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Modeling tissue-specific breakpoint
proximity of structural variations from
whole-genomes to identify cancer drivers

Alexander Martinez-Fundichely 1,2,3,4 , Austin Dixon 2,5 &
Ekta Khurana 1,2,3,4

Structural variations (SVs) in cancer cells often impact large genomic regions
with functional consequences. However, identification of SVs under positive
selection is a challenging task because little is known about the genomic fea-
tures related to the background breakpoint distribution in different cancers.
We report a method that uses a generalized additive model to investigate the
breakpoint proximity curves from 2,382 whole-genomes of 32 cancer types.
We find that a multivariate model, which includes linear and nonlinear partial
contributions of various tissue-specific features and their interaction terms,
can explain up to 57% of the observed deviance of breakpoint proximity. In
particular, three-dimensional genomic features such as topologically asso-
ciating domains (TADs), TAD-boundaries and their interaction with other
features show significant contributions. The model is validated by identifica-
tion of known cancer genes and revealed putative drivers in cancers different
than those with previous evidence of positive selection.

Whole-genome sequencing of cancer genomes has revealed that they
contain a wide variety of DNA structural variations (SVs) that include
deletions, duplications, translocations, andother complex events1. The
SVs in cancer cells arise from different mechanisms and vary in size
from kilobases to whole chromosomal rearrangements1–4. Conse-
quently, SVs usually span several genes and their associated regulatory
elements. While it is well known that genomic rearrangements and
copy number variations (CNVs) can lead to dysregulation of tumor-
suppressors or oncogenes and act as drivers of cancer progression1,5–8,
identification of SVs under positive selection in cancer remains a
challenging task. This is because SVs are heterogeneously distributed
across the genome leading to many genomic regions recurrently
altered in multiple samples due to neutral background processes4. To
identify the events under positive selection, the null background dis-
tribution of SV breakpoints must be characterized by accounting for
the genomic covariates5,9. Additionally, the identification of the spe-
cific functional element that is the target of positive selection (i.e., the

coding sequence of a gene, its cis-regulatory regions, or noncoding
RNAs) constitutes another challenge due to the large genomic span
of SVs.

While numerous computational methods have been developed to
model the background distribution of single-nucleotide variants
(SNVs) and identify drivers in a tissue-specificmanner, similarmethods
for SVs are lacking5,10–13. The Pan-Cancer Analysis of Whole Genomes
(PCAWG) SV Working Group used a Gamma-Poisson fit to model the
breakpoint density from2658wholegenomesusing eight covariates to
identify the significant driver genes in several cancers5. However, this
analysis was performed at the pan-cancer level without accounting for
tissue-specific covariates. Since there is ample evidence of different SV
distributions and putative mechanisms across cancer types1,2,14, it is
critical tomodel SV breakpoint distribution in a tissue-specificmanner
to obtain the corresponding accurate null models. Importantly, the
three-dimensional (3D) high-order genomic structure, such as the
topologically associating domains (TADs), has not previously been
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considered a covariate of breakpoint distribution. Recent studies have
analyzed the relationship between 3D topology and SVs in cancer8,15–17.
It was reported that while SVs can lead to changes in chromatin fold-
ing, only 14%of TAD-boundary deletions are associatedwith significant
gene expression changes16. Thisfinding indicates thatmanyof these SV
events may be related to neutral evolution in tumor cells and must be
accounted for in the null model to identify true drivers. Furthermore,
previous studies did not account for the nonlinear contribution of
covariates or their interactions in the modeling of SV breakpoint
distribution.

Here, we describe amethod thatmodels the breakpoint proximity
of SVs in 2382 cancer whole genomes in a tissue-specific manner. We
used nine genomic covariates, including the recurrence of TADs and
TAD boundaries across cell lines and tissues, as well as their functional
classification based on chromatin states. We implemented a general-
ized additive model (GAM) to describe the genome-wide SV break-
point proximity. The use of a GAM allows us to include both the linear
and nonlinear contributions of variables as well as their interplay.
Modeling breakpoint proximity has the advantage of allowing us to
analyze the clusteringof breakpoints over dynamicgenomic lengths to
capture different breakpoint trends, unlike breakpoint-density-based
approaches that rely on fixed genomic bin sizes. Finally, we use this
approach to identify loci that exhibit signals of positive selection and
the functional elements that are the likely targets of selection. The
method is implemented in Cancer Structural Variation Drivers
(CSVDriver), a user-friendly tool that can be used by researchers to
model the SVs from whole-genome sequencing data and identify
putative cancer drivers.

Results
We analyzed a set of 324,838 high-confidence somatic SVs derived
from whole-genome sequencing of 2382 patients of 32 cancer types
from 15 organ systems (Supplementary Data 1). The cancer types
include those with a high SV burden from the PCAWG project1,18 and
metastatic prostate cancer samples19,20. Based on the rationale that
tissue-specific covariates can influence the rearrangement landscape,
the cancer types from different organ systems were modeled sepa-
rately. Furthermore, the prostatic primary andmetastatic cohortswere
analyzed separately since they can have distinct drivers.

Breakpoint proximity curve to model genome-wide SV
distribution
To describe the genome-wide distribution of SV breakpoints in a given
cohort, we included all breakpoint coordinates for each sample. Then
we computed the breakpoint proximity curve (BPpc) based upon the
breakpoint neighbor reachability (BPnri) for each individual break-
point (BPi) in the cohort. This metric captures the genomic regions
with high or low proximity between breakpoints (Methods). The BPpc
is defined as the smooth curve resulting from the nonparametric local
polynomial regression (locally estimated scatterplot smoothing,
LOESS) fitted to the dataset of BPnri, after reverse scale normalization
−log10(BPnri + 1) (Fig. 1a). BPpc allows the use of a peak-calling
approach to directly identify the regions with higher breakpoint clus-
tering relative to the surrounding area (i.e., peak summits), thereby
overcoming the inherent issues associatedwith predefining a genomic
bin size for computing breakpoint density along the genome5,21. This is
important because functionally relevant breakpoint clustering events
may occur over a wide range of genomic lengths. Thus, BPpc models
the underlying distribution of breakpoints in a more robust and
unsupervised manner compared to the computation of breakpoint
densities.

Expected BPpc using genomic covariates in a GAM
The core of the genomic breakpoint distribution arises under neutral
selection due to background processes likely corresponding to the

tissue-specific functional and structural genome heterogeneity. We
modeled the expected background BPpc per tissue type using a GAM
with multiple variables (Supplementary Data 2), including the tissue-
specific chromatin state annotations from the Roadmap Epigenomics
project22,23, recurrence of TADs (TAD.recurr), and TAD boundaries
(TAD-B.recurr) from the 3DGenome Browser24, replication timing (RT)
from ENCODE Repli-seq data25 and fragile sites (FS) from the HumCFS
database26. Other variables include the genomecomplexity fromUCSC
genome browser repeat elements data27, gene density, and GC content
(GC). Thus, the expected breakpoint proximity curve is defined as
gBPpc= βX + ε, a variation of the generalized linearmodel inwhichX is a
matrix of covariates (breakpoint predictors) that can contribute line-
arly as well as nonlinearly to the response variable gBPpc (Meth-
ods) (Fig. 1b).

The multivariate model explained a larger proportion of the
null deviance compared to the single predictor models, even
without including the interplay of covariates (Fig. 2a). The median
explained deviance is 18% and ranges from 6% for lung cancer to
50% for lymph-nodes (Fig. 2a). We expected that modeling the
interaction effects of genomic features may contribute sub-
stantially to the model due to the underlying complexity of SV
breakpoints in cancer21. Since all possible combinations of features
make the model computationally infeasible and intractable for a
meaningful interpretation, only the interaction terms of features
that contribute at least 10% in at least one cohort in single pre-
dictor models were included (Fig. 2a). The resulting model
accounts for the interaction of various features, including RT, GC,
TAD.recurr, TAD-B.recurr and gene density, with lamina-
associated domains (LADs) that correspond to the higher-order
genome disposition within the nucleus28. The model also accounts
for the pairwise interplay between gene density and RT, gene
density and TAD.recurr, as well as RT and TAD.recurr; in each case,
the interactions are modeled separately for distinct TAD-segment
classes. The TAD segments are defined based on differential con-
servation across cell types and annotated into three classes
(quiescent, low-active, or active) using enrichment of tissue-
specific chromatin annotations16 (Methods). The multivariate
GAM that accounts for the interaction of covariates showed fur-
ther substantial improvement over the model without the inter-
action terms. The median explained deviance is 29%, ranging from
10% in lung cancer to 57% in lymph-nodes (Fig. 2a). The model
performs well in all cohorts (Fig. 2c) with fairly narrow and sym-
metric residual distributions (Supplementary Fig. 1). The differ-
ence in explained deviance between cancer types could be due to
either “missing covariates” or “missing values of covariates” for
certain cohorts. However, the difference in the “missing values” in
the covariate data availability for each tissue type does not explain
the variability in the performance of the model (Supplementary
Data 2). We checked if the cell type heterogeneity29 is related to the
explained deviance, and we found a positive correlation (Spear-
man correlation coefficient = 0.4) though it is not statistically sig-
nificant likely due to the low number of cancer types (n = 12)
(Supplementary Data 3 and Supplementary Fig. 2a). Similarly, we
do not find a statistically significant correlation between the
average number of SVs per donor and explained deviance although
the correlation coefficient is −0.1 (Supplementary Fig. 2b). Thus,
while we can not check the relationship of multiple features to the
explained deviance due to the small number of cancer types, it is
likely that signatures of structural variation1, the evolutionary
history and the clonal status of tumors30,31 may also play a role in
the observed variability of the explained deviance for each cohort.
Notably, we find a substantial decrease in the correlation of
observed vs. predicted BPpc when using the covariates from
unmatched tissues (Fig. 2b). This clearly highlights the importance
of using tissue-specific covariates.

Article https://doi.org/10.1038/s41467-022-32945-2

Nature Communications |         (2022) 13:5640 2



Fig. 1 | CSVDriver workflow. The input data are the standard cancer somatic SV
calls that include a pair of breakpoint coordinates (BP1, BP2) for each SV_id per
sample. a Step 1 computes the breakpoint neighbor reachability (BPnri gray dots)
for each breakpoint (BPi), where ‘i’ is the sorted index. Then, for each chromosome,
the BPpc is generated as the smooth curve (gray line) resulting from the non-
parametric local polynomial regression fitted to the dataset of BPnri, after reverse
scale normalization −log10(BPnri + 1). b In step 2, based on the observed BPpc dis-
tribution (solid line), the method assesses the expected ( gBPpc) background dis-
tribution (dashed line) by using a generalized additive model (GAM) that includes
multiple tissue-specific breakpoint covariates. c In step 3, it computes adjusted

BPpc (observed − expected).d In step 4, themethod calls peaks across the adjusted
BPpc and out of the total number of independent peaks (n) the method identifies
those that potentially correspond to positively selected loci. It computes the peak
recurrence score (PRs) and based on the empirical density of PRs (dashed line
distribution) using a test of fit for the Gamma distribution, it identifies the peaks
with PRs significantly higher (QQ-plot FDR<0.2) than the fitted theoretical density
(red line distribution). e In the last step 5, the driver candidates are identified as the
genomicelements (CDS (coding sequence), enhancer, CTCF-Insulator, and lncRNA)
with the highest rearrangement scores within the peak region. The gray shade
around the curves (loess smoothing) displays the 95% confidence interval.
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Contribution of genomic covariates to the background BPpc
distribution, nonlinearity, and covariates interplay
We find that the contribution of the chromatin state annotations
and repeat elements is limited, while the 3D-genome features of
TAD recurrence and TAD-B recurrence contribute significantly to
the model for most cancer types (Fig. 2d). This result is consistent
for both the genomic loci close to themembrane of the nucleus, i.e.,
-within LAD-, as well as the inner-nucleus genomic regions, i.e.,
-outside LAD- (Fig. 2d). This suggests that the 3D chromosomal
conformation plays an important role in the expectation of the
genome-wide distribution of SVs. The results also show that fragile
sites, replication timing, GC content, and gene density contribute
significantly to many cancer types, although the behavior can vary
within vs. outside of LADs for some cohorts (Fig. 2d). The two-
dimensional (2D) contour plots allow us to visualize the partial
contributions of features to BPpc. Most cohorts exhibit peaks and
valleys on the smooth function for the partial effects of most cov-
ariates, demonstrating the importance of nonlinear modeling

(Fig. 3a, b, Supplementary Fig. 3). For instance, the partial con-
tribution of TAD recurrence shows nonlinear behavior in the brain,
colorectal, kidney, and prostate cancers although it is linear in
breast cancer regardless of the LAD status (Fig. 3a). The behavior of
some features may also vary within vs. outside LADs. For example,
the contribution of GC content in breast cancer is linear inside LADs
but nonlinear outside LADs (Fig. 3b).

We find a statistically significant contribution for the interaction
terms of covariates across all the three functional classes of TAD seg-
ments for most cohorts (Fig. 2d). However, their effect sizes show
distinct behavior for each cancer type and often across TAD-segment
classes as evident from the 2D contour plots (Fig. 3c, Supplementary
Fig. 3). Interestingly, the distinct behavior is also apparent for primary
vs. metastatic prostate cancers, likely pointing to different processes
contributing to early vs. late genome-wide SV distribution32,33. In gen-
eral, there is wide variability in the partial contributions of different
features across cancer types, demonstrating the importance of tissue-
specific modeling.

Fig. 2 | Performance of the GAM for the expected background BPpc for each
cancer type. a Explained deviance of the GAM for the multivariatemodel with and
without interplay and single covariate models. b Correlation plot of the perfor-
mance of the model for each cohort using different tissue-specific covariates.
c Observed BPpc distributions and heatmap of the tail probabilities. Black curve is
the predicted BPpc distribution from the GAM model. d Heatmap of the sig-
nificance of the partial contribution of each covariate to the explained deviance of
themodelwith respect to themean of thedistribution (null intercept). The p-values
are calculated by using Bayesian estimated covariance matrix of the parameter
estimators. FS (fragile sites), LAD (lamina-associated domain), DNA sequence
repeat classes that include LTR (long terminal repeat elements), LINE (long inter-
spersed nuclear elements), SINE (short interspersed nuclear elements) including
ALUs, LCR (low complexity repeats), simple repeats i.e., micro-satellites, DNA
repeat elements (rDNA), RNA repeats (including tRNA, rRNA, snRNA, scRNA, and
srpRNA), satellite repeats, other repeats including class RC (Rolling Circle), and
unknown complex sequence. ChromHMM tissue-specific chromatin marks that

include TssA (Active TSS); TssAFlnk (Flanking Active TSS); TxFlnk (transcription at
gene 5’ and 3’); Tx (Strong transcription); TxWk (Weak transcription); EnhG (Genic
enhancers); Enh (Enhancers); ZNF/Rpts (ZNF genes and repeats); Het (Hetero-
chromatin); TssBiv (Bivalent/Poised TSS); BivFlnk (Flanking Bivalent TSS/Enh);
EnhBiv (Bivalent Enhancer); ReprPC (Repressed PolyComb); ReprPCWk (Weak
Repressed PolyComb). The ‘s’ is a thin plate regression spline smooth function that
describes the nonlinearity in the contribution of the replication timing (RT), GC
content (GC), gene density (gene.density), and the recurrence of the topologically
associated domain (TAD.recurr) as well as the recurrence of TAD-boundary regions
(TAD-B.recurr). The partial contribution of each ‘s’ function accounts for the
interaction with the corresponding status of LAD. The ‘te’ is a tensor product
interaction that describes the interplay between gene.density vs. TAD.recurr,
gene.density vs. RT, and TAD.recurr vs. RT. The partial contribution of each ‘te’
interplay accounts for the interactionwith the corresponding class of TAD segment
that includes quiescent, low-active, and active regions. Source data are provided as
a Source Data file.
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Detecting significantly recurrent peaks in BPpc
We obtained the adjusted B _Ppc=BPpc� gBPpc by correcting the
observed curve with the expected model (Fig. 1c). Values around zero
in the adjusted curve correspond to the observed BPpc close to the

expected one from the GAM. Peaks in positive values of B _Ppc corre-
spond to regions where the breakpoints are closer than expected,
while the valleys in negative values are loci where the breakpoints are
sparser than expected (Fig. 4a and Supplementary Fig. 4). As expected,
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Fig. 3 | Graphics to analyze the results of the partial contribution of covariates
to the GAM shown for representative cancer types. a The smooth function of
partial contribution of TAD recurrence. b The smooth function of the partial con-
tribution of GC content. These graphics represent the linear or nonlinear behavior
of the partial contribution of each covariate analyzed. The x-axis is the value of the
covariate and the y-axis is the correspondingpartial effectof the covariate. The gray

shade area displays two standard errors above and below the GAM estimate of the
smooth curve. c 2D graphics for the partial contribution of the interplay between
gene density and TAD recurrence for the interaction with the three functional
classes of TAD segments. The scale from light yellow to red represents partial
contribution for higher to lower values of the distribution. The full set of graphics
for all cohorts is shown in Supplementary Fig. 3.

Article https://doi.org/10.1038/s41467-022-32945-2

Nature Communications |         (2022) 13:5640 5



there is a wide variability of the peaks and valleys representing the
differential landscape of rearrangements for each cohort (Fig. 4a and
Supplementary Fig. 4)

To identify the peaks that potentially correspond to positively
selected loci across the BPpc rearrangement landscape, we computed

the peak recurrence score (PRs) (Methods).

PRs =
Nsmp

NSV
×

PeakA
PeakGR

ð1Þ

Fig. 4 | Results for the significantly recurrent rearrangement peaks. a Examples
of cancer-specific BPpc and the peaks of significantly recurrent rearrangements for
representative cancer types. Each peak shows a dot colored in the scale of sig-
nificance for the corresponding peak recurrence score (PRs). The peaks that come
mostly from a unique sample are marked with an asterisk. The known driver can-
didates detected within the significantly rearranged peaks are marked (green for
coding sequence and red for enhancers). b Empirical and theoretical density of PRs

for each cohort and the corresponding QQ-plots which show the p-values using a
test of fit for the Gamma distribution. The full set of graphics for all cohorts is
shown in Supplementary Figs. 4, 5. c Scatter plots of the genome length of the peak
region vs. number of SVs for each peak, the size of the dots shows the recurrence in
the cohort. Histogram of the genome length distribution of the significant peaks.
Source data are provided as a Source Data file.
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where Nsmp is the number of unique samples in the peak, Nsv is the
number of unique SVs, PeakA is the area under the peak, and PeakGR is
the genomic range of the peak. Thus,PRs is the highest for peakswhere
many samples (highNsmp) contribute the sameSVs (lowNsv) to create
tight clusters of breakpoints (high PeakA) over narrow regions (low
PeakGR). Next, for each cohort, we identified peaks with PRs sig-
nificantly higher than the fitted theoretical density using a Gamma
distribution (FDR <0.2) (Fig. 1d, Fig. 4b and Supplementary Fig. 5).

We identify 79 significantly recurrent peaks that potentially cor-
respond to positively selected loci (Supplementary Data 4). We find
that cohortswithmore SVsper sample havemoreobserved total peaks
as expected (Supplementary Fig. 2c), but there is a negative correlation
between the total number of peaks and thenumberof significant peaks
(Supplementary Fig. 2d). The peak summits corresponding to putative
driver candidates range from 179 bp to 10.71Mb, with a median of
822.96 kb, highlighting the strength of our approach to capture
breakpoint clustering over varied genomic lengths (Fig. 4c). The
number of significant peaks ranges from 0 in bone cancer to a max-
imum of 13 in colon cancer (Fig. 4c and Supplementary Fig. 6). Upon
comparison with PCAWG results5, we found that the unique peaks
identified as significant in our analysis tend to be more cancer-type-
specific. Among the 42 peaks that overlap with regions of PCAWG
candidates (Supplementary Data 5), 16 are cancer-type-specific, while
26 were found in multiple cancer types. Conversely, 32 peaks have no
overlapwith PCAWG results: 25 of those peaks are cancer-type-specific
and 7 peaks were found inmultiple cohorts. Thus, there is a significant
enrichment of cancer-type-specific candidate peaks identified by our
approach relative to PCAWG (chi-squared test p-value = 0.0006),
which further demonstrates the power of tissue-specific analysis.

We further investigated the SV type composition of each sig-
nificant peak for each cohort (Supplementary Data 6). We observed
heterogeneity in the SV typeswithin the peaks, reinforcing that a single
driver candidate can be affected by different SV types and mechan-
isms. Nevertheless, we also found regions significantly enriched in one
particular SV type compared to other regions (Supplementary Data 6).

Putative driver candidates identified at significantly recurrent
peaks in BPpc
Weproceeded by predicting the functional elements that are themost
likely targets of positive selection within the significantly recurrent
peaks by computing the element rearrangement scores (RSE) for all

protein-coding exons, long noncoding RNAs (lncRNAs), enhancers,
and CTCF-insulators in the 79 significantly recurrent peaks (Fig. 1d, e,
Supplementary Fig. 6 and Supplementary Data 7) (Methods). The
highest RSE values point to elements impacted by the largest number
of SVs in the maximum number of samples within the entire peak.
Across all the analyzed cancer cohorts, we identified 53 coding genes,
24 enhancers of 17 other genes, and 3 lncRNAs as the most likely
targets (Fig. 5) (Methods). Our results are validated by known cancer
genes in different cohorts. For example, TMPRSS2–ERG fusion34,35, and
PTEN and TP53 deletions36,37 in prostate cancer. AR enhancer is sig-
nificantly affected only in themetastatic prostate cancer cohort, which
is consistent with the development of the disease36–38. We also found
EGFR, MYCN, and MYC in brain cancers;39,40 BCL2, MYC, and the loci of
IGH translocations in lymph-nodes cancer;41–43 CDK12 in breast cancer;
CCND1 in liver cancer; and RUNX1, GATA6, and PDE4D in esophageal
cancer (Fig. 5). Besides these known cancer genes in specific cohorts,
we also identified several others with known roles in multiple cancers
(Fig. 5). Interestingly, most of these common candidates are large
cancer genes within fragile sites, such as FHIT, WWOX, CCSER1,
IMMP2L, CDKN2A, and CDKN2B26,44–47. While it remains unclear whether
the regions of fragile sites have meaningful implications in cancer
progression, by accounting for these sites as covariates in our model,
our findings reveal the specific cancer types where these fragile site
genes are more likely to have tumorigenesis activity via increased
genomic instability48,49.

Overall, out of the 73 genes whose exons or enhancers are iden-
tified as putative drivers, 47 are known cancer genes (Fig. 5). Genes
identified as potential drivers in our analysis that are known to be
oncogenic in another cancer type50,51 are of high interest since they are
often therapeutic targets under investigation (Fig. 6). For example,
DMD is known to be a cancer gene50 in human myogenic tumors, such
as gastrointestinal stromal tumors52, rhabdomyosarcoma53, and
leiomyosarcoma54, and we find it is a putative driver gene in esopha-
geal cancer where 54% of the cohort carries SVs in this region (Fig. 6a).
We also identified LRRN3 as a driver candidate in esophageal cancer
with SVs in 20.7% of the samples (Fig. 6b). Other members of the LRRN
gene family have been found as drivers in multiple cancer types,
including neuroblastomaandgastric cancer55, and the roleof LRRN3, in
particular, has been studied in fibrosarcoma56. As shown in Fig. 6, clear
peaks inBPpc correspond to tight clusteringof breakpoints allowingus
to confidently pinpoint these genes as putative drivers.
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Fig. 5 | Driver candidates predicted for each cancer cohort. In green are the
genes affected in the coding sequence and in red are the genes impacted at their
enhancers. Genes marked with a black dot are the ones previously reported in the
corresponding cancer type. Genes markedwith a white dot are the ones previously

reported as cancer genes but in a different cancer type than our prediction. The
IGH@ locus contains four enhancers. The entire list of candidates is shown in
Supplementary Data 5.
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Another interesting result is our finding in ovarian cancer of a
region affected in 25%of the cohortwhereourmethodpoints toNF1 as
a potential driver (Fig. 6c). Previous studies have shown the impor-
tance of NF1 in several other cancers, including glioblastoma, mela-
noma, breast, and lung cancers39,57–59. The gene CDK12 is a candidate
within a region affected in 14.9% of the uterine cancer cohort (Fig. 6d).
CDK12 is a well-studied target in other female reproductive cancers,

such as ovarian and breast60, and it has also been studied in stomach
and prostate cancers20,61. In colorectal cancer, we predict WWOX as a
putative driver in a region that shows SVs in 25% of the samples
(Fig. 6e).WWOX is within a known fragile site and has been reported to
be important in several studies of different tumor types, including
breast, prostate, lung, esophagus, cervical, ovarian, and bladder
cancers62–66.

Fig. 6 | Zoomed in plots of the genomic location of the significantly rearranged
peaks that show breakpoint clustering at regions of candidates with previous
evidence in other cancer types.The different types of SVs are color coded as (DEL
black, DUP blue, h2hINV purple, t2tINV red, TRA orange). a DMD in a peak on chrX
in esophageal cancer. b LRRN3 in a peak on chr7 in esophageal cancer. c NF1 in a
peak on chr17 in ovarian cancer. d CDK12 in a peak on chr17 in uterine cancer.
eWWOX in a peakon chr16 in colorectal cancer. fCTDSP2 in a peakon chr12 inbrain
cancer. gMACROD2 in a peak on chr20 in pancreatic cancer.h CDKN2B in a peak on
chr9 in liver cancer. The boxplots show the differential expression between sam-
ples with and without SVs in the peak region. GBM glioblastomamultiforme, PACA

pancreatic cancer, LIRI liver cancer. In green are the genes affected in the coding
sequence. In red are the genes impacted in their enhancer regulatory region. The
middle hinge corresponds to the median. The lower and upper hinges correspond
to the first and third quartiles (the 25th and 75th percentiles). The upper whisker
extends from the hinge to the largest value no further than 1.5 × IQR from the hinge,
and the lowerwhisker extends from thehinge to the smallest value atmost 1.5 × IQR
of the hinge (IQR is the interquartile range, or distance between the first and third
quartiles). Data beyond the end of the whiskers are plotted individually as outlier
points. We use Wald statistical test (from DESeq2) to compute the p-values and
Benjamini and Hochberg method to corrected for multiple testing.
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Limited availability of RNA-seq data prevented analysis of the
impact on gene expression for many candidates (Supplementary
Data 8). Among the cohorts with sufficient sample sizes for RNA-seq
analysis, we find that an enhancer of CTDSP2 is a putative driver in
brain cancer (glioblastoma multiforme), and the SVs are associated
with its differential expression (Fig. 6f). CTDSP2 is known to be
important in other cancer types67,68. The genesMACROD2 in pancreatic
cancer (Fig. 6h) and CDKN2B in liver cancer (Fig. 6g) also show sig-
nificant differential expression between samples with SVs at these loci
relative to those without SVs.

These findings highlight the importance of both the tissue-
specific and clustering-based approaches used in our method to cap-
ture the significantly rearranged regions in different cancers. Notably,
while breakpoint clustering clearly points to these specific candidates,
as seen in Fig. 6, breakpoint density over fixed bins would require
different bin sizes to capture the ones with maximum density. This is
because using a fixed-size window for all these instances will likely
generate several bins with high density without clearly pointing to the
most probable target element of selection.

Power of detection for the significantly recurrent peaks in BPpc
We used a binomial model to analyze the power of detection of sig-
nificant peaks, defined as the probability to find the expected number
of samples for predicting the significant peaks, similar to the approach
used for power calculations by PCAWG5,69. The results of the power
calculations show that although the cohort size for esophagus, sto-
mach, lung, uterus, and breast cancers is borderline, the sample size
currently available for most cohorts provides 90% power of detection
for peaks with a prevalence of 25% or more (Supplementary Fig. 7).
However, the 94 donors in bone cancer provide ~38% detection power
for such peaks. We found that for lower frequency events (5% or
lower), thedetectionpower ranges from~10 to ~75%, so the sample size
is insufficient for any cohort to reach 90% power of detection. These
calculations provide a potential explanation for the different number
of significant peaks across cohorts. They show that for events of fre-
quency 5% or lower, we do not have sufficient power for any of the
cohorts.While at least 100–200genomes are needed formost cohorts,
others, including prostate and kidney, need more than 250 genomes,
whereas the liver, brain, and pancreas need more than 300. The
number of genomes available for each cohort is marked in Supple-
mentary Fig. 7.

We found that smaller genomic regions (narrow peaks) need
fewer samples to get 90% of the detection power while larger genomic
areas (wider peaks) need more samples to reach that power (Supple-
mentary Fig. 7). When the number of samples exceeds the sample size
of the current cohorts, somecases showambiguity in this trend for low
prevalence prediction. This is likely due to the uncertainty in the
empirical estimate of the breakpoint rate factor and peak’s genomic
length used in the binomial model, which may change with increased
sample size.

Detecting single-sample peaks in BPpc
Besides the main goal of detecting the significant recurrent loci
potentially under positive selection, the method annotates the peaks
that originate fromone or a small number of samples.We compute the
single-sample rearrangement score SSRs, which evaluates the average
contribution of each sample to the total number of breakpoints within
each peak (Method). Higher SSRs points to regions originating from
fewer samples. We found 12 regions for which the breakpoint load is
significantly enriched in fewer samples than expected, in addition to
the peaks arising from only one or two samples (Supplementary
Data 9). We further compared the features of the significant single-
sample peaks with the significantly recurrent peaks predicted to be
under positive selection. We do not find any significant difference in
the number of SVs, peak area, peak heights, peak genomic range, or

distance to the nearest neighboring peak (Supplementary Fig. 8). We
find that single-sample peaks harbor significantly fewer breakpoints
than multiple-sample peaks as one might expect.

CSVDriver: computational tool to identify SV drivers from
whole-genome sequences
The computational approach developed in this work to identify SVs
and functional elements under positive selection in cancer whole-
genomes is implemented in CSVDriver, Cancer Structural Variation
Drivers, a user-friendly tool. The input for the tool is SV calls, and
researchers can provide the tissue-specific covariates data or use
existing datasets to run the tool on their cancer cohort/s. Besides the
list of functional elements that are putative drivers in a given cohort,
the tool provides graphical visualization of the GAM results, including
the analysis of nonlinearity and covariates interaction. To test whether
the model can be applied in independent cohorts of the same cancer
types,we evaluated threedatasets from ICGCcohorts, includingbreast
cancer (549 samples), prostate cancer (396 samples), and skin cancer
(206 samples), each of which is independent of the PCAWG datasets
used to develop the method. We compared the top significant peaks
(p-value < 0.025) obtained by adjusting the BPpc with the new com-
puted ICGC model (Supplementary Data 10a left), with the top sig-
nificant peaks (p-value < 0.025) obtained using the previously
computed PCAWG model on cohorts of the same cancer type (Sup-
plementary Data 10a right). We confirmed that significant cancer-
specific loci target the same genomic regions regardless of the model
used. Moreover, we find that all candidates identified in PCAWG
cohorts are identified in the ICGC cohorts, while three additional
candidates are identified in the ICGC cohorts, likely due to the larger
sample sizes.

Discussion
One of the major challenges in cancer genomics is the accurate esti-
mation of the expected heterogeneous distribution of passenger var-
iants. This distribution represents the null background, which can be
used to identify loci that exhibit significantly recurrent variants likely
due topositive selection.While this problemhas received considerable
attention for SNVs, studies for tissue-specific neutral models of the
genomic distribution of SVs are lacking. We find that a GAM is able to
describe the breakpoint proximity distribution of SVs in cancer gen-
omes, with the explained deviance ranging from 10% in lung to 57% in
lymph-nodes cancer.Themodel’s explaineddeviance is affectedby the
capacity of the chosen set of covariates to capture the patterns of
breakpoints and explain the BPpc distribution related to background
rearrangement events. The variability in the model’s performance
across cancer types suggests that some missing cancer-specific cov-
ariates should be investigated.

The use of a GAMallowsus to interpret the results graphically and
provides estimates for both the magnitude and statistical significance
of the contribution of each feature. We find that the 3D chromosomal
conformation plays an important role in the genome-wide distribution
of SVs for most cancer types with TAD recurrence, TAD-B recurrence,
and their interaction terms with other covariates contributing sig-
nificantly to the model.

Our method is able to identify the known cancer drivers and
further nominate candidates that exhibit higher breakpoint proximity
than expected by random chance, such as DMD and LRRN3 in eso-
phageal cancer, NF1 in ovarian cancer, CDK12 in uterine cancer, and
WWOX in colorectal cancer. We note that the pan-cancer analysis by
PCAWG allowed the identification of regions that are not likely to gain
significance in single cancer analyses due to limited cohort sizes but
failed to identify many regions that gain significance in our tissue-
specific analysis. While our method is able to identify 24 enhancers as
putative drivers, they are usually in the vicinity of other coding exons
with similarly high element rearrangement scores, and further
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functional validation will be needed to decipher their role in tumor-
igenesis. However, one prominent example supported by RNA-seq
data is CTDSP2 enhancer, which is a candidate driver in glioblastoma.

Although we could identify the features that contribute sig-
nificantly to the breakpoint proximity curve, we find that the rela-
tionships are usually tissue-specific, complex, and nonlinear, often
forbidding straightforward interpretations. Furthermore, while we
focused our analysis on the peaks in BPpc, the valleys could potentially
provide insights about the loci showing depletion of breakpoints due
to negative selection in future studies. Finally, larger sample sizes are
needed to comprehensively capture all the cancer-specific significantly
rearranged regions under positive selection, particularly for events
with low prevalence.

Methods
Cancer somatic structural variations data
For each cancer type, we use a high-confidence dataset of somatic SV
breakpoints. It was obtained from the consensus SV calls of PCAWG
Structural Variation Working Group 61,18. We selected the cohorts
based on the median number of SVs per sample, aiming to get data
representative of the cancer types more impacted by genomic rear-
rangements. It covers 15 different organ systems, including 32 distinct
histological cancer subtypes. They are Skin: MELA (Melanoma), SKCM
(Skin Cutaneous melanoma); Pancreas: PACA (Pancreatic Cancer),
PAEN (Pancreatic Endocrine Neoplasms); Lymphatic system: DLBC
(Lymphoid Neoplasm Diffuse Large B-cell Lymphoma), MALY (Malig-
nant Lymphoma); Esophagus: ESAD (Esophageal Adenocarcinoma);
Lung: LUAD (Lung Adenocarcinoma), LUSC (Lung Squamous cell car-
cinoma); Uterus: UCEC (Uterine Corpus Endometrial Carcinoma);
Ovary: OV (Ovarian Cancer); Breast: BRCA (Breast Cancer); Brain
(central nervous system): PBCA (Pediatric Brain Cancer), LGG (Brain
Lower Grade Glioma), GBM (Brain Glioblastoma Multiforme); Bone:
SARC (Sarcoma), BOCA (Bone Cancer); Colorectal: COAD (Colon
Adenocarcinoma), READ (Rectum Adenocarcinoma); Kidney: KICH
(Kidney Chromophobe), KIRC (Kidney Renal Clear Cell Carcinoma),
KIRP (Kidney Renal Papillary Cell Carcinoma), RECA (Renal clear cell
carcinoma); Liver: LICA (Liver Cancer), LIRI (Liver Cancer—RIKEN),
LIHC (Liver Hepatocellular carcinoma), LINC (Liver Cancer—NCC);
Stomach: GACA (Gastric Cancer), STAD (Gastric Adenocarcinoma);
Prostate: EOPC (Early Onset Prostate Cancer), PRAD (Prostate Adeno-
carcinoma). Particularly for prostate cancer, we additionally collected
SVs from a cohort of 124 metastatic samples (379,605 SVs) obtained
from calls reported in refs. 19 and 20. These datasets provide infor-
mation from whole-genome sequencing of 2382 cancer donors
allowing us to analyze 324,838 high-confidence somatic SVs. We ana-
lyzed SVs in autosomes and chromosome X only. The genome refer-
enceused is hg19build. Thedetails are shown inSupplementaryData 1.

Genomic feature annotations and tissue-specific epigenomic
covariates
Weuse several genome features as theBP covariates in themodelingof
the expected background of BPpc. They include tissue-specific chro-
matin state marks from Roadmap Epigenomics Mapping
Consortium23, which annotates genomic regions based on histone
modifications and chromatin DNA accessibility70. We used the average
RT signal per 1Mb genomic bins across eight different cell types (liver,
breast, brain, lymphoma system, skin, blood, lung, and prostate) as
described in the CNC-Driver method11. The datasets were collected
from ENCODE and constitute wavelet-smoothed Repli-seq data25. The
GC content was computed in windows of 101 bp centered in each BP
using the function ‘GCcontent’ from the R Package ‘biovizBase’ version
1.30.171. The gene density was computed per 1Mb window using the
function kpPlotDensity from the R Package kpPlotDensity version
1.10.072. The chromosomal Fragile Sites (FS) annotation was obtained
from the database HumCFS26. The information about the genome

complexity was assessed using the genome repeat class (repClass)
obtained from repeat masker data in UCSC genome browser73.

In the set of covariates, we included two higher-order
structural 3D chromosomal conformations. The annotation of
genome LADs obtained from Akdemir, K. C. et al.16, and the
annotations of genome TADs obtained from the 3D Genome
Browser24, which include a collection of 37 samples (cell lines and
tissues) across 19 tissue types (Supplementary Data 2). Although
TAD structure tends to be conserved across cell types74,75, there is
evidence that cancer cells show higher TAD structural
variability76,77. For our tissue-specific analysis, we use the recur-
rence of TAD and TAD-boundaries (TAD-B) regions. The recur-
rence of each TAD region was computed as the number of
samples (cell lines and tissues) with a minimum of 70% overlap of
the TAD regions divided by the total number of samples. TADs
with low recurrence (<0.5) point to the regions with high 3D
structural variability and potential for tissue specificity, while
TADs with high recurrence (>0.5) are regions of similar structure
across all datasets. We further classified each sub-segment of TAD
that shows distinct recurrence (Supplementary Fig. 9a) into
tissue-specific classes of chromatin state by computing the
enrichment of 15 tissue-type chromatin marks, similar to the
approach used in ref. 16 (Supplementary Fig. 9b). We found that
three principal components explain most of the variance in cov-
erage (Supplementary Fig. 10). Consequently, we grouped the
TAD segments in three clusters according to their coverage of
chromatin marks. The three clusters are quiescent/hetero-
chromatin, low-active, and active chromatin. We confirmed that
the clustering is robust across the 16 cohorts analyzed in this
study (Supplementary Fig. 11). More details of the sources of
genomic feature annotations are shown in Supplementary Data 2.

The putative functional effect for each significantly rearranged
locus is predicted by annotating the potential drivers on the basis of
the impact of the SVs breakpoints on the coding and noncoding ele-
ments within these regions. For the coding drivers, we use the subset
of protein-coding genes extracted from the comprehensive gene list
obtained from the Genecode Release 29 (GRCh37). For the noncoding
elements, we use the active tissue-specific candidate cis-regulatory
elements gathered from ENCODE 325.

Power of detection for the significantly recurrent peaks in BPpc
We used a binomial model to analyze the power of detection of sig-
nificant peaks, defined as the probability to find the expected number
of samples for predicting the significant peaks, similar to the approach
used by PCAWG5,69. The procedure consisted of computing the mini-
mum number of samples needed to reach 90% probability of a sig-
nificant peak using the probability that a patient will have at least one
SV in a significant peak from each cancer-specific background model
p0 = 1 − (1 − μfp)L, where μ is the cancer-specific average SV rate per
megabase, fp is the peak breakpoint rate factor, L is the median length
of the top 2% peaks from each cancer-specific background model.
Then the signal of detection power was calculated as a function of
cohort size using the alternative probability p1 = 1 − (1− p0) × (1 − r×s)
for different peak sample frequencies or prevalence (r = 2%, 5%, 25%)
and a fixed detection sensitivity (s = 90%). We calculated the detection
power across the range (minimum, maximum) of the genomic length
of the top 2% peaks to evaluate the influence of proximal or distal SVs
(Supplementary Fig. 7).

CSVDriver workflow
CSVDriver aims to identify cancer-driving rearrangement events by
analyzing the focal trend of breakpoint clustering. The method has
been implemented in R version 3.6.2 (2019-12-12), and the code is
publicly available at https://github.com/khuranalab/CSVDriver https://
doi.org/10.5281/zenodo.696976178.
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Input and preprocessing of data. The method takes as input the data
of cancer somatic SVs calls and analyzes the combined impact of all
rearrangement types, including insertions (Ins), deletions (Del), head-
to-head inversions (h2hInv), tail-to-tail inversions (t2tInv), and trans-
locations (Tra). The expected file format is SV-table containing 12
columns named as: (cohort_code, donor_id, variant_type, sv_id,
chr_from, chr_from_bkpt, chr_from_bkpt, chr_from_strand, chr_to,
chr_to_bkpt, chr_to_bkpt, chr_to_strand). Each row defines a single SV
by the cohort (cancer type), the donor ID, the SV type (Ins, Del, Inv,
Tra), the SVs unique ID, and the genome coordinate [chr, start, end,
strand] for both rearrangement breakpoints (from, to). CSVDriver
checks SVs from all donors and decomposes this SV-table into a BP-
table sorted by genomic position per chromosome.

Establishing the observed breakpoint proximity curve (BPpc). The
method bases the SV analysis on the description of the genome-wide
distribution of breakpoint proximity taking all breakpoint coordinates
for each distinct sample in the given cohort. Thus, if a breakpoint
coordinate is present in two samples, it is represented twice. Conse-
quently, for a cohort with several samples harboring recurrent break-
point coordinates, theywill all be included in the analysis. Thenwe sort
all breakpoints basedon their coordinates andobtained anordered list
of breakpoints encompassing all samples, eachone representedbyBPi,
where i is the ordered index. Next, we annotate each BPi by computing
their neighbor reachability (BPnri,) defined as the average distance to
reach adjacent breakpoints on both 5’ and 3’ sides:

BPnri = ðΔðBPi,BPi�1Þ+ΔðBPi,BPi+ 1ÞÞ=2 ð2Þ

Because a higher distance implies lower proximity to pursue a
peak-calling strategy, we define the breakpoint proximity (BPp) upon
the BPnr values as the normalized reverse scale, applying logarithmic
transformation:

BPpi = � log10ðBPnri + 1Þ ð3Þ

Then, we compute the breakpoint proximity curve (BPpc), which
is a smooth curve resulting from the nonparametric local polynomial
regression (LOESS) fitted to the BPpi values (Fig. 1a). This curve shows
the trend of focal clustering of the breakpoints because the fitting
result is weighted toward the nearest surrounding values. The span
argument (α =0.2) controls the size of the surrounding interval. It
reflects the interval as a proportion of the total breakpoints and reg-
ulates the grade of smoothness in the resulting curve. The BPpc
represents the distribution of breakpoints, fromwhich we can capture
statistically significant regions of high or low proximity between
breakpoints.We find that the chromosomeswith few breakpoints (less
than 100) do not allow the creation of a reliable smooth curve, and
thus breakpoint proximity can not be modeled accurately. This often
occurs in small chromosomes (e.g., chr21, chr22) for some cancer
cohorts. This does not impact our results since such few breakpoints
do not change the GAM, and no peaks are identified in these regions.

Modeling the expectedBPpcbyusing ageneralized additivemodel
(GAM) with tissue-specific genomic covariates. The model is con-
ceived to expand the linear regression analysis of genomic covariates
by introducing the capacity to investigate the potential nonlinear
relationships between genomic covariates and the distribution of
breakpoints. Additionally, it accounts for the contribution of the cov-
ariates’ interaction to themodel. Thus,CSVDrivermodels the expected
background BPpc using GAM, a parametric regression method, which
models the BPpc (dependent variable) with respect to tissue-specific
data of genomic covariates (predictors or independent covariates).

GAM is a flexible extension of generalized linear models (GLM).
Using a GAM, we can fit a linear model, which allows us to consider

either linear or nonlinear contributions of the genomic covariates to
the model of BPpc. To fit the GAM, CSVDriver uses the R package
‘mgcv’ version 1.8-2879,80. The values of the observed BPpc for each
cohort fit Gamma distribution (Supplementary Fig. 12). Therefore, the
model assumes each expected BPpc to be generated from a Gamma
distribution for the identity link function of the response. The model
follows the equation:

gBPpci = β0 + FSi + LADi + repClassi +ChromMarki + s RTi

� �
LADi + s GCi

� �
LADi

+ s TAD:recurri
� �

LADi + s TADB:recurri
� �

LADi + s GeneDensityð ÞLADi

+ te GeneDensityi,TAD:recurri
� �

TADsegmclassi

+ te GeneDensityi,RTi

� �
TADsegmclassi

+ te RTi,TAD:recurri
� �

TADsegmclassi

ð4Þ

where i = 1,…,N (total number of breakpoints), gBPpciis the expected
breakpoints proximity, β0 is the intercept and the remaining terms are
the genomic covariates used as predictors. The covariates FS, LAD,
repClass, and ChromMark (chromatin marks) are modeled as linear
factorial terms. The thin plate regression spline smooth function (s)
can describe the nonlinearity in the contribution of the covariates (RT,
GC, GeneDensity, TAD, and TAD-B recurrence), and for each one, the
model gets the interactionwith the status of the factor LAD. Themodel
investigates the main effects of the predictors as well as the effects of
the tensor product interaction (te) for the interplay between
GeneDensity and TAD recurrence; GeneDensity and RT; and TAD and
RT. This accounts for the status of TAD-segment class. Nonetheless, a
high number of interaction terms increases the chance of over-fitting.
Furthermore, GAM can be computationally expensive to reach
convergence. Consequently, we try to balance the complexity of the
model and its ability to explain the deviance by covariate interactions
reasonably by including the interaction only of covariates that
contribute at least 10% in at least one cohort in single predictor
models.

We checked the effect of adding the mutational status of DNA-
repair genes to the model (Supplementary Data 11, extended GAM
equation). This analysis was performed on the breast cancer cohort
because it is representative of the high mutational impact of DNA-
repair genes. The breast cancer cohort shows 20 different DNA-repair
genes (Supplementary Data 11) mutated across 104 samples (49.8%).
We observe that including the mutational status of the DNA-repair
genes improved model performance by only 0.2%, from 18.8 to 19%.
This result corroborates the idea that the mutational status of DNA-
repair genes impacts the overall breakpoint proximity signal and is
thus accounted for by the original model.

Computing the adjusted BPpc. The goal of CSVDriver is to capture
the loci where breakpoint clusters potentially arise due to selective
pressure unlike the clusters associated with neutral non-selective for-
ces. Therefore, the adjusted curveB _Ppc=BPpc� gBPpc represents a
corrected BPpc where regions with values close to the gBPpc will be
considered expected biases. The signal in the y-axis depicts how close
the breakpoints are in a given region (Fig. 1c). The positive values
represent regions where the breakpoints are closer than expected,
while regions with negative values are loci where the breakpoints are
sparser than expected from the GAM. The values around zero in the
adjusted curve (B _Ppc) correspond to regions of observedBPpc close to
the expected one.

Detecting the significantly recurrent peaks in theBPpc. Themethod
takes the regions corresponding to the top 25% of the summit of each
peak, which represent the regions of local maximum breakpoint
clustering. Then we identify the loci that potentially correspond to the
positively selected regions (Fig. 1d). Each peak is described by its peak
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recurrence score (PRs) defined in Eq. (1). Thus, PRs is the highest for
peaks where many samples (high Nsmp) contribute to create tight
clusters of breakpoints (high PeakA) over narrow regions (low PeakGR).
The score is square root transformed to reduce the dispersion in the
values while keeping the trend of interest. We take into account the
inherent limitation of the background model and the differential
explained deviance per tissue type (Fig. 2a). Consequently, the
approach does not use any absolute pre-established threshold,
instead, it considers the cohort-specific distributions of all PRs (Fig. 4b
density distribution) as the expectation of the combined effect of
several processes. Next, for each cohort, we identify peaks with PRs
significantly higher (Fig. 4b, QQ-plots) than the fitted Gamma dis-
tribution theoretical density using the ‘fitdistrplus’ R Package version
1.1-181. After controlling the false discovery rate (FDR)82 for multiple
hypothesis testing, the significant loci were defined as those
with FDR <0.2.

Detecting peaks of sample-specific rearrangements in the BPpc.
Additionally, the model annotates significant peaks arising from a
single sample or fewer samples than expected.We compute the single-
sample rearrangement score (SSRs) as the proportion of breakpoints
per sample for each peak:

SSRs =NBP=Nsmp ð5Þ

where NBP is the number of breakpoints and Nsmp is the number of
sampleswithin each peak. The SSRs evaluates the average contribution
of each sample to the total number of breakpoints within each peak.
The distribution of the peaks’ SSRs reflects the expected empirical null
background distribution from which the loci with significantly high
SSRs are detected (FDR <0.2). These significantly higher SSRs peaks, in
addition to the peaks arising from only one or two samples, point to
breakpoint clustering regions significantly enriched in fewer samples
than expected.

Detecting the driver candidates within the significantly recurrent
peaks. The potential functional effect of the significantly rearranged
regions for eachcancer is directly associatedwith the effects oncoding
and noncoding elements by their deletion, disruption, or relocation.
CSVDriver determines the functional elements that are the most likely
targets of positive selection within the predicted significantly
recurrent peak.

For each functional element (i.e., protein-coding exons, lncRNA,
enhancer, CTCF-insulator) located at a significantly recurrent peak, the
method computes the element SV rearrangement score (ERSSV)

ERSSV =
NsmpE

Nsmp
×
NsvE
LE

ð6Þ

where NsmpE is the number of unique samples that have SVs over-
lapping the element, Nsmp is the number of unique samples in the
peak,NsvE is the number of SVs that overlap the entire element, and LE
is the length of the element. High NsvE values could be due tomultiple
alleles affected or multiple clonal/subclonal cell populations with SVs
at the given locus. Normalization by LE accounts for longer elements
that are more likely to have a larger number SVs at random. The ERSSV
is a metric of the relative selective pressure acting on the elements
within the significantly rearranged region, and it considers the recur-
rence in samples and the relative number of SVs that impact the ele-
ment. The functional elements with the highest ERSSV are the most
likely targets of positive selection within the peak. The distribution of
gene lengths in the human genome ranges from less than one kilobase
to several megabases83. While we compute ERSSV for coding genes
similar to the one for other elements to account for SVs that can
change the entire genic region via amplification, deletion, or locus

relocation, we find that the longer genes may be broken at the genic
region leading to disruption of the coding sequence via gene fusion or
translocation. Hence, for coding genes within the significant peaks, we
compute a second element breakpoint rearrangement score (ERSBP):

ERSBP =
NsmpE

Nsmp
×
NbpE

LE
ð7Þ

where NsmpE is the number of unique samples that have SVs over-
lapping the element, Nsmp is the number of unique samples in the
peak,NbpE is the number of breakpoints that fall within the gene body,
and LE is the length of the element. Normalization by LE accounts for
longer elements that are more likely to have a larger number of
breakpoints at random. CSVDriver reports both ERSSV and ERSBP for
coding genes, and the one with the higher value is used to identify
putative drivers.

The method reports the element rearrangement scores for the
highest scoring elements of all types (protein-coding exons, enhan-
cers, or lncRNA) at a given peak (Supplementary Fig. 6 and Supple-
mentary Data 6). While at a specific locus altered by SVs, it is fair to
assume that affected coding exons of genes are more likely to have a
greater impact than the noncoding elements, CSVDriver allows the
analysis of the potential importance of all possible driver elements.
One peak may contain multiple driver elements, which can represent
alternative paths of disrupted regulation, or even some subgroup of
samples with slightly different, yet related genomic drivers. In the
current analysis, if a peak contains multiple elements of different
types, all elements with the highest rearrangement scores are reported
in Supplementary Fig. 6 and Supplementary Data 6. However, if one of
those elements is or is associated with a known cancer gene, we con-
sider it as the most likely candidate in a given peak shown in Fig. 5.

Results report. For each input cohort, CSVDriver reports the graphics
of the BPpc annotated with the driver candidates (coding genes and
noncoding elements) at each significantly recurrent peak (Supple-
mentary Fig. 6). It also provides the summary tables with the catalog of
drivers (Supplementary Data 7). The tool also provides the set of plots
resulting fromGAM covariatesmodeling to analyze the nonlinearity of
relationships between the genomic features and the genomic dis-
tribution of breakpoints (Supplementary Fig. 3)

Verification of the driver candidates
We verified our results of driver candidates using CancerMine50 and
COSMIC51. In addition, for the significantly rearranged peaks that have
enough samples with RNA-seq, we check for the significant differential
expression between samples with SVs at the given locus relative to the
samples without SVs.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the data generated in this study are provided in the Supplementary
Information/Source Data file. The input SV data used in the study are
described in Supplementary Data 1 and are available for download at
https://dcc.icgc.org/releases/PCAWG. In accordance with the data
access policies of the ICGC and TCGA projects, accessing potentially
identifying information needs authorization granted by applying to
the TCGA Data Access Committee (DAC) via dbGaP (https://dbgap.
ncbi.nlm.nih.gov), and to the ICGC Data Access Compliance Office
(DACO; http://icgc.org/daco). The SVs for metastatic prostate cancer
are available in the supplementary material from Quigley, D.A., et al19.
and Viswanathan, S.R., et al.20. The covariates input data are provided
at the CSVDriver’s GitHub repository (https://github.com/khuranalab/
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CSVDriver/releases/tag/v0.1.0-beta.1) and the full description is pro-
vided in Supplementary Data 2. This dataset includes the unrestricted
downloadable data of the tissue-specific chromatin state marks avail-
able at Roadmap Epigenomics Mapping Consortium portal (https://
egg2.wustl.edu/roadmap/web_portal/), the RT datasets available at
ENCODE portal (https://www.encodeproject.org/), the FS annotation
available at the HumCFS database (https://webs.iiitd.edu.in/raghava/
humcfs/), the repClass data from repeat masker available at the UCSC
genome browser (https://hgdownload.soe.ucsc.edu/), the TADs
annotations available at the 3D Genome Browser (http://3dgenome.
fsm.northwestern.edu/index.html), and the LADs annotation available
in the supplementary material at Akdemir, K. C. et al. 202016. Cancer-
Mine database (http://bionlp.bcgsc.ca/cancermine/) and COSMIC
portal (https://cancer.sanger.ac.uk/cosmic) were used for verifying
cancer-related genes. Source data are provided with this paper.

Code availability
The code for CSVDriver method is available at https://github.com/
khuranalab/CSVDriver (https://doi.org/10.5281/zenodo.6969761)78. The
method uses CRAN and Bioconductor R package including: ‘mgcv’
version 1.8-28 forfitting theGAM, ‘fitdistrplus’ version 1.1-1 forfitting the
Gamma distribution theoretical density, ‘biovizBase’ version 1.44.0
function ‘GCcontent’ for computing the GC content and ‘kpPlotDensity’
version 1.10.0 function kpPlotDensity for computing the gene density.
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