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Single cell atlas identifies lipid-processing
and immunomodulatory endothelial cells
in healthy and malignant breast
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Since a detailed inventory of endothelial cell (EC) heterogeneity in breast
cancer (BC) is lacking, here we perform single cell RNA-sequencing of 26,515
cells (including 8433 ECs) from 9 BC patients and compare them to published
EC taxonomies from lung tumors. Angiogenic ECs are phenotypically similar,
while other EC subtypes are different. Predictive interactome analysis reveals
known but also previously unreported receptor-ligand interactions between
ECs and immune cells, suggesting an involvement of breast EC subtypes in
immune responses. We also identify a capillary EC subtype (LIPEC (Lipid
Processing EC)), which expresses genes involved in lipid processing that are
regulated by PPAR-γ and is more abundant in peri-tumoral breast tissue. Ret-
rospective analysis of 4648 BC patients reveals that treatment withmetformin
(an indirect PPAR-γ signaling activator) provides long-lasting clinical benefit
and is positively associated with LIPEC abundance. Our findings warrant fur-
ther exploration of this LIPEC/PPAR-γ link for BC treatment.

Breast cancer (BC) affects millions of women worldwide and poses a
global health burden. Histological and phenotypical differences
between BCs are used to predict outcome and prognosis and guide
cancer diagnosis and treatment selection1. Importantly, also intra-
tumoral heterogeneity in BC might predispose patients to specific
clinical outcomes2,3. Various single-cell RNA-sequencing (scRNA-seq)
studies characterized the inter- and intra-tumoral heterogeneity of
BC cells and/or subsets of breast stromal cell types, including
immune cells, myoepithelial cells, and fibroblasts4–10. Knowledge on
vascular heterogeneity in BC, however, has not extended beyond the

traditional angiogenic, arterial, capillary, venous, and lymphatic EC
phenotypes11,12. Nevertheless, obtaining a better understanding of the
heterogeneity of the vasculature and its relation to the tumor micro-
environment (TME) in BC represents an unmet need, as tumor blood
vessels contribute to tumor growth, invasion, and metastasis13.

ECs are highly plastic cells14 and a target of anti-angiogenic
therapies (AATs), basedonblocking vascular endothelial growth factor
(VEGF) signaling15,16. These AATs are used indiscriminately to prune
blood vessels in diverse cancer types including BC17, but suffer from
resistance and insufficient efficacy16,18. It remains unknown whether
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tumor ECs (TECs) from different tumor types exhibit different phe-
notypes and express distinct transcriptome signatures, which might
differentially affect their AAT response. It is also unknown if breast ECs
alter their transcriptome in cancer. This might be especially important
in the context of ECmetabolism (an emerging target of AAT), as recent
reports documented that ECs reprogram their metabolism and meta-
bolic transcriptome in pathological conditions such as cancer and
ocular disease14,19,20. Data comparing the metabolic transcriptome of
TECs versus peri-tumoral ECs (pECs) in BC are lacking.

In this work, we use single-cell transcriptome data to better
understand how ECsmight influence BC. Because the largemajority of
BC patients are diagnosed with early, hormone receptor positive/
HER2-negative cancers21, we focus on this BC subset and provide a
detailed interrogation of EC heterogeneity in matched tumoral and
peri-tumoral tissues. Additionally, we explore interactions of ECs with
immune cell types. Such cellular interactions are of potential ther-
apeutic relevance e.g., in the light of immunotherapy, since ECs
represent a key interface with the immune system22,23, but were not
studied in detail in previous BC scRNA-seq studies4–6,24,25. We also
reveal a capillary EC subtype (LIPEC (Lipid Processing EC)), which is
enriched in peri-tumoral breast tissues and expresses key regulators of
lipidprocessing (e.g., PPAR-γ). Retrospectively, we reveal a long-lasting
positive effect on BC-specific outcome in patients treated with met-
formin (indirect signaling activator of PPAR-γ), and tumors from
metformin-treated BC patients contained more LIPEC vessels than
tumors from BC patients who did not receive this treatment.

Results
Taxonomy of endothelial cells in the peri-tumoral and tumoral
breast
To characterize the transcriptomic heterogeneity of the vasculature
and other cell types in human breast (cancer) tissue, we collected
tumor tissue and matched (from the same patient) peri-tumoral (non-
malignant, as far away from the primary tumor as possible) tissue from
9 early stage, treatment-naïve hormone receptor-positive, HER2-
negative BC patients (Fig. 1a) (for patient information and molecular
characteristics, see Fig. 1b and SupplementaryData 1).We FACS-sorted
viable single cells and divided the freshly isolated cells in two fractions:
one used to enrich ECs for a detailed characterization of EC hetero-
geneity, and the other to study the intercellular interactions between
ECs and immune cells (see below). We performed scRNA-seq on TECs
and pECs, enriched by FACS-sorting Viability Dye negative (VD–)/
CD45–/EpCAM–/CD31+/ICAM2+ cells from tumoral and peri-tumoral
samples (Supplementary Data 2). We compared the EC taxonomy of
BC to the in-housegenerated taxonomyof human lung tumors19, which
both have a high power and detail of analysis, using the human lung
tumor EC taxonomy as a basis to derive the human BC EC taxonomy.

We obtained 8433 high-quality enriched ECs, in which graph-
based clustering revealed 12 distinct phenotypes, annotated based on
their top-50 marker genes (see “Methods”; Fig. 1c, d; Supplementary
Data 3), cluster-specific marker genes (Supplementary Fig. 1a) and
previously established gene signatures from in-house generated EC
taxonomies19,26. Each EC subtype was detected in each sequenced
patient sample, though not at the same abundance (Supplemen-
tary Fig. 1b).

We identified EC subtypes belonging to traditional vascular beds,
i.e. arteries (HEY1, IGFBP3), capillaries (CD36, CA4), veins (ACKR1) and
lymphatic ECs (LECs; CCL21, PROX1). Arteries, capillaries and veins
consisted of multiple subclusters (Fig. 1c, d; Supplementary Fig. 1a;
Supplementary Data 3): artery i (CXCL12, AMD1) & artery ii (CLU, ELN);
capillary i (ID2) & capillary ii (CA4); and vein ii (LAMA5), vein iii (HLA-
DQA1) & vein iv (EDN1)). To obtain independent evidence for the
topographical ordering of these traditional EC subtypes alongside the
artery-capillary-venous tree, we used in silico lineage tracing to con-
struct in pseudotime a differentiation trajectory (Supplementary

Fig. 1c), as previously described26. Expression of known arterial (HEY1,
CXCL12) and venous EC markers (ACKR1, VCAM1) was enriched at the
opposite ends of the trajectory, whereas capillarymarkers (CD36, KDR,
EDNRB) were enriched in the middle of the pseudo-time trajectory
(Supplementary Fig. 1d), thus validating our annotation.

A subset of ECs (EC4: angiogenic; EC5: angiogenic LS (LS = lower
sequencing depth)) expressed marker genes known to be enriched in
tip- and stalk cells (APLNR, INSR, ESM1), as well as genes involved in
angiogenesis (KDR, VWA1) and extracellular matrix (ECM) remodeling
(COL4A1, COL4A2), as previously described19 (Fig. 1d; Supplementary
Fig. 1a; Supplementary Data 3)19, but proliferating ECs were not
detected. Moreover, we identified a subtype of ECs that expressed
marker genes of activated post-capillary venules (PCV; EC6; POSTN)
(Fig. 1d; Supplementary Fig. 1a), previously identified in EC taxonomies
of lung cancer and laser-induced choroid neovascularization (CNV)14,19

and suggested to represent the vessel type from which neovessels
originate14. Hierarchical clustering complemented with multiscale
bootstrap resampling27 confirmed that breast EC subclusters were
statistically separable (Fig. 1e). On the dendrogram, angiogenic and
activated PCV ECs (EC4–6), involved in vessel sprouting in lung
tumors19, grouped together, but separately from the traditional arter-
ial, venous, venular (capillary venous) and capillary EC phenotypes
(Fig. 1e). Angiogenic and activated PCV ECs (EC4–6) were enriched in
TEC samples, while capillaries (EC11–12) were underrepresented
(Fig. 1f, g), similar as in lung tumors19. Arterial (EC2–3) and venous
(EC7–10) ECs were decreased in abundance when comparing TECs to
pECs, although not significantly, whereas lymphatic ECs (EC1) were
relatively unchanged (Fig. 1f, g). We validated our transcriptome
results by immunostaining for selected marker, including INSR
(angiogenic ECs), ACKR1 (venous ECs) and CD36 (capillary ECs) (Sup-
plementary Fig. 1e–g). Moreover, we confirmed spatially restricted
expression of ID2 and FABP4, top-ranking marker genes of capillary i
(EC11) and capillary ii (EC12) subclusters. Conform our scRNA-seq
findings, microvascular ECs exclusively expressing FABP4 or ID2
(Supplementary Fig. 2a, b) couldbe identified in humanbreast (cancer)
tissue. Moreover, and in line with the concept of a phenotypic con-
tinuum of the EC transcriptome throughout a vascular bed19, vessels
expressing both FABP4 and ID2 could also be detected (Supplemen-
tary Fig. 2c).

Next,weusedGeneOntology (GO) enrichment analysisof the top-
100 differentially expressed genes (DEGs) of each cluster versus all
other EC subclusters to obtain insight in their putative biological role
(Supplementary Data 3). We observed that different GO terms were
enriched in ECs from different vascular beds (Supplementary Fig. 3a;
Supplementary Data 3). Arterial ECs (EC3) expressed genes belonging
to GO terms involved in cellular junctions and adhesion, whereas
angiogenic and activated PCV ECs (EC4–6) were enriched for angio-
genic and ECM remodeling processes, in accordance with the
literature19. Breast capillary ECs were enriched in GO terms involved in
lipid metabolism, particularly capillary ii ECs (EC12), which we termed
lipid-processing ECs (LIPECs) and will be discussed in a separate
paragraphbelow.Notably, transcripts in breast vein ECs (EC7–10) were
enriched in immunoregulatory processes, including regulation of the
inflammatory, interferon-gamma, lipopolysaccharide (LPS) and
interleukin-1 (IL-1) response (see below for a detailed description). This
is in contrast to earlier findings in non-small cell lung cancer (NSCLC)
ECs, where EC subtypes with the strongest immunomodulatory sig-
natures were detected in capillaries and PCVs19, which prompted us to
further explore the differences and similarities in EC subtypes of both
cancer types.

Transcriptome congruency of angiogenic ECs in breast and lung
(tumors)
We compared our BC EC taxonomy to a NSCLC EC catalog containing
>21,000 ECs19 (a publicly available EC dataset with (i) at least equal EC
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number, quality, and resolution and (ii) both harboring TECs and
pECs). Using scmap28, we assignedenrichedECs fromourBCdataset to
the (peri-)tumoral lung EC subclusters19. Themajority (∼90%) of breast
ECs was assigned with high confidence (similarity index >0.5) (Fig. 2a).
However, the remaining∼10% of unassigned breast ECs suggested that
our dataset contained breast-specific EC populations (Fig. 2a). Sub-
analysis revealed that a large subset (∼40%) of these non-assigned
breast ECs were microvascular ECs, of which 76% were LIPECs (Sup-
plementary Fig. 3b). These findings highlight tissue-specific hetero-
geneity of capillary ECs, consistent with reports that capillaries share
few common markers across tissues26.

Next, we used the Jaccard similarity index to score the similarity of
marker gene sets of all EC subpopulations in breast and lung19 (Fig. 2b).

This analysis revealed that LECs and angiogenic ECs (referred to as
“tip” and “immature” ECs in the lung19) in breast and lung tissue
resembled each other transcriptomically (Fig. 2a, b). Furthermore,
artery ii ECs in the breast resembled arteries in the lung (Fig. 2a, b). In
contrast, artery i, capillary, and venous ECs only partially shared an
overlapping transcriptome signature between lung and breast
(Fig. 2a, b).

Next, we assessed the top-50 ranking marker genes between the
angiogenic, lymphatic, and arterial EC clusters in both tumor types in
more detail (Fig. 2c). This analysis revealed that in breast- and lung
cancer, 22 markers were shared between angiogenic ECs, 28 between
LECs and 15 between arterial ECs. Hypothesizing that marker genes,
congruently expressed in angiogenic ECs of different cancer types,
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represent more universal candidate AAT targets than tumor type-
specific angiogenic EC markers, we observed that several congruent
genes in angiogenic ECs are involved in ECM remodeling (COL4A1,
COL4A2, HSPG2, MMP2, SPARC; Fig. 2c), as previously suggested in
tumor angiogenesis14,19. In conclusion, we observed substantial tran-
scriptome overlap of EC phenotypes involved in vessel sprouting in
NSCLC and BC, while mainly venous ECs and LIPECs differ, possibly
due to EC adaptations to the specific environment in the breast.
Therefore, we subsequently focused on those two EC subtypes.

Vein ECs express immunomodulatory genes
Increasing evidence suggests a possible role for ECs in the perturbed
immune homeostasis in cancer19,29,30. In agreement, a GO enrichment
analysis of our dataset suggested an immunomodulatory role for
venous ECs (Supplementary Fig. 3a). Notably, several genes involved in
tumor immunity ranked in the top-10 marker genes of vein EC sub-
clusters (Fig. 1d; Supplementary Data 3). Venous ECs (EC7-10) were
enriched in genes involved in antigen processing and -presentation,
including those important for exogenous antigen presentation (HLA-II
genes) (Fig. 2d). The co-stimulatorymolecules CD80/CD86, critical for
naïveT cell activation uponantigenpresentation,were undetectable in
our dataset, consistent with previous reports in non-breast ECs19.

Compared to vein pECs, vein TECs exhibited lower expression
levels of a number of genes, involved in antigen presentation (HLA-
DRB1, HLA-DRB5, and HLA-DRA)19,31, immune cell recruitment (SELP,
LIFR, and ACKR1)32–34 and anti-tumor inflammation (CCL14, IFITM1)35,36

(Supplementary Fig. 3c). Combined immunostaining for HLA-DR and
CD105 (ECmarker) with in situ RNAscope hybridization for the venous
EC marker ACKR1, confirmed lower expression of HLA-DR protein in
venous TECs than pECs in ACKR1+ vessels (for definition of ACKR1+

vessels see “Methods”; Fig. 2e, f).

Transcriptome heterogeneity of breast stromal cells
Toobtainmore insight in the putative role of ECs in immune responses
and how ECs interact with immune cells, we used the breast (cancer)
samples without enrichment for any particular cell type to identify
microenvironmental (ME) cell types (Fig. 1a). We obtained 18,082 cells
and used dimensionality reduction and graph-based clustering to
partition the dataset into 27 clusters (ME1–27) (Fig. 3a; Supplementary
Data 2). Heatmap analysis of the top-10 ranking marker genes con-
firmed transcriptome heterogeneity across the different cell clusters
(Fig. 3b). Using publicly available taxonomies of cancer- and stromal
cell phenotypes in BC4–6,8,11, we annotated the 27 ME cell clusters
(Fig. 3c; Supplementary Fig. 4a–g; Supplementary Data 4) and identi-
fied 12 major cell types within the epithelial (ME1–9), stromal
(ME10–16) and immune cell (ME17–27) compartments (Fig. 3b, c),
including different types of epithelial cells (luminal and myoepithelial
cells), vascular cells (ECs and perivascular cells), fibroblasts and

immune cells (plasma cells, NK cells, T cells, plasmacytoid dendritic
cells (pDCs), B cells, myeloid cells and mast cells) (Supplementary
Fig. 4a–g). Since additional subclustering of epithelial cells (Supple-
mentary Fig. 5a–g, see Supplementary Information for details), peri-
vascular cells (Supplementary Fig. 6a–c) and other stromal cells
(mainly fibroblasts; Supplementary Fig. 6d–f) in the (peri-) tumoral
breast (Supplementary Data 4) confirmed earlier reports (validating
our approach), we did not further focus on these cell types.

We used established markers of T cells9,37, NK cells38,39, and mye-
loid cells4,40 (Fig. 4a–d; Supplementary Fig. 7a–h; Supplementary
Data 4, see Supplementary Information for details) to annotate sub-
clusters containingminimally 100cells.We identified regulatory T cells
(T1), conventional CD4+ T cells (T2), effector/memory CD8+ T cells
(T3), tissue resident memory CD8+ cells (T4), effector-like CD8+ cells
(T5), cytotoxic NK cells (T6), and chemotactic NK cells (T7) in the T/NK
cell clusters (Fig. 4a, b). We also detected B cells (Fig. 3a–c), which in
our dataset were transcriptomically homogeneous. Furthermore, we
identified macrophages (Mye1–5), a mixture of conventional dendritic
cell subtypes (Mye6; cDC)41, and neutrophils (Mye7) (Fig. 4c, d). Mac-
rophage subclusters consisted of tumor-associated macrophages
(Mye1; TAMs) and tissue-resident (TR)-like macrophages (Mye2,3).
Subclusters Mye4 and Mye5 expressed canonical macrophage genes,
but otherwise lacked a distinct transcriptomic phenotype, possibly
due to lower sequencing depth (see Supplementary Information). In
agreement with literature reports, TAMs (Mye1) expressed a gene
signature of both M2-like (anti-inflammatory) and M1-like (pro-
inflammatory) macrophages4,42,43, while tissue resident macrophage
subcluster Mye2 expressed an M2-like signature4,42,44, which was less
pronounced in tissue resident macrophages from subcluster Mye3
(Fig. 4c, d).

Endothelial-immune cell interactome predictions
Using CellPhoneDB45 and the combined EC-enriched and TME dataset,
we characterized the EC interactome by calculating predicted
receptor-ligand interaction (RLI) pairs, based on the expression of a
receptor by one subcluster and a ligand by another (see “Methods”;
Fig. 4e; Supplementary Data 5).We then used various selection criteria
to prioritize relevant EC subcluster-specific RLI pairs (see “Methods”;
Supplementary Data 5). Since immunomodulatory ECs are receiving
increasing attention in scRNA-seq studies, and the potential mechan-
isms through which ECs can modulate immune cells in healthy and
malignant tissues are still being explored46, we focused our analysis on
the EC-immune cell interactome, and identified multiple immune cell
subclusters that were predicted to interact with ECs (Supplementary
Data 5). Given their immune-recruiting and -modulatory signature (see
above), we focused on venous EC-immune cell interactions. Addi-
tionally, given theirhigher abundance inBC tissue, and the congruency
with their counterparts in lung cancer19, we also focused on immune

Fig. 1 | Single cell taxonomyof endothelial cells in the breast. a Study design. EC
endothelial cell, HR hormone receptor, HER2 human epidermal growth factor
receptor 2, VD Viability Dye, pME peri-tumoral microenvironment, pEC peri-
tumoral endothelial cells, TME tumor microenvironment, TEC tumor endothelial
cells. The numbers related to FACS-sorting indicate sequence of sorting, color
coded to indicate that each patient yields 4 samples (pME, pEC, TME, and TEC).
b Patient characteristics. First line, patient identifier; second line, pathological
tumor (pT) and nodal (pN) stage; third line, IUCC (International Union for Cancer
Control) cancer stage according to the 8th edition; fourth line, hormone receptor
status, coded by color for receptor type (gray, estrogen receptor; green, proges-
terone receptor) and bar length for Allred score (routinely used immunohis-
tochemistry score basedon thepercentageofpositive cells and the intensity of that
staining); fifth line, differentiation grades; grade 1, well differentiated; grade 2,
moderately differentiated (patient: #2–8); grade 3, poorly differentiated (patient:
#1); sixth line, Ki67 proliferation index based on the clinically performed immu-
nohistochemistry stainings. c UMAP-plot, showing the subclustering of 8433
endothelial cells (ECs) from tumoral (n = 8) andmatchedperi-tumoral (n = 7) breast

cancer (BC) patients. LS lower sequencing depth, PCV post-capillary venules.
dHeatmapof the expression levels of the top-10marker genes in all EC subclusters.
Color scale: red – high expression, blue – low expression. e Hierarchical clustering
analysis of EC subclusters. Color differences in the dendrogram indicate clusters
that were resolved by multiscale bootstrapping, p-value cutoff 0.4. Approximately
unbiased (AU)p-values, andbootstrapprobability (BP) values are indicated for each
dendrogram branch in purple and green, respectively. fUMAP-plots of all 8433 ECs
color-coded by condition. Dotted lines surround angiogenic (left) and capillary
(right) EC subclusters. g Abundances of EC subclusters across conditions (pEC
(gray), TEC (red)). Left panel: y-axis depicts % of total enriched ECs, x-axis depicts
EC subtypes color coded as in panel (c). Right panels: similar representation of the
data as in left panel, but EC subtypes were pooled as indicated. Data are mean ±
SEM, n = 7 for pEC, n = 8 for TEC, *p <0.05, **p <0.01 (exact p-values = 0.008,
0.0063, 0.0498, respectively (left panel), and 0.0151, 0.0021, respectively (right
panel)), paired t-test (two-tailed) per subcluster (taking only into account the 7
complete pairs).
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CD105. Scale bar: 10 µm.
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cell interactions with angiogenic ECs. We searched the literature to
distinguish known from previously unrecognized / poorly character-
ized interactions and identified—to the best of our knowledge—65 thus
far unreported RLI pairs between ECs and immune cell types (Sup-
plementary Data 5; bold, blue), of which we discuss several relevant
ones below.

First, we explored the RLI pairs where ECs express the ligand and
immune cells the receptor (Fig. 4f). The analysis predicted known
interactions that are presumably involved in polarizing macrophages
towards an immunosuppressive phenotype by ECs, for instance
between angiogenic ECs and TAMs (Mye1) (both enriched in the tumor
setting, Supplementary Data 5) expressing respectively GAS6 (angio-
genic ECs) ⇔ MERTK, AXL (Mye1, TAMs)47–49, suggested to promote
immunosuppressive TAM infiltration50 (Fig. 4f). Moreover, our RLI
analysis predicted tumor-enriched angiogenic ECs and TAMs to
interact through TGFB1 (angiogenic ECs) ⇔ TGFBR1 (Mye1, TAMs)51,52

(Fig. 4f). Interestingly, NicheNet analysis predicted TGFB1 as the most
highly ranked ligand expressed by angiogenic ECs, that likely affects
the differential transcriptome inmyeloid cells (Supplementary Fig. 7i),
indicating that TGFB1 might indeed be active in modulating myeloid
cells, and possibly TAMs, in the tumor. APP represents another highly-
ranking ligand, and numerous target genes that the NicheNet analysis
showed to be regulated by TGFB1 and APP are known to be involved in
macrophage polarization towards M1- and M2-like phenotypes (IL1B53,
IGF154, HIF1A55, CD3656, TREM257; Supplementary Fig. 7i). Altogether,
this raises the question whether our predicted angiogenic-EC <-
>myeloid cells interactions indeed contribute to shaping the tumor
immune microenvironment in BC.

Furthermore, the RLI analysis predicted several previously
unrecognized / poorly characterized interactions (Fig. 4f, bold, aster-
isks), thus exemplifying its resource value. As proof of concept, we
validated the RLI between PODXL, expressed by angiogenic ECs
(marker gene INSR), and its homing receptor L-selectin (SELL) on
regulatory T (Treg) cells (marker gene FOXP3; T1) (Fig. 4f; Supple-
mentary Fig. 8a), exemplifying close in situ proximity of the predicted
RLI pair. Given its strong enrichment in the tumor setting, and the fact
that Treg cells facilitate immune escape and promote angiogenesis58,
this interaction may warrant further attention. Second, we validated
in situ proximity of the ligand CLEC2B (also known as AICL) on venous
ECs and the receptorKLRF1on cytotoxicNKcells (Fig. 4f, g). Venous EC
expression of CLEC2B has not yet been documented. However,
CLEC2B expressed by myeloid cells has been reported to activate NK
cells through interaction with KLRF1, and to enhance NK cell cytolytic
capacity and cytokine production59, raising the question whether
venous ECs might modulate NK cell function. Knockdown (KD) of
CLEC2B in human umbilical vein ECs (HUVECs) indeed reduced the
percentage of activated human NK cells (freshly isolated from per-
ipheral blood mononuclear cells (PBMCs)) in co-culture experiments
(Supplementary Fig. 8b–e), demonstrating a functional role for ECs in
NK cell activation.

Subsequently, we focused on interaction pairs where immune
cells express the ligand and ECs the receptor (Supplementary Fig. 8f;
Supplementary Data 5). This analysis predicted established interac-
tions, for example between VEGFA expressed by TAMs (Mye1) and
FLT1/KDR or NRP1 on angiogenic ECs, involved in angiogenesis60, or
between E-selectin (SELE) on venous ECs and selectin P ligand (SELPLG)
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on cDCs and TAMs (Mye1, Mye6), involved in immune cell
recruitment61. The RLI analysis also predicted previously unrecognized
/ poorly characterized interactions via which immune cells putatively
modulate ECs (Supplementary Fig. 8f; bold, asterisks). For example, we
identified interactions between angiogenic ECs (FLT1, KDR, and NRP1)
and cDCs (VEGFA), known to stimulate angiogenesis62,63. VEGFA-
expressing cDCs are known to promote angiogenesis in inflamed

lymph nodes64,65, but these interactions with angiogenic ECs were
unknown in the tumor context. Importantly, NicheNet analysis pre-
dicted cDC-derived VEGF-A to drive the regulation of genes involved in
augmentation of (tumor) angiogenesis, including S1PR166, MMP267,
PGF68 and PLPP369 (Supplementary Fig. 7i). Moreover, NicheNet pre-
dicted other cDC-derived ligands (TGFB1, TNF) to regulate the angio-
genic EC transcriptome (Supplementary Fig. 7i). TNF has a dual effect
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onangiogenesis70, as its promoting/inhitibory effect on angiogenesis is
context-dependent71. Despite cDCs not being enriched in the tumor
setting in our dataset (Supplementary Data 4, 5), these results never-
theless highlight the putative importance of further investigation into
cDC-EC crosstalk in light of tumor angiogenesis in BC.

Heterogeneity of the breast EC metabolic transcriptome
EC metabolism is an emerging target for AAT in several pathological
conditions as ECs reprogram their metabolism and metabolic tran-
scriptome during disease14,19,20. To explore the metabolic gene sig-
nature of breast TECs, we performed a gene set enrichment analysis
(GSEA), using an in-house curated list of 910 metabolism-related gene
sets selected from theMolecular Signatures Database (complete list in
Supplementary Data 3)72 in order to compare the metabolic tran-
scriptome landscape of all TECs versus all pECs (Fig. 5a). Notably,
compared to pECs, TECs were enriched for gene sets involved in ECM
remodeling and oxidative phosphorylation, but exhibited lower
expressionofgene sets involved in lipidmetabolism (Fig. 5a, asterisks).
Indeed, several of the most DEGs in pECs versus TECs are involved in
uptake and intracellular transport of fatty acids (CD36, FABP4, FABP5,
and MGLL73–75) (Fig. 5b).

We then performed gene set variation analysis (GSVA) on all 12
EC subtypes (both pECs and TECs) (Supplementary Data 3). In
angiogenic ECs (EC4–5) and activated PCV ECs (EC6), we pre-
dominantly identified gene sets involved in oxidative phosphor-
ylation and ECM remodeling, validating other reports76, while
venous EC clusters (EC7-9) upregulated gene sets involved in
prostaglandin metabolism, in line with their immunomodulatory
signature and possible role in vasoregulation, confirming findings
in lung tumors and choroid neovascularization13,19. Notably,
arterial EC clusters (EC2–3) upregulated gene sets involved in the
production of the vasoregulator nitric oxide (NO).

In line with the GO enrichment analysis described above, the
GSVA revealed an enrichment of gene sets involved in lipid metabo-
lism, transport, and catabolism inbreast capillary ii ECs (LIPECs;mainly
derived from pECs) (EC12; Supplementary Data 3). Specifically, we
observed an enrichment of key regulatory genes involved in lipid and/
or glycerol uptake from low-density lipoprotein particles77, intracel-
lular binding of free fatty acids75, lipid droplet turnover74 and tran-
scription factor-mediated regulation of fatty acid metabolism, lipid
storage, and sterol homeostasis78,79 (Fig. 5c)—based on this signature,
we, therefore, termed ECs expressing this signature as LIPECs
(see above).

Immunostaining for FABP4 (the most discriminative metabolic
gene between TECs and pECs, and enriched in LIPECs (Fig. 5b, c))
revealed that FABP4-expressing capillaries were underrepresented in
TECs (Fig. 5d; Supplementary Fig. 9a). Moreover, using Single-Cell
Regulatory Network Inference and Clustering (SCENIC)80, we detected
enriched activity of PPARG (also known as NR1C3)- and LXRA (also
known as NR1H3)-driven regulons and transcription factor expression
in LIPECs (Fig. 5e and Supplementary Fig. 9b). Combined immunos-
taining for CD105 with in situ hybridization (RNAscope) for FABP4 and

PPARG furthermore revealed a significantly higher fraction of PPARG+

ECs within FABP4+ blood vessels, as compared to their FABP4− coun-
terparts (Fig. 5f, g).

Lipid processing endothelial cells—possible translational
implications?
Interestingly, elevated PPARG (PPAR-γ) expression in BC stromal
cells has been reported to be a good positive prognostic marker,
associated with longer survival after upfront surgery81, but data
reporting a possible effect of PPAR-γ agonist treatment on long-
term clinical outcome and LIPEC vessel growth in hormone
receptor-positive (ER+, PR+/−)/HER2-negative BC patients are lim-
ited. In an exploratory initial study, we assessed whether possible
activation of PPAR-γ signaling, indirectly through administration of
the biguanide metformin82,83 (one of the agents used as standard of
care treatment of diabetes mellitus84,85): (i) might be involved in
clinical outcome of BC patients, and (ii) might be related to LIPEC
abundance, realizing that metformin may have additional mechan-
isms of action.

We therefore took advantage of a large BC patient dataset with
long follow-up (8 years or longer) to retrospectively analyze the
effect of metformin treatment on the clinical outcome in a cohort
of 4648 female patients with early, hormone receptor-positive/
HER2-negative BC, who underwent surgery followed by anti-
hormonal treatment (thus, tumors with the same setting and
molecular characteristics as used in our scRNA-seq cohort)
(Fig. 6a; Supplementary Data 1). In our cohort, all treated BC
patients were diabetic and treated with the biguanide metformin.
Control patients included those that are diabetic but not treated
with metformin, but also non-diabetic controls without treatment
to increase statistical power (Fig. 6a). The follow-up was at least 8
years (with 50% of BC patients having a follow-up ≥14 years),
making this cohort unique in terms of its magnitude and duration
of follow-up, as compared to previous cohorts86,87.

We examined the relationship between treatment withmetformin
(at least one year during follow-up after BC surgery) and BC-specific
survival (BCSS) or distant relapse free interval (DRFI) using a Cox
proportional hazard analysis, after adjusting for clinical characteristics
known to affect BCSS/DRFI (Fig. 6a; Supplementary Data 6; “Meth-
ods”). We observed a 31.4% reduction in BC-specific mortality and a
25.5% reduction in the development of metastases in BC patients
treated with metformin, compared to control patients (hazard ratio
(HR) for BCSS: 0.686 (CI: 0.498–0.944); HR for DRFI: 0.744 (CI:
0.564–0.98)) (Fig. 6b, green and blue groups, respectively; Supple-
mentary Data 6). Notably, adjuvant anti-hormonal treatment (the
current standard of care in early-stage hormone responsive BC)
induces a similar magnitude of effects on BCSS and DRFI88.

In a complementary approach to control for potential con-
founder effects, we compared the BCSS and DRFI in the group of
metformin-treated BC patients to a group of non-diabetic, non-
metformin treated BC patients, matched for age, body mass index
(BMI), histological grade and pathological (tumor and nodal) stage

Fig. 4 | Immune cell subclustering and EC-immune cell interactome predic-
tions. a UMAP-plot of T-/NK cells color coded by subcluster. NK natural killer.
b Heatmap of the expression levels of canonical marker genes of T-/NK cell (sub-)
types. Color scale: red – high expression, blue – low expression. c UMAP-plot of
myeloid cells color coded by subcluster. TR tissue resident, LS lower sequencing
depth.dHeatmapof the expression levels of canonical genes inmyeloid cells. Color
scale: red – high expression, blue – low expression. TAM tumor associated mac-
rophages. e Schematicoverviewof the receptor ligand interactionanalysis. Clusters
containing <100 cells: mast cells, plasma cells and plasmacytoid dendritic cells. EC
endothelial cell, LFC log fold change, RLI receptor ligand interaction. f Circos plots
representing RLI analysis between angiogenic/venous ECs and immune cells.
Receptor is expressed on immune cell subclusters, ligand is expressed on

angiogenic ECs (left panel) or venous ECs (right panel). Plots are color coded for the
receptor–ligand pairs (arrows, gene names) and immune cell subclusters expres-
sing the receptor (bars perpendicular to inner circle). Previously unknown RLI pairs
between ECs and specific immune cell subtypes are indicated in bold (genes) and
with asterisks (subclusters). g Representative micrographs of human breast
tumoral tissue sections, immunostained for CD105 and CLEC2B (left panels) or
CD16 and KLRF1 (right panels) and counterstained with Hoechst (n = 8). Middle
panels:magnifications of thewhite boxed areas in the upperpanels. Bottompanels:
magnifications of the orange boxed areas in the upper panels. Dotted white line
indicates a CLEC2B+ blood vessel, dotted orange lines indicate KLRF1+ NK cells in
the vicinity of the blood vessel. Scale bar: 50 µm.
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(see “Methods”; Fig. 6b; green and purple groups). Notably, this
analysis showed a similar, if not more pronounced, effect in favor of
metformin-treated BC patients (Fig. 6b, green and purple groups;
Supplementary Data 6), validating our primary unmatched cohort
analysis. Overall, metformin treatment in BC patients induced long-
lasting clinical benefits. Secondly, to explore whether metformin
treatment affected LIPEC vessels, we quantified the percentage of

FABP4+ LIPEC vessels in 25 BC patients with similar clinical and
pathological characteristics (Supplementary Data 1) and derived
from the same cohort as used for the survival analysis. Notably,
tumors from BC patients, who were treated with metformin prior to
tumor removal, contained 3 to 4-fold more FABP4+ LIPEC
vessels than tumors from BC patients (diabetic or not), who did not
receive this treatment (Fig. 6c, d; Supplementary Fig. 9c).
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Discussion
The aim of this study was not to provide yet another descriptive BC
taxonomy, but to deliver an in-depth characterization of the EC het-
erogeneity in themost commonhumanBCtype, and to explore theEC-
immune cell interactome. This analysis yielded the following insights.

Currently, most human cancers are treated indiscriminately with
the same anti-angiogenic strategy, based on targeting VEGF signaling.
Yet, ECs exhibit substantial phenotypic heterogeneity between tissues
and even across the vascular tree within a single tissue19,26. Here, we
show that breast and lung tumors seem to rely on the same EC phe-
notypes to form new blood vessels, but exhibit detectable phenotypic
differences in other EC subtypes, especially at the capillary and venous
level. This is consistent with our findings in healthymurine tissues that
capillaries are transcriptomically more plastic, likely reflecting their
phenotypic adaptation to the physiological needs of the tissue they
reside in ref. 26.

Emerging evidence indicates that ECs can contribute to the
immune response as non-hematopoietic derived cells89. We reported
that capillaries in human and murine lungs expressed genes involved
in antigen processing and presentation, while PCV ECs exhibited gene
expression signatures involved in immune cell recruitment19. In this
study, we documented that vein ECs in the human breast express
immunomodulatory genes, illustrating tissue-specific differences. The
lung is exposed continuously to airbornepathogens, and this exposure
maybemaximal at the capillary level, where exchange of gas and other
airborne particles/pathogens is highest90. In contrast, in the breast, the
low blood flow rate and shear stress in veins may possibly favor the
interaction with immune cells. Indeed, vein ECs (distinct from high
endothelial venules) in murine lymph nodes have immune recruiting
properties91, suggesting that the immunomodulatory characteristics of
vein ECs might warrant further investigation in BC.

Different kinds of immune cells such as neutrophils, dendritic
cells, macrophages and lymphocytes (B cells, T cells) are known to
stimulate vessel sprouting through production of pro-angiogenic
molecules92,93. Additionally, perivascular macrophages are known to
assist in the fusion of adjacent vessel sprouts to form a perfused
vessel92. As an in-depth documentation of EC-immune cell inter-
actomes has been lacking to date, our RLI dataset allows for explora-
tion of the plethora of possiblemolecular signals of these intercellular
communications. Our receptor-ligand interactome predictions iden-
tified known (validating our approach) but also previously unrecog-
nized/poorly characterized interactions between ECs and immune
cells, some of which suggested that ECs might play immunomodula-
tory roles. For instance, we predicted specific interactions between
tumor-enriched angiogenic ECs and Treg cells or cDCs, with potential
implications for tumor angiogenesis, and between venous ECs and
cytotoxic NK cells, suggesting that venous ECs may play a role in
NK cell modulation in BC. Altogether, these predictions (i) raise the

questionwhether the EC/immune cell interactomemay regulate tumor
immunity and vessel sprouting in BC, possibly via previously unknown
interactions with (among others) Treg cells, cDCs or NK cells; and (ii)
provide a rich resource to encourage future functional studies on
characterizing immunomodulatory functions of ECs as well as reci-
procal communication between ECs and immune cells.

We discovered a breast capillary EC population (LIPEC) that
expressed markers involved in lipid metabolism and the transcription
factor PPAR-γ, encoding a master regulator of lipid metabolism in ECs
and other cell types, which upregulates FABP4 expression. By immu-
nostaining, we confirmed that FABP4+ ECs co-expressed PPAR-γ. While
SCENIC analysis predicted activity of the PPAR-γ regulon in LIPECs,
other transcription factors belonging to the PPAR family (PPARA,
PPARB) or PPAR-γ co-factors (RXRA, RXRB, and PPARGC1B) and their
downstream signals were only minimally detected or absent from our
dataset, and not specifically detected in LIPECs, precluding a more
elaborate conclusion on the potential functional role of this EC sub-
type in lipid metabolism. Notably, LIPEC capillaries were under-
represented in BC. Differential gene expression analysis, comparing
LIPECs in tumor versus peri-tumoral tissues, revealed HES1 as the only
significantly upregulated gene in tumor LIPECs (Supplementary
Data 6). HES1 is involved in vascular remodeling and specification of
arterial fate in ECs94, but also reported as a repressor of PPAR-γ95,96, and
the role of HES1 in LIPEC differentiation, molecular makeup (e.g.,
expression of FABP4 andother genes involved in lipidmetabolism) and
function in cancer thuswarrants further attention.When analyzing ECs
detected in a publicly available scRNA-seq dataset of ovarian, breast
and colorectal tumors97, LIPECs were mainly detected in breast and
ovarian (cancer) ECs, but were not abundantly found in colorectal
cancer ECs (Supplementary Fig. 9d). What the functional significance
of LIPECs is for BCdevelopment or progression, andwhether there are
microenvironment-specific factors that underlie the presence/absence
of LIPECs in tumors fromcertain tissues, remainoutstanding questions
requiring further study.

Our study suggests possible translational implications. First, the
fact that angiogenic ECs across human (breast and lung) tumor types
share a common transcriptome could have implications for the design
of future anti-angiogenic therapies, based on targeting congruent
markers. Current AAT strategies, based on blocking VEGF signaling,
target angiogenic tip and proliferating stalk ECs17. However, and in line
with other single-cell studies focusing on human cancer19,97, we could
not detect proliferating ECs in our human breast tumor scRNA-seq
dataset. Angiogenic ECs (expressing tip EC markers) were present at
only 14%, and it remains to be determined whether these low fractions
of angiogenic TECsmay explain the relative inefficiency and resistance
to VEGF-blockade based AAT. Second, the observation that breast
vein ECs might contribute to the immune response in breast
tumors deserves further attention. Third, retrospectively, metformin

Fig. 5 | Transcriptomic heterogeneity of breast ECmetabolism. aWaterfall plot
of top-15 up- and downregulated metabolic pathways in metabolic gene set
enrichment analysis in TECs compared to pECs (gray – up in pEC, red – up in TEC).
Asterisks mark gene sets involved in lipid metabolism. b Volcano plot showing
differential metabolic gene expression analysis of pECs versus TECs. Key pEC-
enrichedmarker genes involved in lipidmetabolism are indicated. Gray, significant
(adjusted p-value (Benjamini–Hochberg) < 0.05); dark blue, not significant. Dif-
ferential expression analysis was performed using limma, the magnitude of dif-
ferential expression (log2 fold change) and false discovery rate adjusted p-values
(Benjamini–Hochberg) are provided on the x- and y-axis, respectively. c Dot plot
heatmap of the gene expression levels within the LIPEC signature in breast EC
subclusters. The color intensity of each dot represents the average level of marker
gene expression, while the dot size reflects the percentage of cells expressing the
marker within the subcluster. Color scale: red – high expression, blue – low
expression. LIPEC lipid processing EC, TF transcription factor, LS lower sequencing
depth. d Quantification of the FABP4+ CD105+ vessel area in peri-tumoral and

tumoral breast tissue. Data are mean± SEM, n = 7, **p <0.01 (exact p-value =
0.0014), two-tailed paired t-test. For a representative image of the stained peri-
tumoral - tumor border, see Supplementary Fig. 9a. e Dot plot heatmap of the
expression of PPARG and LXRA (left panel) and their respective regulons from
SCENIC analysis (right panel). The color intensity of each dot represents the aver-
age level of gene (left) or regulon (right) expression, while the dot size reflects the
percentage of cells expressing the gene/regulon within the cell subcluster. Color
scale: red – high expression, blue – low expression. f Quantification of the % of EC
nuclei with positive PPARG staining by RNAscope in CD105+ FABP4+ vessels vs.
CD105+ FABP4− vessels in human breast tissue (tumor and peri-tumoral tissue
pooled per patient). Data are mean ± SEM, n = 8, ****p <0.0001 (exact p-value <
0.0001), two-tailed paired t-test. g Representative micrographs of human breast
tumor tissue sections, immunostained for CD105 and stained for FABP4 and PPARG
byRNAscope and counterstainedwithHoechst (n = 8). Right panels:magnifications
of the boxed areas in the middle panels. Red arrows point to PPARG transcripts
stained by RNAscope. Scale bar: 10 µm.
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treatment (which may indirectly lead to PPAR-γ signaling
activation82,83) improved the long-termclinical outcomeofBCpatients.
Fourth, we coincidently observed an abundance of LIPECs in the
population treated with metformin. While at this stage, we cannot
provide a direct effect of PPAR-γ agonist treatment on the abundance

of LIPECs in BC patients, nor a causal role of LIPECs in BC clinical
outcome, our findings nevertheless warrant further investigation into
the LIPEC phenotype and its role in BC progression and survival.
Additionally, our results raise the question whether an increase in
LIPEC vessel counts in tumor biopsies in response to metformin
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Fig. 6 | Lipid processing endothelial cells—translational implications.
a Schematic overview of the survival analysis in the retrospective clinical cohort
and immunostaining validation. UH university hospital, BC breast cancer, HER2
human epidermal growth factor receptor 2, BMI body mass index, HR hormone
receptor status. Color coding in the clinical characteristics panel reflects differ-
ences in age, BMI, tumor stage & grade (Supplementary Data 6). Color coding
underneath the treatment stratification panel indicates patients that did (green) or
did not (blue) receive metformin treatment during follow up. b Cumulative inci-
dence function estimate of BC-specific survival (left panel) and the distant relapse
free interval (right panel) in BC patients stratified by intake of a metformin. Color
coded by group: blue – control, green – patients treated with metformin, purple –

controlmatched for age, BMI, tumor stage&gradeandhormone receptor status. P-
values were calculated by the Kaplan–Meier (log rank) test between metformin
therapy and without metformin therapy groups (blue for unmatched control

patients; purple for matched control patients). Numbers in the boxes underneath
the curves depict the number of patients per group that are at risk for the event
(mortality in left panel, mortality/development of metastasis in right panel) at the
indicated time points. c Quantification of FABP4+ blood vessels (% area of total
CD105+ blood vessels) in non-diabetic BC patients (n = 8) and in diabetic patients
without (n = 8)orwith (n = 9)metformin treatment. Data aremean ± SEM, **p <0.01
(exact p-values = 0.0030 and 0.0023, respectively), one-way ANOVA followed by
Dunnett’s multiple comparisons test. d Representative micrographs of human
breast tumor tissue sections in control non-diabetic (left; n = 8) or diabetic (middle;
n = 8) control BC patients and in (diabetic) BC patients treated with metformin
(right; n = 9), immunostained for CD105, FABP4 and counterstained with Hoechst.
Arrowheads denote CD105+FABP4+ vessels, asterisks denote (putative) adipocytes,
which (besides LIPECs) are also positive for FABP4. Brightness was increased line-
arly (gamma = 1) to improve visibility for CD105 and FABP4. Scale bar: 75 µm.
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treatment could be considered in future prospective randomized trials
as a predictive biomarker for long-termclinical benefit. Related hereto,
and even more speculative at this stage, an outstanding question is
whether strategies stimulating LIPEC vessel growth and/or differ-
entiation might be beneficial for BC patients. Fifth, the reduction in
BCSS and DRFI observed after the current standard of care adjuvant
treatment with anti-hormonal treatment81,88 is of similar magnitude as
the reduction in these clinical outcome parameters, observed after
treatment of BC patients with metformin.

We acknowledge limitations of our study. First, the biological
role of the identified EC subclusters, inferred from the marker
gene analysis, is only putative and requires future (experimental)
validation. Second, due to tissue digestion optimized for ECs,
abundances of other cell types might be altered. Third, as scRNA-
seq does not allow sequencing of mature adipocytes98, this cell
type is lacking from our transcriptomics analyses. Fourth, the
contribution of LIPECs and the precise mechanisms of how PPAR-γ
regulates lipid metabolism in LIPECs requires further study. Fifth,
profiling metabolic pathways at the transcriptional level does not
fully represent the intricacy of metabolic fluxes, levels of meta-
bolites and activity of metabolic enzymes at the protein level.
However, previous work has shown that gene expression sig-
natures can be (at least in part) predictive of alterations in meta-
bolic fluxes in ECs20,99. Nonetheless, these metabolic gene
signatures require further functional validation. Sixth, the identi-
fied RLI pairs are a prediction and, although we validated two
examples at the protein level, these predictions require further
validation. Seventh, to confirm the associative correlation in the
retrospective study, prospective trials are needed. Finally, we
acknowledge that metformin, besides activating PPAR-γ signaling,
likely exerts additional activities on other cellular pathways and
also on non-EC cell types100, which could contribute to the clinical
benefit.

Notwithstanding these limitations, our study provides a rich
transcriptome resource of EC heterogeneity in peri-tumoral and
malignant breast, and a predicted interactome of stromal cells in BC
that provides a basis for future research to study their functional role.
It also opens new avenues to consider LIPECs for future functional and
biomarker analysis.

Methods
Ethical approval
Tissue samples. The study was approved by the Medical Ethics
Committee UZ Leuven (University Hospital Leuven) under protocol
number S57123. All tissue samples were obtained under written
informed consent and were fully anonymized. Consent to publish
relevant clinical information potentially identifying individuals (e.g.,
age, BMI, histological grade, etc.) was obtained. Participants were not
compensated due to the fact that we only used left-over tissue (sec-
ondary use of residuary material), which did not require additional
patient follow-up or contact.

Clinical cohort. All patient data used for retrospective clinical cohort
analyses (and validation) were retrieved from the multidisciplinary BC
clinic database in the University Hospital (UZ) Leuven, which was
approved by the Medical Ethics Committee UZ/KU Leuven under
protocol number S63779.

HUVECs. Human umbilical vein endothelial cells (HUVECs) were
freshly isolated fromumbilical cords obtained frommultipledonors of
unknown sex soon after birth with approval from the Ethics Commit-
tee Research UZ/KU Leuven under the approval number S57123, and
informed written consent was obtained from the parents of all sub-
jects. HUVECs were used as single-donor cultures, and aminimum of 3
donors was used for all experiments.

Human tissue processing
Following surgical resection, samples from the invasive tumor front
and adjacent healthy breast tissue (as far away from the tumor border
as possible) were taken. Samples were minced into <1mm3 pieces
and enzymatically digested in a 7mL digestion medium (KnockOut
DMEM, supplemented with penicillin/streptomycin (1×), Antibiotic-
Antimycotic (2×), sodium pyruvate (1mM), MEM NEAAs (1×) (Thermo
Fisher Scientific), heparin (10U/mL)/ECGF (PromoCell), 0.3% col-
lagenase I, 0.1% collagenase II (Thermo Fisher Scientific), DNase
(7.5 µM) (Sigma-Aldrich) and dispase (0.25U/mL) (Thermo Fisher Sci-
entific)). Samples were incubated at 37 °C for approximately 60min.
To improve digestion, samples were pipetted up and down every
10min. Next, 7.5mL of cold PBS containing 0.5% bovine serum albu-
min (BSA, Sigma-Aldrich) and 2 µM EDTA were added and the samples
were filtered using a 100 μm strainer (Corning). Following cen-
trifugation (300 g) at room temperature (RT) for 4min, the super-
natant was discarded and cells were resuspended in cold PBS
containing 0.5% BSA (Sigma-Aldrich) and 2 µM EDTA for further
downstream applications.

Flow cytometry and cell sorting
Single-cell suspensions were stained with viability dye (VD, eFluor™
506, dilution 1:1000) and fluorescent antibodies (CD45 (PE-Cy7, dilu-
tion 1:700), EpCAM (PE, dilution 1:500), CD31 (AF488, dilution 1:100)
and CD102/ICAM2 (APC, dilution 1:50)) for 30min. Then, we FACS-
sorted viable single cells (VD–) into low-bind Eppendorf tubes con-
taining 200 µL pure FBS and divided each sample into 2 fractions: one
was used to enrich ECs (CD45–, EPCAM−, CD31+, CD102+ cells) and the
other one contained all stromal cells. We based the selection of ECs
both on CD31 and CD102 to increase purity. For a representative
overview of the FACS strategy for EC-enrichment, see Supplementary
Fig. 10. For further processing for scRNA-seq, samples were resus-
pended in PBS containing 0.4% UltraPure BSA (50mg/mL) (Thermo
Fisher Scientific). Cells were counted using an automated cell counter
(Luna FL, Logos Biosystems, Villeneuve d’Ascq, France) and processed
as described below. Throughout the dissociation procedure, cells were
maintained on ice. For details on antibodies (as well as their dilutions)
and reagents used throughout this study, we refer to Supplementary
Table 1.

Single cell droplet-based RNA sequencing
The single cell suspensions were converted to separate barcoded
scRNA-seq libraries using the Chromium Single Cell 3’ Library, Gel
Bead &Multiplex Kit, and ChipKit (10XGenomics, v2), aiming for 1500
cells per library. For each patient, all samples (TEC, pEC, TME, pME)
were processed in parallel in the same thermal cycler. Libraries were
sequenced on an Illumina HiSeq4000. The enriched EC samples of
patient #6 were not sequenced due to technical reasons and the
enriched pEC sample of patient #1 and pME sample of patient #2 were
sequenced but excluded in the analysis after quality control.

scRNA-seq cohort description and characteristics
Only hormone sensitive, early stage, treatment-naïve BC patients, who
underwent resection (broad excision or mastectomy) were included
for single cell RNA-sequencing and protein validation. Patient char-
acteristics are listed in Supplementary Data 1. Informed written con-
sents were obtained before surgery. TNM staging for BC was done
according to the 8th edition of the IUCC guidelines.

scRNA-seq data analysis
Gene expression matrices were generated using Cell Ranger (10X
Genomics, version 2.1.1) using the GRCh38 build of the human refer-
ence genome, and further processed using R (version 3.4.4). We used
the following quality control steps: genes expressed by <10 cells or
with a rowmean of <0.003were not considered, cells expressing <300
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genes (low quality), a number of genes >2 standard deviations above
themean (potential doublets), or >10% of uniquemolecular identifiers
(UMIs) derived from the mitochondrial genome were removed.
Visualization, clustering,marker gene identification, trajectoryanalysis
and gene set enrichment analysis of the remaining cell data was per-
formed using BIOMEX software101. Briefly, after normalization and
auto-scaling, the resulting data were first summarized by principal
component analysis (PCA), followed by visualization using Uniform
Manifold Approximation and Projection (UMAP; n.neighbors = 10,
minimal distance =0.3), and graph-based clustering using Seurat. In
case of enriched EC data, clusters containing contaminating immune
cells (PTPRC+), epithelial cells (KRT15+), fibroblasts (DCN+, LUM+),
smooth muscle cells (ACTA2+) and pericytes (RGS5+) were removed.
Additionally, clusters not expressing the canonical EC marker genes
CDH5 and PECAM1 were removed. To estimate the number of distinct
phenotypes in our data, we color-coded UMAP-plots for each of the
~14,000 detected genes (Brute force, implemented in BIOMEX) and
identified clusters of cells with discriminating gene expression pat-
terns in all samples. Next, we applied graph-based clustering (using
Seurat), using a clustering resolution that captured all expected clus-
ters (verified by UMAP visualization (Supplementary Data 2).

For the micro-environment (non-enriched) samples, we followed
a similar data processing pipeline as for ECs and obtained 18,082 cells.
The first 40 PCs were visualized using UMAP (n.neighbors = 10, mini-
mal distance = 0.3). We subclustered all major cell types (in clusters
>100 cells) separately (for details see Supplementary Data 3). Despite
our initial quality control, in some cell types we identified subclusters
with a lower number of detected genes/cell as compared to the
majority of subclusters. These subclusters did not contain strong and/
or cluster-specific marker genes but expressed clear cell-type specific
canonical marker genes. Therefore, instead of removing these sub-
clusters, we refer to them as lower sequencing depth (LS). Moreover,
within the immune cell compartment we identified a few subclusters
likely representing doublets/low quality cells (358 cells in total), which
were not used for further analyses (e.g., receptor–ligand interaction
predictions).

Marker genes for each cluster were calculated by pairwise differ-
ential analysis of all clusters against all other clusters separately (using
the “uniquelyupregulated” function as implemented in the “marker set
analysis” in BIOMEX, followed by ranking of the results of each pair-
wise comparison by log2 fold change102). The most upregulated genes
received the lowest rank number (top rankingmarker genes). For each
cluster, we combined the rank numbers for all genes in all pair-wise
comparisons by calculating their product to obtain afinal list of ranked
marker genes for each cluster.

Bootstrapprobability analysis. For hierarchical clustering, we applied
Euclidean distance and complete linkage, and used the pvclust R
package to estimate the confidence of each branch of the tree using
the bootstrap resampling approach (number of bootstrapping = 1000;
confidence score >0.4, as used in previous reports19,103,104. The follow-
ing pvclust-calculated p-values for hierarchical clustering are also
provided: (i) “approximately unbiased” (AU) p-values, computed by
multiscale bootstrap resampling, and (ii) “bootstrap probability”(BP)
values, computed by normal bootstrap resampling27. AU p-values are
less biased compared to BP values, and clusters with AU ≥ 95% are
strongly supported by the data27.

Pseudotime analysis. Analysis was performed as implemented in
BIOMEX using SCORPIUS105. We included EC subclusters belonging to
different traditional vascular beds that grouped together in the hier-
archical clustering analysis as depicted in Fig. 1e: arteries (EC2–3),
capillaries (EC11–12), and veins (EC8–10). Activated PCV (EC6; not
considered a classical vein; Supplementary Data 3) and vein ii (EC7;
patient-specific) were not included in the analysis, as well as the

angiogenic ECs (angiogenic (EC4), angiogenic – LS (EC5)), and lym-
phatic (EC1) ECs. We used the highly variable genes (mean lower
threshold 0.05; mean higher threshold 8) and the following para-
meters: k = 3, number of principal components = 8. For visualization,
clusters detected in pseudotime were smoothened using quantiles
(0.25 and 0.75 for lower and upper quartiles, respectively). Clusters
were ordered based on their lower quantile value; new cluster value
ranges were defined by averaging together the upper quantile of the
first cluster and the lower quantile of the second cluster. The newly
defined cluster ranges were used for plotting. Regression span=0.2
(local linear regression).

Comparison of breast EC taxonomywith publicly available ECdata.
We used a scRNA-seq dataset of (peri-) tumoral human lung tissue19.
Raw counts and the accompanying metadata were downloaded from
https://www.vibcancer.be/software-tools/lungTumor_ECTax. Marker
genes were calculated for every lung EC cluster (patient #5-specific
cluster was excluded) as described for processing of the breast scRNA-
seq dataset, using patient information as a covariate19. The
scmapCluster algorithm, as implemented in BIOMEX (scmap package,
version 1.1.5)28, using a list of all top-25 marker genes for each lung EC
cluster and a similarity threshold of 0.5 (all other parameters were
default) was used to assign the lung EC subclusters to the breast EC
data. For congruency analysis, we calculated the similarity of marker
genes (calculated using all expressed genes in both datasets) using
pairwise Jaccard similarity coefficients for all clusters against all other
clusters. The Jaccard coefficient is defined as the size of the intersec-
tion divided by the size of the union sets:

J A,Bð Þ= ∣A \ B∣
∣A∪B∣

=
∣A \ B∣

∣A∣+ ∣B∣� ∣A \ B∣
ð1Þ

where J is the Jaccard index andA andB are two sets ofmarker genes106.
For the comparison of our breast EC taxonomy to additional

cancer types, we used a scRNA-seq dataset of human breast, ovarian
lung and colorectal cancer97. Raw counts were downloaded from
https://lambrechtslab.sites.vib.be/en/data-access, and ECs were sub-
setted based on provided cell type annotations. The scmapCluster
algorithmwasused as described above, using a list of all top-25marker
genes for each breast EC cluster and a similarity threshold of 0.5 (all
other parameters were default) to assign the breast EC subclusters to
the external EC data.

Gene set analyses. DGEA (differential gene expression analysis),
GSEA (gene set enrichment analysis), and GSVA (gene set variation
analysis)107 were performed as implemented in BIOMEX101. In short,
we first performed pairwise differential gene expression analysis for
each EC subcluster of interest versus all remaining EC subclusters,
using the limma package108. The resulting list of DEGs was then fil-
tered, selecting only those DEGs with an adjusted p-value < 0.05
(Benjamini–Hochberg).

An in-house curated list of 910 metabolism-related gene sets
(Supplementary Data 2) obtained and selected from the Molecular
Signatures Database was used for competitive GSEA and GSVA72. GSVA
scores were calculated for sets with aminimumof 5 detected genes, all
other parameterswere default. For GO enrichment analysis, we ranked
significant DEGs in each DGEA by fold change (the most upregulated
gene received rank 1). The top 100 significant DEGs from this filtered
list (sorted by log fold change) were then used for GO enrichment
analysis using the ClusterProfiler package107, using a p-value cut-off of
<0.01, and a q-value (Benjamini–Hochberg) cut-off of <0.05.

Receptor–ligand interaction analysis. To investigate the potential
EC-stromal cell interactome in our data, we used the Python imple-
mentation of CellPhoneDB45. As input to the algorithm, we used a
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pooled normalized count matrix, comprising both the EC-enriched
and (T)ME (no EC-enrichment) datasets, and the following parameters:
data=hgnc_symbol; iterations=500; threshold=0.25; subsampling-
log=false; subsampling-num-cells=9000. Only significant interactions
(“significant_means” output file) were used for further analysis. EC-self
interactions, or interactions between EC subclusters and mast cells,
plasmacytoid dendritic cells, or plasma cells (all <100 cells per cluster)
were excluded. EC subclusters identified in the (T)ME dataset (not EC-
enriched) were also not considered for the analysis. To ensure EC
subcluster specificity of the interaction, for each EC subcluster of
interest (either angiogenic ECs (EC4) or venous ECs (EC7–10)) only
receptors/ligands enriched at a log2fold change ≥0.25 (as compared to
all other EC subclusters) were considered. Moreover, for predicted
interactions between venous ECs and the stroma, the average inter-
action of all venous subclusters (EC7–10) was calculated, and only
interactions occurring in at least 3 out of 4 venous subclusters were
considered. Interactions were visualized as circos plots using the cir-
clize R package109. While interactions were calculated between all
identified subclusters, we specifically focused our interpretation and
analysis on interactions between angiogenic or venous ECs and
immune cell types (all NK, T, and myeloid subclusters).

NicheNet analysis. NicheNet analysis was performed using
the nichenetr package110 (v. 1.0.0)) and the accompanying
Seurat vignette (https://github.com/saeyslab/nichenetr/blob/
master/vignettes/seurat_steps.md). We only considered genes
expressed in at least 10% of the sender or receiver populations. The
following subclusters were used in the analyses: angiogenic ECs
(cluster EC4), all (pooled) myeloid subclusters (Mye1–7), or conven-
tional DCs (cluster Mye6). The gene sets of interest (DEGs between
tumor- and peri-tumor-derived cells) were identified using the Find-
Markers function in Seurat (adjusted p-value ≤0.05, average log fold
change ≥0.25). As described for the receptor-ligand analysis above, to
ensure EC subcluster specificity of the interaction, for angiogenic ECs
(EC4) the list of potential ligands was filtered to only include genes
enriched at a log2fold change ≥0.25 (as compared to all other EC
subclusters). Ligand activities were predicted using the pre-
dict_ligand_activities function, using the pearson correlation coeffi-
cient, and top-ranking ligandswere selected for further analysis (based
on histogram evaluation of ligand activity scores). Default settings
were used for all other aspects of the analysis.

SCENIC analysis. Analysis was performed using the SCENIC R
package80 with the enriched EC dataset, using the 20,000 motifs
database for RcisTarget and GRNboost (SCENIC version 0.1.5, which
corresponds to RcisTarget 0.99.0 and AUCell 0.99.5; with
RcisTarget.hg19.motifDatabases.20k).

inferCNV analysis. CNVs (determined for luminal cell annotation, see
Supplementary Information) were estimated using the inferCNV R
package (version 1.5.0) as described in previous studies111,112. For this
analysis, we only made use of the (T)ME (not EC-enriched) dataset, of
which we selected all immune, fibroblast, myoepithelial, and (peri-)
vascular cells as a normal (non-malignant) reference to estimate the
presence of CNVs (indicative of malignant cells) in all luminal sub-
clusters. Analysis was performed using the following parameters: cut-
off 0.1, denoise = T, HMM = T, cluster_by_groups = T.

Tissue staining and quantification
IHC staining. Formalin-fixed paraffin-embedded human breast tissue
sections (thickness 7 µm) were subjected to hematoxylin/eosin stain-
ing or immunohistochemistry. For a full list of primary and secondary
antibodies used for immunohistochemistry, see Supplementary
Table 1. Briefly, after incubation overnight at room temperature with
the primary antibodies, sections were incubated with the appropriate

secondary antibodies followed by amplification with the proper tyr-
amide signal amplification system (Perkin Elmer) (CD105, ACKR1, SMA,
CD36, HLA-DRA, CLEC2B, CD16, and KLRF1) or with DAB Substrate Kit
(Abcam) (CD3, CD68, CK18/8, and CK5/6) or with Alexa Fluor-
conjugated secondary antibodies (FABP4, INSR) or with Akoya’s
Opal™Multiplex IHC system (CD105, INSR, SELL, PODXL, and FOXP3).
Nuclei were counterstained with Hoechst 33342 (Sigma-Aldrich) and
slides were mounted using ProLong Gold Antifade Mounting medium
(Thermo Fisher Scientific). Imaging was performed using a Zeiss
AxioScan Z1 at 20×magnification, or by confocal imaging using a Zeiss
LSM780 confocalmicroscope (Carl Zeiss) at 100×magnification (alpha
Plan-Apochromat 100×/1.46 Oil DIC M27). The images were processed
using Fiji software (https://fiji.sc).

RNAscope in situ hybridization. Formalin-fixed paraffin-embedded
human breast tissue sections were subjected to RNAscope in situ
hybridization using the RNAscope Multiplex Fluorescent v2 assay
(ACDBio) combined with immunofluorescence—Integrated Co-
Detection Workflow according to the manufacturer’s instructions
(Pretreatment and RNAscope Multiplex Fluorescent v2 Assay accord-
ing to protocol 323100-USM and MK-5150). Hybridization was per-
formed with the RNAscope probes (ACKR1, FABP4, PPARG, ID2), and
the RNAscope 3-plex Positive and Negative Control Probes (see Sup-
plementary Table 1). Slides were then processed according to the
RNAscope Multiplex Fluorescent v2 protocol (Hybridization, Amplifi-
cation, and SignalDevelopment), combinedwith immunofluorescence
for CD105 or CD105 and HLA-DR and counterstained with Hoechst
33342 (Sigma-Aldrich). Images were acquired using a Zeiss LSM 780
confocal microscope (Carl Zeiss).

Quantification. For quantification of IHC or H&E stainings, we quanti-
fied one complete tissue section per patient per condition. For quan-
tification of images containing RNAscope probes, we analyzed 10
representative images per patient per condition. For the quantification
of HLA-DR expression in ACKR1+ vessels, we regarded a blood vessel as
ACKR1+ if a clear pattern onRNAscope in situ hybridizationwas present
(Fig. 2f). To compare PPAR-γ expression in LIPECs versusnon-LIPECswe
quantified the % of PPARG+ nuclei in CD105+, FABP4+ blood vessels, or
CD105+, FABP4– blood vessels, respectively, in the same patient. For
the validation of themajor cell types (Supplementary Fig. 4e–g) and the
quantification of LIPECs (Fig. 5f, g), we used tissue sections from the
same patients as used for scRNA-seq. We used specific staining for
luminal cells (CK8/18, a mixture of normal luminal cells and BC cells),
myoepithelial cells (CK5/6), ECs (CD105), T cells (CD3), and macro-
phages (CD68) to quantify their abundances. An expert breast pathol-
ogist from the University Hospital Leuven quantified perivascular cells
and other stromal cells (a mixture of fibroblasts and adipocytes) on
H&E images. For quantification of FAPB4+ vessels (LIPECs) we quanti-
fied the CD105+, FABP4+ area relative to the CD105+ area. For morpho-
metric analysis, we used Leica MetaMorph AF 1.8 software package.

HUVEC and NK cell co-cultures
Human umbilical vein endothelial cells (HUVECs) were freshly isolated
from umbilical cords obtained from multiple donors of unknown sex
(with approval from the Ethics Committee Research UZ/KU Leuven
and informedwritten consent obtained fromall subjects) as previously
described113. Briefly, the interior of the umbilical vein was rinsed with
PBS containing antibiotic-antimycotic solution (Thermo Fisher Scien-
tific) and injected with pre-heated collagenase I solution (0.2% col-
lagenase type I in 0.9% NaCl, 2mM CaCl2, antibiotic-antimycotic).
After no more than 13min incubation, the collagenase suspension
containing endothelial cells (ECs) was collected, filtered through a
40μmnylon cell strainer, and spundown. The ECswere plated on0.1%
gelatin-coated dishes in M199 medium (1mg/mL D-glucose) (Thermo
Fisher Scientific) supplemented with 20% fetal bovine serum (FBS)
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(Merck-Biochrom), 2 mM L-glutamine (Thermo Fisher Scientific),
Endothelial Cell Growth Supplement (ECGS)/ Heparin (PromoCell),
100 IU/mL penicillin and 100 μg/mL streptomycin (Thermo Fisher
Scientific), and cultured until confluent in a 5% CO2, 37 °C incubator.
The confluent cultures were split and replated in a 1:1 mixture ofM199
and endothelial cell basal medium (EGM2) (PromoCell) supplemented
with endothelial cell growth medium supplement pack (PromoCell)
and further cultured in EGM2 medium. In all experiments, HUVECs
were used as single-donor cultures and were used between passages 2
and 5. Cultures were regularly tested for mycoplasma. HUVECs were
transduced in 10 cm2 petri-dishes with 15 MOI lentiviral vectors con-
taining empty control (PLKO) or two different shRNA constructs for
CLEC2B knockdown (KD). After 24 h themediumwas refreshed. 4 days
after transduction, HUVECs were trypsinized, replated in gelatin-
coated 48-wells plates and cultured for 24 hwith PBS (control) or 2μg/
mL lipopolysaccharide (LPS, Sigma) and 100 ng/mL interferon gamma
(IFNγ, Peprotech) to induce CLEC2B expression.

For natural killer (NK) cell isolation, whole blood was acquired
from a healthy volunteer in heparin coated tubes. Then, PBMCs were
isolated fromwhole blood by Ficoll-Paque (GEHealthcare) followedby
density centrifugation, after which the PBMC fraction was collected in
PBS and washed 2 times with PBS. NK cells were isolated by negative
isolation using the NK cell isolation kit (Miltenyi Biotech) as per the
manufacturer’s instructions. Isolated NK cells were washed and
resuspended in RPMI supplemented with 10% heat-inactivated FBS.
Then, HUVECs werewashed twice with RPMImedium and 100,000NK
cells/well were added to the confluent HUVECmonolayer in each well.
The co-culture was incubated for 24 h. After the co-culture, cells were
harvested and supernatant was collected and frozen at −20 °C until
use. The cells were washed with FACS buffer (PBS + 0.5% BSA (Sigma)
and 2mMEDTA) and stained for the followingmarkers: CD45 (BV421),
CD56 (BV650), CD107a (FITC), CD3 (AF700) and viability dye (eFluor
780 from eBioscience). All antibodies were purchased fromBiolegend.
FACS staining was performed for 30min at 4 °C in the dark. After
staining, cells were washed twice with FACS buffer, and samples were
analyzed on a FACS Aria III (BD Biosciences). Data was analyzed using
FlowJo software (v10.8.1; BD Biosciences). NK cells were gated as live,
single CD45+CD3−CD56+ cells. The purity of NK cells was >95% of all
CD45+CD3− cells in each well and CD107a expression was assessed.

RNA Isolation and quantitative RT-PCR
RNA was collected and purified with the PureLink RNA Mini Kit
(Thermo Fisher Scientific) and converted to cDNA using the iScript
cDNA synthesis kit (Bio-Rad). RNA expression analysis was performed
with TaqMan Fast Universal PCRMasterMix (Thermo Fisher Scientific)
as described using premade primer sets (IDT Integrated DNA Tech-
nologies). For comparison of gene expression between conditions,
mRNA levels normalized to the housekeeping gene HPRT.

Protein extraction and immunoblotting
Protein extraction and immunoblot analysis were performed using
RIPA Lysis and Extraction Buffer (Thermo Fisher Scientific) in the
presence of protease and phosphatase inhibitors (Roche). Lysates
were separated by SDS-PAGE under reducing conditions, transferred
to a nitrocellulose or PVDF membrane, and analyzed by immunoblot-
ting. Primary antibodies and appropriate secondary antibodies are
listed in Supplementary Table 1. Signal was detected using the ECL or
Femto system (Thermo Fisher Scientific) according to the manu-
facturer’s instructions. Densitometric quantifications of bands were
done with Fiji software. For calculation of the % reduction in CLEC2B
expression relative to CTRL (empty control, PLKO), the CLEC2B/
housekeeping gene ratio in the CLEC2BKD conditions was determined
separately for every HUVEC donor analyzed, and normalized to
the CLEC2B/housekeeping gene ratio in the CTRL condition (in the
same donor). alpha-Tubulin (n = 1) or GAPDH (n = 3) were used as

housekeeping genes. See Supplementary Information for uncropped
scans of the western blot shown in Supplementary Fig. 8c.

Analysis of the retrospective clinical cohort
Patient data: All patient data used for retrospective clinical cohort
analyses (and their validation) were retrieved from the multi-
disciplinary BC clinic database in the University Hospital Leuven. This
study was approved by the Medical Ethics Committee UZ Leuven
under protocol number S63779.

Patient demographics: We analyzed metadata of all 4924 female
patients with early, hormone sensitive, HER2 negative BC treated with
definitive surgery between 1987 and 2010 from the BC clinic database
indicated above. All patients had a minimal follow up of 8 years. 265
patients were not considered for downstream analysis due to lack of
critical metadata that could influence the survival analysis. Patients
were compared by groups during BC follow up: (i) patients not taking
metformin (or any other PPAR-γ agonist) and (ii) patients taking met-
formin (and thiazolinedione (1 patient)).We considered a patient in the
metformin group only after continuous metformin intake of >1 year
during follow up for BC, 11 patients discontinuedmetformin treatment
before this cutoff and were excluded from the analysis. Group 1 con-
tained 4290 patients (92.2%) who were not treated with metformin,
while group 2 contained 358 patients (7.8%) who were treated with
metformin in the context of diabetes mellitus. Patients in group 2 had
more adverse clinical characteristics (they were older, had a higher
Body Mass Index (BMI, a known risk factor for adverse outcomes in
BC114,115) and had a larger fraction of patients with cancer stages II
and III).

Survival analysis.We retrospectively analyzed the effect ofmetformin
treatment on the clinical outcome in a cohort of 4648 female patients
with early, hormone receptor-positive/HER2-negative BC, who under-
went surgery followed by anti-hormonal treatment. Our cohort
includes BC patients treated with the biguanide metformin (all dia-
betic), control patients that are diabetic but not treated with metfor-
min, as well as non-diabetic controls without treatment (to increase
statistical power). 357 out of 358 patients in the treatment group
received metformin and the remaining 1 patient received both met-
formin and thiazolidinedione treatment. We used χ2 tests of inde-
pendence to examine differences in the baseline characteristics
between groups (Supplementary Data 6). We investigated the BCSS
and DRFI between the two groups. Cumulative incidence function
estimates of each group were compared using log-rank tests to esti-
mate BCSS and DRFI. Death of other causes was considered a com-
peting event. A group by time interaction was modeled to test the
proportional hazards (PH) assumption. BCSS and DRFI were sig-
nificantly better for the patients treated with metformin if the test for
proportional hazards did not reject the assumption. In case this
assumption is rejected (p-value < 0.05), the group-effect is estimated
at two distinct follow-up times (5 and 8 years). All survival analyses
were tested in a Cox proportional hazards regression model that was
adjusted for: (i) body mass index (<30 versus ≥30), (ii) pathological
stage (Stage I–II versus Stage III), (iii) age (age ≤ 50years versus age > 50
years), (iv) tumor histological grade (G= I–II versus G> II) and (v)
central hormone receptor status (double positive versus single posi-
tive). Because (i) standard of care adjuvant treatment (radiotherapy,
chemotherapy, endocrine therapy) changed considerably during the
recruitment interval and (ii) because its indications are mainly driven
by the pathological stage, age, tumor histological grade, and central
hormone receptor status, we did not perform a separate adjustment
for adjuvant treatment modalities. The time to event or censoring was
computed in years since diagnosis for each patient. Survival time was
censored at the date of the last follow-up during the follow-up period
if events were not observed. Survival probabilities and associated
confidence intervals were estimated non-parametrically using the
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Kaplan–Meier product limit method at 5, 10, and 14 years. For cases
with unknown cause of death (n = 286 on a total of 1350 deaths) we
assumed disease-related death in presence of relapse (n = 72), and
death of other causes in absence of relapse (n = 214).

Breast cancer outcomes based on individual matching. Each BC
patient treated with metformin was compared to two control patients
(non-diabetic BC patient not treatedwithmetformin)matched for age,
BMI, pathological stage, and histological grade. For one patient we
could only assign one control. Survival analysis was done as described
above. Here, we used Cox proportional hazard models for data ana-
lysis, accounting for clustering due to matching by using the robust
sandwich estimate of Lin and Wei (1989)116. Results are presented as
hazard ratios with 95% confidence intervals (Supplementary Data 6).
Analyses were performed using version 9.4 of the SAS system for
Windows.

General statistics
Data are represented as mean ± SEM. When comparing two groups for
a single parameter a paired t-test was used, while for three groups a
one-wayANOVA followedbyDunnett’smultiple comparisons testswas
used (in GraphPad Prism8).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw and processed single cell RNA sequencing data generated in
this study have been deposited in the gene expression omnibus
database (GEO), under accession code GSE155109. The publicly avail-
able lung cancer EC data used in this study are available in the
ArrayExpress database at EMBL-EBI under accession code E-MTAB-
6308, and at https://carmelietlab.sites.vib.be/en/software-tools (lung
Tumor ECTax)19. The publicly available breast, ovarian and colorectal
cancer data used in this study are available in the ArrayExpress data-
base at EMBL-EBI under accession code E-MTAB-8107, and at https://
lambrechtslab.sites.vib.be/en/data-access97. Source data are provided
with this paper. The remaining data are available within the Article,
Supplementary Information or Source Data file.
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