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Multistability and anomalies in oscillator
models of lossy power grids

Robin Delabays 1 , Saber Jafarpour 1,2 & Francesco Bullo 1

The analysis of dissipatively coupled oscillators is challenging and highly
relevant in power grids. Standard mathematical methods are not applicable,
due to the lack of network symmetry induced by dissipative couplings. Here
wedemonstrate a close correspondence between stable synchronous states in
dissipatively coupled oscillators, and thewinding partition of their state space,
a geometric notion induced by the network topology. Leveraging this winding
partition, we accompany this article with an algorithms to compute all syn-
chronous solutions of complex networks of dissipatively coupled oscillators.
These geometric and computational tools allow us to identify anomalous
behaviors of lossy networked systems. Counterintuitively, we show that loop
flows and dissipation can increase the system’s transfer capacity, and that
dissipation can promote multistability. We apply our geometric framework to
compute power flows on the IEEE RTS-96 test system, where we identify two
high voltage solutions with distinct loop flows.

Synchronization and flow networks
The history of scientific investigation about synchronization is tradi-
tionally traced back to Huygens’ observation of an "odd kind of sym-
pathy" in the XVIIth century1. It is, however only in the last decades that
a tractable framework has been developed2–4, thanks in particular to
the pioneering works of Winfree in the 1960s5, and Kuramoto in the
1970s–80s6,7. Shortly thereafter, the problem of synchronization has
been embedded in the framework of network systems8–10, first based
mostly onnumerical simulations, evolving progressively towardsmore
and more analytical results2,4,11. Even in the simplest form of coupled
oscillators, the interplay between dynamics and network structures
leads to rich and sometimes unexpected behaviors.

The interactions between synchronizing oscillators is naturally
interpreted as a flow of information or commodity between the nodes
of a network. This dual interpretation of synchronization and flows is
predominant in the modeling of voltage dynamics in high voltage
power grids12,13. Indeed, in power systems, a rotating turbine in a plant
accumulates kinetic energy and accelerates if all the power it produces
is not transmitted to its neighboring buses.While there is a natural link
between synchronization and flow balance in power grids, a similar
duality underlies dynamical systems as diverse as spring-connected

rotating masses11, motion planning14,15, or chemical oscillations7 to
name but a few. The rate of change of an oscillator’s state is then
determined by the imbalance of the flows received from or sent to its
neighbors. When the flows of commodity balance out at each agent,
such that all agents have identical rates of change, then the relative
positions of the agents are constant in time: we say that they are syn-
chronized. In particular, this is the desired state for an AC power grid.

Lossless oscillator networks
One of the simplest models of synchronization considers a set of
oscillators, each described by a phase θ 2 S1 ’ ½�π,πÞ, interacting
with each other through a 2π-periodic coupling, function of their
phase difference,

mi
€θi +di

_θi =ωi � ∑
n

j = 1
aijf ijðθi � θjÞ, ð1Þ

for i∈ {1, …, n}. The real parameters mi and di represent the effective
inertia and damping of oscillator i respectively, and ωi is the natural
frequencies that the oscillator would hold without interactions. The
function fij is the coupling between nodes i and j and aij 2 R≥0 is the
edge weight that scales the strength of the coupling and determines
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the underlying network structure. These coefficients are nonzero if
and only if oscillators i and j interact. The system described by equa-
tion (1) evolves on the n-torusTn = ðS1Þn. The oscillators are frequency
synchronized (or phase-locked) if, at some point in time, _θi � φ, for all
i. The intrinsic compact nature of each oscillator’s domain and the
continuity of the coupling function require fij to be nonlinear, and
periodic in the systems of interest here. Whereas linear networked
systems are well-understood16, the nonlinear nature of the coupling
between oscillators can lead to rich and intricate behaviors13,17.

The vast majority of the literature about the synchronization of
coupled oscillators assumes symmetric couplings, i.e., two coupled
oscillators influence each other with the same strength. In the flow
network interpretation, symmetric couplings correspond to lossless
flows, i.e., the flow of commodity between i and j contributes with
equal magnitude and opposite sign to each end of the edge between i
and j. Shortly put in mathematical terms, fij(x) = − fji( − x). Con-
sequences of this strong relation between fij and fji are in particular:
(i) conservation of the total flow in the system, simplifying the calcu-
lation of the asymptotics of equation (1) and (ii) symmetry of the
Jacobian matrix of the system, guaranteeing nice and convenient
spectral features. The properties of systems with lossless couplings
allowed to derive a long list of results about their dynamics: conditions
for existence and uniqueness of their synchronous states11,18,19;
multistability13,20; and clustering21,22 to name but a few. An approach,
common to various works, is to design a fixed-point iteration18–20,
whose convergence is guaranteed under some convexity properties of
the energy landscape of the system23,24.

Challenges in the lossy oscillator systems
While the lossless assumption is reasonable in many cases, it is often
not realistic and can lead to inaccurate predictions (see the power flow
problem in the Results Section). In the flow interpretation, the transfer
of a commodity, say electric power, is subject to dissipation, e.g., due
to line resistance, meaning that the amount sent from i to j is strictly
larger than the amount received by j from i. In mathematical terms,
dissipation are introduced in equation (1) by adding a term to the
coupling function

mi
€θi +di

_θi =ωi � ∑
n

j = 1
aij f ijðθi � θjÞ+ gijðθi � θjÞ

h i
, ð2Þ

satisfying gij(x) = gji( − x). Note that any pair of coupling functions
(from i to j and from j to i) can bedecomposed as the sumof fij + gijwith
the above properties [see equations (38) and (39) in the Methods
Section].

The importance of understanding the more realistic case of dis-
sipative couplings motivated the early work by Sakaguchi and
Kuramoto25,26 and is still an active field of research. Recent numerical
investigations27,28 as well as analytical studies in regular systems29–31 are
beginning to shed light on a more in-depth understanding of dis-
sipative networks. More generally, the extension of standard approa-
ches to more realistic systems is gaining momentum in the fields of
synchronization and complex networks32–34.

Up to this day, it is unclear to what extent the properties enjoyed
by lossless networks are preserved in more realistic, dissipative sys-
tems. In the global scientific aim of faithful modeling of real systems, it
is of utmost importance to decipher the impact of dissipation in
standard models of networked dynamics. Indeed, conditions for
existence, uniqueness, and multiplicity of synchronous states or for
the emergence of clustering in lossless systems11,13,20–22 are yet to be
adapted to their dissipative counterpart. Furthermore, it is now largely
documented35 that phase frustration can lead to the occurrence of
solitary and chimera states28,36–40, that are extensively studied, but still
only partially understood.

Understanding dissipative systems is challenging for a number of
reasons. In such systems,flow conservation is lost and the linearization
of the system typically loses its symmetry. Furthermore, while equa-
tion (1) can be formalized as a gradient system over an energy land-
scape, this property immediately fails in dissipative systems such as
equation (2). Therefore, technical approaches based on energy land-
scapes are not applicable any longer. Incorporating dissipation in the
system even requires to re-think the intuitive vectorial formulation of
equation (1), in order to recognize the directionality of flows. Notice
that, surprisingly, even a clear vectorial form of the dissipative
dynamics is lacking in the literature.

Models of lossy power grids
In the context of power grids, taking

f ijðxÞ= sinðxÞ, ð3Þ

in equation (1) yields precisely the lossless approximation of the swing
equations12,13, describing the time evolution of voltage phase angles,
with ωi being the power injection or consumption at bus i. In normal
operation, it is desired that the system is maintained in the vicinity of a
synchronous state of the swing equations, which is reached at the
solutionof the lossless powerflowequations (see theMethods Section).

As discussed above, while the lossless approximation can be
fair and useful in power grids modeling, it is never exact. Therefore,
accurate mathematical analysis of voltage dynamics and power
flows requires to take dissipation into consideration. Considering
resistive losses in the swing equations boils down to taking (see
Methods Section)

f ijðxÞ= cosðϕijÞ sinðxÞ, gijðxÞ= sinðϕijÞ½1� cosðxÞ�: ð4Þ

The mathematical challenges encountered when relaxing the
lossless line assumption confined most of the literature to numerical
investigations27,28.

Objectives and contributions
The overarching goal of this article is to develop an analytical frame-
work to characterize the location, properties, and stability of syn-
chronous solutions of dissipative oscillator networks. In the task of
globally characterizing synchronous states of lossless oscillator net-
works, an instructive and effective approach has been to leverage the
concepts of winding numbers and winding cells20. Given a cycle of
oscillators σ = (θ1, …, θ∣σ∣, θ1), the associated winding number qσ(θ)
counts the number of times the oscillators’ angles wrap around the
origin when following σ (a rigorous definition is given in the Results
Section). A winding cell is a subset of the n-torus Tn whose points
share the samewinding number around each cycle.Winding cells form
a partition of the n-torus (the winding partition) and directly result
from the network structure of the system. The concepts of winding
numbers and winding cells are illustrated in Fig. 1.

In this article,we rigorouslydraw the linkbetween thewinding cells
and the occurrence of a series of surprising behaviors of dissipative
oscillator systems, that have escaped analysis up to this day. Specifi-
cally, we show that, in some cases, increased dissipation can lead to
more robust and more stable systems. We argue that the winding par-
tition provides a clear phase portrait for the analysis of such behaviors.

Motivated by these first observations, we proceed to the second
contribution of this article. Namely, we provide an analytical, statis-
tical, and computational understanding of the solutions of dissipative
flow problems. In particular, we show that, exactly as in lossless net-
works, there is at most one solution of the dissipative flow problem in
each winding cell. This at most uniqueness property is rigorously
proven for a small amount of dissipation and verified numerically for a
wide range thereof. For acyclic networks, we provide an algorithm
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computing the unique solution, if it exists. For general, cyclic graphs,
we provide an iteration map that, under technical assumptions, con-
verges to the unique solution in a given winding cell. An imple-
mentation of both algorithms is provided freely online41.

We conclude by providing a compelling example of a realistic
power grid where multiple solutions of the power flows are accurately
captured by the distinct winding cells. Namely, we find two power flow
solutions on the IEEE RTS-96 test system42, belonging to two different
winding cells.

Overall, in this article, we illustrate our findings with the
Kuramoto–Sakaguchi model (see the Methods Section). This model is
particularly appealing in our context: it is a natural extension of the
(lossless) Kuramotomodel; it is a first-order version of the lossy swing
equations; and the amount of dissipation in the coupling can easily be
tuned with a continuous parameter, namely the phase frustration
ϕ 2 R. Nevertheless, our analytical results are valid for amuchbroader
class of coupling functions fij + gij, that will be of interest to the dyna-
mical systems and network science communities.

Remark. In addition to the demonstrations provided, the framework
proposed here is naturally suited to the analytical study of networked
dynamical systems with directed interactions. For sake of conciseness
and clarity, we limit our focus to dissipative interactions over undir-
ected edges, but the framework covers naturally any type of directed
interactions.Wediscuss thesegeneralizations to a greater extent in the
Discussion Section.

Results
After a formal definition of the winding partition of the n-torus, we
provide a careful description of a series of unexpected behaviors of
dissipative oscillator networks. This section culminates with a pre-
sentation of our rigorousmathematical results. We conclude by giving
an example of twosolutions of thepowerflowequations, coexisting on
the IEEE RTS-96 test system. A detailed formalism can be found in the
Methods Section and proofs are deferred to the Supplementary
Information.

Algebraic graph theory on the torus
Our framework is inspired by ref. 20. The states of the system of
equation (2) are points θ in the n-torus Tn, each component being a
point θi of the circle S1. Comparing points on S1 requires to define
angular differences, which is somewhat arbitrary. In this article, we use

the counterclockwise difference

dccðθ1,θ2Þ=modðθ1 � θ2 +π, 2πÞ � π 2 �π,π½ Þ: ð5Þ

Intuitively, the counterclockwise difference is a projection of the
angular difference on the interval [−π, π).

Given a cycle σ = (i1, …, i∣σ∣, i1) in a graph Gu (see Methods for
details), one can calculate the winding number around cycle σ asso-
ciated with the state θ 2 Tn,

qσðθÞ= 2πð Þ�1 ∑
∣σ∣

j = 1
dccðθij

,θij + 1
Þ 2 Z: ð6Þ

Three states with different winding numbers are illustrated in
Fig. 1 for the 3-cycle. Intuitively, the winding number counts the
number of times the angles in θwind around the origin when following
the cycle σ. Then, given a cycle basis Σ = {σ1, …, σc} of the graph, we
naturally define the winding vector associated to a state θ 2 Tn,

qΣðθÞ= qσ1
ðθÞ, . . . ,qσc

ðθÞ
h i>

2 Zc: ð7Þ

Nonzero winding numbers are typically associated to loop
flows20,43,44, i.e., a commodity flow of constant magnitude around a
cycle of the network. Such loop flows occupy line capacity, but do not
deliver commodity anywhere.

Remark. The winding number is a natural extension to complex net-
works of the quantification of vortex flows in regular lattices, that arise
in statistical physics [e.g., superfluids45 or superconductors46]. As far as
we can tell, the notion of winding numbers in systems of coupled
oscillators can be traced back to refs 47. (referee discussion) and 48.

For a graph with c cycles, a winding vector u 2 Zc can be uniquely
associated with each state inTn. Therefore we can define the winding
cell associated with winding vector u,

Ωðu;ΣÞ= θ 2 Tn : qΣðθÞ=u
� �

: ð8Þ

The counterclockwise difference is bounded, and so are the
winding numbers. There is then a finite number of winding cells for a
given graph Gu, forming a finite partition of Tn. See Fig. 2 for an
illustration of winding cells in a cycle of n = 3 oscillators.

Fig. 1 | Winding cell partition and equilibria for a three-node spring network.
Projected winding cell partition of the 3-torus (left) and representation of three
equilibria of a spring network (right). Points on the 3-torus are projected on the
two-dimensional space of angular differences θ2 − θ1 and θ3 − θ2. A winding number
q 2 Z is associated to each equilibrium, counting the number of times its angles
wind counterclockwise around the origin. The three dots (left) are equilibria of the

springnetwork, labeledwith theirwindingnumbersq. Thephase synchronous state
has all angles identical and, therefore q =0. Equilibria with q = ±1 are the so-called
splay states or twisted states. The colored areas in the left panel represent the set of
points with the samewinding number, i.e., the winding cells, forming a partition of
the 3-torus.
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Anomalous behaviors of dissipative systems
Three unexpectedbehaviorsof lossyoscillator networks are illustrated
in Fig. 3 for the Kuramoto–Sakaguchi model. The first one is a direct
extensionof a phenomenon already noted for lossless systems20,49. The
two other have not been reported to the best of our knowledge.

Anomaly 1, loop flows increase capacity: One would expect the
presence of a loop flow (i.e., nonzero winding number) to reduce the
transmission capacity of the system, because lines are occupied by the
aforementioned loop flow. In Fig. 3c and f, we see that the solutions
with larger winding numbers tolerate larger commodity transfers.
Even though such observations have been documented in the past for
lossless systems20,49, it remains somewhat counterintuitive.

Anomaly 2, dissipation increases capacity: An initial reasoning
would suggest that increasingdissipationwould reduce the robustness
and reliability of a system. Indeed, if part of the transmitted com-
modity is lost on the way, then more of it needs to be injected and the
system is operated closer to criticality. However, the relation between
dissipation and robustness is not that simple, as we illustrate in Fig. 3c.
Indeed, for a nonzero winding number, the ability of the system to
synchronize can evolve non-monotonously with respect to the dis-
sipation (see solution at q = −1). Such a phenomenon is quite unex-
pected and, to the best of our knowledge, has not been reported so far.

Anomaly 3, dissipation promotes multistability: Different solu-
tions differ by a collection of loop flows43, i.e., for some solutions, the
lines are more loaded than for others. Similarly, as in the previous
anomaly, one would expect that increased dissipation would prevent
the occurrence of loop flows and, therefore of multiple solutions.
However, according to Fig. 3f, a system with low dissipation (ϕ∈ [0,
0.3]) and low injection (p ≈0) can have fewer solutions than more
loaded and dissipative systems. Indeed, one would assume that lower
loads and lower frustration leads to a larger margin of freedom in the
system. Apparently, this is not necessarily the case and this can be
attributed to the underlying network structure.

The anomalous behaviors identified above are typically related to
the coexistence of different solutions. As we show in this article, there
is a strong and direct link between different solutions and the winding
partition of the n-torus.

Problem setup and solution: synchronous stateswith dissipative
couplings
We now formalize the problem of flow distribution in dissipative net-
works and present our main formal results. We provide a summary of
the main notation symbols in the Methods Section (Table 1).

Let Gu be the undirected graph describing the interactions in
equation (2). Each edge e = {i, j} of Gu is endowed with two coupling

functions,

hijðxÞ= f ijðxÞ+ gijðxÞ, hjiðxÞ= f jiðxÞ+ gjiðxÞ, ð9Þ

one for eachorientation.Without loss of generality,we incorporate the
edge weight aij in the coupling functions fij, gij, and hij. For each edge,
we choose an arbitrary orientation, say (i, j). We will refer to the cou-
pling functions as he = hij and h�e =hji, with �e denoting edge e with
reversed orientation.

In our framework, equation (2) can bewritten in a vectorial form as

M€θ+D _θ=ω� Bo f ðB>
u θÞ+gðB>

u θÞ
� �

=ω� BohðB>
u θÞ,

ð10Þ

using the diagonal inertia and dampingmatricesM andD, the incidence
matrix Bu, and the out-incidence matrix Bo induced by the chosen
orientation for the incidence matrix [Methods Section, equations (21)
and (25)]. The coupling function h : Rm ! R2m relates a vector of
angular differences over the m undirected edges to the flows that are
distinct for each edge orientation, hence h has 2m components,

½hðyÞ�e =heðyeÞ, hðyÞ� �
e+m =h�eð�yeÞ: ð11Þ

The edge indices e∈ {1,…,m} follow the orientation induced by
the incidence matrix Bu. We refer to the discussion about the
Kuramoto–Sakaguchi model in the Methods Section for an instructive
example of the construction of equation (10).

From now on, it will be convenient to formulate the problem in
terms of angular difference variables Δ 2 Rm, rather than in terms of
angle variablesθ 2 Rn. Constructing the vector of angular differences
Δ from a vector of angles θ is straightforward, using the transpose of
the incidence matrix, Δ=B>

u θ. The other direction, however is not
that direct. Indeed, from a difference vector Δ, one can recover the
associated angle vector θ over a spanning tree of the graph. Now, the
angular difference vector is consistent with the graph structure only if
some cycle constraints are satisfied. Namely, over the remaining
edges of the graph e = {i, j}, that are not in the spanning tree, the
constraint is θi − θj =Δe + 2πk, k 2 Z. The integer multiple of 2π does
not matter because the angles are compact variables over S1. Math-
ematically speaking, these cycle constraints can be formalized using
the cycle-edge incidence matrix CΣ associated with a cycle basis
Σ = (σ1,…, σc) [formally defined in theMethods Section, equation (23)]

CΣΔ=2πu, ð12Þ

Fig. 2 |Winding cells andcohesive sets in a three-node system.Winding cells and
their cohesive subsets, for a cycle of length n = 3. The three-dimensional plots show
the unfolded 3-torus, where each dimension parametrizes one of the three angles
and the winding cells become polytopes. The sides of the cube have then to be
considered as identified (left-right, top-bottom, front-back). a The transparent
volume isΩ(+1; σ), the winding cell of winding number q = +1, and the solid volume
is the 3π/4-cohesive set, i.e., the subset of Ω(+1; σ) where the counterclockwise

differences do not exceed 3π/4. b The transparent volume is Ω(0; σ), the winding
cell of winding number q =0, and the solid volume is the π/2-cohesive set. c The
transparent volume is Ω(−1; σ), the winding cell of winding number q = −1, and the
solid volume is the 3π/4-cohesive set. d Union of the cohesive sets of the previous
panels. Each color corresponds to a winding cell. A key result of this article is that
there is at most one solution to equation (2) in a certain cohesive subset of each
winding cell, i.e., in each solid volume.
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for some winding vector u 2 Zc. In summary, an angular difference
vectorΔ needs to satisfy equation (12) inorder to be consistentwith an
angle vector θ.

From now on, we will search for stable synchronous states of
equation (10), i.e., we require the Jacobianmatrix of the system to have
its spectrum in the left complex half-plane50. Following Gershgorin
Circles Theorem51, stability is guaranteed if h0ðΔeÞ,h0

�eð�ΔeÞ>0 for all e.
Formally, we assume that, in a neighborhood of the origin, both he and
h�e are strictly increasing, and for each edge e ofGu, we require ∣Δe∣ ≤ γe,
so derivatives are positive. The vector of angular differences is then
restricted to the hypercube

RðγÞ=
\
e2Eu

½�γe, γe� � Rm: ð13Þ

The set of points θ 2 Tn whose angular differences along the
edges of Gu are in R(γ) is referred to as a γ-cohesive set. The solid
volumes in Fig. 2 show the intersections of the various winding cells of
a 3-cycle and R(γ) for different values of γe.

Gathering the above observations, we formulate the following
problem, whose solutions are in one-to-one correspondence with
synchronous states of equation (10).

Problem statement. (Dissipative Flow Network). Given a connected
graph Gu with n nodes,m edges, and cycle basis Σ, a vector of natural
frequencies ω 2 Rn, and appropriate coupling functions he,h�e,

associated to each edge e, find a solution Δ∈R(γ) of

BohðΔÞ �ω=φ1n, ð14aÞ

CΣΔ=2πu, ð14bÞ

for some synchronous frequency φ 2 R and winding vec-
tor u 2 Zm�n+ 1.

In contrast with previous works on lossless systems, the flowmap
he is not odd, meaning that we do not impose the constraint
heðθi � θjÞ= � h�eðθj � θiÞ, hence our need of the out-incidence matrix
Bo in equation (14a). Note that, even though in our example of the
Kuramoto–Sakaguchimodel all coupling functions are identical, in full
generality, we allow he ≠h�e.

In the Methods Section, we provide a series of rigorous results,
proving the following claim.

Claim. There is at most one solution to the dissipative flow network
problem in each winding cell of the n-torus.

More precisely, we distinguish the cases of acyclic graphs and of
general graphs with cycles. For acyclic graphs, the winding partition is
trivial and the whole n-torus is a single winding cell. By proving that
there is at most one solution to the Dissipative Flow Network problem
for such graphs, the claim is proven (see Theorem 3).

In the case of a cyclic graph, we design an iterative map that we
prove to be contracting within winding cells, under reasonable

Fig. 3 | Anomalous behaviors in the Kuramoto–Sakaguchimodel. Illustration of
the anomalous behaviors identified for the Kuramoto–Sakaguchi model on a cycle
network (a–c) and a two-cycle network (d–f), with unit coupling weights.
aQualitative distributions of flows over a cycle of n= 18 oscillators, with commodity
injection + p (resp. withdrawal− p) at node 16 (resp. 4). The arrows of two different
colors visualize different flow solutions, with different winding numbers. b Angles
corresponding to the two solutions of panel a. One clearly sees that, for the solution
at q = +1, the angles wrap around the circle, but not in the solution at q=0.
c Boundaries (colored curves) of the existence regions for solutions at different

winding numbers, in the parameter space of phase frustration ϕ and injection
magnitude p. The solutions in panels a andbwereobtained for (ϕ,p) = (0.3, 1.0). The
darkness of each area in the parameter space represents the number of existing
synchronous states. It is surprising that (i) the solution at q= +1, i.e., with a larger
winding number, can carry a larger flow than the solution at q=0, and (ii) for the
solution at q= −1, themaximal tolerated commodity injection is notmonotone in the
frustration. d–f Same (a–c) respectively, for the two-cycle network in panel d.
f Surprisingly, this network has fewer solutions for light load and frustration, (ϕ,
p) ≈ (0.0, 0.0), rather than for larger parameter values, e.g., (ϕ, p) = (0.3, 1.0).
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conditions (see Corollary 6). Solutions to theDissipative FlowNetwork
problemarefixedpoints of this iterationmap, and therefore, there is at
most one solution in each winding cell.

The formal results are formulated in the Methods Section and
proof are deferred to the Supplementary Information.

Multistability in power grids
The last decades have seen a large-scale effort of the complex systems
community to provide an analytical description of the power flow
equations and of their solutions (see the Methods Section). In 1972
already, Korsak47 showed that,mathematically speaking, the power flow
equations tolerate multiple solutions on cyclic networks. Since then,
there has been a plethora of evidence, both analytical and numerical,
that the power flow equations allow the coexistence of different
solutions13,52–55. Even some “real-world” events advocate in this
direction56,57. However, a large proportion of theworkmentioned above
relies on the lossless line assumption, namely, neglecting dissipation,
voltage amplitude dynamics, and reactive power flows. Recently, there
has been a common effort in trying to pursue a more realistic mathe-
matical analysis of power grids, by incorporating reactive power
flows18,19, voltage amplitude dynamics58,59, and dissipation27,28. In parti-
cular, the recent linear stability analysis of the extended swing equa-
tions proposed in ref. 60. show that the conditions for the local stability
of a synchronous state in lossy systems are very similar to those for
lossless systems. Despite all this work, there is still neither a clear
extension of the winding partition to the full active-reactive power
flows, nor a global phase portrait for lossy oscillator systems, even
though there are some notable related preliminary works61,62. Our
results are an advance in the aforementioned collective effort.

To put our results in perspective with the resolution of the power
flow equations, we solved both the Dissipative Flow Network Problem
and thepowerflowequations on an adapted versionof the IEEERTS-96
test case41,42. In Fig. 4, we compare synchronous states of the
Kuramoto–Sakaguchi model (panels b and c, inner circle), with the
corresponding solutions of the full power flowequations (panels b and
c, outer annulus).We elaborate on the resolution of the full power flow
equations in the Methods Section. First of all, one clearly sees that the

main qualitative features (e.g., winding number, cohesiveness, clus-
tering) of the power flow solutions are captured by the corresponding
synchronous states of the Kuramoto–Sakaguchi model. Furthermore,
it is remarkable that two solutions to the full power flow equations
coexist, satisfying all voltage amplitude constraints as well as voltage
angle stability. This example shows that loop flows and winding par-
tition are fundamental features of power flow solutions. Our work is a
contribution to the joint and long-lasting effort in the quest for an
accurate mathematical analysis of power grids, which is a landmark in
the area of power grid analysis.

Discussion
Theorem 3 and Corollary 6 (see Methods Section) rigorously prove
that, in each winding cell of the n-torus, there is at most a unique
synchronous solution for dissipative networks of oscillators. In acyclic
networks, the whole n-torus is trivially the unique winding cell, and
there is, therefore, at most one solution to the Dissipative Flow Net-
work problem (Theorem 3), independently of the amount of dissipa-
tion. For systems over more general, cyclic graphs, the winding
partition provides a natural decomposition of the n-torus in subsets
containing at most one solution. These results are a straight general-
ization of ref. 20 to dissipative systems.

Even though the relation established in Corollary 6 is formally
valid for relatively small amounts of dissipation, numerical experi-
ments did not lead to any counterexample. Indeed, we empirically
observed for a large range of network structures, frustration para-
meters, and initial conditions, that the iteration map defined in The-
orem 5 [Methods Section, equation (37)] can always be made
contracting by taking a sufficiently small value of ϵ >0. We have,
therefore, strong numerical evidence that the aforementioned itera-
tion map can be made contracting at any point of the γ-cohesive set,
with γe taken such that each coupling function he is strictly increasing
on [−γe, γe].We conjecture thatCorollary 6 is actually very conservative
in general and that the atmost uniqueness property therein is valid for
a much broader range of dissipation-to-coupling ratio. Furthermore,
the comparison between coupling and dissipation in equation (45)
clearly pinpoints how dissipation works against synchronization.

Fig. 4 | Multistability in the full power flow equations for the IEEE RTS-96 test
case. Comparison of the power flow solutions and Kuramoto–Sakaguchi syn-
chronous states on the IEEE RTS-96 test case42. a Geographic representation of the
system. Circles are loads and squares are generators. The network is composed of
n = 73 nodes, m = 108 edges, and therefore c = 36 independent cycles. The long
cycle with thick edges is of particular interest, because its length promotes the
existence of loop flows while keeping angular differences small [see refs. 43, 44 for
an extended discussion]. b, c Combined representations of: (outer annulus) the
complex voltages for solutions to the full power flow equations for an adapted
version of the IEEE RTS-96 test case; (inner circle) the phase angles of synchronous

states of the Kuramoto–Sakaguchi model on the same system. For the sake of
readability, only the values of the nodes around the long cycle of panel a are
represented. The outer annulus represents the toleratedmargin of variation for the
voltage amplitudes in the power flow equations. The power flow solution in panelb
has a nonzero winding number (q = +1) and there is a reasonable correspondence
(ordering, clustering) between its voltage phases and the angles of the
Kuramoto–Sakaguchi synchronous state. Similarly, both the power flow solution
and the Kuramoto–Sakaguchi synchronous states in panel c have zero winding
number, with all angles in a relatively short arc.
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When considering lossless couplings, one realizes that the inequality in
(45) is always satisfied, recovering the results of ref. 20.

Both the proofs of Theorem 3 and Corollary 6 are algorithmic by
nature. Namely, the proof of Theorem3considers recursively theflows
on the edges of the acyclic graph, and Corollary 6 relies on an iteration
map [Sϵ, equation (37)]. It is therefore straightforward to actually
implement the proofs as routines, which we provide online41.

The anomalies illustrated in Fig. 3 emphasize that the introduction
of dissipation in the coupling between oscillators has a nontrivial and
surprising impact on the dynamics. The fact that both loop flows and
dissipation can increase the transmission capacity of a system
(Anomalies 1 and 2) is arguably counterintuitive. We remark that both
Anomalies 1 and 2 occur for solutions with nonzero winding numbers
(q = +1 and q = −1, respectively). It is also quite unexpected that more
loaded and dissipative systems can possess more flow network solu-
tions for a given network structure (Anomaly 3). Again, this last
anomaly involves solutions in different winding cells. All anomalies
identified in Fig. 3 are strongly linked to solutions with nontrivial
winding numbers. A general and thorough description of the different
operating states of dissipative networks of oscillators is then required
to tackle these systems through the prism of the winding partition. On
top of that, through our realistic example on the IEEE RTS-96 test
system, we show that the winding partition will be relevant in the
analysis of multiple solutions to the full power flow equations.

We trust that the notion of winding partition has the potential to
contribute elucidating many open problems in the fascinating phe-
nomenon of synchronization in complex networks. We reiterate that
even thoughwe restricted our discussion to bidirected interactions for
the sake of clarity, the whole framework developed in this article
naturally applies to any systemwith directed interactions. Namely, our
formalism is the first step towards a unified analysis of synchronization
in any network of coupled oscillators, no matter the nature of the
interactions.

Methods
We first provide the necessary grounds of directed and undirected
graph theory, as well as a link between them.We point to ref. 16. for an
extended discussion about graph and digraph theory.We then discuss
the Kuramoto–Sakaguchi model and its link with the power flow
equations. We conclude this section with the formulation of our the-
oretical results.

Directed graphs
Adirected graph (or digraph)Gd is the pair (V, Ed) composed of a set of
vertices (or nodes) V = {1, …, n} and a set of directed edges Ed⊂V ×V,
which are ordered pairs of vertices. For an edge e = (i, j)∈ Ed, i is the
source of e, denoted se, and j is its target, denoted te, i.e., e = (se, te). We
denote the edge with opposite direction as �e= ðte,seÞ. The existence of
edges is encoded in the graph’s adjacency matrix

Ad

� �
ij =

1, if ði, jÞ 2 Ed,

0, otherwise:

�
ð15Þ

The out-degrees (resp. in-degrees) matrix is obtained as Do =
diag(Ad1) (resp.Di = diagðA>

d 1Þ).Wedefine the Laplacianmatrix ofGd as
Ld =Do −Ad. For a digraph with n vertices and m directed edges, we
define the n ×m out-incidence and in-incidence matrices

Bo

� �
ie =

1, if e= ði,jÞfor some j,

0, otherwise,

�
ð16Þ

Bi

� �
ie =

1, if e= ðj,iÞfor some j,

0, otherwise,

�
ð17Þ

which form the standard incidence matrix

Bd =Bo � Bi: ð18Þ

Wenotice the following relations, the fourth being unknownas far
as we can tell.

Proposition 1. The adjacency matrix Ad, the out- and in-degree matri-
ces Do and Di, and the Laplacian matrix Ld of a directed graph can be
written in terms of its out- and in-incidence matrices Bo and Bi:

Do =BoB
>
o , Di =BiB

>
i ,

Ad =BoB
>
i , Ld =BoB

>:
ð19Þ

Proof. The proofs for the adjacency matrix Ad and for the degree
matrices Do and Di can be found in ref. 63. (Lemmas 3.1 and 4.1). The
proof for the Laplacian matrix directly follows,

Ld = Do � Ad =BoB
>
o � BoB

>
i

= BoðBo � BiÞ> =BoB
>:

ð20Þ

Remark. The same proof is straightforwardly adapted to weighted
directed graphs.

Undirected graphs
An (undirected) graphGu is a pair (V, Eu) composedof a set ofn vertices
(or nodes) V = {1,…, n} and a set ofm edges, which are unordered pairs

Table 1 | List of symbols

Symbol Name/Description

V Set of vertices.

Gu, Eu Undirected graph, undirected edge set.

Bu, Lu Incidence and Laplacian matrices of an undirected graph
[equation (21)].

CΣ Cycle-edge incidence matrix of the set of cycles Σ [equa-
tion (23)].

Gd, Ed Directed graph, set of directed edges.

Gb, Eb Bidirected counterpart of the undirected graphGu and its set
of directed edges.

se, te Source and target of edge e.

�e Edge e with opposite direction.

Ad, Bd, Ld Adjacency, incidence, and Laplacian matrices of a digraph
[equations (15), (18)].

Bb Incidence matrix of a bidirected graph.

Bo, Bi Out- and in-incidence matrices of a digraph.

θ= ðθ1 . . . θnÞ> Vector of phase angles.

ω= ðω1 . . .ωnÞ> Vector of natural frequencies.

aij, ϕij Coupling strength and phase frustration between nodes i
and j.

γe Bound on the angular difference over the edge e.

he, h�e Coupling functions over the edge e.

fe, ge Odd and even parts of the coupling over edge e [equation
(38), (39)].

R(γ) Domain of bounded angular differences [equation (13)].

qΣ Winding map for the cycles in Σ [equation (7)].

Ω(u; Σ) Winding cell with winding vector u in the graph Gu

[equation (8)].

Sϵ Flow mismatch iteration [equation (37)].
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of vertices, Eu � fi,jg : i,j 2 V
� �

. A cycle of Gu is an ordered sequence
of vertices σ = (i0, i1, …, iℓ = i0), such that {ij, ij+1}∈ Eu and ij ≠ ik for any
j, k∈ {1, …, ℓ}.

Let us now choose an arbitrary orientation [(i, j) or (j, i)] for each
undirected edge {i, j}∈ Eu. We can then define the incidence matrix of
Gu,

Bu

� �
ie =

1, if e= ði,jÞ for some j,

�1, if e= ðj,iÞ for some j ,

0, otherwise:

8><
>: ð21Þ

The Laplacian matrix of Gu can be computed as Lu =BuB
>
u . Note

that the incidence matrix is not unique and depends on the choice of
edge orientations, whereas the Laplacian does not. Given a cycle σ, we
define the cycle vector vσ∈ {−1, 0, +1}m, indexed by edges, as

vσ
� �

e =

+ 1, if e= ðik�1,ikÞ for somek,

�1, if e= ðik ,ik�1Þ for somek,

0, otherwise:

8><
>: ð22Þ

The cycle space of Gu is the span of the cycle vectors of all cycles
of Gu, which is equivalently defined as the kernel of the incidence
matrixBu. A set of cycles Σ = {σ1,…, σc} is a cycle basis ofGu if and only if
the set of corresponding cycle vectors forms a basis of the cycle space.

Finally, given a cycle basis Σ of the graph Gu, we define the cycle-
edge incidence matrix,

CΣ = vσ1
, � � � ,vσc

	 
>
2 Rc ×m: ð23Þ

Bidirected graphs
Dissipative couplings intrinsically require to distinguish the two
orientations of each edge. Given an undirected graph Gu = (V, Eu), its
bidirected counterpart is the directed graph Gb = (V, Eb) with the same
vertex setV andwhere eachundirected edge {i, j}∈ Eu is doubled in the
set of directed edges (i, j), (j, i)∈ Eb. A bidirected graph is a directed
graph induced by an undirected graph.

If the undirected graph Gu has incidence matrix Bu 2 Rn×m

[equation (21)], then, with appropriate indexing of the directed edges,
the incidence matrix of Gb can be written as Bb = ðBu,� BuÞ 2 Rn × 2m.
Interestingly, we note that the Laplacian matrices of Gu and Gb are the
same, namely (see Prop. 1),

Lu =BuB
>
u = Lb =BoB

>
b , ð24Þ

where the out-incidence matrix Bo = ½Bb�+ is the positive part of Bb.
Notice that here,

Bo = Bu

� �
+ , Bu

� �
�

� �
: ð25Þ

The Kuramoto–Sakaguchi model
We illustrate the results of this article with the generalized
Kuramoto–Sakaguchi model 8,25,26,

_θi =ωi � ∑
n

j = 1
aij sinðθi � θj � ϕijÞ+ sinðϕijÞ

h i
, ð26Þ

for i∈ {1, …, n}, where θi 2 S1 and ωi 2 R are respectively the phase
angle and the natural frequency of the i-th oscillator, ϕij∈ (−π/2, π/2) is
the phase frustration between oscillators, and in this case, aij 2 R≥0 is
the coupling strength between oscillators i and j. The
Kuramoto–Sakaguchi model directly translates to the framework of
equation (2), with mi ≡0, di ≡ 1, f ijðxÞ=aij cosðϕijÞ sinðxÞ, and

gijðxÞ=aij sinðϕijÞ½1� cosðxÞ�. It is a natural extension of the original
Kuramoto model, which is recovered for ϕij =0. The coupling function
of the Kuramoto–Sakaguchi model is illustrated in Fig. 5a.

Remark. While in its original formulation, the Kuramoto–Sakaguchi
model assumes homogeneous, all-to-all couplings, here we take the
couplings to be given by an underlying network structure. For the sake
of simplicity, in our examples, we consider aij = aji and ϕij =ϕji for all
connected nodes i and j. Nevertheless, we keep in mind that these
assumptions are not necessary for our results and that our framework
is appropriate for much more general cases.

In order to illustrate some fundamental complications that arise in
the Kuramoto–Sakaguchi model, compared to the original Kuramoto
model, we detail two simple examples below.

Example. (2-node system, vectorial form). Consider a system of two
coupled Kuramoto–Sakaguchi oscillators with unit coupling and
identical frustration, whose dynamics is given by

_θ1 =ω1 � sinðθ1 � θ2 � ϕÞ+ sinðϕÞ� �
,

_θ2 =ω2 � sinðθ2 � θ1 � ϕÞ+ sinðϕÞ� �
,

ð27Þ

with ϕ∈ (−π/2, π/2).
In the Kuramoto model (ϕ =0), it is standard to write the

dynamics in vectorial form as

_θ=ω� BuA sin B>
u θ

� �
, ð28Þ

where Bu 2 Rn×m is the incidence matrix of the (undirected) coupling
graph of the system, and A 2 Rm is the diagonal matrix of the edge

Fig. 5 | Coupling functions for the Kuramoto–Sakaguhchimodel. aComparison
between coupling functions for Kuramoto [dashed dark blue, heðxÞ= sinðxÞ] and
Kuramoto–Sakaguchi [plain cyan, heðxÞ= sinðx � ϕÞ+ sinðϕÞ], with ϕ =0.5. The
light green curve illustrates the coupling on the same edge, but with opposite
orientation [h�eð�xÞ= sinð�x � ϕÞ+ sinðϕÞ]. The thick parts (cyan and green)
emphasize the region where the curve is increasing (resp. decreasing). The shaded
gray area shows the interval where the coupling in both orientations is strictly
monotone. b Odd (cyan) and even (green) parts of the Kuramoto–Sakaguchi cou-
pling function, as defined in equation (44).
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weights aij. In the Kuramoto–Sakaguchi model, this vectorial form is
not that simple. Direct computation shows that naively writing

_θ=ω� BuA sin B>
u θ� ϕ1m

� �
+ sinðϕÞ1m

� �
, ð29Þ

does not yields the desired equations (27).
In order to write equation (26) in vectorial form, we need to dis-

tinguish the two orientations of each edge and consider Gb, the
bidirected counterpart of Gu. We need to introduce the out-incidence
matrixBo and the incidencematrixBb of thebidirected coupling graph,
as well as Ab 2 R2m, defined to be a block diagonal matrix whose two
diagonal blocks are equal toA. The proof of the following proposition
follows from direct computation.

Proposition 2. The Kuramoto–Sakaguchi model in equation (26) is
written in vectorial form as

_θ=ω� BoAb sin B>
b θ� ϕ12m

� �
+ sinðϕÞ12m

� �
: ð30Þ

Example. (6-node cycle, sync. frequency). Let us consider six
Kuramoto–Sakaguchi oscillators coupled in a cycle with identical,
vanishing natural frequency, i.e.,

_θi = � sinðθi � θi�1 � ϕÞ � sinðθi � θi + 1 � ϕÞ+2 sinðϕÞ, ð31Þ

for i∈ {1, …, 6}, where we used periodic indexing. One straightfor-
wardly verifies that θ0 = (0, …, 0)⊤ is an equilibrium of equation (31)
(and then a synchronous state).

One can also verify that the splay state θ1 = (0, −π/3, −2π/3, π, 2π/3,
π/3)⊤ is also a synchronous state. Indeed, in this case, equation (31) gives

_θi = � sinð�π=3� ϕÞ � sinðπ=3� ϕÞ � 2 sinðϕÞ
= 2 cosðπ=3Þ sinðϕÞ � 2 sinðϕÞ= � sinðϕÞ,

ð32Þ

independently of i∈ {1,…, 6}. The state θ1 is then synchronous, but it is
an equilibrium only for the Kuramoto model (ϕ = 0).

There are at least twomainmessages that canbe taken from these
examples. First, by extending our framework to directed graphs, we
are able to write the Kuramoto–Sakaguchi model in vectorial from, in
equations (30). Note that a similar vectorial formulation of the
Kuramoto–Sakaguchi model has recently been proposed in ref. 64,
which, while more general than equation (30), does not provide as
much insight in the underlying network structure.

Second, unlike the Kuramotomodel, the average frequency of the
system is not preserved along arbitrary trajectories. Also, if multiple
synchronous states exist, then they have, in general, different syn-
chronous frequencies. These claims are backed up by showing that the
average frequency of the system depends on angular differences,

∑
i

_θi = ∑
i
ωi �∑

i,j
aij sinðϕÞ 1� 2 cosðθi � θjÞ

h i
, ð33Þ

which is time-varying over the trajectories of the system and not
identical for different synchronous states.

On top of that, we reiterate that, contrary to the Kuramotomodel,
the Kuramoto–Sakaguchi model is not the gradient of any function
(even locally). Therefore, the energy landscape approaches, valid for
ϕ =013,24, are not directly applicable when ϕ ≠0.

The power flow equations
Under the assumption that voltage amplitudes are fixed, synchro-
nous states of the Kuramoto–Sagauchi model are in direct corre-
spondence with the solutions of the active power flow equations13,65.
The power flow equations relate the the balance of active (Pi) and

reactive powers (Qi) to the voltage amplitude (Vi) and phase (θi) at
each node i∈ {1, …, n},

Pi = ∑
n

j = 1
ViV j½Bij sinðθi � θjÞ+Gij cosðθi � θjÞ�, ð34Þ

Qi = ∑
n

j = 1
ViV j½Gij sinðθi � θjÞ � Bij cosðθi � θjÞ�, ð35Þ

with Gij andBij being lines conductance and susceptance, respectively.
Defining

aij =ViV j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
ij +G2

ij

q
, ϕij = arctanð�Gij=BijÞ, ð36Þ

one verifies that solutions of equation (34) are steady states of equa-
tion (26).

Equations (34) and (35) are usually solved by iterativemethods. In
Fig. 4b, c, outer annulus, we used a Newton–Raphson scheme66 with
different, carefully chosen initial conditions to solve the full power
flow equations on our version of the IEEE RTS-96 test case42. The
squares arePVbuses, the circles are PQbuses, and the slackbus is node
23. The synchronous states of the Kuramoto–Sakaguchi models were
computed by the flow mismatch iteration Sϵ [equation (37)], with
ϵ =0.01. All data are available online 41.

The dissipative flow network problem on acyclic graphs
In the case where Gu is acyclic, we show that there is at most a unique
solution to the dissipative flow network problem. Here there are
obviously no cycle constraints and thus equation (14b) is trivially
satisfied.

Theorem 3. Consider the dissipative flow network problem on a con-
nected acyclic undirected graphGu. Then there is at most oneΔ∈R(γ)
that satisfies equation (14a).

The proof of Theorem 3 proceeds recursively and we provide it in
the Supplementary Information. An implementation of an algorithm
deciding the existence of the unique solution is provided online 41.

Remark. Theorem 3 is the dissipative version of Theorem 2.2 in ref. 20.
The spirit of Theorem 3 is somewhat similar to ref. 27, even though
therein, the authors restrict their investigation to the
Kuramoto–Sakaguchi model and cannot extend their approach to
more general couplings.

The dissipative flow network problem on general graphs
The presence of cycles in the network can induce the existence of
multiple solutions to the dissipative flow network problem [see Fig. 3
or ref. 27]. We rigorously show here that winding vectors characterize
these solutions for sufficiently moderate dissipation.

To do so, we define the flowmismatch iteration Sϵ over the space
of angular differencesRm, whosefixed points are exactly the solutions
of equation (14a). Namely, let

Sϵ : R
m ! Rm

Δ 7!Δ� ϵB>
u L

y
u BohðΔÞ �ω
� �

,
ð37Þ

where ϵ >0 is a small step size and Lyu is the pseudoinverse of the graph
Laplacianmatrix. The flowmismatch iteration Sϵ updates the vector of
angular differences according to the mismatch between the input/
output of commodities ω and the distribution of flows that corre-
sponds to the current angular differences. It has twomajor properties:
(I) the vector Δ*∈R(γ) is a fixed point of Sϵ if and only if it is a

solution of equation (14a);
(II) the map Sϵ leaves each winding cell invariant, because

CΣB
>
u =0. It means that fixing the winding vector of the initial
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conditions imposes the winding vector of the fixed point of Sϵ,
if ever it exists.

One of the main lessons from ref. 20 is that different solutions to
the flow network problem on the n-torus are better understood when
put in the context of their winding cell. Accordingly, and thanks to
property II above, we split the dissipative flow network problem in
each winding cell of the n-torus induced by the network structure.
Fixing a winding vector u 2 Zm�n+ 1, we are guaranteed that if the
initial conditions Δ0 satisfy equation (14b), then each following itera-
tion Δk+1 = Sϵ(Δk) will satisfy it as well.

We summarize the above observations in the following theorem,
whose proof is a direct consequence of the compactness of R(γ).

Theorem 4. If the flowmismatch iteration Sϵ is contracting, then there
is at most one synchronous state of equation (2) in each winding cell.

In what follows, we provide sufficient conditions for the con-
tractivity of Sϵ.We relyon the decompositionof the coupling functions
as he(x) = fe(x) + ge(x), which implies,

f eðxÞ= ½heðxÞ � h�eð�xÞ�=2, ð38Þ

geðxÞ= ½heðxÞ+h�eð�xÞ�=2: ð39Þ

One readily verifies the identities

f 0eðxÞ= f 0�eð�xÞ, g 0
eðxÞ= � g 0

�eð�xÞ: ð40Þ

Remind thatgequantifies towhat extent the coupling is dissipative.
In the particular case where the coupling is lossless, then ge =0.

Equippedwith this decomposition of the couplings,wedefine two
state-dependent matrices, for x∈R(γ):

(a) the odd weighted Laplacian matrix, which is the Laplacian
matrix of Gu weighed by the derivatives of the odd parts

Lf ðxÞ=Bu � diag½f 0eðxeÞ� � B>
u : ð41Þ

We emphasize that the choice of orientation for each edge e does
not matter in the definition of Lf. Also, the graph Gu being connected
and the above weights being positive, it is the standard result of
algebraic graph theory that λ2, the smallest nonzero eigenvalue of Lf
(a.k.a., the algebraic connectivity), is positive;

(b) the even weighted degreematrix, which is the diagonal matrix
weighted by the absolute derivatives of the even parts,

Dg ðxÞ
h i

ii
= ∑

e2Ei

∣g 0
eðxeÞ∣, ð42Þ

where Ei is the set of (undirected) edges incident to node i. The diag-
onal terms of Dg quantify the dissipativity of the couplings. In parti-
cular, for lossless couplings, Dg =0.

Example. In the case of the Kuramoto–Sakaguchi model, the coupling
functions are

heðxÞ=h�eðxÞ=ae½sinðx � ϕÞ+ sinðϕÞ�, ð43Þ

and trigonometric identities yield

f eðxÞ=ae cosðϕÞ sinðxÞ,
geðxÞ=ae sinðϕÞ½1� cosðxÞ�, ð44Þ

which we illustrate in Fig. 5b. We clearly see here the relation between
ge and the dissipativity or frustration of the coupling. When ϕ = 0, we

recover the original Kuramoto model, where the coupling is lossless,
and ge =0.

We are now ready to formulate the main theorem of this work. It
clearly separates the impact of network connectivity, that promote the
contractivity of Sϵ, and of the dissipation, that works against the con-
tractivity of Sϵ. We defer the proof to the Supplementary Information.

Theorem 5. Given a dissipative flow network problem, define the odd
weighted Laplacian Lf and the even weighted degree matrix Dg. If, for
all i∈ {1, …, n},

sup
x2RðγÞ

Dg

	 

ii
< inf

x2RðγÞ
λ2ðLf Þ, ð45Þ

then there exists a sufficiently small step size ϵ >0 such that the flow
mismatch iteration Sϵ [equation (37)] is contracting.

The left-hand side of equation (45) quantifies the amount of dis-
sipation that is “seen” at each node of the network, which vanishes for
lossless couplings. The right-hand side accounts both for the strength
of the coupling between each pair of oscillators, through the weights,
and for the connectedness of the graph, λ2 being the algebraic
connectivity67. Under our assumptions [Gu is connected, couplings are
strictly increasing on R(γ)], the right-hand side of equation (45) is
necessarily positive. For couplings with sufficiently low dissipation,
equation (45) is then satisfied,which, combinedwith Theorem4, yields
the following corollary.

Corollary 6. If equation (45) is satisfied, then there is at most a unique
synchronous state of equation (2) in each winding cell. The number of
synchronous states is then bounded from above by the number of
winding cells.

Theorem 5 and Corollary 6 give a rigorous, even though con-
servative, sufficient condition for at most uniqueness of synchronous
states in eachwinding cell. However, computing the eigenvalues of the
odd weighted Laplacian can be time-consuming. We, therefore, pro-
pose some lower bounds on λ2(Lf) in the Supplementary Information
(Prop. S2) that are state-independent and may ease the verification of
equation (45). The bounds are adapted from standard results of alge-
braic graph theory.

Data availability
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