this barrier. At SHL-6.5, APE1 processes the AP site with a
cleavage rate of ~0.1 s-1, which is almost identical to the equilibrium rate
constant (0.02 - 0.1 s-1) for spontaneous unwrapping of the nucleoso-
mal DNA at the entry/exit site42. Consistent with this finding, the his-
tone PTM H3K56ac is known to increase spontaneous unwrapping of
the nucleosomal DNA and was previously shown to enhance APE1
cleavage rate at an occluded nucleosomal AP site15. This suggests that
intrinsic nucleosome dynamics likely facilitate repair of AP sites at
occluded positions near the nucleosome entry/exit through a site-
exposure model.

The AP site near the nucleosome dyad (SHL0) requires more
extensive changes in nucleosome structure for efficient DNA repair.
The UV-damaged DNA binding (UV-DDB) damage sensor protein, a
recently identified BER co-factor43, uses a register shifting mechan-
ism to alter the conformation of DNA damage from occluded to
solvent-exposed positions within the nucleosome44. Additional BER
co-factors PARP1 and the scaffolding protein XRCC1 are also known

to directly and/or indirectly regulate nucleosome structure24,45,46.
Finally, a variety of ATP-dependent chromatin remodeling com-
plexes have been shown to enhance the in vitro activity of BER
proteins and have been implicated in the cellular repair of DNA base
damage30,47–51. These BER co-factors and chromatin remodeling
enzymes would facilitate access of APE1 to occluded DNA damage in
the nucleosome and enhance BER. However, the complex interplay
between core BER factors, regulatory BER co-factors, and chromatin
remodelers during DNA repair in the nucleosome remains poorly
understood.

In addition to APE1, multiple BER proteins including DNA gly-
cosylases and DNA polymerase β bend non-nucleosomal DNA ~30o

to 90o during damage recognition within non-nucleosomal DNA13,14

Our observation that APE1 adopts a similar conformation during AP
site recognition in nucleosomal DNA and non-nucleosomal DNA
indicates that DNA sculpting is likely needed for efficient repair in
the nucleosome33,34. Whether DNA glycosylases and DNA poly-
merase β also sculpt nucleosomal DNA during damage recognition
remains unknown, but the use of a DNA sculpting mechanism
similar to that observed for APE1 would explain their position-
dependent activity in the nucleosome18,20–22,26,52–56. Future work will
be needed to identify the structural basis for DNA damage recog-
nition by other core BER factors and whether these enzymes use a
unified DNA sculpting mechanism for processing DNA damage in
the nucleosome.
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Fig. 5 | Mechanism for APE1 processing occluded AP sites in the nucleosome.
a Representative gels of the AP-NCP−6.5 and AP-NCP0 product formation assays for
WT, E96Q/D210N, R177A, and Y269A APE1 (left). The substrate (S) and product (P)
bands were detected using the 6-FAM label. Quantification of the AP-NCP−6.5 and
AP-NCP0 product formation assays for WT, E96Q/D210N, R177A, and Y269A APE1
(right). The data shown are the mean ± standard deviation from the three replicate
experiments. The * denotes values that are significantly different (p <0.01) thanWT

APE1 as determined by two-tailed student t test. P values (AP-NCP−6.5): WT vs E96Q/
D210N (p =0.0001), WT vs R177A (p-0.0019), and WT vs. Y269A (p-0.0086). P
values (AP-NCP0):WTvs E96Q/D210N (p-1.7×10−6),WT vsR177A (p-0.0005), andWT
vs. Y269A (p-0.0014). b Focused view of the AP site in AP-NCP−6. c Focused view of
the AP site in AP-NCP−6.5. d Focused view of the AP site in AP-NCP0. The cryo-EM
map surrounding theAP site is shown as a transparent gray surface in (b–d). Source
data for this figure are provided as a Source Data file.
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Methods
Purification of full-length APE1
Codon optimized H. sapien wild-type full-length (FL) APE1 in a pet28a
vectorwas purchased fromGenScript. The E96A/D210N, R177A, Y269A
APE1 mutants were generated using the QuikChange II site-directed
mutagenesis kit (Agilent). All proteins were expressed in One Shot
BL21(DE3) plysS E. coli cells (Invitrogen), grown at 37 °C to an OD600

= 0.6, and induced with 0.4mM IPTG overnight at 20 °C. Cells were
subsequently harvested and lysed via sonication on ice in a buffer
containing 50mM HEPES (pH 7.4), 50mM NaCl, and a protease inhi-
bitor cocktail (AEBSF, leupeptin, benzamidine, pepstatin A). The cell
lysate was cleared for 1 h at 24,242 × g. The supernatant containing
APE1 was purified via a HiTrap Heparin HP (GE Health Sciences) equi-
librated with 50mMHEPES (pH 7.4) and 50mMNaCl, and APE1 eluted
off the column with a linear salt gradient with 50mM HEPES (pH 7.4)
and 1M NaCl. The eluted APE1 was diluted to 50mMNaCl and further
purified by cation-exchange chromatography using a POROS HS col-
umn (GEHealth Sciences).APE1waseluted fromthePOROSHScolumn
with a linear salt gradient to 1MNaCl. APE1proteinwas further purified
by gel filtration on a HiPrep 16/60 Sephacryl S-200 HR (GE Health
Sciences). The purified APE1 protein was concentrated to >20mg/mL
and stored long term at −80 °C. All APE1 concentrations were deter-
mined via UV–Vis spectroscopy using a NanoDrop One Spectro-
photometer (Thermo Scientific).

Preparation of oligonucleotides
To generate DNA substrates containing the 601 strong positioning
sequence and single AP sites, a ligation-based method was utilized56.
The individual DNA oligonucleotides (oligos) were synthesized by
Integrated DNA Technologies (Supplementary Table 2). Each set of
oligos were resuspended in a buffer containing 10mMTris-pH 8.0 and
1mM EDTA and mixed at a 1:1 ratio. The oligos were annealed by
heating to 90 °C for 5min before stepwise cooling to 4 °Cusing a linear
gradient (-1 °C/min). The annealed DNA was subsequently ligated with
T4 DNA ligase (CapeBio or New England Biolabs) and products sepa-
rated via denaturing urea polyacrylamide gel electrophoresis (10%
37.5:1 acrylamide:bis-acrylamide). The ligated DNAwas extracted from
the gel in a buffer containing 200mM NaCl and 1mM EDTA using
freeze-thaw cycles (3x, -20 °C to 37 °C). The purified and ligated DNA
was reannealed heating to 90 °C for 5min before stepwise cooling to
4 °C using a linear gradient (-1 °C/min). All ligated oligonucleotides
were stored long term at –20 °C.

Purification of recombinant histones
Recombinant H. sapien histone H2A (UniProt identifier: P0C0S8), H.
sapien H2B (UniProt identifier: P62807), H. sapien H3 C110A (UniProt
identifier Q71DI3), and H. sapien H4 (Uniprot identifier: P62805) pro-
teins were generated from a tagless pet3a expression vector. In brief,
each histone plasmid was transformed and expressed in BL21 (DE3)
(New England Biolabs) or BL21-CodonPlus (Agilent). Cells were grown
in M9 minimal media at 37 °C until an OD600 of 0.4 was reached. His-
tone expression was induced with 0.3mM (Histone H4) or 0.4mM
(Histone H2A, H2B, and H3) IPTG for 3-4 h at 37 °C. Cell pellets were
stored at –80 °C. Histone purification was performed using a pre-
viously established protocol57. In short, histones were extracted from
inclusion bodies under denaturing conditions. Following extraction,
the histones were further purified using a combination of anion-
exchange and cation-exchange chromatography. Thepurifiedhistones
were dialyzed into H2O, lyophilized, and stored long term at –20 °C.

Refolding of H2A/H2B Dimers and H3/H4 Tetramers
To generate H2A/H2B dimers and H3/H4 tetramers, each individual
histone was resuspended in a buffer containing 20mM Tris (pH 7.5),
6MGuanidinium-HCl, and 10mMDTT. The appropriate histones were
mixed 1:1 molar ratio and dialyzed three time against a high salt buffer

containing 2M NaCl, 20mM Tris (pH-7.5), and 1mM EDTA. The refol-
ded H2A/H2B dimers and H3/H4 tetramers were purified over a
Sephacryl S-200 HR (GE Health Sciences) using high salt buffer con-
taining 2M NaCl, 20mM Tris (pH-7.5), and 1mM EDTA. The fractions
containing pure H2A/H2B dimer and H3/H4 tetramer were combined
and stored long term in 50% glycerol at –20 °C.

Preparation of nucleosomes
All nucleosomes were generated via a modified salt-dialysis method57.
In short, H2A/H2B dimer, H3/H4 tetramer, and DNA were mixed at a
2:1:1 ratio, respectively. Nucleosomes were reconstituted via step-wise
dialysis from 2M NaCl to 1.5M NaCl, 1.0M NaCl, 0.66M NaCl, 0.50M
NaCl, 0.25M NaCl, and 0.125M NaCl over 24–36 h. The reconstituted
nucleosomes were heat shocked at 55 °C to obtain uniform DNA
positioning prior to purification via ultracentrifugation through a 10-
40% sucrose gradient. Nucleosome formation and purity was deter-
mined by running native polyacrylamide gel electrophoresis (5% 59:1
acrylamide:bis-acrylamide). The NCPs for AP-endonuclease assays and
EMSAs contained a 6-FAM label at the 5′-end of the AP-site containing I
strand (Supplementary Table 2).

APE1 AP-Endonuclease Activity Assays
Single-turnover reactions were initiated by mixing full length APE1
enzyme (1000nM) and AP-NCP substrate (100 nM) solutions in a
reaction buffer containing 50mM HEPES (pH-7.5), 100mM KCl, 5mM
MgCl2 and 0.1mg/ml bovine serum albumin (BSA) at 37 °C. A rapid
quench flow system (KinTek RQF-3) was utilized for single-turnover
pre-steady-state experiments time courses for AP-NCP-6 (2.6ms.–15 s.),
while time courses for AP-NCP-6.5 (5 s.–600 s.) and AP-NCP0 (20 s.–10 h)
were completed in a benchtop heat block at 37 °C. The reactions were
subsequently quenched with 300mM EDTA at each respective time
point. For mutant APE1 product formation assays, only a single time-
point was taken at 0.1 s. for AP-NCP-6, 180 s. for AP-NCP-6.5, and 10 hr.
for AP-NCP0. All quenched reactions were mixed in 1:1 v/v ratio with a
loading dye containing 100mM EDTA, 80% deionized formamide,
0.25mg/ml bromophenol blue and 0.25mg/ml xylene cyanol. The
reactions were incubated at 95 °C for 6min and separated by 15% 29:1
denaturing polyacrylamide gel electrophoresis. The bands corre-
sponding to substrate and product were visualized by the 6-FAM label
(5′-end of the AP-site containing I strand) using an Amersham Typhoon
RGB imager. The substrate and product bands were quantified using
ImageQuant, and the data were best fit to the double exponential
equation:

Product =A 1� e�k1t
� �

+B 1� e�k2t
� �

ð1Þ

Each time point represents an average of at least three indepen-
dent replicate experiments ± the standard error of the mean. The
indicated product formation for each APE1 mutant is the average of at
least three independent replicate experiments ± the standard devia-
tion. Uncropped gels for the single-turnover kinetics and product
formation assays can be found in the Source Data file.

Electrophoretic mobility shift assays
Samples for electrophoretic mobility shift assays (EMSAs) were gen-
erated by mixing 20nM AP-NCP with increasing concentrations of FL
APE1 protein (5-1000 nM) in a buffer containing 10mM HEPES (7.5),
25mM NaCl, 1mM EDTA, 1mM DTT, and 0.1mg/mL BSA. For APE1
mutant EMSAs, samples were generated bymixing 20 nMAP-NCPwith
increasing concentrations of mutant APE1 protein (0 nM, 25 nM, and
250nM) in a buffer containing 10mM HEPES (pH-7.5), 25mM NaCl,
1mM EDTA, 1mM DTT, and 0.1mg/mL BSA. The EMSA samples were
mixed with equal volume 10% sucrose loading dye and complexes
separated by native polyacrylamide gel (5%, 59:1 acrylamide:bis-acry-
lamide) electrophoresis in a running buffer containing 0.2x TBE for
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45min at 4 °C. The bands corresponding to free NCP and bound
complexes were visualized by the 6-FAM label (5′-end of the AP-site
containing I strand) using an Amersham Typhoon RGB imager. The
intensity of the bands was quantified using ImageJ58, and the data fit to
a one-site binding model accounting for ligand depletion:

AB=
AT +BT +KD,app

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AT +BT +KD,app

� �2
� 4 ATBT

� �r

2

ð2Þ

where AT is the APE1 concentration, BT is the NCP concentration, and
AB is the concentration of APE1:NCP complex. Each data point repre-
sents an average of at least three independent replicate experiments ±
the standard deviation. For the APE1 mutant EMSAs, three indepen-
dent replicate experiments were performed. Uncropped gels for the
EMSAs can be found in the Source Data file.

Cryo-EM sample and grid preparation
To generate APE1-AP-NCP-6, 125μL of AP-NCP-6 was incubated with
125μL of FL APE1 at a 1:1.5 molar ratio (~6μMAP-NCP and ~9μMAPE1)
in a buffer containing 25mMHEPES (pH 7.4), 50mMNaCl, 1mMTCEP,
and 5mM EDTA. The APE1-AP-NCP-6 sample was incubated for 10min
at 4 °C before the addition of 0.20% glutaraldehyde for crosslinking.
The APE1-AP-NCP-6 sample was allowed to crosslink for an additional
10min and immediately purified by gel filtration using a Superdex
S200 Increase 10/300 GL (GE Health Sciences) in a buffer containing
25mMHEPES (pH 7.4), 50mMNaCl, 1mMTCEP, and 5mMEDTA. A gel
corresponding to theAPE1-AP-NCP-6used for cryo-EMgridpreparation
can be found in Supplementary Fig. 2a.

The AP-NCP-6, AP-NCP-6.5, and AP-NCP0 samples were generated
during attempts to crosslink APE1, though these attempts yielded only
structures of the AP-NCPs in the absence of APE1 (Supplementary
Figs. 3, 6, 7). In brief, eachAP-NCPwas incubatedwith 125μL of FLAPE1
at a 1:1.5 molar ratio (~6μM AP-NCP and ~9μM APE1) in a buffer con-
taining 25mM HEPES (pH 7.4), 50mM NaCl, 1mM TCEP, and 5mM
EDTA. The samples were then incubated for 10min at 4 °C before the
addition of 0.20% glutaraldehyde for crosslinking. The samples were
allowed to crosslink for an additional 10min and immediately purified
by gel filtration using a Superdex S200 Increase 10/300 GL (GE Health
Sciences) in a buffer containing 25mM HEPES (pH 7.4), 50mM NaCl,
1mM TCEP, and 5mM EDTA. Gels corresponding to the AP-NCP-6, AP-
NCP-6.5, and AP-NCP0 samples used for cryo-EM grid preparation can
be found in Supplementary Figs. 3a, 6a, 7a. Of note, a slower mobility
band was present in each sample used for cryo-EM grid preparation,
though we did not observe APE1 bound during 2D or 3D classification
of the datasets.

All cryo-EM samples were concentrated to 0.20mg/mL for APE1-
AP-NCP-6, 0.20mg/mL for AP-NCP-6, 0.25mg/mL for AP-NCP-6.5, and
0.25mg/mL for AP-NCP0 and subsequently stored at 4 °C until
grid preparation. Cryo-EM grids for the APE1-AP-NCP-6, AP-NCP-6,
AP-NCP-6.5, and AP-NCP0 samples were generated by applying 3μL
(0.20-0.25mg/mL) of each individual sample to a different Quantifoil
R2/2 300 mesh copper grid that was glow-discharged for 60 seconds.
The grids were blotted for 1-3 seconds at 8 °C and 95%humidity before
being plunge-frozen in liquid ethane using an FEI Vitrobot Mark IV.

Cryo-EM data collection and processing
All cryo-EM data collections were performed at the Pacific Northwest
Center for Cryo-EM (PNCC) using SerialEM. The datasets for 7U50,
7U51, and 7U53 were collected using an FEI Titan Krios 300 kV cryo-
electron microscope equipped with a Gatan K3 direct electron detec-
tor (PNCC Krios 1, Supplementary Table 1). The dataset for 7U52 was
collected using an FEI Titan Krios 300 kV cryo-electron microscope
equippedwith a Gatan BioQuantumK3direct electron detector (PNCC
Krios 4, Supplementary Table 1). For the APE1-AP-NCP-6 dataset, a total

of 11,300movies were recorded over ~48 h from two separate cryo-EM
grids. The data was collected using super-resolutionmode with a pixel
size of 0.40075 Å, a defocus range of –0.8μm to –2.2μm, and a total
electron dose of 50 e-/Å2. For the AP-NCP-6 dataset, a total of 3510
movies were recorded over ~24h. from a single cryo-EM grid. The data
was collected using super-resolution mode with a pixel size of
0.40075 Å, a defocus range of –0.8μm to –2.2μm, and a total electron
dose of 50 e-/Å2. For the AP-NCP-6.5 dataset, a total of 3,680 movies
were recorded over a ~24 h. from a single cryo-EM grid. The data was
collected using super-resolution mode with a pixel size of 0.415 Å,
a defocus range of -0.7μm to –2.1μm, and a total electron dose of
47 e-/Å2. For the AP-NCP0 dataset, a total of 4,995 movies were recor-
ded over a single day from a single cryo-EM grid. The data was col-
lected using super-resolution mode with a pixel size of 0.40075 Å, a
defocus range of –0.8μm to –2.0μm, and a total electron dose of
50 e-/Å2.

All cryo-EM data processing was carried out using cryoSPARC59,
and similar schemes were used to obtain each of the four cryo-EM
structures. A correction for beam-induced drift was carried out using
cryoSPARC patch motion correction and contrast transfer function
(CTF) fit using cryoSPARC patch CTF-estimation. The micrographs
were then manually curated. A random subset (~500) of the manually
curated micrographs were used to perform blob picking to generate
templates for automated template picking. After template picking, a
minimum of two rounds of 2D-classification were carried out to gen-
erate the final particle stacks. Ab-initio models were generated from
the final particle stacks and multiple rounds of cryoSPARC hetero-
genous refinementwereperformed. The reconstructions for AP-NCP-6,
AP-NCP-6.5, and AP-NCP0 were obtained after a final non-uniform
refinement. After heterogenous refinement, a cryoSPARC 3D classifi-
cation step was performed on the 294,348 particles of APE1-AP-NCP-6
complex using a mask for APE1 and the ~15 bps of nucleosomal DNA
composed of the APE1 binding site region. The class containing the
most homogenous APE1-AP-NCP-6 complex was then subjected to a
non-uniform refinement step to generate the final reconstruction. To
resolve the conformational heterogeneity in the APE1-AP-NCP-6 com-
plex, a three component cryoSPARC 3D variability analysis60 was per-
formed on the initial 294,348 particles of the APE1-AP-NCP-6 complex.
Further details for the cryo-EMprocessing pipeline for each of the four
reconstructions can be found in Supplementary Figs. 2, 3, 6, 7.

The global resolution for all four structures was determined using
Fourier shell correlation (FSC) 0.143 cut off. The AP-NCP-6, AP-NCP-6.5,
and AP-NCP0 reconstructions were further subjected to B-factor
sharpening using PHENIX61 autosharpen. For the APE1-AP-NCP-6 com-
plex, the reconstruction was subjected to two separate B-factor shar-
pening steps. The first sharpening step was performed using the local
resolutionof thenucleosomeand the second sharpeningperformed to
the local resolution of the APE1/DNA region using PHENIX
autosharpen61. The sharpened maps were then combined using
PHENIX61 combine focused maps to yield the final composite map of
the APE1-AP-NCP-6 complex.

Model building and refinement
A human nucleosome model was generated using the coordinates
from a yeast nucleosome structure (PDB:4JJN), which was chosen due
to the strong similarity in the 601 positioning DNA sequence used in
our study. The yeast histone residues were then mutated to the cor-
responding human histone residues using Coot62. The initial APE1
model was generated from a high-resolution X-ray crystal structure of
an APE1-AP-DNA complex (PDB:5DFI)33. The initial models of the
human nucleosome and APE1 were rigid-body docked into the APE1-
AP-NCP-6 map using University of California San Francisco (UCSF)
Chimera63. For AP-NCP-6, AP-NCP-6.5, and AP-NCP0, the initial model of
the human nucleosome was rigid-body docked into the respective
cryo-EM maps using UCSF Chimera63. All models were iteratively
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refined in PHENIX61 using secondary structure restraints and manual
adjustments made to side chain conformations using Coot62.
MolProbity64 was used to validate the finalmodels prior to deposition.
The model coordinates for the APE1-AP-NCP-6, AP-NCP-6, AP-NCP-6.5,
and AP-NCP0 were deposited into the protein data bank under acces-
sion numbers 7U50, 7U51, 7U52, and 7U53. The cryo-EM maps for the
APE1-AP-NCP-6, AP-NCP-6, AP-NCP-6.5, and AP-NCP0 were deposited
into the electron microscopy data bank under accession numbers
EMD-26336, EMD-26337, EMD-26338, and EMD-26339. All figures of
the cryo-EMmaps andmodels weregenerated usingUCSFChimeraX65.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Atomic coordinates for the reported structures have been deposited
with the ProteinData bankunder accessionnumbers 7U50, 7U51, 7U52,
and 7U53. All cryo-EM maps are available from the electron micro-
scopy data bank under accession numbers EMD-26336, EMD-26337,
EMD-26338, and EMD-26339. Atomic coordinates for the initial
nucleosome model were obtained from the Protein Data bank under
accession number 4JJN. Atomic coordinates for the APE1-AP-DNA
structure were obtained from the Protein Data bank under accession
number 5DFI. The enzyme kinetics and EMSAs generated in this study
are available in the Supplementary Information file and the source data
file. Source data are provided with this paper.
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