
nature communications

Article https://doi.org/10.1038/s41467-022-33053-x

Hardware implementation of Bayesian
network based on two-dimensional
memtransistors
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Nicholas Trainor2,3, Joan M. Redwing2,3 & Saptarshi Das 1,2,3,4

Bayesian networks (BNs) find widespread application in many real-world
probabilistic problems including diagnostics, forecasting, computer vision,
etc. The basic computing primitive for BNs is a stochastic bit (s-bit) generator
that can control the probability of obtaining ‘1’ in a binary bit-stream. While
silicon-based complementarymetal-oxide-semiconductor (CMOS) technology
can be used for hardware implementation of BNs, the lack of inherent sto-
chasticity makes it area and energy inefficient. On the other hand, memristors
and spintronic devices offer inherent stochasticity but lack computing ability
beyond simple vector matrix multiplication due to their two-terminal nature
and rely on extensive CMOS peripherals for BN implementation, which limits
area and energy efficiency. Here, we circumvent these challenges by introdu-
cing a hardware platform based on 2D memtransistors. First, we experimen-
tally demonstrate a low-power and compact s-bit generator circuit that
exploits cycle-to-cycle fluctuation in the post-programmed conductance state
of 2Dmemtransistors. Next, the s-bit generators are monolithically integrated
with 2D memtransistor-based logic gates to implement BNs. Our findings
highlight the potential for 2Dmemtransistor-based integrated circuits for non-
von Neumann computing applications.

The concept of a Bayesian network (BN) is deep rooted within natural
intelligence. Animals gather information from their surroundings with
the help of their sensory organs and process this information using
their brain to make decisions, enabling their survival. However, gath-
ering accurate information is often very difficult in practice either due
to the limitations of sensory organs or due to noisy environment. For
example, visual cues are an unreliable source of information for
freshwater fish like the rainbow trout to identify the presence of a
predator. In contrast, chemical cues released into the water from an
injured fish are more reliable indicators of a predatory event1. The
decision to invoke an alarm response, therefore, depends on how
thebrain processes the visual and chemical cues basedon their relative
probability of success fromprior experiences.While the neural basis of

such computations is relatively unknown, the mathematical construct
is represented using a BN with theoretical foundation in Bayes’
theorem.

A BN is a probabilistic graphic network used to estimate and infer
the probability of interdependent events2. Figure 1a shows the basic
building block of a BN, comprising a parent node, A, a child node, B,
and an edge connecting the two. Each node represents an event, e.g.,
the presence of a chemical cue ðAÞ and the presence of a predator (B),
and the connection represents how two events are mutually depen-
dent. The dependence is provided in a conditional probability table
(CPT) which contains the conditional probability (likelihood) values
PðB=AÞ and PðB=AcÞ, where Ac is the complement of the event A. In the
present example, these represent the likelihood of the presence of a
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predator when a chemical cue is present (A) or absent (Ac), respec-
tively. When the probability of occurrence for event A, i.e., PðAÞ, is
known, themarginal probability of occurrence of eventB, i.e., PðBÞ, can
be evaluated using Bayes’ theorem following Eq. 1.

P Bð Þ=PðB=AÞPðAÞ+PðB=AcÞPðAcÞ= PðB=AÞPðAÞ+PðB=AcÞ½1� P Að Þ� ð1Þ

P Að Þ+P AC
� �

= 1 ð2Þ

In a generic BN, a child node can have multiple parent nodes, and
aparent node canhavemultiple children. For example, Supplementary
Fig. S1a shows a BN where the child node, B, is connected to 2 parent
nodes, A1 and A2. Note that the CPT in this instance contains N = 4
entries, which are the conditional probability (likelihood) for the
occurrence of event B under all possible combinations of the occur-
renceof eventsA1 andA2. Similarly, Supplementary Fig. S1b shows aBN
where the parent node, A, is connected to 2 children, B1 and B2. In this
case, there are 2 CPTs with N = 2 entries each.

Note that the probability estimation for a child node requires
multiple arithmetic operations such as multiplication, subtraction,
and addition. This makes hardware implementation of a BN using
conventional silicon complementary metal-oxide-semiconductor
(CMOS) technology3, 4 less attractive because 1) arithmetic opera-
tions require circuits consisting of hundreds of transistors, which
have large footprints and consume a significant amount of energy,

and 2) the von Neumann bottleneck necessitates storing of the CPT
in the memory, which is physically separated from the arithmetic
core and therefore requires frequent data shuttling between the
two, further aggravating the energy burden. In contrast, even the
tiniest brains with very limited numbers of neurons can perform
such apparently complex computational tasks with miniscule
energy expenditure. The success of biological brains in imple-
menting BNs could lie in the inherently stochastic nature of neural
computation.

Drawing inspiration from biology, stochastic computing (SC) has
been explored for the hardware implementation of BNs5. The key dif-
ference from classical computing, where information in presented in
the form of binary values (1’s and 0’s), is that SC encodes information
using stochastic bits (s-bits) that are interpreted as probabilities that
fall in the interval [0,1]. For instance, the bit-stream S = [1 0 0 1 0 1 0 0]
encodes the value PðSÞ = 3/8, i.e., the probability of finding ‘1’ in the bit-
stream S. An attractive feature of SC is that arithmetic operations can
be performed using simple logic gates6, 7. For example, the 2-node BN
in Fig. 1a can be realized using amultiplexer (MUX) circuit as shown in
Fig. 1b. The output, B, of a MUX with two input variables, X 1 and X2,
and a select line, A, is given by Eq. (3).

B=AX 1 +A
cX2 ð3Þ

If, instead of being digital variables, X 1, X2, and A represent stochastic
variables with P X 1

� �
, P X2

� �
, and P Að Þ being the respective probability

of obtaining ‘1’ in their bit-streams, then B also transforms into a

Fig. 1 | Bayesian networks (BNs). a Schematic of the basic building block of a BN,
comprising a parent node, A, a child node, B, and an edge connecting the two. Each
node represents an event, and the connection represents how two events are
mutually dependent. The dependence is provided in a conditional probability table
(CPT), which contains the conditional probability (likelihood) values PðB=AÞ and
PðB=AcÞ, where Ac is the complement of the event. Knowing the probability of

occurrence for event A, i.e., PðAÞ, themarginal probability of occurrence of event B,
i.e., PðBÞ, can be evaluatedusingBayes’ theorem.bHardware implementation of the
2-node BN in (a) using three stochastic bit (s-bit) generators and one 2×1 multi-
plexer (MUX) circuit. c Examples of BN architecture that represent real-life situa-
tions from ecology to forecasting and drug discovery, highlighting its usefulness in
decision making.
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random variable whose probability is given by Eq. (4).

P Bð Þ=P Að ÞP X 1

� �
+ P Ac� �

P X2

� � ð4Þ

Note that, if P X 1

� �
= P B=A

� �
and P X2

� �
= P B=AC

� �
, then Eq. (4)

transforms into Eq. (1). Therefore, hardware implementation of a child
node with a single parent can be accomplished by using 3 s-bit
generators and a 2 × 1MUX. Interestingly, theMUX architecture can be
scaled to implement any BN. For example, hardware implementation
of the BN in Fig. 1a can be achievedbyusing 2 s-bit generators to obtain
A1 and A2, another 4 s-bit generators to obtain the CPT, and one 4 × 1
MUX with 2 select lines as shown in Supplementary Fig. S1c. Similarly,
Supplementary Fig. 1d shows the hardware architecture for the BN in
Supplementary Fig. S1b, consisting of 1 s-bit generator to obtain A,
another 4 s-bit generators to obtain the 2 CPTs, and 2 2 × 1 MUXs.

Note that BN architecture can be used to represent many real-life
situations, as shown in Fig. 1c. For example, in the case of the rainbow
trout, events A1 and A2 represent the presence of independent visual
and chemical cues and event B represents the presence of a predator.
Events C1 and C2, meanwhile, represent the decision taken by the
rainbow trout to stop swimming and stop foraging, respectively, which
are also independent of each other but depend on B. Similarly, in
forecasting, events A1 and A2 represent the probability of a day being
cloudy and windy, respectively, event B represents the probability of
rain, and events C1 and C2 may represent the decision to purchase an
umbrella or drink coffee, respectively. Finally, a third example is
derived fromgenetics and drug discovery, where events A1 andA2 may
represent the probability of expressing gene 1 and gene 2 when inter-
vening with a specific drug, respectively, event B represents the acti-
vation of a critical signaling pathway, and events C1 and C2 represent
production of specific hormones or antibodies, respectively. The
above discussion exemplifies the usefulness of BNs in depicting causal
relationships using acyclic graphs, which can subsequently be used to
predict outcomes based on prior knowledge and likelihood. For
example, to predict the relative effectiveness between drug-1 and
drug-2 that influence expression for gene 1 and gene 2, respectively, the
only experiments that one needs to do is to obtain respective prior
results, i.e., P A1

� �
and P A2

� �
. A BN can then be used to obtainmarginal

likelihoods, i.e., P C1

� �
and/or P C2

� �
, to assess the relative effectiveness

of the two drugs.
The fundamental computing primitive for the stochastic com-

puting implementation of a BN is an s-bit generator, which allows
control of the output probability of obtaining ‘1’ in a given bit-stream.
So far, probabilistic CMOS8, field-programmable gate arrays
(FPGAs)9–11, memristors12–14, and spintronic devices15–21 have been suc-
cessfully used for BN implementation. However, CMOS- and FPGA-
based BN architectures require hundreds of transistors to generate s-
bits, which limits their area and energy efficiency22–27. In contrast,
memristors offer inherent stochasticity in their switching dynamics,
which can be exploited to obtain random bits. However, memristor-
based BN architectures heavily rely on CMOS peripherals to translate
random bits into s-bits and for subsequent logic operations using
those s-bits. Recently, spintronic devices such as magnetic random
access memory (MRAM)28 and magnetic tunnel junctions (MTJs)29–31

have shown potential for BN implementation since s-bits can be
obtained by controlling the probability of spin-flip through externally
driven current. However, temperature and supply voltage fluctuations
can impact the spin-flip probability, which necessitates additional
CMOS-based peripheral circuits to remove the bit-bias. In addition,
spin-based devices still require CMOS-based logic circuits for BN
implementation.

In this work, we demonstrate hardware implementation of a BN
using a monolithic memtransistor technology based on two-
dimensional (2D) semiconductors such as monolayer MoS2. Mem-
transistors are three-terminal devices inwhich the gate terminal allows

non-volatile and analog programming of the conductance states,
which can then be readout by applying a source-to-drain bias. Our
main contributions in this work are 1) the design of an area and energy
efficient s-bit generator circuit composed of six memtransistors,
allowing it to achieve a tunable probability of obtaining ‘1’ in the bit-
streamover the range [0,1], and 2) integrationof s-bit generatorswith a
2D memtransistor-based 2×1 MUX that consists of three NAND gates
and one NOT gate for BN implementation. In brief, we exploit the
inherent stochasticity of the charge trapping and detrapping pro-
cesses in the gate dielectric of the memtransistor as the source of
randomness. Our in-memory computing approach based on three-
terminal 2D memtransistors not only overcomes the von Neumann
limitations of conventional digital CMOS, but also eliminates the need
for peripherals, which is inescapable for emerging memristor- and
spin-based 2-terminal stochastic devices for BN implementation.

Our choice of monolayer MoS2 is motivated by the fact that
atomically thin 2D materials are being considered for advanced tech-
nology nodes32. It is widely accepted that scaling silicon thickness
beyond ~3–4 nm is challenging. Yet, the gate electrostatics demand
aggressive reduction in the channel thickness to preserve the desired
device performance for sub-10 nm technology nodes33. The ultimate
channel thickness for afield-effect transistor (FET)wouldbe in the sub-
1 nm range, which is difficult to realize using bulk semiconductors34,
making 2D materials a natural choice for ultra-scaled FETs35–41. In fact,
recent years have witnessed many experimental breakthroughs in the
development of high-performance 2D FETs42–45, neurosynaptic
devices46–50, and very large scale integrated (VLSI) circuits51–54. Simi-
larly, theoretical calculations and quantum mechanical simulation
have found that the 2D FETs can outperform CMOS HP (high perfor-
mance) in both energy and delay55–58.

Results
Fabrication and characterization of 2D memtransistors
Figure 2a, b, respectively, show the 2D schematic and optical image of
a representative 2Dmemtransistor based onmonolayerMoS2, which is
locally back-gated with sputter-deposited 40/30 nm Pt/TiN serving as
the back-gate electrode with atomic layer deposition (ALD) grown
50nmAl2O3 as the gate dielectric. All back-gate islands were placed on
a commercially purchased SiO2/p

++-Si substrate. As we will discuss
later, the analog, non-volatile, and stochastic programming capability
offered by the Al2O3/Pt/TiN gate stack is central to our BN architecture.
The monolayer MoS2 used in this work was grown using a metal-
organic chemical vapor deposition (MOCVD) technique on a sapphire
substrate at 950 °C45, 59. Use of an epitaxial substrate and elevated
growth temperature ensured a uniform and high quality 2D film, which
is critical for the successful demonstration of our BN architecture that
involves many 2D memtransistors. For subsequent 2D memtransistor
fabrication, the monolayer MoS2 film was transferred from the growth
substrate to the SiO2/p

++-Si substrate with predefined islands of Al2O3/
Pt/TiN. Details on monolayer MoS2 synthesis, film transfer, and fabri-
cation of the local back-gate gate islands, MoS2 memtransistors, and
BN architecture can be found in the “Methods” section as well as in the
Methods sections of our recent works 45, 60–63.

The film quality and device performance were assessed using
optical and electrical measurements. The Raman spectra (Supple-
mentary Fig. S2a) obtained for a representative 2D memtransistor
shows two characteristic monolayer MoS2 peaks at 383 cm−1 and
404 cm−1 corresponding to the in-plane E2g and out-of-plane A1g

modes, respectively, with the expected peak separation of ~20 cm−1 for
monolayer MoS2

64. Similarly, the photoluminescence (PL) spectra
(Supplementary Fig. S2b) shows a peak at 1.83 eV corresponding to the
direct bandgap of monolayer MoS2. The transfer characteristics, i.e.,
source-to-drain current (IDS) versus local back-gate voltage (VBG),
measured using a source-to-drain bias (VDS) of 1 V are shown in Fig. 2c
in both linear and logarithmic scale for a representative MoS2
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memtransistor with a channel length (L) of 1 µm and a channel width
(W ) of 5 µm. As expected, n-type transport is observed inMoS2, which
is attributed to the pinning of the metal Fermi level near the conduc-
tion band65–67. Nevertheless, the MoS2 memtransistor exhibits excel-
lent electrostatic gate controlwith a current on/off ratio (rON=OFF) > 105,
a subthreshold slope (SS) < 400mV/decade averaged over 3 orders of
magnitude change in IDS, minimal gate hysteresis when measured in
air, and low gate leakage current. The threshold voltage (VTH) was
found to be ~1.75 V extracted at an iso-current of 10 nA/µm and the
electron field effect mobility (μFE) extracted from the peak trans-
conductance was found to be 5 cm2/V-s. Figure 2d shows the output
characteristics, i.e., IDS versus VDS, at different VBG for the same
representative MoS2 memtransistor. The on-current ðIONÞ reached as
high as ~ 11 µA/µm for an inversion carrier density of ~1 × 1012/cm2 at
VDS = 5 V. These results suggest that the monolayer MoS2 film grown
using MOCVD is of reasonably good quality, and that the memtran-
sistor fabrication processes including the film transfer are clean
and damage-free.

The post-programmed and post-erased transfer characteristics of
a representative 2D memtransistor after being subjected to negative
“Write” (VP) and positive “Erase” (VE) voltage pulses applied to the
local back-gate electrode of varying amplitudes, each for a duration of
τP=E = 100 µs, are shown in Fig. 2e, f, respectively. The negative and
positive shift in the respective transfer characteristics can be ascribed
to electron trapping and detrapping at and near the MoS2/Al2O3

interface, respectively. Note that trap states can originate from
defects/imperfections in the dielectric and/or adsorbed species at the
2D/dielectric interface as reported in various earlier studies68–70. These
states can also be engineered at desired energetic locations by intro-
ducing intentional defects in the 2D channel material51, 71. Carrier
occupancy in these trap states follow Fermi-Dirac distribution. As
illustratedusing the energy banddiagrams inSupplementary Fig. S3, at
equilibrium, i.e., in the absence of any gate bias, the trap states with
energy levels above the Fermi energy (EF ) are empty, whereas the ones

below EF are filled. When thememtransistor is subjected to a negative
“Write” (VP) voltage pulse, electrons are released (detrapped) from
these trap states leaving them positively charged. This leads to
screening of the back-gate bias, which is reflected as shift in the
threshold voltage (4VTH). Similarly, when the memtransistor is sub-
jected to a positive “Erase” (VE) voltage pulse, electrons are captured
back (trapped) into the trap states, restoring the VTH . Note that the
number of electrons getting trapped/detrapped can be controlled by
both themagnitude and duration of VP and VE , which allow us to have
an analog control of the 4VTH and of the conductance state of the
memtransistor.

The minimum program/erase pulse width is determined by the
trapping/detrapping time constants. Supplementary Fig. S4a–d show
the post-programmed and post-erased transfer characteristics of a 2D
memtransistor subjected to VP and VE voltage pulses of different
amplitudes ranging from 8V to 15 V applied to the local back-gate
electrode, each for a duration of τP=E = 100 µs, 10 µs, 1 µs, and 100ns,
respectively. Clearly, the charge trapping and detrapping processes
can occur as fast as 100ns, which is the limit set by our measurement
tools, allowing further improvement in the programming speed72, 73.
Supplementary Fig. S4e, f show the extracted shift in the threshold
voltage (4VTH) as a function of VP=E for τP=E = 100 µs and τP=E = 100 ns,
respectively. From these results, we can conclude that, for any given
pulse magnitude VP=E , 4VTH becomes smaller as τP=E becomes
shorter. To retain similar4VTH for smaller τP=E , largerVP=E is required,
which will increase the energy expenditure. Therefore, one needs to
strike a balance between fast programmability and energy consump-
tion based on the application needs.

The trapping and detrapping processes were found to be non-
volatile, as shown in Fig. 2g for 4 representative post-programmed
and post-erased conductance states (GMT ) over 100 s. We also exam-
ined long-term memory retention for the 2D memtransistors and
found that states remain distinguishable even after 3 hrs. Memory
retention is important to store the CPT and the memtransistors

0         100        200         300        400          500          600         700         800
time (s)

Fig. 2 | 2Dmemtransistors. a 2D schematic and b optical image of a representative
2D memtransistor based on monolayer MoS2, which is locally back-gated with
sputter-deposited 40/30 nm Pt/TiN serving as the back-gate electrode with atomic
layer deposition (ALD) grown 50nm Al2O3 as the gate dielectric. All back-gate
islands were placed on a commercially purchased SiO2/p

++-Si substrate. c Transfer
characteristics, i.e., source-to-drain current (IDS) versus local back-gate voltage
(VBG),measured at a source-to-drainbias (VDS) of 1 V, in linear and logarithmic scale
for a representative MoS2 memtransistor with channel length L = 1 µm and channel

widthW = 5 µm.dOutput characteristics, i.e., IDS versusVDS, at differentVBG for the
same MoS2 memtransistor. e Post-programmed and f post-erased transfer char-
acteristics of a representative 2D memtransistor after being subjected to negative
“Write” (VP) and positive “Erase” (VE ) voltage pulses of different amplitudes
applied to the local back-gate electrode, each for a duration of τP=E = 100 µs gNon-
volatile retention for 4 representative post-programmed and post-erased con-
ductance states (GMT ) over 100 s.
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demonstrate adequate memory performance for the hardware
implementation of BNs using SC. The program/erase endurance is also
important for the 2Dmemtransistor. Supplementary Fig. S5 shows the
post-programmed and post-erased conductance states of a repre-
sentative memtransistor, achieved with VP = −7 V and VE = 10V using
τP=E = 100 ns andmeasured atVBG = 0V for up to 109 endurance cycles.
Clearly, there is no significant change in the two states. While it is
desirable to demonstrate endurance for an even higher number of
cycles, note that, for the many edge applications, the current endur-
ance results can be sufficient. For example, in weather forecasting, the
BNwill be used everyminute rather than everymicrosecond; similarly,
inmedical diagnostics, the BNwill be only used several thousand times
a day to assess patients.

Programming stochasticity in 2D memtransistors and design of
s-bit generator
Design of hardware for high-quality randombit generation is central to
the hardware implementation of BNs. Here, we exploit the cycle-to-
cycle variation in the post-programmed and post-erased conductance
states (GMT ) of 2D memtransistors as a source of true randomness.
Figure 3a shows the transfer characteristics of a representative MoS2
memtransistor, which is measured each time after applying VP = −10 V
and VE = 10 V for τs = 100 µs, for a total of 100 cycles and Fig. 3b, c,
respectively, show the histograms of post-programmed and post-
erased GMT values extracted at VBG =0V. Clearly, the GMT values fol-
low Gaussian random distributions. The cycle-to-cycle variation in
program/erase processes is a direct consequence of the stochastic
nature of charge trapping and detrapping observed in most semi-
conductor/dielectric interfaces74–76. In the simple two-state model, a
trap state can be electrically neutral or charged, and it can transition
between the two states even under equilibrium condition with transi-
tion times exponentially distributed. In other words, the state transi-
tion dynamics for traps follows the classic Markovian process77, 78. In
ultra-scaled metal-oxide-semiconductor field effect transistors (MOS-
FETs) such stochastic state transitions lead to random telegraph noise
(RTN). Metastable states are also often involved in the trapping/
detrapping processes, making the transition dynamic more complex,
rich, and, at the same time, introducing an additional source of
randomness79. While RTN is not observed in our relatively large area
memtransistors, the stochasticity of trapping/detrapping processes
manifest during the program/erase operations, thus leading to the
cycle-to-cycle variation in 4VTH .

To translate the stochastic conductance fluctuation into s-bits,
we deploy a circuit consisting of six memtransistors (MT1, MT2,
MT3, MT4, MT5, and MT6), as shown using the circuit diagram and
corresponding optical image in Fig. 3d, e, respectively. The voltage
waveforms applied to the nodes N1 and N2, i.e., VN1 and VN2,
respectively, are shown in Fig. 3f. Note that during each clock cycle
(τclk), VN1 switches between 0V, 0 V, and 2 V and VN2 switches
between VP = − 7 V, VE = 10 V, and VR = 1 V. Voltages applied to nodes
N3 and N4, i.e., VN3 and VN4, are held constant at 1 V and 0 V,
respectively. This allows programming and erasing of MT1 during
each τclk . The voltage readout at node N5, i.e., VN5, is shown in Fig. 3g
and exhibits stochastic fluctuation. Note that the series connection
of memtransistorsMT1 andMT2 represents a voltage divider circuit,
and hence VN5 is determined by their respective conductance values,
i.e., GMT1 and GMT2. Since GMT1 fluctuates from cycle-to-cycle owing
to the programming and erasing voltages applied to its local back-
gate terminal, i.e., N2, so does VN5. In other words, the voltage
divider translates conductance fluctuations into voltage fluctuations.
Figure 3h shows the histogram of VN5, which, as expected, follows a
random Gaussian distribution with a mean (μVN5) of 0.40 V and
standard deviation (σVN5) of 0.02 V.

Next, theGaussian distribution is broadened by using an inverting
amplifier constructed using MT3 and MT4. Note that the local back-

gate ofMT3 is shorted to its source at nodeN6. This ensures thatMT3
operates as a depletion mode (normally on) transistor or as a load
resistor. Figure 3i shows the output, VN6, as a function of the input,
VN5. The slope of the curve is referred to as the gain of the amplifier,
and the higher the gain, the wider the broadening of the Gaussian. We
achieved a gain of ~24. The gain can be increased further by cascading
multiple amplifiers; however, this adds area and energy overhead.
Figure 3j shows VN6 corresponding to VN5 obtained in Fig. 3g. Clearly,
the histogram of VN6 shown in Fig. 3k exhibits a Gaussian distribution
with a mean (μVN6) of 0.99 V and an increased standard deviation
ðσVN6Þ of 0.41 V.

Finally, to transform the analog fluctuations seen in VN6 into s-
bits, a thresholding inverter with a programmable inversion threshold,
V IT, is constructed using MT5 and MT6. Figure 3l shows the output,
VN7, as a function of the input, VN6, for different V IT. Note that V IT is
the magnitude of VN6 for which VN7 reaches VDD/2, i.e., 1 V in the
present case. The programmability of V IT is a critical feature that dis-
tinguishes 2D memtransistor-based inverters from conventional
CMOS-based inverters and allows us to seamlessly obtain the s-bits.
Figure 3m shows VN7 corresponding to VN6 obtained in Fig. 3j for
different V IT and Fig. 3n shows the corresponding probability of
obtaining ‘1’ in thebit-stream, i.e.,ps as a functionofV IT. As expected, if
V IT is too low, then almost allVN6 values translate intoVN7 ≈0V,which
is reflected as near zero ps. Similarly, if V IT is too high, then almost all
VN6 values translate intoVN7 ≈ 2 V, leading to ps = 1. Between these two
extremes, ps increases monotonically with V IT. This clearly shows that
we are able to convert the cycle-to-cycle random conductance fluc-
tuations in 2D memtransistor into s-bits with reconfigurable ps values
that lie between [0,1] using the described circuit.

Note that the cycle-to-cycle variation in the programming of 2D
memtransistors will lead to fluctuations in the threshold voltage
(VTH) of MT6 and hence in VIT of the thresholding inverter and ps

for the s-bit-stream. Supplementary Fig. S6a-b, respectively, show
the distribution of VTH and VIT when MT6 is subjected to 50 pro-
gram/erase/read cycles with VP = −7 V, VE = 10 V, and τP=E = 100 µs.
The means and standard deviations were found to be −0.04 V and
0.08 V for VTH , respectively, and 0.14 V and 0.08 V for VIT ,
respectively. Therefore, ps will not be perfectly deterministic;
instead there will be a small uncertainty in its value, which is
represented using the uncertainty band in Fig. 3n. Next, to assess
randomness, we utilized the s-bit generator to generate 104 random
bits using the same programming and erasing voltage pulses of
VE= 10 V and VP= −7 V, respectively, at τP=E = 100 µs. Supplementary
Fig. S7 shows the results of eight of the statistical tests developed
by the National Institute of Standards and Technology (NIST)
performed on these 104 bits. According to the test protocol, the bit-
streams are considered random only if the p-value is greater than
0.01 with the null hypothesis that the sequence is random with 99%
confidence level. The NIST test results confirm that the s-bits gen-
erated are truly random.

The rough estimate of the energy expenditure for s-bit generation
(Es�bit) was calculated using Eq. (5).

Es�bit =CG V 2
P +V

2
E +V

2
R +V

2
DD

� �
+ IN1N4
� �

VDDτclk ð5Þ

IN1N4
� �

=
1
n
∑
n

i = 1
IN1N4,i ð6Þ

CG = ε0εoxWL=tox ð7Þ

In Eq. (5), VP , VE , VR, and VDD are the program, erase, read, and
supply voltages, respectively. CG ≈ 10-14F is the gate capacitance,
ε0 = 8:85× 10

�12F=m is the vacuum permittivity, and εox = 10 and
tox = 50nm are, respectively, the relative permittivity and thickness of
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Al2O3; W = 5 µm and L = 1 µm are, respectively, the channel width and
length of the 2D-memtransistor. IN1N4

� �
is the average current flowing

through the s-bit generator circuit, i.e., the total current through the
voltage divider, inverting amplifier, and threshold inverter during each
τclk . We have used n=200 to calculate the average current per

τclk = 100 µs based on the experimental measurements. Since most of
the memtransistors operate in their respective subthreshold regimes,
the extracted IN1N4

� �
is ~1.5 nA as shown in Supplementary Fig. S8. As

such, the second term in Eq. (5) accounts for ~0.3 pJ, whereas the first
term in Eq. (5) accounts for ~2 pJ. This results in Es�bit≈ 2 pJ/clock-cycle,
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noitareneg tib
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Fig. 3 | 2D memtransistor-based s-bit generator. a Transfer characteristics of a
representative 2D memtransistor measured after the application of 100 cycles of
VP = −10 V (dark green) and VE = 10V (light green) pulses, each for τs = 100μs.
Distribution of b post-programmed and c post-erased conductance states (GMT )
measuredusing VBG = 0V.dCircuit diagram and e corresponding optical image for
the proposed s-bit generator consisting of six memtransistors (MT1, MT2, MT3,
MT4, MT5, MT6). f Voltage waveforms applied to nodes N1 and N2, i.e., VN1 and
VN2. During each clock cycle (τclk), VN1 toggles between 0V, 0 V, and VDD = 2 V and
VN2 toggles between VP = −7 V, VE = 10 V, and VR = 1 V. Voltages applied to nodes
N3 andN4, i.e.,VN3 andVN4, are held constant at 1 V and0V, respectively.gVoltage

readout at node N5, i.e., VN5. h Distribution of VN5 over 200 τclk follows a random
Gaussian distribution with a mean (μVN5) of 0.40V and a standard deviation (σVN5)
of 0.02V. iOutput, VN6, of an inverting amplifier constructed usingMT3 andMT4
as a function of the input,VN5, with a gain of ~24. jVN6 corresponding toVN5 shown
in g. k Distribution of VN6 follows a random Gaussian distribution with a mean
(μVN5) of 0.99 V and a standard deviation (σVN5) of 0.41 V. l Output, VN7, of a
thresholding inverter constructed using MT5 and MT6 as a function of the input,
VN6, for different inversion threshold, VIT . m VN7 corresponding to VN6 shown in
i for different VIT . n Probability of obtaining ‘1’ in the bit-stream (ps) as a function
of VIT.
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which supports our claimof energy efficient s-bit generation. Alsonote
that since each memtransistor has an active device area of ~5 µm2,
excluding the large contact pads used for probing, the active footprint
for the s-bit generator is ~30 µm2. Since monolayer 2D materials offer
aggressive dimensional scalability, it is possible to reduce the footprint
of s-bit generators even further. Nevertheless, the use of only 6
memtransistors is the key towards the realization of area and energy
efficient s-bit generator circuits.

2Dmemtransistor-based digital circuits and BN implementation
As described earlier, stochastic multiplexers (MUXs) can be used for
computing the marginal probability values at any BN node. Figure 4a
shows the circuit configuration of a 2×1 MUX which consists of one
inverter and three 2-input NAND gates. Figure 4b shows the optical
image and corresponding circuit configuration of a 2-inputNAND gate
comprising 3 memtransistors (MT1, MT2, and MT3) connected in
series, with MT1 serving as the depletion load. The supply voltage,

2 1 Multiplexer
NAND 
gate

NAND 
gate

NAND 
gate

NAND Gate

S-bit generator

S-bit generator

S-bit generator

NAND

NAND

NAND

S-bit generator

S-bit generator

S-bit generator

BN hardware implementation

P(B) = 0.56 P(X2)=P(B/AC) = 0.56 P(A) = 0.28 P(X1)=P(B/A) = 0.5 
2

0       50      100     150    200 
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0       50      100     150    200 

1

0

Fig. 4 | Hardware implementation of BN. a Circuit schematic for hardware
implementation of a BN using three s-bit generators and one 2×1MUX: The MUX
consists of one inverter and three 2-input NAND gates. b Optical image and cor-
responding circuit configuration of a 2-input NAND gate comprising 3 memtran-
sistors (MT1, MT2, and MT3) connected in series, with MT1 serving as the
depletion load. c Input waveforms, VN3 and VN4, which are applied to the local
back-gate terminals of MT2 and MT3 at nodes N3 and N4, respectively, and the
corresponding output waveform, VN2, which is obtained at node N2. d Optical
image and e corresponding circuit configuration for hardware implementation of a

2-node BN consisting of 3 s-bit generators and a 2×1 MUX for a total of 29 mem-
transistors. The VIT values for the s-bit generators for X 1 and X2 can be pre-
programmed using the CPT for the nodes A and B. f Representative stochastic bit-
streams for the random variables A, X 1, and X2 with P Að Þ = 0.28, P X 1

� �
= P B=A

� �
= 0.50, and P X2

� �
= P B=AC

� �
= 0.56. g Correlation coefficient (CC) values between

A, X 1, and X2 confirm mutual independence of the s-bit generator modules.
h Stochastic bit-streams obtained at the output node, B. The measured and
expected values for P Bð Þ are 0.56 and 0.54, respectively.
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VDD = 2 V, is applied to the drain terminal ofMT1 at node N1, whereas
the source terminal ofMT3, i.e., node N5, is kept grounded. Figure 4c
shows the input waveforms, VN3 and VN4, which are applied to the
local back-gate terminals of MT2 and MT3 at nodes N3 and N4,
respectively, and the corresponding output waveform, VN2, which is
obtained at node N2. Clearly, the circuit operates as a NAND gate.

Figure 4d, e, respectively, show the optical image and corre-
sponding circuit configuration for hardware implementation of a
2-nodeBNconsisting of 3 s-bit generators and a 2 × 1MUX for a total of
29 memtransistors. The V IT values for the s-bit generators generating
X 1 and X2 can be pre-programmed corresponding to the CPT for the
nodes A and B of the 2-node BN. Figure 4f shows the representative
stochastic bit-streams for the random variables A, X 1, and X2 with P Að Þ
= 0.28, P X 1

� �
= P B=A

� �
= 0.50, and P X2

� �
= P B=AC

� �
= 0.56. Note that

accurate estimation of PðBÞ requires that the stochastic input variables
to the MUX , i.e., A, X 1, and X2, must be mutually independent. Fig-
ure 4g shows the correlation coefficient (CC) between these three
variables. The CC values were found to be close to zero, which con-
firms mutual independence of the s-bit generator modules. Figure 4h
shows the stochastic bit-streams obtained at the output node, B. The
measured and expected values for P Bð Þ are 0.56 and0.54, respectively.
Supplementary Fig. S9 shows the results for three more sets of mea-
surements. In all instances, we found that our 29 memtransistor
module is able to demonstrate a 2-node BN with relatively high accu-
racy. The rough estimate of the energy expenditure for our hardware
BN implementation is miniscule at ~1.2 nJ when 200 τclk are used.
Certainly, the energy expense can be further reduced by shortening
the length of the s-bit streams at the cost of reduced precision. Sup-
plementary Fig. S10 shows the numerical simulation of the error in
expected values for P Bð Þ as a function of the bit-length of the s-bit
stream for the inputs P Að Þ, P B=A

� �
, and PðB=AC Þ. The percentage error

increases significantly with the reduction in bit-length of the s-bit
streams.

While we have experimentally demonstrated that the distribution
of the output voltage ðVN6Þ from the inverting amplifier follows a
Gaussian profile, it is possible that the distribution may deviate from a
perfect Gaussian distribution due to many operational reasons. This
will definitely lead to computation error. To assess the impact of a
skewed distribution on the precision of the BN, we have performed
numerical simulations assuming that VN6 follows the Pearson random
distribution function. Supplementary Fig. S11a shows the distribution
ofVN6 for different values of skewness from −1 to 1 in steps of 0.5. Note
that a skewness of−1 or 1will be a rareoccurrence undermost practical
circumstances. Supplementary Fig. S11b shows the corresponding ps

as a function ofVIT . As the skewness increases, the deviationofps from
its expected value also increases. Supplementary Fig. S11c shows the
colormap of the percentage error in estimating P Bð Þ using the BN
hardware for different skewness in the stochastic input variables X 1

and X2 that represent P B=A
� �

and P B=AC
� �

, respectively. As expected,
the percentage error increaseswith increasing skewness. Furthermore,
we have experimentally demonstrated that the distribution of the
inverting threshold voltage (VIT ) exhibits a Gaussian distribution after
MT6 is subjected to 50 program/erase/read cycles with VP = −7 V, VE

= 10V, and τP=E = 100 µs. This VIT distribution leads to a small uncer-
tainty (4P) in probability of output voltages (VN7), as shown in Fig. 3n.
We have used numerical simulations to assess the impact of uncer-
tainty in obtained probabilities on the precision of the BN, where the
probability of the select line, A, remains as a constant while the
probability ofbothX 1 andX2 are inflictedwith4P due to cycle-to-cycle
variation in the programmed probability. Supplementary Fig. S12
shows the colormap of the percentage error in estimating P Bð Þ using
the BN hardware for uncertainty in the stochastic input variables X 1

and X2 that represent P B=A
� �

=0:50 and P B=AC
� �

=0:56, respectively,
while P Að Þ=0:28 and 4P ≈0:065 . From this colormap, we can con-
clude that even if theVIT of the thresholding inverter (MT6) is inflicted

with cycle-to-cycle variation fromdeviceprogramming, the inaccuracy
of the 2-node Bayesian network ðB=AX 1 +A

CX2Þ is less than 15%. This
simulation result shows decent accuracy in hardware implementation
of the BN.

Finally, the impact of device-to-device variation on the operation
of BN is examined. Supplementary Fig. S13a shows the transfer char-
acteristics of 10 MoS2 memtransistors and Supplementary Fig. S13b
shows the transfer characteristics for these 10 devices after one pro-
gramming/erasing clock cycle (VP = −7 V, VE = 10V, and τP=E = 100 µs:).
The device-to-device variation translates into error in 4P and impacts
the accuracy at theoutput of the BN. Supplementary Fig. S14 shows the
colormap of error in PðBÞ for PðX 1Þ=0:5, PðX2Þ=0:56, and PðAÞ=0:28.
We have used 4P =0.046 for both X 1 and X2 inferred from Supple-
mentary Fig. S13b. Fromthe errormap, it is evident that the variation in
the programmed probability inflicted by the device-to-device pro-
gramming variation of the memtransistors resulted in a maximum
error of 8% at the output of the BN.

Discussion
In conclusion, we have exploited cycle-to-cycle variability in the pro-
grammed conductance of 2D memtransistors and transcribed the
same into s-bits with reconfigurable probability of obtaining ‘1’ in the
bit-stream using a circuit that comprises only 6 memtransistors and
spends < 2 pJ per s-bit. We subsequently combined the s-bit generator
with a 2D memtransistor-based 2 × 1 MUX to demonstrate hardware
implementation of a BN. The BN architecture comprises 29 mem-
transistors and requires ~ 1.2 nJ of energy for precise computation. Our
demonstration of a memtransistor-based standalone in-memory
compute fabric shows the potential for emerging 2D materials and
devices.

Methods
Fabrication of local back-gate islands
To define the back-gate island regions, a commercially-purchased
substrate (285 nm SiO2 on p++-Si) was spin coated (4000 RPM for
45 s) with bilayer photoresist consisting of Lift-Off-Resist (LOR 5 A)
and Series Photoresist (SPR 3012) and baked at 185 °C for 120 s and
95 °C for 60 s, respectively. The bilayer photoresist was then
exposed using a Heidelburg Maskless Aligner (MLA 150) to define
the island and developed using MF CD26 microposit, followed by a
de-ionized (DI) water rinse. The back gate electrode of 20/50 nm
TiN/Pt was deposited using reactive sputtering. The photoresist was
removed using acetone and Photo Resist Stripper (PRS 3000) and
cleaned using 2-propanol (IPA) and DI water. An atomic layer
deposition (ALD) process was then implemented to grow 50 nm
Al2O3 across the entire substrate, including the island regions. To
access the individual Pt back-gate electrodes, etch patterns were
defined using the same bilayer photoresist consisting of LOR 5 A and
SPR 3012. The bilayer photoresist was then exposed to MLA 150 and
developed using MF CD26 microposit. The 50 nm Al2O3 was sub-
sequently dry etched using a BCl3 reactive ion etch (RIE) chemistry
at 5 °C for 20 s, which was repeated four times to minimize heating
in the substrate. Finally, the photoresist was removed to give access
to the individual Pt electrodes.

Large-area monolayer MoS2 film growth
Monolayer MoS2 was deposited on epi-ready 2” c-sapphire substrate
by metalorganic chemical vapor deposition (MOCVD). An inductively
heated graphite susceptor equipped with wafer rotation in a cold-wall
horizontal reactor was used to achieve uniformmonolayer deposition
as previously described80. Molybdenum hexacarbonyl (Mo(CO)6) and
hydrogen sulfide (H2S) were used as precursors. Mo(CO)6 maintained
at 10 °C and 650Torr in a stainless-steel bubbler was used to deliver
1.1 × 10−3 sccm of the metal precursor for the growth, while 400 sccm
of H2S was used for the process. MoS2 deposition was carried out at
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1000 °C and 50Torr in H2 ambient, where monolayer growth was
achieved in 18min. The substrate was first heated to 1000 °C in H2 and
maintained for 10min before the growth was initiated. After growth,
the substrate was cooled in H2S to 300 °C to inhibit decomposition of
the MoS2 films. More details can be found in our earlier work45, 48, 81.

MoS2 film transfer to local back-gate islands
To fabricate the 2D memtransistors, the MOCVD-grown monolayer
MoS2 filmwas transferred from the sapphire growth substrate to the
SiO2/p

++-Si substrate with local back-gate islands using a PMMA
(polymethyl-methacrylate) assisted wet transfer process. First,
growth substrate was spin coated with PMMA and left to sit for 24 h
to promote PMMA/MoS2 adhesion. The corners of the spin-coated
film were scratched using a razor blade and immersed inside 1 M
NaOH solution kept at 90 °C. Capillary action caused the NaOH to
be drawn into the substrate/film interface, separating the PMMA/
MoS2 film from the sapphire substrate. The separated film was
rinsed three times inside separate water baths and fished-out using
the SiO2/p

++-Si substrate with local back-gate islands. The substrate
was then baked at 50 °C and 70 °C for 10min each to remove
moisture and promote adhesion. An acetone bath was usd to
remove the PMMA supporting layer, with a subsequent IPA bath to
remove residue.

Fabrication of 2D memtransistors
To define the channel regions for the memtransistors, the sub-
strate was spin-coated with PMMA and baked at 180 °C for 90 s. The
resist was then patterned using electron beam (e-beam) litho-
graphy and developed using a 1:1 mixture of 4-methyl-2-pentanone
(MIBK) and 2 propanol (IPA), with a subsequent IPA rinse. The
monolayer MoS2 film was then etched using a sulfur hexafluoride
(SF6) RIE chemistry at 5 °C for 30 s. Next, the sample was rinsed in
acetone and IPA to remove PMMA. To define the source and drain
contacts, sample was then spin coated with methyl methacrylate
(MMA) followed by PMMA. E-beam lithography was used to pattern
the source and drain contacts and 1:1 MIBK/ IPA was again used for
development. 40 nm of nickel (Ni) and 30 nm of gold (Au) were
deposited using e-beam evaporation. Finally, a lift-off process was
performed to remove the excess Ni/Au and resist by immersing the
sample in acetone for 30min followed by IPA for another 30mins.
Each island contains onememtransistor to allow for individual gate
control.

Monolithic integration
To define the connections between respective memtransistors, the
substrate was spin coated with MMA and PMMA, followed by e-beam
lithography and development using a 1:1 mixture of MIBK/IPA. E-beam
evaporation of was used to deposit 60 nm of Ni and 30nm of Au to
form the connections. Finally, the e-beam resistwas rinsed awayby the
same acetone and IPA lift-off process used previously.

Electrical characterization
Electrical characterization of the fabricated devices was performed
using a Lake Shore CRX-VF probe station under atmospheric condi-
tions and with Keysight B1500A parameter analyzer.

Data availability
The datasets generated during and/or analyzed during the current
study are available from the corresponding author on reasonable
request.

Code availability
The codes used for plotting the data are available from the corre-
sponding authors on reasonable request.
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