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Multiscale profiling of protease activity
in cancer

Ava P. Amini 1,2,3,4,13, Jesse D. Kirkpatrick 1,2,13, Cathy S. Wang 1,5,
Alex M. Jaeger1, Susan Su 1,6, Santiago Naranjo1,7, Qian Zhong1,
Christina M. Cabana1,7, Tyler Jacks 1,7 & Sangeeta N. Bhatia 1,2,8,9,10,11,12

Diverse processes in cancer are mediated by enzymes, which most proximally
exert their function through their activity. High-fidelity methods to profile
enzyme activity are therefore critical to understanding and targeting the
pathological roles of enzymes in cancer. Here, we present an integrated set of
methods for measuring specific protease activities across scales, and deploy
these methods to study treatment response in an autochthonous model of
Alk-mutant lung cancer. We leverage multiplexed nanosensors and machine
learning to analyze in vivo protease activity dynamics in lung cancer, identi-
fying significant dysregulation that includes enhanced cleavage of a peptide,
S1, which rapidly returns to healthy levels with targeted therapy. Through
direct on-tissue localization of protease activity, we pinpoint S1 cleavage to the
tumor vasculature. To link protease activity to cellular function, we design a
high-throughput method to isolate and characterize proteolytically active
cells, uncovering a pro-angiogenic phenotype in S1-cleaving cells. These
methods provide a framework for functional, multiscale characterization of
protease dysregulation in cancer.

Diverse processes in tumor progression rely on changes in not only
the abundance, but also the activity of biomolecules1,2. Methods to
quantitatively track protein activity within the cellular, tissue, and
organismic contexts are therefore critical to advance understanding
of cancer biology and to design next-generation precision cancer
medicines. While the omics revolution has enabled high-throughput
assays of the genome, epigenome, transcriptome, and proteome3, it
has largely stopped short of queries at the protein activity level—a
distinct axis of regulation that is often most proximal to actuated
biological function. Although single-cell transcriptomics has enabled
characterization of intratumoral heterogeneity4–6, and techniques to

localize proteins7,8 and nucleic acid sequences9–11 in situ are starting
to enable study of tumors in a spatial context12, analogous techniques
for single-cell and spatial profiling of enzyme activity have been lar-
gely undeveloped.

Methods to analyze enzyme activity at the organism, tissue, and
cellular scales could yield new biological insights and open diagnostic
and therapeutic avenues in cancer. Recent years have seen a push to
develop biosensors that measure biomolecular activity in vivo to
generate synthetic signals that can be read out noninvasively13–19. For
example, in vivo nanoparticle and molecular sensors of enzyme
activity have enabled noninvasive detection of cancer13,14,20–23, while
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active glucose uptake has been used for functional imaging of cancer
metabolism24. However, such in vivo readouts largely treat the body as
a black box, sacrificing information on spatial localization within the
tumor microenvironment (TME), precluding dissection of phenotypic
heterogeneity at the single-cell level, and thus reducing biological
interpretation. Therefore, there remains a need for methods capable
of generating and unifying molecular activity measurements across
biological scales.

In this work, we present an integrated set of methods to profile
protease activity in cancer across the organism, tissue, and cellular
scales (Fig. 1). In the in vivo setting, we leverage multiplexed
protease-responsive nanosensors together with machine learning
to noninvasively detect and longitudinally monitor disease progres-
sion in preclinical mouse models. To explore tissue-level organiza-
tion within the TME, we establish a multiplexed assay for on-tissue
spatial localization of protease activity against target peptide sub-
strates. Finally, to link protease activity to other measurement
modalities at the cellular scale, we design a single-cell method,
termed activity-based cell sorting, that uses peptide probes and flow
cytometry to sort individual cells based on their associated enzy-
matic activity.

We unify these methods into a hierarchical framework (Fig. 1)
and apply it to study tumorprogression and early drug response in an
autochthonous mouse model of Alk-mutant non-small-cell lung
cancer (NSCLC)25. We uncover significant shifts in protease activity
that occur after targeted therapy with the ALK inhibitor alectinib.
Spatial and single-cell profiling link a treatment-responsive activity
signature to pericytes and endothelial cells of the angiogenic tumor
vasculature, suggesting dynamic cross-talk between cancer cells and
cells of the TME. We envision that these methods to detect
protease activity across scales could yield rich functional data about
the tumormicroenvironment and translate to cancer diagnostics and
therapeutics.

Results
Profiling protease activity in vivo tomonitor tumor progression
and treatment response
We first sought to establish the ability of our activity-based profiling
framework to noninvasively detect and monitor disease over tumor
progression and treatment response. We utilized an autochthonous
mouse model of ALK+ NSCLC as a model system, in which intra-
pulmonary administration of an adenovirus encoding two guide RNAs
and Cas9 resulted in oncogenic rearrangement of the Eml4 and Alk

genes (Fig. 2a), leading to the formation of lung tumors that histolo-
gically resembled human lung adenocarcinoma25. Hereafter, we refer
to this Eml4-Alk driven model of NSCLC as the Eml4-Alk model. We
queried a bulk RNA sequencing (RNA-seq) dataset of Eml4-Alk lungs26

and identified several proteases overexpressed in Eml4-Alk mice
(Fig. S1). To noninvasively monitor protease activity in the Eml4-Alk
model, we engineered a multiplexed panel of activity-based nano-
sensors that can be selectively activated by dysregulated proteases
within the TME to release mass-barcoded peptide reporters that clear
into the urine (Fig. 2b)22. Critically, these nanosensors (Table S1) use
peptide substrates that canbe recognized in vitro by a rangeofmetallo-
, serine, and aspartic proteases22 and that require substrate cleavage for
activation and release of the mass-barcoded urinary reporters. Begin-
ning at 3.5 weeks after tumor induction, when tumors are at an early
stage of progression25, we intratracheally administered the nanosensor
panel into Eml4-Alk andhealthy controlmice, andobserved that several
nanosensors were differentially cleaved by proteases in the pulmonary
microenvironment (Fig. 2c), enabling differentiation of tumor-bearing
and healthy mice at an early stage of tumor progression (Fig. 2d).

We then assessed whether activity-based nanosensors could
rapidly and quantitatively monitor the dynamics of tumor progression
and regression. We treated Eml4-Alk mice with the first-line clinical
ALK inhibitor alectinib27 and monitored changes in pulmonary pro-
tease activity over a two-week treatment course that resulted in rapid
and robust tumor regression (Fig. 2b, Fig. S2a, b). Strikingly, we
observed that alectinib treatment significantly altered pulmonary
protease activity within just 3 days of treatment initiation, with 12 of 14
reporters exhibiting differential enrichment in the urine of vehicle-
versus alectinib-treated mice (Fig. 2e). Signal trajectories for each of
the individual nanosensors revealed distinctpatterns in their dynamics
(Fig. 2e). Notably, cleavage of a subset of nanosensors (e.g., PP01,
PP07, PP10) increased over time in vehicle-treated mice as tumors
progressed but rapidly regressed following alectinib treatment, while
the cleavage of other nanosensors (e.g., PP04) transiently increased
upon initiation of alectinib treatment and then returned towards
baseline levels. Principal component analysis (PCA) revealed that
protease activity in vehicle-treated Eml4-Alkmice grewmoredivergent
from healthy controls over the course of tumor progression, whereas
that of alectinib-treated mice became more similar to healthy con-
trols (Fig. 2f). As such, a random forest classifier trained on urinary
reporter signatures from a subset of Eml4-Alk mice achieved highly
accurate classification of therapeutic response to ALK inhibition
(Fig. 2g, Table S2).
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Fig. 1 | Multiscale profiling of protease activity in cancer. (Top) Methods for
profiling protease activity across the organism, tissue, and cellular scales. Non-
invasive activity-based nanosensors can be translated into activatable probes for
in situ zymography and activity-based cell sorting. (Bottom) Method readouts

enable noninvasive, real-time monitoring of in vivo protease activity over tumor
progression and treatment response; spatially-resolved activity mapping of the
TME; and single-cell isolation and multimodal characterization of proteolytically
active cells.
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Multiplexed spatial localization of protease activity
We next sought to investigate the biological drivers of the observed
protease activity dysregulation in Eml4-Alk mice. To this end, we rea-
soned that tissue-level spatial localization of protease activity against
target peptide substrates could facilitate biological interpretation. For
instance, understandingwhere in the tumormicroenvironment PP01 is
cleaved would point us toward proteolytically active cells that may
play important roles in tumorigenesis and thus represent potential
diagnostic or therapeutic targets. Because our in vivo nanosensors use
peptide cleavage as their mechanism of release and measurement, we

translated their substrates into in situ activatable zymography probes
(AZPs) that also rely on substrate-specific proteolytic cleavage for
activation28. Within an AZP, a protease-cleavable substrate links
a fluorophore-tagged, positively-charged domain (polyR) with a
negatively-charged domain (polyE); this structure remains complexed
in the absence of proteolytic activation. When AZPs are applied to
fresh-frozen tissue sections in a manner analogous to immuno-
fluorescence staining, substrate cleavage by tissue-resident enzymes
liberates the tagged polyR to electrostatically interact with and bind
the tissue, enabling localization of protease activity by microscopy.
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We thus leveraged AZPs for on-tissue spatial localization of pro-
tease activity against target peptide substrates nominated from in vivo
profiling (Fig. 2).We selected three nanosensors whose signals tracked
with tumor progression and alectinib treatment response (PP01, PP07,
PP10; Fig. 2e), and incorporated them into individual AZPs with
orthogonal fluorophores (Z1, Z7, Z10, respectively; Fig. 3a).We applied
these three AZPs to consecutive sections of lung tissue from Eml4-Alk
mice 7 weeks after tumor induction (Fig. 3b) and observed protease-
mediated, tumor-specific labeling of Z1 and Z7, but not Z10
(Fig. S3a–c). Intriguingly, we observed that the Z1 staining pattern
appeared to follow a spindle-like pattern, distinct from the more dif-
fuse Z7 staining pattern. Thus, we sought to multiplex the three AZPs

on a single slide and assess any differences in staining pattern. Once
again, we detected protease-mediated, tumor-specific labeling of Z1
and Z7 (Fig. 3c).We also observed fluorescence signal in the Z10 (FITC)
channel (Fig. S3d), which we presumed to be due to spectral overlap
from the Z7 (TRITC) channel given the results of the single color stain
(Fig. S3c). This multiplexed in situ labeling revealed a distinct pattern
of spatial localization for Z1 relative to Z7 (Fig. 3c). Qualitatively, while
Z7 exhibited broad, diffuse staining throughout Eml4-Alk tumor tissue,
Z1 exhibited a prominent spindle-like pattern, suggesting different
cells of origin for the proteases cleaving the two probes (Fig. 3c). Tis-
sue labeling of both Z1 and Z7 was significantly abrogated by addition
of a cocktail of protease inhibitors (P <0.0001; Fig. 3d, e).

Fig. 2 | Activity-based nanosensors measure in vivo enzyme activity dynamics
over tumor progression and treatment response. a Disease induction in the
Eml4-Alk model. b Schematic of approach. (i) Activity-based nanosensors were
administered to Eml4-Alk and healthy mice. (ii) Tumor-bearing Eml4-Alkmice were
administered either alectinib or vehicle control and subject to in vivo protease
activity profiling (ABN test) over disease progression. c Comparison of urinary
reporter concentrations in Eml4-Alk (EA) and healthy (Healthy) mice at 3.5 weeks
(n = 20 per group; left) and 5 weeks (EA, n = 40; Healthy, n = 19; right) after tumor
induction. Significance was calculated by two-sided t test with Holm-Sidak cor-
rection. Dotted line is atPadj=0.05.dPrincipal component analysis (PCA) of urinary
reporter output of Eml4-Alk (EA)mice and healthy controls at 3.5 weeks (n = 20 per
group; left) and 5 weeks (EA, n = 40; Healthy, n = 19; right) after tumor induction.
e Healthy control-normalized urinary reporter signal for each of the 14 activity-

based nanosensors. Transparent lines show trajectories of each mouse over time;
opaque lines are averages over all mice per group. Red lines represent Eml4-Alk
mice treated with vehicle (EA + Vehicle; n = 20, 19, 13, and 14 for 5, 5.5, 6, and
7weeks, respectively), andblue lines represent Eml4-Alkmice treatedwith alectinib
(EA + Alectinib; n = 20, 19, 12, and 14 for 5, 5.5, 6, and 7 weeks, respectively), with
n = 20 at 3.5 weeks (mean± s.d; multiple two-sided t tests with Holm-Sidak cor-
rection; *P <0.05, **P <0.01, ***P <0.001, ****P <0.0001). f PCA of urinary reporter
output of healthy (Healthy), vehicle-treated Eml4-Alk (EA + Vehicle), and alectinib-
treated Eml4-Alk (EA + Alectinib)mice at 3, 7, and 14days post treatment induction.
gReceiver operating characteristic (ROC) curve showing performance of a random
forest classifier in treatment response classification in an independent test cohort
at the designated post-treatment time points (n = 10 independent trials). Source
data are provided in a source data file.
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Fig. 3 | Multiplexed AZPs reveal spatially distinct protease activity patterns.
a Substrates nominated from in vivo profiling were translated into in situ AZPs to
measure and spatially localize tissue-resident enzyme activity in frozen tissue
sections. b AZPs were applied to fresh-frozen lung tissue sections from Eml4-Alk
(EA) tumor-bearing mice. Haematoxylin and eosin (H&E) stains of representative
Eml4-Alk tumors. Scale bars = 500μm (left), 100μm (right). c Application of a
multiplexed AZP cocktail of Z1 (red) and Z7 (yellow), either uninhibited (EA) or with
broad-spectrum protease inhibitors (EA + INH), to Eml4-Alk lung tissue sections.

Scale bars = 100μm. Higher magnification images of boxed regions show locali-
zation patterns from multiplexed AZP labeling. Scale bars = 25μm. Quantification
of relative Z1 (d) and Z7 (e) intensity, normalized to polyR binding control signal on
a per-cell basis across Eml4-Alk tumors, either in the absence of protease inhibitors
(Uninhibited; n = 22 tumors) or in the presence of a broad-spectrum cocktail of
protease inhibitors (Inhibited; n = 23 tumors) (mean ± s.d.; unpaired two-sided t
test, ****P <0.0001). Source data are provided in a source data file.
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Delineating protease class- and cell type-specific activity
with AZPs
Having demonstrated that orthogonal AZPs could be simultaneously
multiplexed, we next endeavored to show that they could be used to
identify protease families and cell compartments contributing to their
cleavage. Due to its prominent in situ localization pattern and the
significant in vivo correlation of PP01 with tumor progression, we
nominated Z1 for further investigation and sought to understand the
processes driving cleavage of this peptide (“S1” for cleavage motif;
Table S3). Whereas healthy lungs exhibited undetectable Z1 stain-
ing (Fig. S4a), Eml4-Alk tumors exhibited strong, spindle-like staining
that was distinct from the uniform staining pattern of a free polyR
binding control (Fig. 4a, Fig. S4b). Furthermore, lungs from alectinib-
treated Eml4-Alkmice exhibited fewer regions of Z1 staining (Fig. S4c).

To further verify that the Z1 localization pattern truly reflected specific
protease expression by the labeled cells, rather than nonspecific
labeling (i.e., due to non-uniform distribution of charge), we pre-
cleaved Z1 in vitrowith recombinant fibroblast activation protein (FAP;
Fig. S5) and compared its tissue labeling to that of intact Z1 activated
by tissue-resident enzymes (Fig. S6a, b). While intact Z1 maintained its
spindle-like spatial pattern (Fig. S6a), precleaved Z1 exhibited diffuse,
uniform labeling that mirrored that of a free polyR (Fig. S6b), verifying
that probe localization depended on local in situ activation.

To determine class-specific contributions to its cleavage,
we applied Z1, whose substrate can be recognized by both matrix
metalloproteinases (MMPs) and serine proteases15,22,29, to Eml4-Alk
lung tissue sections in the absenceof protease inhibitors, with a broad-
spectrum cocktail of protease inhibitors, with the MMP inhibitor
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stained with a polyR binding control (cyan) and counterstained with DAPI (blue).
Scale bars = 200μm(top), 50μm (bottom). cQuantification of relative Z1 intensity,

normalized to polyR signal, from Eml4-Alk tumors, either in the absence of pro-
tease inhibitors (Uninhibited), or in the presence of INH, MAR, or AEBSF (n = 14
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showing Z1 and vimentin stains. Scale bar = 50μm. f Quantification of Z1 staining
intensity for per-tumor cell populations, across an entire lung lobe (n = 19 tumors,
with intensities averaged across all cells in a tumor; mean ± s.d.; paired two-sided t
test, ****P <0.0001). Source data are provided in a source data file.
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marimastat, or with the serine protease inhibitor 4-(2-aminoethyl)
benzenesulfonyl fluoride hydrochloride (AEBSF; Fig. 4b). As expected,
incubation with broad-spectrum protease inhibitors significantly
abrogated Z1 labeling (P <0.0001; Fig. 4c). Qualitatively, Z1 signal was
largely preserved in sections incubated with marimastat (Fig. 4b).
While marimastat did reduce Z1 signal, it remained significantly
increased relative to the broad-spectrum inhibitor condition
(P < 0.0001; Fig. 4c). In contrast, incubation with AEBSF completely
abrogated Z1 tissue labeling to the level of broad-spectrum inhibition
(P < 0.0001 uninhibited vs. AEBSF, P =0.7127 broad-spectrum inhibi-
tion vs. AEBSF; Fig. 4c), suggesting that serine proteases are primarily
responsible for cleaving Z1 in Eml4-Alk tumors.

Though Eml4-Alk tumors are adenocarcinomas and thus consist
primarily of epithelial cells, the distinct spindle-like labeling pattern of
Z1 raised the possibility that Z1 might be cleaved by proteases
expressed by non-epithelial cells of the TME. To this end, we applied Z1
to Eml4-Alk lung tissue sections and simultaneously stained for both E-
cadherin, an epithelial cell marker, and vimentin, the intermediate
filament of mesenchymal cells (Fig. 4d, e, Fig. S7a, b). We observed an
overlap between Z1 and vimentin in Eml4-Alk tissue (Fig. 4e), con-
firmed by staining for the aforementioned two markers alone (Fig.
S8a). In contrast, Eml4-Alk tumor regions exhibited distinct localiza-
tion of Z1 relative to epithelial cells marked by E-cadherin (Fig. S8b),
while there was diminished Z1 labeling in healthy lungs altogether
(Fig. S8c, d). Quantitatively, vimentin-positive, spindle-like cells
exhibited increased Z1 intensity relative to E-cadherin-positive cells or
vimentin-positive, rounded cells (likely tumor-associated macro-
phages) (P < 0.0001, see Methods for details; Fig. 4f). These results
suggest that vimentin-positive, spindle-like cells are associated with
the serine protease activity cleaving Z1 and, more broadly, that AZPs
can delineate class-specific and cell type-associated activity patterns.

Multimodal spatial profiling to functionally query the TME
Next, we sought to further investigate the cell type(s) responsible for
Z1 cleavage, as their protease activity suggested aberration and
potential contribution to tumor progression. The distinct spatial pat-
tern of Z1 staining led us to hypothesize that this probe could be
labeling cells of the tumor vasculature, rather than cells of immune or
other mesenchymal compartments. We thus applied Z1 to Eml4-Alk
and healthy lungs and co-stained for the endothelial cell marker CD31
(PECAM-1; Fig. S9a). Qualitatively, while both Eml4-Alk and healthy
lungs exhibited an abundance of endothelial cells as evidenced by
CD31-positivity, Z1 labelingwas enriched in Eml4-Alk tumors relative to
healthy lungs and tended to colocalize with CD31-positive cells
(Fig. 5a). Cell-by-cell quantification of Z1 and CD31 staining intensities
across entire lung tissue sections identified a strong positive correla-
tion in Eml4-Alk tissue (R2 = 0.67; Fig. S9b). Indeed, Z1 staining was
significantly increased in CD31-high cells in Eml4-Alk lung tissue sec-
tions relative to CD31-high cells in healthy lungs, as well as relative to
CD31-low cells in both Eml4-Alk andhealthy tissue (P <0.0001; Fig. 5b),
suggesting specific activity associated with the Eml4-Alk tumor endo-
thelium. Furthermore, immunostaining for VE-cadherin, a strictly
endothelial-specific adhesion molecule30, revealed a spindle-like pat-
tern of expression within Eml4-Alk tumors that mimicked Z1 staining
(Fig. S10).

In addition to endothelial cells, the vasculature also contains
contractile vascular smooth muscle cells that line the vessel walls.
Capillaries and microvessels, such as those within the lungs, contain
a mural, periendothelial mesenchymal cell population known as peri-
cytes (Fig. 5c), which help regulate vascular function and can be
actively recruited into the vasculature during angiogenesis1,31,32.
Eml4-Alk tumors stained positively for α-smooth muscle actin (αSMA;
Fig. S11a), a canonical vascular smooth muscle cell marker that can
be expressed by tumor pericytes but is often absent in quiescent
pericytes in normal tissues31,32. Indeed, normal adjacent tissue (NAT)

showed reduced αSMA expression (Fig. S11a). To further corroborate
the likely presence of pericytes within the tumor vasculature, we
stained Eml4-Alk and healthy lungs for CD31 and a second pericyte
marker, the muscular intermediate filament desmin31, and observed
desmin-positive cells surrounding CD31-positive endothelial cells
within Eml4-Alk tumors but not in NAT (Fig. S11b) nor healthy tissue
(Fig. S11d). Finally,we stained Eml4-Alk andhealthy lung tissue sections
for the pericyte-associated marker PDGFRβ. The PDGF-B/PDGFRβ sig-
naling pathway is a key axis of interaction between endothelial cells
and pericytes, wherein PDGF-B released from angiogenic endothelial
cells binds to PDGFRβ on the surface of pericytes, facilitating their
recruitment31,33. Eml4-Alk tumors stained positively for both CD31 and
PDGFRβ, while NAT from Eml4-Alk lungs (Fig. 5d, Fig. S11c) and healthy
tissue from healthy lungs (Fig. S11e) did not express PDGFRβ despite
abundant CD31 expression. Within the tumor vasculature specifically,
PDGFRβ-positive cells wrapped around CD31-positive cells, consistent
with the expected localization and function of pericytes (Fig. 5d,
Fig. S11c).

To assess its localization with respect to cells of the tumor vas-
culature, we applied Z1 to Eml4-Alk lung tissue sections with con-
current staining for both the endothelial marker VE-cadherin and the
pericytemarker desmin.We observed robust Z1 labeling together with
VE-cadherin and desmin expression within Eml4-Alk tumors (Fig. 5e).
However, NAT displayed decreased Z1 and desmin staining despite
maintaining VE-cadherin positivity. Closer inspection of Z1 labeling
within Eml4-Alk tumors revealed an association between all three
stains (Fig. 5f). Colocalization analysis demonstrated a correlation
between desmin and VE-cadherin staining, consistent with the close
proximity of both cell types within capillaries, and additionally showed
that both desmin and VE-cadherin correlated with Z1 labeling (Fig. 5g).
Through coupling of AZPs with other spatial measurements, these
results suggest that the sensor S1 reads out specific functional (i.e.,
serine protease activity) and compositional (i.e., increased pericyte
coverage) changes within the Eml4-Alk TME.

Complementing protease activity measurements with single-
cell transcriptomics to characterize the Eml4-Alk TME
We next sought to characterize further the phenotypes of the identi-
fied S1-associated, tumor vasculature cell populations and to under-
stand potential mechanisms for the dysregulation of these cells. To
complement our in vivo and in situ activity measurements, we per-
formed single-cell RNA sequencing (scRNA-seq) to obtain an unbiased
view of the cellular and transcriptomic landscape of Eml4-Alk lungs
(Fig. 6a, Figs. S12a–d, S13). Graph-based clustering of uniformmanifold
approximation and projection (UMAP) captured the transcriptomic
landscape of Eml4-Alk lungs (Fig. S14a, b), where we annotated eight
significant groups of cell types based on expression of previously
reported marker genes34,35 (Fig. 6b, Table S4). Given that S1 cleavage
in situ localized to cells of the tumor vasculature, we defined marker
gene modules for both endothelial and pericyte populations and
computed their expression scores across all cells in Eml4-Alk lungs
(Fig. 6c). The identified population of endothelial cells expressed
several markers within a module of 28 genes canonically associated
with angiogenesis (Figs. S15a, b, S16).

Spatial profiling had indicated the presence of cells positive for
each of αSMA, desmin, and PDGFRβ within Eml4-Alk tumors but not
within NAT or healthy lung tissue (Fig. S11, Fig. 5), raising the question
of whether pericytes were specifically recruited into the TME.
We first generated scRNA-seq data from healthy mouse lungs
(Fig. S17a–d). Marker gene analysis revealed a small population of
pericytes within the larger Eml4-Alk stromal cluster (Fig. 6c, Fig. S18a,
b), as well as a small population of cells exhibiting this signature in
healthy lungs (Fig. S18c, d), in line with pericyte identification reported
in previous transcriptomic cell atlas studies in human35 and mouse34

lungs. PDGF signaling has been shown to facilitate recruitment of
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pericytes into the tumor vasculature as ameans to stabilize vessels and
promote the establishment of an angiogenic, reactive TME36,37. We
therefore queried expression of both PDGF ligands (Pdgfa, Pdgfb) and
receptors (Pdgfra, Pdgfrb) in the Eml4-Alk scRNA-seq dataset and
found that expression of Pdgfra and Pdgfrb was exclusive to the stro-
mal cluster (Fig. 6d). This analysis also revealed robust and specific

expression of Pdgfb in endothelial cell populations (Fig. 6d). Visuali-
zation via UMAP corroborated that expression levels of Pdgfb and
Pdgfrb matched the distributions of endothelial cell and pericyte
populations, respectively (Fig. 6e).

These results raised the possibility of paracrine PDGF signaling
between endothelial cells and PDGFR-positive stromal cells in Eml4-Alk
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Fig. 5 | Z1 localizes to pericyte-invested vasculature in Eml4-Alk tumors.
a Application of Z1 (red) to Eml4-Alk and healthy lung tissue sections with co-
staining for CD31 (green). Scale bars = 100μm, 50μm (lower and higher magnifi-
cation, respectively). bQuantification of Z1 staining intensity in CD31-low (CD31lo)
and CD31-high (CD31hi) cells (n = 8 regions per condition; mean ± s.d.; one-way
ANOVAwith Tukey correction formultiple comparisons, ****P <0.0001). cCapillary
vessels are lined by endothelial cells (EC); pericytes support and wrap around
endothelial cells. d Staining for endothelial cells (CD31; green) and pericytes
(PDGFRβ; red) in formalin-fixed, paraffin-embedded Eml4-Alk lung tissue sections,

with images from representative tumor (left, middle) and normal adjacent tissue
(NAT; right) regions shown. Scale bars = 100μm, 20μm (lower and higher magni-
fication, respectively). e Application of Z1 (red) to Eml4-Alk lung tissues with co-
staining for VE-cadherin (VE-cad; yellow) and desmin (Des; green). Scale bars =
100μm. f Higher magnification image of representative Eml4-Alk tumor region
showing localization of Z1, VE-cadherin, and desmin. Scale bar = 20μm. g Pearson's
correlation of pixel-wise signal intensities for each pairwise combination of Z1, VE-
cadherin, and desmin (n = 7 tumors; mean ± s.d.). Source data are provided in a
source data file.
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tumors. To investigate whether this axis was transcriptionally dysre-
gulated, we conducted an integrative analysis of scRNA-seq data from
Eml4-Alk and healthy lungs (Fig. S19a–d). Differential gene expression
analysis across this integrated dataset showed that Pdgfb was over-
expressed in cells fromboth capillary endothelial cell compartments in
the TME relative to healthy lungs (Padj <0.0001; Fig. 6f, Table S5).
However, expression of the PDGF receptors Pdgfra and Pdgfrb
remained consistent between the total stromal populations from both
conditions (Fig. 6f, Table S5).

These observations motivated the hypothesis that altered ligand
expression by endothelial cells in the Eml4-Alk TME could be impli-
cated in the association of pericytes to the tumor vasculature. In
addition to Pdgfb, the chemokine Cxcl12, shown to play functional
roles in angiogenesis and vascular recruitment of stromal cells38, was
robustly expressed in endothelial cells from Eml4-Alk lungs (Fig. 6g).
Endothelial cells from Eml4-Alk and healthy lungs exhibited differ-
ential transcriptional landscapes (Fig. 6h), with Cxcl12 expression sig-
nificantly increased in endothelial cells from Eml4-Alk lungs relative to
those from healthy controls (log2 FC = 1:453, Padj <0:0001; Fig. 6i,
Table S5). Intriguingly, previous reports have shown that over-
expression of PDGF-B can increase tumor pericyte content via induc-
tion of CXCL12 expression by endothelial cells within the TME38.

Finally, the rapid and profound reduction in PP01 signal (in vivo)
and Z1 staining (in situ) after treatment with alectinib, which theore-
tically should only induce apoptosis in ALK+ cancer cells, led us to
investigate the role that Alk-mutant cancer cells themselves play in
regulating the angiogenic TME. To this end, we established tumor
organoids in vitroby inducing Eml4-Alk fusions in alveolar type 2 (AT2)
organoids via CRISPR-Cas939. Transcriptomic analysis of Eml4-Alk-
mutant organoids revealed enrichment of genes associated with
angiogenesis, including Pdgfb (Fig. S20a–c), suggesting that Alk-
mutant cancer cells themselves may contribute directly to endothelial
cell and pericyte recruitment. These results also suggest a potential
mechanism by which alectinib treatment may indirectly impact the
tumor vasculature and its associated protease activity.

Activity-based cell sorting enables multimodal phenotypic
characterization of Eml4-Alk lung cancer
Our results thus far suggested that alectinib, a therapy targeted toward
ALK+ cancer cells, induced rapid and dramatic changes in the pro-
teolytic activity of presumably ALK- vascular cells within the TME.
Follow-up transcriptomic profiling unearthed a potential mechanism
of communication, mediated by PDGF and CXCL12, between ALK+
cancer cells, endothelial cells, and pericytes. However, as the protease
profiling and transcriptomicmethods were decoupled, it is impossible
to prove that the cells analyzed in the transcriptomic experiments
were equivalent to the proteolytically active cells identified in our
in situ experiments. We therefore sought to establish a method to
isolate individual cells on the basis of their protease activity. We
hypothesized that AZPs containing fluorophore-quencher pairs could

function as activatable cellular tags in vivo to label cells with
membrane-bound or proximal protease activity, such that tagged
cells could be subsequently sorted via flow cytometry (Fig. 7a).
In this design, following systemic administration, degradation of the
protease-cleavable linker activates fluorescence and liberates the
fluorophore-tagged polyR such that it can bind and tag nearby cells,
functioning analogously to a cell penetrating peptide28,40,41. Thus, we
reasoned that probe labeling after proteolytic activation (e.g., by cell-
surface or proximal proteases) would facilitate isolation of tagged cells
via fluorescence-activated cell sorting (FACS) and enable downstream
phenotypic characterization (Fig. 7a).

We applied this activity-based cell sorting assay to directly isolate
and then phenotypically characterize the Eml4-Alk cell compartment
associated with S1 cleavage (Fig. 7a). We designed a fluorescent
quenched probe, QZ1, that incorporated S1 as a protease-cleavable
linker. Cy5-labeled QZ1 was PEGylated to improve stability and drive
tissue accumulation28,40, and administered intravenously into age-
matched Eml4-Alk and healthy mice. Eml4-Alk mice were assessed at
12 weeks post tumor induction, at which point the lungs contain
multiple lung adenocarcinoma lesions25. Two hours post-injection,
significantly increased Cy5 fluorescence was found in explanted Eml4-
Alk lungs relative to healthy lungs (P <0.0001; Fig. 7b, c), enabling
perfect discrimination of Eml4-Alk and healthy mice (AUC= 1.000;
Fig. 7d).

Following imaging, single-cell suspensions were prepared from
dissociated Eml4-Alk lungs, and fluorescence-activated cell sorting
(FACS) was used to sort all live, non-hematopoietic nucleated cells by
QZ1 signal, demonstrating the feasibility of the activity-based cell
sorting method (Fig. 7a, Fig. S21a–b). We also performed co-
immunostaining for markers associated with mesenchymal cell linea-
ges. Intriguingly, whereas Eml4-Alk lungs exhibited increased
QZ1 staining across cells positive for the mesenchymal cell markers
(Fig. S22a–c), in a separate experiment healthy lungs exhibited a more
variable pattern (Fig. S23a–c). Bulk RNA-seq on sorted QZ1-high (QZ1-
hi) and QZ1-low (QZ1-lo) populations from Eml4-Alk lungs was used to
characterize gene expression differences between the two compart-
ments (Fig. 7e, Fig. S24). Several canonical markers of endothelial cells
(Cdh5, Eng, Vwf, Pecam1), pericytes (Cd248, Pdgfrb, Des), as well as
vascularization and angiogenesis were among the most upregulated
genes in the QZ1-hi population (Fig. 7f). Gene set enrichment analysis
corroborated that thedominant cell types associatedwithQZ1 labeling
were endothelial and mesenchymal cell types, including pericytes,
while gene sets associated with epithelial cells were significantly
downregulated (Fig. S25a). Cxcl12 and Pdgfrb were overexpressed in
the QZ1-hi compartment, as were markers of additional angiogenesis
signaling axes, including the VEGF (Flt1/4), Notch (Notch1/4, Dll1/4),
and Tie (Tek, Angpt1/2) pathways (Fig. 7f). Indeed, the QZ1-hi com-
partment was significantly enriched for functional modules associated
with vasculogenesis, vascular development, endothelial cellmigration,
and mesenchymal recruitment (Fig. 7g, Fig. S25b). These results

Fig. 6 | Single-cell transcriptomics of Eml4-Alk tumors reveals dysregulation of
the PDGF-CXCL12 signaling axis involved in pericyte recruitment to the
angiogenic vasculature. a Schematic of workflow. b UMAP of scRNA-seq dataset
fromEml4-Alk lungs (pooled sample fromN = 3mice;n = 8127cells).Cell typeswere
inferred based on expression of canonical marker genes (Table S4). AT1 alveolar
type 1, AT2 alveolar type 2, SMC smooth muscle cell. c Feature plots of gene
expression module scores for endothelial cell (EC) and pericyte marker genes
mappedonto theUMAPof cells fromEml4-Alk lungs.dRelative expression levels of
PDGF and PDGFR genes across cell types in Eml4-Alk lungs. Individual dots repre-
sent mean expression values across all cells in a cluster, are colored by expression
level, and are sized by the percentage of cells in the cluster expressing that gene.
Cluster abbreviations refer to the cell types annotated in (b). e Expression levels of
Pdgfb and Pdgfrb against the UMAP of cells from Eml4-Alk lungs. f Relative
expression levels of PDGF and PDGFRgenes in cells from Eml4-Alk (EA) and healthy

(Healthy) lungs withinin each of the capillary endothelium (general), stromal,
capillary endothelium (aerocyte), and ciliated epithelium populations (Wilcoxon
rank-sum two-sided test with Benjamini-Hochberg correction, ****Padj <0.0001).
g Expression levels of Cxcl12 against the UMAP of cells from Eml4-Alk lungs.
h UMAP of integrated dataset of cells from capillary endothelium (general) popu-
lations in Eml4-Alk and healthy lungs (pooled samples of N = 3 mice per condition;
n = 12,183 cells total with nEA = 4766 and nH = 7447 cells from Eml4-Alk and healthy
lungs, respectively). i Cxcl12 expression in capillary endothelial cells from Eml4-Alk
and healthy lungs (pooled samples ofN = 3mice per condition; n = 12,183 cells total
with nEA = 4766 and nH = 7447 cells from Eml4-Alk and healthy lungs, respectively;
Wilcoxon rank-sum two-sided test with Benjamini-Hochberg correction,
log2 FC = 1:453,****Padj <0:0001; white dot, median; thick bar, interquartile range;
thin line, minimum to maximum). Source data are provided on GEO under acces-
sion number GSE191079.
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provide further evidence that S1 is cleaved by proteases associated
with the angiogenic tumor vasculature. More broadly, they validate
that activity-based cell sorting can be used to isolate cells on the basis
of their protease activity, enabling deep phenotypic characterization.

Discussion
Our results establish a workflow for profiling protease activity across
multiple scales–at the organism, tissue, and cellular levels–and
demonstrate the utility of our methods for noninvasive monitoring
and functional characterization of tumor progression and treatment
response, showcased in the context of Alk-mutant lung cancer trea-
ted with targeted therapy (Fig. 1). We first demonstrated that multi-
plexed panels of protease-responsive nanosensors can quantitatively
track disease dynamics in vivo to yield activity-based biomarkers of
tumor progression and response to targeted therapy. We directly
translated substrates nominated from in vivo profiling into in situ

protease activity probes (AZPs). We thus identified a tumor-specific
serine protease activity signal that increasedwith tumor progression,
rapidly decayed after therapy, and localized specifically to the
pericyte-invested tumor vasculature. We complemented our activity
measurements with single-cell transcriptomic analysis, which iden-
tified overexpression of paracrine signaling factors in endothelial
cells from tumor-bearing lungs and suggested a possible mechanism
for endothelial cell-pericyte cross-talk within the TME. Finally, we
designed a high-throughput method to isolate cells based on
their protease activity and leveraged it to discover a population
of proteolytically active, vasculature-associated cells harboring pro-
angiogenic transcriptional programs. Together, these methods
revealed that the functionally aberrant tumor vasculature rapidly
responds to targeted inhibition of oncogenic signaling in cancer cells
and demonstrated that protease activity serves as an informative
proxy for this process.
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b Images of representative lungs from healthy and Eml4-Alk mice 2 h after QZ1-
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experiment in (b) (n = 5 mice per group; mean ± s.d.; unpaired two-sided t test,
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interval 1.000–1.000; P =0.0090 from random classifier shown in dashed line).
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provided on GEO under accession number GSE191079 and in a source data file.
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Our work establishes a multiplexed in situ activity assay that
enables direct on-tissue comparison of spatial localization patterns of
distinct proteases. However, by relying on fluorescence readouts, the
current AZP design is limited in its multiplexing capacity. Expanded
multiplexing capacity, for example through epitope tagging or DNA
barcoding, could enable high-throughput screens onmurine or human
tissue to discover protease activity sensors with desired properties,
such as colocalization with specific cell types. We also demonstrate
that AZPs can be used to delineate protease class-specific activity
signatures through targeted inhibitor ablations. Given that our results
indicate that serine proteases cleave S1 in the Eml4-Alk model
(Fig. 4b, c), additional molecular profiling will be necessary to identify
which protease(s) are responsible. The angiogenesis-associated pro-
teases Plat (tPA) and Dpp4 (DPP4), as well as the membrane serine
protease Fap (FAP or seprase), which can be selectively expressed by
tumor pericytes42,43, were amongst the serine proteases overexpressed
in the QZ1-hi population (Fig. S24). In vitro screening, targeted small
molecule inhibition, or specific knockout of individual enzyme targets
could help identify the serine protease(s) that cleave S1 in the Eml4-Alk
model. Parallel functional studies, in particular in tumor-derived
organoids or vascularized co-culture systems, may help determine the
specific contributions of candidate serine proteases to vascular
remodeling and angiogenesis in ALK+ lung cancer.

This work establishes AZPs as an activity-based cellular tag for
sorting individual cells based on endogenous protease activity.
Administration of AZPs in vivo, followed by tissue dissociation and
FACS, enabled isolation of cells exhibiting a specific pattern of pro-
tease activity. By coupling this assay to immunostaining and RNA-seq,
we demonstrate that activity-based cell sorting can enable multimodal
characterization across the activity, protein, and gene expression
levels. Probes similar in concept to AZPs could extend activity-based
cell sorting to other classes of enzymes. In addition, integrating
activity-based cell sorting with large-scale omics measurements and
machine learning could inspire single-cell multiomics that ends at the
level of actuated biological function. We envision that the ability to
sort cells by enzymatic activity could yield insights into enzymatic
dysregulation in disease, enable multimodal approaches to char-
acterize biological systems, and inform diagnostic and therapeutic
interventions.

Our results demonstrate that protease activity directly comple-
ments measurements of protein and transcript abundance, and that
this multimodal profiling enables discovery-based functional char-
acterization of the TME. By applying our activity-based profiling
methods to the Eml4-Alk model of NSCLC, we discovered aberrant
serine protease activity that is specific to the tumor vasculature and
rapidly responds to inhibition of an adjacent cancer-cell specific
pathway. Through a combination of spatial profiling and scRNA-seq
analysis, we found evidence suggestive of increased pericyte coverage
within the Eml4-Alk tumor vasculature, potentiallymediatedby altered
paracrine signaling via PDGF and CXCL12. PDGF-expressing endothe-
lial cells can produce CXCL12, a chemokine shown to facilitate
recruitment of stromal cells and to promote angiogenesis. This
represents one altered function of the Eml4-Alk vasculature, whose
dysregulation and angiogenic phenotype can be read out by altered
protease activity measured by the sensor S1. Additional investigation
into CXCL12 induction and its downstream effects will help determine
whether or not chemokine production depends causally on the pro-
tease activity, or if it is a parallel altered function of the dysregulated
tumor vasculature.

Though mechanistic experiments will be necessary to ascertain
whether pericytes are actively recruited into the TME, our findings
raise the possibility that S1 cleavage, which is elevated within Eml4-Alk
tumors and localizes specifically to the vasculature, could be a result of
the coordinated action of intratumoral pericytes and endothelial
cells associated with neoangiogenic vessels. Necessary future work to

establish tractable ex vivo models, such as vascularized Eml4-Alk
tumor organoids or co-culture systems, will in turn enable such func-
tional studies to identify and validate mechanistic targets. Our finding
that the functionally aberrant tumor vasculature rapidly responds to
targeted therapy motivates exploration of whether anti-angiogenic
drugs, which have been clinically approved in combination with
cytotoxic chemotherapy or immunotherapy44–46, could have additive
benefits when combined with molecularly targeted therapeutics like
alectinib. Our study in the Eml4-Alk model serves as an example for
how our activity profiling methods can be leveraged to spawn and
advance hypotheses about the complex crosstalk between cancer and
non-cancer cells, though complementary mechanistic and functional
work is necessary to validate these hypotheses and establish causal
mechanisms.

Finally, the activity-based profiling methods presented here
could have utility in precision medicine applications. Precision can-
cer medicine requires granular information that cannot be accessed
by traditional noninvasive imaging approaches, necessitating serial
biopsies that carry significant risks and sample only a small fraction
of the disease site. The ability to gain high-dimensional biological
insight into a disease state with a completely noninvasive test would
present an advance towards functional precisionmedicine2. Here, we
establish the capacity of noninvasive, multiplexed protease activity
nanosensors to query the function and activity of specific intratu-
moral cell subsets over the course of tumor progression and in
response to therapy. Given the modularity of this approach, high-
throughput screening47–49 and generative machine learning50 meth-
ods could optimize activity sensors to target orthogonal axes of
cancer biology. For instance, activity sensors that detect angiogen-
esis could be administered in combination with probe sets that read
out immune invasion or metastasis risk. As a complement to this
noninvasive test, a targeted panel of in situ AZPs could be used to
molecularly profile individual patient biopsies for indication of sig-
naling pathways or processes active in a patient’s specific tumor.
Future work to validate these technologies in humans, through
clinical trials or ex vivo assays on human tissue, will be necessary to
assess the robustness and clinical utility of these activity-based
methods for precision oncology. With thorough validation and clin-
ical testing, protease activity sensors could empower patients and
physicians with real-time, high-quality information to personalize
treatment decisions, such as rapid prediction of immunotherapy
efficacy, surveillance for recurrence after targeted therapy, or dis-
crimination of aggressive versus indolent disease.

In summary, we present an integrated suite of protease activity-
profilingmethods that form a direct link between noninvasive enzyme
sensors, high-resolution spatial profiling, and high-throughput, single-
cell analytical methods like flow cytometry and RNA-seq. Themodular
methods described here can be readily generalized to other cancer
types and hold promise for both fundamental biological investigation
and translational research. We envision that these methods for pro-
filing protease activity will help facilitate functional characterization of
cancer for medical and discovery applications alike.

Methods
Eml4-Alk mouse model of non-small-cell lung cancer
All animal studies were approved by the Massachusetts Institute of
Technology (MIT) Committee on Animal Care (protocol 0420-023-23)
and were conducted in compliance with institutional and national
policies. Reporting was in compliance with Animal Research: Report-
ing In Vivo Experiments (ARRIVE) guidelines. Tumors were initiated in
6-10 week old female C57BL/6J mice (Jackson Labs) by intratracheal
administration of 50μL adenovirus expressing theAd-EA vector (VQAd
Cas9 ALK EML4 072415; Viraquest; 1.5*108 PFU in Opti-MEM with 10
mM CaCl2)

25,51. Throughout the manuscript, these mice are referred to
as “Eml4-Alk” mice. Due to the autochthonous nature of the tumor
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model and a lack of available means to reliably assess lung tumor
volume noninvasively, a maximal tumor volume was not directly
established for the experiments in this study. Instead, mice were clo-
sely monitored to ensure that they did not exhibit signs of morbidity,
including weight loss, poor body condition, or labored breathing.
Criteria for euthanasia, as dictated by the MIT Committee on Animal
Care, was body weight loss of greater than 10%, significant dyspnea, or
poor body condition. Animals were monitored daily throughout all
studies, and the criteria for euthanasia were not met. Healthy control
cohorts consisted of age- and sex-matchedmice (i.e., female C57BL/6J,
Jackson Labs) that did not undergo intratracheal administration of Ad-
EA adenovirus.

Alectinib treatment
Eml4-Alk mice were randomized to receive either control vehicle or
alectinib (MedChemExpress), at 20 mg/kg prepared directly in drug
vehicle, daily by oral gavage for 14 consecutive days. Drug vehicle
consisted of: 10% (v/v) dimethylsulfoxide (DMSO; Sigma Aldrich),
10% (v/v) Cremophor EL (Sigma Aldrich), 15% (v/v) poly(ethylene
glycol)-400 (PEG400; SigmaAldrich), 15% (w/v) (2-Hydroxypropyl)-β-
cyclodextrin (Sigma Aldrich). Mice were monitored daily for weight
loss and clinical signs. Investigators were not blind with respect to
treatment.

In vivo characterization of activity-based nanosensors
All activity-based nanosensor experiments were performed in
accordance with institutional guidelines. Tumor-bearing mice and
age-matched controls were administered activity-based nanosensor
constructs via intratracheal intubation at 3.5, 5, 5.5, 6, and 7 weeks
after tumor induction, with treatment with vehicle control or alecti-
nib beginning at 5 weeks after tumor induction in Eml4-Alk mice and
continuing for 2 weeks. Nanosensors for urinary experiments were
synthesized by CPC Scientific (Sunnyvale, CA). The urinary reporter
glutamate-fibrinopeptide B (Glu-Fib) was mass barcoded for detec-
tion by mass spectrometry. Sequences are provided in Table S1.
Nanosensors were dosed (50 μL total volume, 20 μM each nano-
sensor) in mannitol buffer (0.28 M mannitol, 5 mM sodium phos-
phate monobasic, 15 mM sodium phosphate dibasic, pH 7.0–7.5) by
intratracheal intubation. Anesthesia was induced by isoflurane
inhalation, and mice were monitored during recovery. For intra-
tracheal instillation, a volume of 50 μL was administered by passive
inhalation following intratracheal intubation with a 22G flexible
plastic catheter (Exel). Intratracheal instillation was immediately
followed by a subcutaneous injection of PBS (200 μL) to increase
urine production. Bladders were voided 60 min after nanosensor
administration, and all urine produced 60–120min after adminis-
tration was collected using custom tubes in which the animals rest
upon 96-well plates that capture urine. Urine was pooled and frozen
at –80 °C until analysis by liquid chromatography tandem mass
spectrometry (LC-MS/MS).

LC-MS/MS reporter quantification
LC-MS/MS was performed by Syneos Health using a Sciex 6500 triple
quadrupole instrument. Briefly, urine samples were treated with
ultraviolet irradiation to photocleave the 3-Amino-3-(2-nitro-phenyl)
propionic acid (ANP) linker and liberate the Glu-Fib reporter from
residual peptide fragments. Samples were extracted by solid-phase
extraction and analyzed bymultiple reactionmonitoring by LC-MS/MS
to quantify concentration of each Glu-Fib mass variant. Analyte
quantities were normalized to a spiked-in internal standard, and con-
centrations were calculated from a standard curve using peak area
ratio (PAR) relative to the internal standard. Normalization to nano-
sensor stock concentrations andmean scaling were performed on PAR
values to account for mouse-to-mouse differences in activity-based
nanosensor inhalation efficiency and urine production.

Statistical and machine learning analysis of urinary repor-
ter data
Analyses of urinary reporter data were conducted using the analytic
pipelines of the Protease Activity Analysis (PAA) package52, a publicly
available Python package designed to process and visualize enzymatic
activity datasets. For all urine experiments, PAR values were normal-
ized to nanosensor stock concentrations and then mean-scaled across
all reporters in a given urine sample prior to further statistical analysis.
To identify differential urinary reporters, reporters were subjected to
unpaired two-tailed t test followed by correction for multiple
hypotheses using the Holm-Sidak method. Padj <0.05 was considered
significant. For treatment response classification based on urinary
reporter signatures, randomly assigned sets of paired data samples
consisting of features (the mean scaled PAR values) and labels (the
class membership; for example, Eml4-Alk or healthy) were used to
train random forest classifiers with 100 trees. Estimates of out-of-bag
errorwere used for cross-validation, and trained classifiers were tested
on randomly assigned, held-out, independent test cohorts. Ten inde-
pendent train-test trials were run for each classification problem, and
classification performance was evaluated with receiver operating
curve (ROC) statistics. Classifier performance was reported as the
mean area under the curve (AUC) across the ten independent trials.

AZP peptide synthesis and sequences
All AZPs were synthesized by CPC Scientific (Sunnyvale, CA) and
reconstituted in dimethylformamide (DMF) unless otherwise speci-
fied. AZP sequences are provided in Table S3.

In situ zymography with activatable zymography probes
To harvest lung tissue for AZP studies, mice were first euthanized by
isoflurane overdose. Lungs were then filled with undiluted optimal-
cutting-temperature (OCT) compound (Sakura) through catheteriza-
tion of the trachea; the trachea was subsequently clamped; and lungs
were extracted. Individual lobes were dissected and then immediately
embedded and frozen in OCT compound. Cryosectioning was per-
formed at the Koch Institute Histology Core. Prior to staining, slides
were air dried, fixed in ice-cold acetone for 10min, and then air dried.
After hydration in PBS (3 × 5 min), tissue sections were blocked in
protease assay buffer (50mM Tris, 300mMNaCl, 10 mMCaCl2, 2 mM
ZnCl2, 0.02% (v/v) Brij-35, 1% (w/v) BSA, pH 7.5) for 30min at room
temperature. Blocking buffer was aspirated, and solution containing
fluorescently labeled AZPs (1μM each AZP) and a free poly-arginine
control (polyR, 0.1μM) diluted in the protease assay buffer was
applied. Slideswere incubated in a humidified chamber at 37 °C for 4 h.
For inhibited controls, 400μM AEBSF (Sigma Aldrich), 1mM marima-
stat (Sigma Aldrich), or protease inhibitor cocktail (P8340, Sigma
Aldrich) spiked with AEBSF andmarimastat was added to the buffer at
both the blocking and cleavage assay steps. For uninhibited condi-
tions, dimethyl sulfoxide (DMSO) was added to the assay buffer to a
final concentration of 3% (v/v). For co-staining experiments, primary
antibodies (E-cadherin, AF748, R&D Systems, 4μg/mL; vimentin,
ab92547, Abcam, 0.5μg/mL; CD31, AF3628, R&D Systems, 10μg/mL;
desmin, ab227651, Abcam, 1.32μg/mL) were included in the AZP
solution. Following AZP incubation, slides were washed in PBS
(3 × 5min), stained with Hoechst (Invitrogen, 5μg/mL) and the
appropriate secondary antibody if relevant (Invitrogen, 1:500),washed
in PBS (3 × 5min), and mounted with ProLong Diamond Antifade
Mountant (Invitrogen). Slideswere scannedon a Pannoramic 250 Flash
III whole slide scanner (3DHistech).

AZP precleavage characterization
The Z1 AZP (10μM) was incubated with recombinant fibroblast acti-
vation protein (FAP) in FAP assay buffer (50mMTris, 1 M NaCl, pH 7.5)
overnight at 37 °C to run the cleavage reaction to completion. After
precleavage with recombinant FAP, the AZP solution was diluted to a
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final peptide concentration of 0.1μMinprotease assay buffer. Cognate
intact Z1 AZP (1μM) and precleaved Z1 AZP, each with a free polyR
control (0.1μM), were applied to fresh-frozen Eml4-Alk lung tissue
sections (slidepreparationdescribed above) and incubated at 37 °C for
4 h. After AZP incubation, slides were washed, stained with Hoechst,
mounted, and scanned.

Immunohistochemistry and immunofluorescence staining
Lungs were excised and either embedded in OCT, as previously
described, or fixed in 10% (v/v) formalin and embedded in paraffin.
Prior to staining, slides with formalin-fixed, paraffin-embedded sec-
tions were subject to deparaffinization and antigen retrieval. Prior to
staining, slides with fresh-frozen sections were air dried, fixed in ice-
cold acetone for 10min, air dried, and re-hydrated in PBS. Sections
were stained with IgG isotype controls (ThermoFisher) and primary
antibodies against vimentin (ab92547, Abcam, 1.0 μg/mL), E-cadherin
(AF748, R&D Systems, 4.0μg/mL), α-SMA (ab124964, Abcam, 1.5μg/
mL), CD31 (AF3628, R&D Systems, 10μg/mL), VE-cadherin (36-1900,
Invitrogen, 10μg/mL), PDGFRβ (3169, Cell Signaling, 1:100), and des-
min (ab227651, Abcam, 1.32μg/mL), as appropriate. For immunohis-
tochemistry with α-SMA, slides were incubated with Rabbit-on-Rodent
HRP-Polymer (RMR622, Biocare Medical) at native concentration for
30min. For immunofluorescence, slides were washed in PBS, incu-
bated with Hoechst (Invitrogen, 5μg/mL) and the appropriate sec-
ondary antibody (Invitrogen, 1:500) for 30min at room temperature,
and washed in PBS. Slides were scanned as previously described.

Quantification of AZP and immunofluorescence staining
AZP and immunofluorescence stainingwasquantified inQuPath0.2.353

and in ImageJ (NIH, v1.53). To perform cell-by-cell analysis, cell seg-
mentation was performed using automated cell detection on the DAPI
(nuclear) channel. For quantification of activity inhibition, AZP staining
was calculated as a fold changeof themeannuclear AZP signal over the
mean nuclear polyR signal. All nuclei within an individual tumor were
averaged across that given tumor. Nuclei with a polyR intensity of less
than 3were excluded from analysis. For quantification of AZP intensity
based on cell morphology and marker expression, cells were anno-
tated as “vimentin-positive, spindle” if they were spindle-shaped and
expressed vimentin; “E-cadherin-positive, cuboidal” if they were
cuboidal-shaped and expressed E-cadherin; “vimentin-positive, round”
if they were rounded and expressed vimentin. A random forest clas-
sifierwas trained on all annotated cells (at least 20 cells per class) using
multiple cellular features, including nuclear area and eccentricity, and
mean cellular fluorescence intensity across all channels. The trained
classifier was then applied to all cells across all tumors in the tissue
section, and mean cellular fluorescence intensity was quantified. To
assess the relationship between Z1 and CD31 staining, cell segmenta-
tion was performed as described above, and correlation was assessed
betweenmeancellularCy5 (Z1) intensity andmean cellular FITC (CD31)
intensity. Density plots were generated using the dscatter function in
MATLAB (R2019b). For quantification of co-localization, JACoP (Just
Another Co-localization Plug-in)54 was used to determine pixel
intensity-based correlations. Tumors were selected as regions of
interest, and thresholds were chosen automatically using the Costes’
method. Co-localization was assessed via the pairwise correlation of
pixel intensities within each tumor region of interest.

In vivo administration of QZ1
QZ1 (Table S3) was reconstituted to 1mg/mL in water, then reacted
withmPEG-Maleimide, MW2000g/mol (Laysan Bio), for PEG coupling
via maleimide-thiol chemistry. After completion of the reaction, the
final compound was purified using high-performance liquid chroma-
tography (HPLC). All reactions weremonitored using HPLC connected
withmass spectrometry. Characterization of the final compound, QZ1-
(PEG2K), using HPLC and MALDI-MS indicated that products were

obtained with more than 90% purity and at the expected molecular
weight. Eml4-Alk mice (11–12 weeks post tumor induction) and age-
and sex-matched C57BL/6J healthy controls (Jackson Labs;
18–22 weeks) were anesthetized using isoflurane inhalation (Zoetis).
QZ1-(PEG2K) (4.5 nmoles in 0.9% NaCl) was administered intrave-
nously via tail vein injection. Two hours after probe injection, mice
were imaged on an in vivo imaging system (IVIS, PerkinElmer) by
exciting Cy5 at 640nm andmeasuring emission at 680nm. Mice were
subsequently euthanized by isoflurane overdose followed by cervical
dislocation. Lungs were dissected and explanted for imaging via IVIS.
Fluorescence signal intensity was quantified using the Living Image
software (PerkinElmer, v4).

Preparation of single-cell suspensions
Eml4-Alk mice (10–12 weeks post tumor induction) and age- and sex-
matched C57BL/6J healthy controls (Jackson Labs; 18–22weeks) were
euthanized by isoflurane overdose, and lungs were excised, sepa-
rated into lobes, and kept in a round cell culture dish (ThermoFisher)
on ice. For tumor-bearing lungs, tumors were separated fromhealthy
tissue using forceps and scissors under a dissecting microscope, and
the dissected tumors and surrounding tissue were kept in 5 mL
Eppendorf tubes (Sigma Aldrich) for preparation into single-cell
suspension. Tissue was minced using Noyes spring scissors (Fine
Science Tools) until pieces were less than 1 cm in size, with the visual
appearance of ground meat. Minced tissue was then treated with
digestion buffer, comprised of Hank’s Balanced Salt Solution (HBSS)
without Ca2+,Mg2+ (ThermoFisher)with 2% (v/v) heat-inactivated fetal
bovine serum (FBS), supplemented with DNase (Sigma Aldrich, 40 U/
mL) and collagenase (Sigma Aldrich, 0.5mg/mL). Samples were kept
on ice during preparation and subsequently incubated at 37 °C for
30min with end-over-end rotation. Samples were filtered using a
70μm filter and diluted with RPMI-1640 (ThermoFisher) + 2% (v/
v) heat-inactivated FBS. Cell suspensionwas centrifuged at 625 × g for
5min, and the pellet was resuspended in ACK lysis buffer (Thermo-
Fisher) for 2min, followed by quenching with FACS buffer (PBS + 2%
(v/v) heat-inactivated FBS). Cell suspension was centrifuged, and
the supernatant was discarded.

For single cell RNA-seq, CD45+ cell depletion and viability
enrichment was performed according to manufacturer’s instructions
(StemCell Technologies). For depletion of CD45+ cells, the EasySep™
Mouse CD45 Positive Selection Kit (StemCell Technologies), together
with a magnet for holding round-bottom or conical tubes (StemCell
Technologies), was used for immunomagnetic positive selection of
CD45+ leukocytes from the lung tissue preparation, with the goal of
ultimately discarding isolated CD45+ cells. Briefly, target CD45+ cells
were labeled with antibodies and magnetic particles, and then sepa-
rated using the magnet. The supernatant suspension containing
unlabeled (i.e., desired CD45- cells) was subsequently transferred into
a fresh, clean tube. For viability enrichment, the EasySep™ Dead Cell
Removal (Annexin V) Kit (StemCell Technologies), together with a
magnet for holding round-bottom or conical tubes (StemCell Tech-
nologies), was used for column-free immunomagnetic depletion of
apoptotic cells from the lung tissue preparation. Briefly, unwanted
apoptotic cells were labeled with Annexin V, antibodies, and magnetic
particles. Labeled cells were then magnetically separated from the
remainder of the suspension, preserving desired cells that were sub-
sequently transferred into a fresh, clean tube. Approximately 70% of
cells from Eml4-Alk and healthy lungs were alive following viability
enrichment. Following depletion of CD45+ cells and viability enrich-
ment, FACS sorting was not performed prior to single cell RNA-seq.

Activity-based cell sorting
Single cell lung suspensions from Eml4-Alk mice administered QZ1
were stained with the following antibodies (catalog number, vendor,
clone, fluorophore, dilution): CD44 (563508, BD, IM7, BV605, 1:200),
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CD105 (564746, BD, MJ7/18, BV786, 1:200), Ly6-A/E (12-5981-81, Ther-
moFisher, D7, PE, 1:200), CD11b (557657, BD, M1/70, APC-Cy7, 1:200),
CD45 (566439, BD, 30-F11, AF488, 1:400), and EpCAM (118216, BioLe-
gend, G8.8, PE-Cy7, 1:200). Cells were stained for 20min, and DAPI
(1:10,000) was added immediately prior to sort. FACS sorting was
performed on a FACSAria II (BD). Flow cytometry data was analyzed by
the FlowJo software (Treestar). The sort strategy is shown in Fig. S21. At
least 100,000 cells from each of the QZ1-hi and QZ1-lo compartments
were collected into RPMI-1640 + 2% (v/v) heat-inactivated FBS and
pelleted via centrifugation at 300 × g for 5min. Cell pellets were lysed
in Trizol (ThermoFisher), and RNA was extracted using RNEasy Mini
Kits (Qiagen). Bulk RNA sequencing was performed by the MIT Bio-
Micro Center. Libraries were prepared using the Clontech SMARTer
Stranded Total RNAseq Kit (Clontech), precleaned, and sequenced
using an IlluminaNextSeq500onan IlluminaNextSeqflowcell. Feature
counting was performed on BAM files using the Rsubread package in R
(v4). Differential expression analysis on QZ1-hi vs QZ1-lo cells was
performed using the DESeq2 package in R (v4). GSEA was performed
using the clusterProfiler package and visualized using the enrichplot
package in R (v4).

Analysis of Eml4-Alk bulk RNA-seq dataset
Differential expression analysis over the entire transcriptome was per-
formed on a bulk RNA-seq dataset from the Eml4-Alk mouse model of
NSCLC, reported by Li et al.26, using the DESeq2 package in R (v4). The
gene list was subsequently filtered to protease genes for visualization.
TheLi et al.26 dataset is publicly availablewithGEOaccessionGSE139349
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139349.

RNA-seq of Eml4-Alk alveolar organoids
Alveolar type 2 (AT2) organoids were derived from Trp53fl/fl

Rosa26LSL−Cas9−2A−eGFP/+ (N = 2) and Trp53fl/flRosa26LSL−tdTomato/+ (N = 1) mice.
All source mice were females on a C57BL/6 background, with source
Rosa26 and Trp53 strains acquired from Jackson Labs. Mice were
between 8 and 15 weeks of age at the time of organoid derivation.
Organoids were generated according to the protocol described in the
work of Naranjo et al.39. These organoid lines were then infected with
an adenovirus expressingCre recombinase (Ad5-CMV-Cre) to generate
Trp53-deficient, TdTomato-expressing (PT) and Trp53-deficient, Cas9-
expressing (PC) organoids39. The Eml4-Alk (EA) inversion was induced
in PT organoids using an adenovirus expressing sgRNAs targeting the
EA inversion breakpoints and also expressing Cas925. On the other
hand, PC organoids were treated with a lentivirus expressing the same
sgRNAs and Cre recombinase. PT Eml4-Alk (PTEA) and PC Eml4-Alk
(PCEA) cultures were then incubated in media lacking FGF7, HGF, and
NOGGIN to enrich for EA mutant cells. Whole RNA was then extracted
from PTEA, PCEA, and two PC cultures (grown in full media) using
phenol-chloroform extraction with TRIzol (Invitrogen), followed by
purificationwith a RNAeasyMinElute CleanupKit (Qiagen). RNApurity
was determined by UV-Vis spectrophotometry (NanoDrop) and all
samples exhibited 260/280 ratios of greater than 1.98. Bulk RNA
sequencingwas performed by theMIT BioMicro Center. Libraries were
sequenced using an Illumina NextSeq500 on an Illumina NextSeq flow
cell with a read length of 75 nucleotides. Feature counting was per-
formed on BAM files using the Rsubread package in R (v4). Differential
expression analysis on Eml4-Alk-mutant vs. control PC organoids was
performed using the DESeq2 package in R (v4). GSEA was performed
using the clusterProfiler package and visualized using the enrichplot
package in R (v4).

Single cell RNA sequencing (scRNA-seq)
scRNA-seq was performed by the MIT BioMicro Center. Following
preparation of the single-cell suspension after depletion of CD45+cells
and viability enrichment, single cells were processed using the 10X
Genomics Single Cell 3ʹ platform using the Chromium Single Cell 3’

Library & Gel Bead Kit V2 kit (10X Genomics), per manufacturer’s
protocol. Briefly, approximately 10,000 cells were loaded onto each
channel and partitioned into Gel Beads in Emulsion (GEMs) in the 10x
Chromium instrument. No FACS sorting was performed prior to
loading on the 10x Chromium instrument. Following lysis of the cap-
tured cells, the released RNA was barcoded through reverse tran-
scription in individual GEMs, and complementary DNA was generated
and amplified. Libraries were constructed using a Single Cell 3’ Library
and Gel Bead kit. The libraries were sequenced using an Illumina
NovaSeq6000 sequencer on an Illumina NovaSeq SP flow cell with a
read length of 100 nucleotides.

Single cell RNA-seq data analysis
Raw gene expression matrices were generated for each sample by the
Cell Ranger Pipeline (v.3.0.2) coupled with mouse reference version
GRCm38. The output filtered gene expression matrices were analyzed
by Python software (v.3.9.0) with the Scanpy package (v.1.7.2)55. The
mean sequencing depth (mean number of raw reads per cell) was 9727
reads per cell for the Eml4-Alk lungs dataset and 15,929 reads per cell
for the healthy lungs dataset. Genes expressed in at least three cells in
the data and cells with >200 genes detected were selected for further
analyses. Low quality cells were removed based on the number of total
counts and the percentage of mitochondrial genes expressed. Speci-
fically, cells with fewer than 4000 genes per cell (approximately
<15,000 counts per cell) and less than 5% mitochondrial genes were
retained, with thresholds selected based on the distribution of genes
per cell vs. library size and the distribution of the percentage of counts
in mitochondrial genes vs. library size. After removal of low quality
cells, gene count matrices were total-count normalized, i.e. library-size
normalized, to correct for library size, such that counts became com-
parable across cells. The gene counts for each cell were normalized by
total counts over all genes with a scaling factor of 10,000, such that
every cell had the same total of 10,000 after normalization. Normalized
counts were log transformed (i.e., logð1 + xÞ where x is the number of
counts) to stabilize variance and facilitate comparison of relative dif-
ferences in gene expression. The dataset was additionally filtered to
remove cells expressing Ptprc (CD45). Features with high cell-to-cell
variation were calculated. Principal component analysis (PCA) was
conducted on highly variable genes using the scanpy.tl.pca function
with default parameters on normalized and scaled data (Fig. S13). A
k-nn neighborhood graph was computed over the PCA representation
of the data, using the scanpy.pp.neighbors function with default
parameters. The neighborhood graphwas subsequently embedded via
uniform manifold approximation and projection (UMAP) for dimen-
sionality reduction, and cells were clustered in the UMAP embedding
space using the Louvain algorithmwith resolution 0.25. Cell types were
annotated based on expression of known lung cell type marker genes
(Table S4) curated from the literature34,35. All analyses and visualiza-
tions were implemented in Python with support from Scanpy55.

Statistics and reproducibility
PCA andmachine learning classification of activity-based nanosensor
data was performed in Python (v.3.9.0) using the Protease Activity
Analysis (PAA) package52. Differential gene expression analysis for
bulk RNA-seq data was performed in R. scRNA-seq data analysis was
performed in Python (v.3.9.0) using the Scanpy (v.1.7.2) package55.
All remaining statistical analyses were conducted in Prism 9.0
(GraphPad). Sample sizes, statistical tests, and p-values are specified
in figure legends.

Activity-based nanosensor, scRNA-seq, Eml4-Alk organoid, and
activity-based cell sorting experiments were repeated twice with
similar results. All other experiments (including AZP, immunohis-
tochemistry, and immunofluorescence staining experiments) were
repeated three timeswith similar results. Details on the reproducibility
of representative images are provided in the relevant figure legends.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data to generate figures and tables are provided in publicly
accessible repositories and in supplementary files. The Li et al.26 Eml4-
Alk RNA-seq dataset is publicly available with GEO accession
GSE139349 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE139349. New RNA-seq and scRNA-seq data generated in this
study are publicly available with GEO accession number GSE191079
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE191079. The
remaining data are available within the article as a supplementary
source data file as well as on Zenodo under https://doi.org/10.5281/
zenodo.696949456. Source data are provided with this paper.

Code availability
Code for analysis of data from in vivo activity-based nanosensors
(Fig. 2) is available at https://github.com/avaamini/protease_activity_
analysis, published as part of the Protease Activity Analysis
(PAA) package52,57.
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