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Annihilation of exceptional points from dif-
ferent Dirac valleys in a 2D photonic system

M. Król 1,9, I. Septembre2,9, P. Oliwa 1, M. Kędziora1, K. Łempicka-Mirek1,
M. Muszyński 1, R. Mazur 3, P. Morawiak 3, W. Piecek 3, P. Kula 4,
W. Bardyszewski5, P. G. Lagoudakis6,7, D. D. Solnyshkov 2,8 ,
G. Malpuech 2 , B. Piętka 1 & J. Szczytko 1

Topological physics relies on Hamiltonian’s eigenstate singularities carrying
topological charges, such as Dirac points, and – in non-Hermitian systems –
exceptional points (EPs), lines or surfaces. So far, the reported non-Hermitian
topological transitions were related to the creation of a pair of EPs connected
by a Fermi arc out of a single Dirac point by increasing non-Hermiticity. Such
EPs can annihilate by reducing non-Hermiticity. Here, we demonstrate
experimentally that an increase of non-Hermiticity can lead to the annihilation
of EPs issued from different Dirac points (valleys). The studied platform is a
liquid crystal microcavity with voltage-controlled birefringence and TE-TM
photonic spin-orbit-coupling. Non-Hermiticity is provided by polarization-
dependent losses. By increasing the non-Hermiticity degree, we control the
position of the EPs. After the intervalley annihilation, the system becomes free
of any band singularity. Our results open the field of non-Hermitian valley-
physics and illustrate connections between Hermitian topology and non-
Hermitian phase transitions.

So far, topological physics has been mostly dealing with Hermitian
Hamiltonians, possessing well-defined topological invariants, such as
the Chern number, calculated from the eigenstates of these
Hamiltonians1. The topological charges composing these invariants are
associated with the Hamiltonian singularities in the parameter space2,
such as Dirac points. The development of non-Hermitian physics
brought about new topological invariants3, whose relation to the
Hermitian ones is a particularly active topic4.

The eigenstates of a non-Hermitian Hamiltonian are, in general,
non-orthogonal. Exceptional points (EPs), where the eigenstates coa-
lesce, can appear at the maxima of non-orthogonality when the non-
Hermiticity is increased. EPs are known in optics for more than a
century5, but only recently they have been shown to allow remarkable

phenomena6, such as specific lasing7, unidirectional transport8,
enhanced sensing9,10, or scattering control11. Their importance has
been revealed thanks to their description in terms of a topological
charge, characterizing a topological phase3,12–14, which can be mea-
sured by encircling the EP in either parameter15 or reciprocal space4.
EPs always appear in pairs connected by a Fermi arc in the full para-
meter space, similar to the Weyl points in Hermitian systems, as
described by the famous Nielsen-Ninomiya no-go theorem16. Each pair
of EPs is formed from aminimumof the Hermitian coupling (e.g. band
crossing).

So far, the reported non-Hermitian topological transitions were
related to the creation of EPs with the increase of non-Hermiticity4,17–20.
Typically, one Dirac point (DP) splits into two EPs by increasing non-
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Hermiticity (Fig. 1a). These EPs can then annihilate by reducing non-
Hermiticity (going back to the Hermitian limit). This transition con-
verts a Hermitian singularity into two EPs and vice versa. More com-
plicated situations can occur when more than two levels or bands get
coupled, which leads to the emergence of higher-order
singularities21,22. These non-Hermitian transitions are based on local
(geometrical) properties of states in parameter space. They do not
depend on the possible presence of other DPs, and on the global
geometry (topology) of eigenstates.

In this work, we demonstrate a different type of non-Hermitian
topological transition in a continuous (non-periodic) 2D photonic
system. We show that, if the Hermitian Hamiltonian is topologically
trivial, supporting opposite-sign DPs, an EP issued from a DP can be
moved towards another EP issued from another DP with which it
annihilates (Fig. 1b). This process takes place upon the increase of non-
Hermiticity and there is no singularity of any type (neither EPs norDPs)
left after the annihilation. It relies not only on the existence of an
isolatedDP, but on the global band topology, which takes into account
not just one, but all singularities present in the parameter space.

Results
Experimental system and its model
The actual platform we study is composed of two microcavities filled
with liquid crystal23,24 (Fig. 2a). These microcavities (see Methods for
structural details) host a series of photonic modes with quantized
wavevectors perpendicular to the mirror plane and energies EN (N is
the mode number). Each mode forms a polarization doublet showing
an in-plane parabolic dispersion with a 2D effective mass mN∼N. The
polarization degeneracy in a doublet is lifted at all wavevectors except
k =0 (touching parabolas) by the splitting between TE and TM eigen-
modes (Transverse-Electric and Transverse-Magnetic). This splitting
acts as photonic spin-orbit coupling (SOC) characterized by a winding
number 225,26. The liquid crystal molecules orientation is set by an
external voltage, which controls the linear birefringence α23,24. A small
α < (EN+1 − EN) lifts the k =0 degeneracy. The crossing between the two
modes of same order ((N,N)-case) leads to the formation of two tilted
Dirac cones both carrying the same topological Berry charge + 1/226.
When α becomes comparable with (EN+1 − EN), modes of different
parities become energetically close and get coupled by a Rashba-
Dresselhaus SOC with equal strength23, also called emergent optical
activity27. Here we consider α ≈ (EN+2 − EN)24, so that this optical activity
is negligible. The corresponding eigenmodes look like two2Dparabola

(Fig. 2b). Neglecting the losses, these two bands can be described by
the following effective 2 × 2 Hermitian Hamiltonian written on the
circular polarization basis:
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where EN + 2
H and mH∼N + 2 are the energy and mass of the N + 2th

H-polarized mode, and EN
V and mV∼N are the energy and mass of the

V-polarizedmode numberN. kx, ky are the 2Dwavevector components.
The spin-independent masses mx and my are determined by the
birefringence and the angle of the optical axis (see Supplementary
Note I). β is the magnitude of the TE-TM SOC, β0 = _2ðmH �
mVÞ=4mHmV and Δ= ðEN + 2

H � EN
V Þ=2. This Hermitian Hamiltonian can

bewritten as a linear combination of identity and Paulimatrices, which
defines a real effective magnetic field Ωr acting on the polarization
pseudospin (H =Ωr ⋅ S). The two non-zero components of the field are
Ωx

r =Δ� β0k2 � βðk2
x � k2

yÞ and Ωy
r = � 2βkxky.

Hermitian topology
This effective Hamiltonian possesses two distinct topological phases
we experimentally characterize below (see also SupplementaryNotes I
and II formore details). Ifβ>β0, the bands show two tiltedDPs carrying
the same topological charge (Fig. 2i), and the bands are topologically
non-trivial, characterized by a non-zero winding of the pseudospin
giving rise to a non-zero Chern number, if a gap is opened by breaking
the time-reversal symmetry. If β<β0, the bands possess four tiltedDirac
cones, as shown in Fig. 2c, f. Their coordinates are given by ( ± k0x, 0)
and (0, ± k0y), where k0,x,y = ðΔ=ðβ0 ±βÞÞ1=2. The winding number of the
pseudospin is + 1 for each of the two DPs located on the ky-axis, which
corresponds to Berry curvature monopoles of charge + 1/2. The DPs
located on the kx-axis carry a pseudospin winding number − 1 and a
Berry curvature charge − 1/2 (Fig. 2f). The corresponding bands are
therefore globally topologically trivial, with zero overall pseudospin
winding and a vanishing Chern number.

Figure 3 demonstrates the above-mentioned Hermitian topolo-
gical transition. It presents polarisation pseudospin (see Supplemen-
tary Note I) textures, experimentally extracted from a microcavity
region with a liquid crystal layer thickness of around 3.9μm through
polarization-resolved tomography. Figure 3a is observed with 1.39 V
applied to ITO (Indium Tin Oxide) electrodes. At this voltage, the
modesN + 2 andN cross each other along bothwave vector directions.
Four pseudospin monopoles corresponding to Dirac points are
observed. The total winding of the pseudospin encircling all four Dirac
points is zero, as can be seen from the high-k texture (pseudospin
pointing to the right). Under a different external voltage of 11 V,modes
with the numbers N and N are almost degenerate. The pseudospin
texture shown in Fig. 3b exhibits twomonopoles, whoseposition along
either the kx or ky axis is controlled by the sign of Δ. In that case, the
total winding number of the pseudospin is 2 (double winding stem-
ming from the TE-TM field).

Non-Hermitian transition
The next step is to consider the losses (line broadening), inherently
present in photonic systems. Importantly, in the (N+2, N) case, these
losses are significantly different for the H and V modes with ΓH =
2.04 ±0.04 meV, ΓV = 1.8 ± 0.1 meV (see Methods and Supplementary
Note IV). This requires adding a non-Hermitian part to the total
Hamiltonian of the system, as already illustrated in4,18,19:

Hk =H
real
k +Himag ð2Þ

whereHimag = iðΓ0I2 + δΓσxÞwith Γ0 = (ΓH + ΓV)/2 being themean decay
rate. The term δΓ = (ΓH − ΓV)/2 defines a constant imaginary effective

Fig. 1 | Difference between previously considered EP annihilation and this
work. a Typical EP annihilation where only a single Dirac valley is involved. EPs are
created from a DP when increasing the relative non-Hermiticity χ. Conversely, they
merge and formaDPwhen the relative non-Hermiticity decreases.bAnnihilationof
EPs described in this work, involving different valleys. 4 EPs are created from 2 DPs
when increasing the relative non-Hermiticity. When it is increased further, the EPs
meet and annihilate, leaving the system without any singularity. w is here the
winding number.

Article https://doi.org/10.1038/s41467-022-33001-9

Nature Communications |         (2022) 13:5340 2



field along x:Ωi = (δΓ, 0, 0)T. As shown in Fig. 2d, g, this non-Hermitian
part transforms each DP into a pair of EPs5,19,28 connected by a line,
called a Fermi arc14, where the real parts of the eigenvalues are
degenerate. The squared absolute value of the complex splitting
between the eigenmodes reads 4ð∣Ω2

r �Ω2
i ∣

2 + 4∣ΩrΩi∣
2Þ. The existence

of an EP (zero splitting) therefore requiresΩrΩi = 0 andΩ2
r �Ω2

i = 0. In
our case, the first condition reads:

k2
x

k2
0x

+
k2
y

k2
0y

= 1 ð3Þ

which determines an ellipse of possible locations for EPs (Fig. 2g, cyan
and magenta points). The second condition Ω2

r �Ω2
i = 0 is verified

along the blue curves in Fig. 2g, h. The crossing of both lines sets the
coordinates of the 8 EPs:
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The Fermi arc, shown in blue-green, is a part of the ellipse where
Ω2

r �Ω2
i < 0, whereas the other part, given by Ω2

r �Ω2
i > 0 and shown

in gray is the imaginary Fermi arc14 with degenerate imaginary parts of
the modes.

The topological charge of an EP can be defined as the winding
number of the complex energy of eigenmodes around the EP3,4,12,13:

w=
1
2π

I
dk � ∇k arg EnðkÞ: ð6Þ

The winding numbers of the eight EPs alternate in sign along the
ellipse. Increasing δΓ (or decreasing Δ) increases the degree of non-
Hermiticity and moves the EPs away from the spawning points, along
the ellipse, until they meet each other and annihilate, as shown in
Fig. 2e, h. Fermi arcs connect to forma closed lineof trivial degeneracy.
It is not a ring of exceptional points reported in29, because the
imaginary parts of the energies are not degenerate along this
whole line.

As shown above (Fig. 3), a topological transition occurs for the
Hermitian part of the Hamiltonian when β0 =β. The system switches
between fourDPs (globally trivial) and twoDPs (non-trivial). In the case

0

-1

1

a c d e

b E

E- E E- E E- E

ITO

LC

DBR

DBR

ITO

Orientinglayer

Orientinglayer

~V

neno

y

x

θy

θx

z

kx
ky

kx

ky

kx

ky

kx

ky

f

i

g h

kj

kx/k0x
0 1-1

kx/k0x
0 1-1

kx/k0x
0 1-1

k y
/k
0y

0

-1

1

4DPs

2DPs 4EPs 4EPs

0EP
0DP

8EPs

k y
/k
0y

Fig. 2 | Schemeof the experiment and thepossiblebehaviors of the exceptional
points. a Distributed Bragg Reflector (DBR) based microcavity filled by liquid
crystal (LC) molecules whose orientation is controlled by an external voltage V.
b 2D Energy dispersion of the mode N + 2 polarized H at k =0 and of the mode
Npolarized V at k =0, ki = ðω sinθiÞ=c. c–eDifference of the real part of the energies
whenβ0>β in theHermitian case (c), andnon-Hermitiancases for 2Δ = 3meV (d) and
2Δ = 1.2meV (e). Other parameters are given in themain text. f–h Same as (c–e) but
top-view. The points set the k-coordinate of the four DPs (f) and eight EPs (g),

whereas their colorsmarks the sign of their topological charges. The dashed line in
(f) shows the ellipse (appearing as a circle in these coordinates) given by Eq. (3),
setting the allowed positions of EPs. EP locations are determined by the crossing of
the ellipse and the blue lines given by Ω2

r �Ω2
i = 0. This crossing breaks the ellipse

in Fermi arcs shown in green in (g,h) and imaginary Fermi arcs shown in gray in (g).
i–k Same as (f–g), but when β0<β and the Hermitian limit contains only two same
sign DPs (i). EPs from different Fermi arcs (j, k) cannot annihilate, belonging to
separate trajectories.

kx (µm-1)

k y
(µ
m
-1
)

0

0

5

5

-5
-5

kx (µm-1)
0 5-5

a b

Fig. 3 | Hermitian topological transition. Experimental pseudospin texture in
S1-S2 plane of lower energy band for the (a) (N + 2,N) case (4 Dirac points, zero
winding) and (b) (N,N) case (2 Dirac points, winding 2).

Article https://doi.org/10.1038/s41467-022-33001-9

Nature Communications |         (2022) 13:5340 3



with 2 DPs, k0y becomes imaginary. Equation (3) determining the
location of EPs remains valid, but describes two hyperbolas (Fig. 2j, k).
EPs issued from distinct DPs are moving towards infinity on separate
open curves and cannot meet anymore. The EP annihilation cannot
occur (See Supplementary Note VI for a detailed discussion).

Going back to the case β <β0, the EP annihilation occurs in Eqs. (5)
when δΓ = βk0xk0y, which gives

χ =
δΓ
Δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β02 � β2

q
β

= 1: ð7Þ

The degree of non-Hermiticity χ can be changed either by
increasing δΓ or decreasing Δ. The latter option is used in our
experiment: Δ is controlled by the voltage affecting the liquid crystal
molecules orientation. The experimental study of the liquid crystal
cavity is performed by polarization-resolved transmission, fromwhich
we extract the real and imaginary parts of the energies of the
eigenmodes and also their polarization (seeMethods). The differences
between the real (imaginary) part of the energies versus kx, ky are
shown in Fig. 4a, e and c,g for two values of detuning 2Δ = 3meV and
1.2meV for the cases where the EPs are present and annihilated,
respectively. In Fig. 4a, e, one can observe the Fermi arcs, where the
real parts of energy are degenerate and the imaginary parts split. The
EPs are shown by white crosses. On the other hand, imaginary Fermi

arcs are the lines where the imaginary parts of energies are degenerate
and the real parts split. The real and imaginary part of energy, and their
uncertainties (see Methods and Supplementary Note V) along the Fermi
arc with an EP are shown in Fig. S6. After the EPs annihilation, only a real
Fermi arc remains (Fig. 4c, g). Figure 4b, d, f, h shows the corresponding
theoretical results, obtained using the effective non-Hermitian Hamilto-
nian (2). The agreement between experiment and theory is excellent.We
note that in ref. 24, the very same structure was studied in the regime of
crossing between the N+ 2 and N modes. The key difference is that the
experiment was performed at higher detuning Δ, so with a very small
non-Hermiticity degree. This is also the regime for which Fig. 3 was
measured. In that case Fermi arcs are very small, the EPs could not be
resolved and an Hermitian description of bands is appropriate.

The topological charge measurement is presented in Fig. 4i–l.
Fig. 4i, k show a map of the phase of the complex energy of the lower
mode for 2Δ = 3meV and 2Δ = 1.2meV, as previously. In both cases, the
real Fermi arcs appear as a sharp phase shift. Very clear phase vortices
are visible at the EP positions in Fig. 4i and are absent in Fig. 4k. These
features are in excellent agreement with the simulations based on the
effective non-Hermitian Hamiltonian (2), shown in Fig. 4j, l. The
topological charge of each EP w = ± 1/2 is determined by the direction
of the phase vortex winding. These charges are opposite for the EPs
originating from different DPs, which ultimately allows their
annihilation.

Figure 4m demonstrates the control of the Fermi arc angular size
related to the EPsposition through the experimental tuning of the non-
Hermiticity χ. The topological transition associated with the EP anni-
hilation is clearly visible taking place for χ = 1. To demonstrate that the
observed behavior does not depend on a particular sample, we have
performed extra measurements with a sample characterized by dif-
ferent parameters. Black and red dots in panel 4m correspond to
samples 1 and 2 respectively, whereas all data shown in panels 4(a–l)
are from sample 1. The theoretical curve is universal, it does not have
any fitting parameters.

Discussion
Non-Hermitian transitions in two-band systems through EP merging
are typically related to a single Hermitian singularity3,13,14,18. Here, we
consider the merging of EPs originating from different DPs upon
increasing the non-Hermiticity, which to our knowledge was not
reported before. It can be viewed as a first example of non-Hermitian
multivalley physics and demonstrates the link between Hermitian
topology and non-Hermitian phase transitions. Indeed, there is no
singularity of any type after the transition, as in the transition with the
annihilation of 2D DPs carrying opposite charges30. The phase transi-
tion we observe could be realized in other multivalley systems, like
artificial graphene with a σx non-Hermitian contribution.

From an applied perspective, our work sets microcavities along-
side the waveguide-based photonic systems31 as a reconfigurable
platform for exploring non-Hermitian topology. We demonstrate the
tuning of the EP coordinates in k-space by simple modification of an
external voltage, in a micro-device, at optical frequencies. This could
allow to control the angle of emission of the modes surrounding the
EPs, which are known to possess remarkable properties6. Another
interest of the planar cavity platform is that it allows implementing
interacting photons modes (exciton-polaritons)4 possibly up to the
recently demonstrated single-photon non-linearity32. These possibi-
lities combined with our present finding could allow to address in
future non-Hermitian topological physics for strongly interacting-
correlated particles.

Methods
Samples
Both cavities consist of two distributed Bragg reflectors made of 6
SiO2/TiO2 pairs with maximum reflectance at 550 nm grown on glass

Fig. 4 | Observation of EPs, of their topological charges and of their annihila-
tion. Theoretical figures are obtained by diagonalizing the Hamiltonian (2) with
parameters obtained from the sample 1 and given in Methods. The procedure for
the extraction of experimental energies is detailed in Methods. a–d Difference of
the real part of the eigenenergies for 2Δ = 3meV (a, b) and 1.2meV (c, d). The color
bar is saturated above 0.9meV. The white crosses in (a) show the EP coordinates
limiting the blue area corresponding to real Fermi arcs. e–h same as (a–d), but for
imaginary part. The color bar is saturated above 90 μeV. Imaginary Fermi arcs
appear in blue. i, k Experimental and (j, l) theoretical phase (argument) of the
difference of complex energies. EPs are associated to a vortex phase with a phase
shift ±πwhosewinding is shownby the arrows in (i).m Lengthof the Fermi arcwith
respect to non-Hermiticity. Black, red points–experiments with sample 1,2
respectively (seeMethods), blue line–theory. Themaximal length of each Fermi arc
(90∘) is marked with a thin red line. Error bars indicate the measurement uncer-
tainty. The experimental points are obtained by varying the non-Hermiticity degree
χ (controlled by the detuning Δ via applied voltage V).
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plateswith ITOelectrodes. Space between theDBRs isfilledwith highly
birefringent liquid crystal with Δn =0.41. To obtain homogeneous
orientation of LC, both DBRs are finished with structured polymer
orienting layer. The cavity 1 studied in Figs. 4, (S4–S7) has a total
thickness of the LC layer of approx. 1.8μm. The cavity 2 studied in
Figs. 3, 4m and Fig. S8 has a thickness of 3.2μm.

Experimental setup
Experimental results were obtained in transmission configuration.
Broadband light from a LED diode was focused on the sample with a
microscope objective with 50×magnification and numerical aperture
NA=0.6. Transmitted light was collected by another objective with
20 ×magnification and NA=0.4. Fourier plane of the collecting
objective was imaged on the entrance slit of a monochromator
equipped with a CCD camera. Both wave vector directions were mea-
sured by scanning of the image across the slit by the automated
movement of the imaging lens. Data was collected independently for 6
incident light polarizations; linear: horizontal, vertical, diagonal, anti-
diagonal and circular σ+, σ− by adjusting angles of half wave plate and
quarter wave plate after fixed linear polarizer. LC layer anisotropy in
x–z plane was controlled by external square waveform applied to ITO
electrodes with 1 kHz frequency and amplitude of 1.77 V (Fig. 4a, e, i)
and 1.72 V (Fig. 4c, g, k).

Linewidth extraction
We extract the real and imaginary parts of the energies (that is, the
positions and the linewidths) of the modes from the polarization-
resolved spectra by fitting them with the Voigt function, in order to
account both for the homogeneous broadening due to the mode
lifetime and for the inhomogeneous broadening due to disorder. Only
the homogeneous part of the broadening (Lorentzian linewidth) can
give rise to non-Hermiticity and is accounted for by the Hamiltonian
(2). Parallel computing is used to speed up the extraction for thewhole
reciprocal space with high resolution. An example of the energy
spectrum in two polarizations, together with its fit, is provided in the
Supplementary Note IV.

The variation of the difference of the linewidths δΓ with detuning
Δ is negligible, because the linewidths scale as the energies of
the modes and their difference scales as the birefringence Δn,
responsible for the difference of the energies between the modes of
the same order EN

H � EN
V , whereas the detuning Δ between the almost

degenerate modes EN + 2
H � EN

V does not account for the whole bire-
fringence, but only for a small part of it. Indeed, in our case the overall
splitting due to the birefringence EN

H � EN
V ~ 200 meV, and its change

with voltage (corresponding to the variation of Δ) is of the order of 1
meV. The variation of δΓwith voltage is of the sameorder as that of the
birefringence (about 1%), which is smaller than the experimental
uncertainty of this parameter (20%).

The uncertainty on the linewidth is the main source of uncertainty
on the non-Hermiticity degree χ, used to plot Fig. 4m. Other non-
negligible contributions come from the uncertainty on the polarization
splittings β and β0. As to the length of the Fermi arcs, we have used 3 arcs
out of 4 for averaging for sample 1, since the 4th one (the one at ky<0) is
systematically affected by experimental measurement problems. The
lengths of the remaining 3 arcs are very close (e.g. 36, 37, and 38 degrees
for the experiment presented in Fig. 4a). For sample 2,we have used all 4
arcs, and the uncertainty is slightly larger. The uncertainty on the posi-
tion of the EPs is relatively low, because this position is constrained by 2
independent measurements and a third one combining them (real and
imaginary parts of the energy, and its phase).

Experimental uncertainty and the evidence for topological
transition
The 2D images shown in Fig. 4 of themain text do not allow to indicate
the uncertainties, which are important to prove that the transition

associatedwith the annihilation of the EPs indeed takes place. To show
this, we plot in Fig. S6 the real and imaginary part of energy, and their
uncertainties along the Fermi arc when an EP is present. We also show
in Fig S7 a cross-section of Fig. 4a, d of themain text near the top right
corner of the Fermi arc denoted by k0 to clearly show the difference
between the case where EPs exist and when they annihilate. In one
case, this cross-section crosses an imaginary Fermi arc, and in theother
case – a real Fermi arc that forms a full circle.

Parameters of the Hamiltonian
The theoretical panels of Fig. 4 were calculated using the following
parameters, obtained from the sample 1 by fitting the dispersion
(Supplementary Note III) and from the linewidth extraction dis-
cussed above: mx = (1.34 ± 0.07) × 10−5m0, my = (1.08 ± 0.06) × 10−5m0,
β = 0.080 ±0.03meVμm2, β0 =0:47±0:03 meVμm2. Other para-
meters were already given in the text, but we provide them here for
convenience: 2Δ = 2.7 ± 0.1 and 1.2 ± 0.1meV, 2δΓ = 0.24 ± 0.05meV.

The parameters of the sample 2 are given here for comparison:
mx= (1.27 ±0.03) × 10

−5m0, my= (1.14 ±0.03) × 10
−5m0, β=0.23 ±0.01

meVμm2, β0 =0:35 ±0:01 meVμm2, 2δΓ =0.5 ±0.07meV.

Data availability
The data generated in this study are available in the Open Science
Framework (OSF) repository: https://osf.io/jnx8k/?view_only=16426f
9a35404264badaaa93162060a7.
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