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Fast, efficient, and accurate neuro-imaging
denoising via supervised deep learning

Shivesh Chaudhary 1, Sihoon Moon 1 & Hang Lu 1,2

Volumetric functional imaging is widely used for recording neuron activities
in vivo, but there exist tradeoffs between the quality of the extracted calcium
traces, imaging speed, and laser power. While deep-learning methods have
recently been applied to denoise images, their applications to downstream
analyses, such as recovering high-SNR calcium traces, have been limited.
Further, these methods require temporally-sequential pre-registered data
acquired at ultrafast rates. Here, we demonstrate a supervised deep-denoising
method to circumvent these tradeoffs for several applications, including
whole-brain imaging, large-field-of-view imaging in freely moving animals, and
recovering complex neurite structures in C. elegans. Our framework has 30×
smallermemory footprint, and is fast in training and inference (50–70ms); it is
highly accurate and generalizable, and further, trained with only small, non-
temporally-sequential, independently-acquired training datasets (∼500 pairs
of images). We envision that the framework will enable faster and long-term
imaging experiments necessary to study neuronal mechanisms of many
behaviors.

Fluorescent functional imaging is ubiquitous in neuroscience research
inmodel systems. The persistent goal is to imagewider (more cells and
larger areas), deeper, and faster, while enhancing signal-to-noise ratio
(SNR). For commonly available functional imaging setups such as
point-scanning or spinning disk confocal systems, tradeoffs exist
between SNR in images and microscopy parameters such as imaging
speed (exposure time), field-of-view (FOV), image resolution, length of
recording etc. While advancements in genetically encoded calcium
and voltage indicators, and new microscopic techniques1–10 with high
spatiotemporal resolution and large FOV have relaxed the require-
ments and driven the development of whole-brain imagingmethods in
several organisms, tradeoffs still exist in several model organism sys-
tems. For instance, in the nematode C. elegans3,4,11–13, SNR in images is
limited due to the requirement of small exposure time to capture
neural dynamics at 3–6 volumes/s and to prevent motion artifacts.
While SNR can be improved by increasing laser power, this leads to
photo-bleaching of fluorophores and photo-toxicity, thus limiting the
length of recordings, especially during longer timescale behaviors.
Additionally, to image neurons across the whole animal, FOV must be

further expanded, requiring lower magnification, higher laser power,
and exacerbating photobleaching. Advanced microscopy techniques
can helpmitigate these tradeoffs9, but require specialized expertize to
implement and maintain the necessary hardware, making them inac-
cessible to many researchers.

Recently deep learning enhanced microscopic techniques14–16

have been developed that significantly overcome the tradeoff between
imaging speed and SNR in images. However, these techniques either
require expertize in characterizing the microscopy system at hand for
generating realistic training data, such as the axial light propagation14

or they require light-fieldmicroscopy setups15,16 that are not commonly
available to all researchers. Further, whether these methods can per-
form at low laser power conditions that are critical to prevent photo-
bleaching and enable long-term recording of neuron activities is not
currently shown. Thus, an orthogonal method to enhance SNR, to
circumvent the tradeoffs, would be enabling in many studies.

An alternative strategy that has been established recently and has
achieved state-of-the-art results to overcome tradeoffs in microscopy
is deep-learning-based image denoising17–26. In these methods, a deep
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neural network is trained to recover high SNR fluorescent images from
low SNR images acquired with low exposure time or low laser power
conditions. These include supervised17–22 and unsupervised23,24,26,27

methods. Unsupervised methods offer the benefit of training on the
data to be denoised itself thus no training data collection is needed.
Despite the success of denoising methods, their application on
downstream analyses such as high SNR calcium trace extraction
from videos has been shown in only a few model organisms and
microscopic techniques, all using unsupervisedmethods. For instance,
DeepInterpolation27 and DeepCAD26, demonstrate high-quality cal-
cium trace extraction on 2D two-photon imaging data in mice. While
impressive and without requiring curated ground truth, these meth-
ods do require large training data sets (∼100,000 frames for Dee-
pInterpolation and 3500 frames for DeepCAD); further, pre-
registration of the videos (or videos with minor movements) are
required before training, which also necessitates ultrafast imaging
rates. DeepCAD also shows decreasing accuracy for data acquired at
slower imaging rates, demonstrating that information in temporally
linked images is important for denoising. Practically, thesemodels also
have a large memory requirement for training and inference. While
new advances in microscopy greatly improve imaging speed and
FOV10, generating such large-scale ultrafast recordings for 3D imaging
in models organisms is currently not feasible for all researchers with
commonly available confocal systems. Additionally, training these
methods on calcium activity recordings in moving animals would
requirea non-trivial pre-registration step, and training resultswouldbe
contingent on the accuracy of the registration step.

Compared to unsupervised methods, supervised methods for
image processing are expected to achieve higher denoising accuracy
and be more generalizable. Currently, supervised methods have not
been used for video data denoising and extracting calcium traces. This
is likely due to several factors. For instance, if supervised methods are
to be trained using temporally linked data, akin to unsupervised
methods, custom microscope setups will be needed that can collect
low and high SNR video data simultaneously. In contrast, if supervised
methods are to be trained with non-temporally linked data, it is not
immediately apparent whether the temporal structural features in the
dynamical data (as in calcium imaging experiments) can be preserved
from independently denoised images. It is also not obvious to what
extent the supervised models can be generalized. The wide deploy-
ment of these models will also be dependent on several practicalities
such as model size, inference speed, and memory requirement on the
computation. Here we show that supervised deep denoising can
achieve high accuracy in extracting high-SNR calcium traces from
noisy videos. Our optimized models are 20–30× smaller in memory
footprint, 3–4× faster in inference speeds, and can be trained with as
few as 500 pairs of images that are temporally independent and col-
lected across different samples. With the use of temporally indepen-
dent data for training, fast imaging rate for training data collection and
pre-registeration step are not required; further, networks can be
trained with a variety of images across animals with different posture
configurations, neuron morphologies, cell labeling techniques (soma,
membrane etc.) and markers (RFP, GCaMP etc.), thus improving the
generalizability across conditions and noises.

Results
Optimized deep neural networks for denoising images
To address the challenges of extracting clean calcium traces from
noisy calcium imaging videos in common applications, we designed
Neuro-Imaging Denoising via Deep Learning (NIDDL), a convolutional
neural network (CNN) pipeline that can be trained using only a small
set of training non-video data (Fig. 1). The ability to work with inde-
pendently acquired image training pairs (not from videos) greatly
improves the generalizability and ease-of-access because of the much
relaxed requirements in data acquisition. For instance, to obtain the

ground truth for training, images can be acquired for immobilized
samples,with little photobleaching (by using independent samples), at
different times, and possibly across different biological conditions
(e.g., different strains). This enablesmore researchers using awider set
of instruments and in wider range of biological settings to denoise
neural images and recordings. The pipeline takes in independent pairs
of noisy (acquired either with low laser-power or short exposure-time)
and high SNR image stacks, acquired across samples and reagents
(Fig. 1A). Subsequently, efficient denoising CNNs are trained using the
non-video data. In the application phase, trained networks are applied
to denoise video data by independently denoising each volume in
the video. Finally, high quality calcium traces are extracted from
the denoised video using a conventional calcium signal extraction
pipeline inC. elegans that involves cell segmentation, cell tracking, and
signal extraction (Fig. 1A). As an example, microscopy conditions used
for whole-brain calcium activity recordings lead to significant loss of
SNR in images (Fig. 1B), which makes densely packed nuclei in images
barely distinguishable (Supplementary Fig. 1). Low SNR in images can
significantly reduce the accuracy of intermediary tasks such cell seg-
mentation and tracking, thus making downstream analysis of neuron
activity data extremely slow and challenging. We demonstrated that
trained networks can significantly recover nuclei structure from these
noisy images (Fig. 1B and Supplementary Fig. 1).

To achieve a fast and data-efficient CNN with a small memory
footprint, we optimized several network hyper-parameters (“Meth-
ods” – ‘Network Optimization’). For instance, starting with vanilla
UNet17,28 and Hourglass architectures29, we tested several design
choices such as kernel size, channel depth, depth of architecture, and
presence or absence of residual connections (Supplementary Figs. 2,
3). Additionally, we compared architectures across L2 and L1 loss
functions used commonly in image restoration tasks17,20 (Supple-
mentary Fig. 4), and three different training modes (Supplementary
Fig. 5) including 2D mode, 2.5D mode, and 3D mode (“Methods”
section). The optimal models significantly reduce the number of
parameters and memory footprint by fixing channel depth across all
layers. This allows networks to (1) be deeper, i.e., have more con-
volutional blocks compared to CARE with default parameters17, and
(2) use residual connections within each convolutional block that are
not present in default UNet. Compared to previously established
methods such as CARE17, RCAN19, and default UNet and Hourglass
architectures, our optimized architectures are 20–30× smaller in
memory footprint, have 3–5× faster inference time, are 2–3× faster in
training (Fig. 1B, C). We show that for whole-brain imaging applica-
tions, model accuracy plateaus at training with 500–600 image pairs
(corresponding to 25–40 pairs of whole-brain stacks) (Fig. 1D and
Supplementary Fig. 6), which is much smaller than the number of
images used for training in recent methods DeepCAD (3500 frames)
and DeepInterpolation (∼100,000 frames). Thus, networks can be
easily trained in individual labs specific to individual experimental
and instrumentation conditions.

We have also tested CNNs trained with L2 or L1 loss and show that
they achieve similar accuracy (Supplementary Fig. 4), with L1 loss
training being more stable across different instances of training. Fur-
ther,wenoticed that L1 loss performsbetter inRMSE andPSNRmetrics
whereas L2 loss performs better in SSIMmetric. This could be because
L1 loss is more suitable to handle the type of noise present in experi-
mental data whereas L2 loss is more suitable to preserve structural
information. Finally, we tested threemodes of training that differ in 3D
spatial context used by networks for denoising (Supplementary Fig. 5).
These modes include (1) 2D mode where input and output to the
networks are 2D images, (2) 2.5Dmodewhere input to the network is a
3D stack consisting of z-planes above and below the image to be
denoised and output is the middle denoised 2D image, and (3) full 3D
mode where input to the networks is 3D stack and output is also
3D stack. Comparisons show that training with 2D images, rather than
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Fig. 1 | Neuro-Image Denoising with Deep Learning (NIDDL) framework.
A Overview of the SL framework to recover high SNR from a variety of imaging
conditions.BAnexample noisy image (1 zplane from3Dstack, strainOH16230) and
corresponding deep-denoised image (scale bar 10μm). Top-right panels show
insets ‘a’ in noisy and denoised images (scale bar 5μm). Bottom-right panel shows
intensity along dotted lines in noisy and deep denoised images. C The optimized
neural network architectures ‘unet_fixed’ and ‘hourglass_wres’ have 20–30× lower
model size (3.77 MB and 3.66 MB) and 3–4× faster inference time (average 48.9ms
and 68.7ms per 512×512 image calculated across 600 images), compared to CARE,
RCAN, and non-optimized UNet, Hourglass.D Per-epoch training-time comparison
across neural networkarchitecturevariants (batch sizeof 50 images, epoch training
size of 1000). Each dot corresponds to average epoch train time across 100 epochs
for each instance of trained networks. Error bars indicate standard deviation across
5–10 instances of training with random subset of total data used for training each
instance.EDenoising-time comparisonofdeep-learningmethodswhen inference is

performed with and without GPU. (n = 50–600 images). Box center indicates
median, edges 25th and 75th percentile, and whiskers 5th and 95th percentile.
F Training curves for the optimized neural network architectures and cumulative
epoch training-time with batch size of 50 and epoch training size of 1000 images.
Eachdot in training curves corresponds to averageRMSE loss across 10 instancesof
training. Error bars correspond to standard deviation across 10 instances of train-
ing.G Accuracy-vs-training-data-size tradeoff for optimized architectures. Each dot
corresponds tomeanRMSEaccuracy on600test images for one instanceof trained
network. Ten instances were trained for each condition with random subsets of
training data. RMSE accuracy plateaus above 500 images for both architectures.
Data comes from strain ZIM504. Box center indicates median, box edges indicate
25th and 75th percentile, whiskers indicate 5th and 95th percentile. Architectures
highlighted in red inC,D correspond toNIDDL. Source data forC, F,G are provided
in Source Data file.
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3D stacks, is sufficient (Supplementary Fig. 5), possibly because more
training data is needed for 3D mode of training. Practically, 2D images
can be acquired easily using commonly available setups thus simpli-
fying the training step. Importantly, these memory-efficient and fast
models can be used widely without expensive GPUs. When comparing
inference time of models without GPUs, NIDDL achieves an average
inference time of 1.25 s whereas CARE and RCAN denoise images in
much longer time of 2.67 and 7.29 s respectively (Fig. 1E).

To characterize the performance of NIDDL, we worked with C.
elegans strains withwhole-brain neuronal labels.We took advantage of
microfluidic immobilization of animals to avoid the complex image
pre-registration step across image pairs before training the networks,
and to acquire data in high-throughput manner30. Acquired pairs of

non-sequential imagedata across samples are used as input to train the
CNN. Trained networks are then applied to noisy video frames inde-
pendently to recover clean images. Subsequently high SNR calcium
traces are extracted from denoised videos. We show that deep
denoising recovers structures in noisy whole-brain images with clear
distinction of nuclei (Fig. 2, Supplementary Fig. 1, 7 and Supplementary
Movie 1), which can greatly improve the nuclei segmentation
performance31, and thus the accuracy of downstream tasks such as cell
identity annotation32. We bench-marked NIDDL’s performance with
those from other approaches (“Methods” – ‘Comparison against other
methods’). Representative images show that NIDDL produces cleaner
denoised images closer to the ground truth images, while simple
denoising methods such as Median and Gaussian filtering, as well as
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Fig. 2 | NIDDL denoises whole-brain images in C. elegans. A (Left) Two example
noisy images (single zplanes) from noisy whole-brain image stacks (acquired at low
laser power) (scale bar − 10μm). (Right) corresponding denoised output generated
by different methods shown for the dotted box in noisy images (scale bar − 5μm).
Cell nuclei are labeled with nuclear localized GCaMP5K. Data come from strain
ZIM504. Inset shows intensity profile along the dotted line. B Comparison of RMSE

to ground-truth high SNR image across noisy images, and denoised images output
by various methods including Median filter, Gaussian filter, NLM, BM3D, CARE,
RCAN, and NIDDL (n = 600 images). Box center indicates median, box edges indi-
cate 25th and 75th percentile, andwhiskers indicate 5th and 95th percentile. Source
data are provided in Source Data file.
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advanced non-deep learning based methods such as NLM and BM3D,
suffer from either blurring artifact or not recovering information
(Supplementary Fig. 7). Quantitatively, the optimized NIDDL model
achieves high accuracy on held-out datasets, outperforming tradi-
tional denoising methods, non-deep learning based methods such as
NLM and BM3D, and deep learning methods such as RCAN19 (Fig. 2B
and Supplementary Fig. 8). While the recently published algorithm
CARE produces similar accuracy as NIDDL, the advantage of NIDDL is
smaller model size and real-time inference speed (Fig. 1C), which
would be important for applications that would require near real-time
feedback, e.g., closed-loop optogenetic interventions.

To test the generalizability of the approach, we trained separate
network instances on data collected across a variety of conditions and
compared within-condition accuracy with across-condition accuracy.
These include two whole-brain imaging strains with different levels of
fluorophore expression labeling all cells, three levels of laser powers,
and three independent experiments on different days. Models trained
on independent experiments and strains are particularly generalizable
across conditions (Fig. 3A–D). As an example, denoised images output
bynetworks,whennetworkswere either trainedon the samestrain or a
different strain, visually appear indistinguishable (Fig. 3A, B). In both
cases, networks significantly recover distinguishable nuclei structure
from noisy images (Fig. 3B). When accuracies are characterized, cross-
strain model performance also appears similar to that of within-strain
models (Fig. 3C). Our results do show, however, that models are sen-
sitive to image-acquisition laser power (Fig. 3D and Supplementary
Fig. 10). In comparison, models generalize with a high degree of
accuracy across independent experiments (Fig. 3E and Supplementary
Fig. 9). In parallel, we conducted an in silico experiment to characterize
the robustness of the optimized CNNs against noise levels; we gener-
ated realistic 3D synthetic data with densely packed nuclei (Methods –
Synthetic whole-brain data generation) across a range of signal levels
(photon counts), corrupted by Poisson shot noise and Gaussian
readout noise. We show that NIDDL consistently and efficiently
denoise the images, better than traditional methods (Supplementary
Fig. 11). We hypothesized that as long as a minimum requirement for
SNR is met, NIDDL can produce efficient denoising, and that the cor-
ruption of the signal by noise beyond a certain threshold cannot be
rescued by denoising. Indeed, this notion is corroborated by the
characterizations of the SNR in the actual experiments (Fig. 3F) where
the SNR levels across laser powers vary vastly, those across strains vary
less, and across independent experiments, sessions have similar SNR
levels. These results demonstrate that as long as the imaging experi-
ments meet a minimum SNR threshold (∼20), NIDDL can efficiently
denoise. This points to the advantages of NIDDL, where training data
sets can be gathered in a distributed manner and from varied condi-
tions (including from different strains), which would greatly lower the
barriers for use in practice.

High SNR calcium trace recovery using NIDDL
While denoising images in itself can improve the accuracy of many
tasks in whole-brain imaging, including segmentation, tracking, and
identification, the critical goal is to extract clean calcium traces. We
next denoised a whole-brain video (“Methods” – ‘Calcium imaging
data collection’) that was held out from the training (Fig. 4A
and Supplementary Movie 2) and extracted traces (“Methods” –

‘Denoising and extracting calcium traces’). We note that methods
used for calcium signal extraction from two-photon recordings
of spiking neurons33–35 differ from standard methods used for C.
elegans11,36–38. The deep denoised video providesmuch cleaner traces
compared to the original noisy video (Fig. 4B) and correlated neuron
activity is detectable visually. Since NIDDL is trained using non-video
data, denoising each frame of video independently could introduce
artifacts in calcium traces. To establish that NIDDL recovered calcium
traces do not contain artifacts, we compared the traces extracted

fromdenoised video to traces extracted fromhigh-SNR ground-truth
video for the same recording. Denoised traces show the same tem-
poral structure in neuron activity as present in high SNR video, thus,
denoising does not introduce artifacts (Fig. 4B). Furthermore,
denoised traces show much lower mean absolute error (Fig. 4C) and
higher correlation to the traces from the ground-truth low-noise
video (Fig. 4D). This demonstrates that denoising by NIDDL greatly
improves SNR in the frames independently. Further and perhaps
more importantly, denoising with NIDDL recovers correlational
structure among neuron activities (Fig. 4E), crucial for downstream
analyses and interpretation such as PCA based latent activity
recovery11 commonly used in whole-brain data analysis pipelines39.
We further tested the robustness of NIDDL against different noise
levels by denoising and extracting traces from semi-synthetic videos
across a range of SNR levels (“Methods” – ‘Semi synthetic video data
generation’). Deep denoising significantly removes noise from traces
(Supplementary Fig. 12A, D) and performs better than traditional
methods across all SNR levels (Supplementary Fig. 12E). Lastly, we
show that NIDDL denoised traces significantly improve the perfor-
mance of PCA analysis commonly used for analyzing whole-brain
recording datasets11,40. Neural activity trajectory in low dimensional
space show smooth dynamics in ground-truth video; however, such
structure is lost in noisy video (Supplementary Fig. 12B). The NIDDL
denoised video successfully recovers the smooth dynamics (Sup-
plementary Fig. 12B) by recovering the correlational structure among
neuron activities (Supplementary Fig. 12C). Taken together, these
results demonstrate that denoising using NIDDL requires a small set
of training data, is forgiving in many experimental constraints, and
yet provides excellent performance in accuracy, robustness, and
generalizability while using small inference time potentially enabling
on-line feedback manipulations from calcium dynamics.

Next, we sought to demonstrate denoising on large FOV data
acquired at low magnification (“Methods” – ‘Calcium imaging data
collection’). The advantage of a large FOV is to capture more cells
simultaneously. The challenge with a large FOV recording, however, is
low spatial resolution so that each cell corresponds to only a few
pixels, and this necessitates higher laser power to boost SNR. Here, we
imaged simultaneously many ventral cord (VC) motor neurons in C.
elegans. To avoid photo-bleaching, we also used low laser power,
which results in worse SNR as compared to imaging at 40× (higher NA)
(Fig. 5A and Supplementary Fig. 13).We trainedNIDDLwith temporally
independent (i.e., non-video data) pairs of low and high-laser-power
images of ventral cord neurons expressing GCaMP. NIDDL was able to
remove much of the noise, enabling the detection of cells barely
noticeable in noisy images (Fig. 5A and Supplementary Fig. 13).
Quantitative comparisons show that NIDDL significantly outperforms
traditional denoising methods and advanced non-deep learning based
methods (Fig. 5A, B and Supplementary Figs. 14, 15) and achieves
similar accuracy toCARE andRCAN.Next, wedenoised low-SNRvideos
held out from training and extracted calcium traces from them. Again,
NIDDL enables extraction of high-quality calcium traces from noisy
videos, making it much easier to detect coordinated neuron activities
(Fig. 5C, Supplementary Fig. 16, and Supplementary Movie 3) barely
visible in traces extracted from noisy videos. Importantly, while aver-
aging of cell ROI pixels to extract traces leads to significant SNR
improvement in traces from noisy video, it was not enough to recover
neuron activity transients and many bouts of activities were lost
(Fig. 5C and Supplementary Fig. 16). In contrast, single pixel traces
extracted from the NIDDL denoised video recovered all of these
transients with much higher SNR and performed just as well as when
ROI averaging was used to extract traces from NIDDL denoised video
(Fig. 5C and Supplementary Fig. 16). Thus, single pixel trace extraction
is enough for NIDDL denoised videos. This demonstration suggests
that NIDDL is a truly enabling tool for large FOV applications where
SNR levels in images are very low, and each cell corresponds to only a
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few pixels in images. Further, NIDDL can help avoid photobleaching by
enabling imaging at low laser power conditions.

While a simple use of the large FOV and deep denoising is to
increase the number of cells observed simultaneously and increase the
throughput of experiments by enabling imaging multiple animals
simultaneously (Fig. 5C), the technique is truly enabling for imaging
moving samples where low exposure time (to reduce blurring
type motion artifact) is critical (Fig. 5D). Conventionally for freely
moving animals, neural activities are imaged at high magnifica-
tion fluorescence channel, while behavior is trackedwith a second low-

magnification light path. Here, with large-FOV low-magnification ima-
ging, fast exposure times, and deep denoising, animals can be tracked
directly on the fluorescence light path, while NIDDL can extract clean
calcium traces from these videos, with more cells, without compro-
mising the imaging quality. We demonstrate this by imaging motor
neurons’ along the ventral nerve cord of freely moving animals. Deep
denoising by NIDDL significantly removes noise from calcium traces,
resulting in clear bouts of neural activities (Fig. 5D and Supplementary
Movie 4). Next, we correlated activities ofmotor neurons to local body
curvature of the animal as it roams. Motor neuron activities recovered
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by NIDDL showed enhanced correlation to animal curvature (Supple-
mentary Fig. 17B–D) compared to traces extracted from noisy
videos. Thus, NIDDL enables recordings where samples move sig-
nificantly across frames by enabling imaging using low exposure time
conditions. By requiring only low light, this approach will also enable
more prevalent longer-term imaging with behavior.

Complex neurite structure recovery with NIDDL
Another application of deep denoising is in imaging subcellular fea-
tures such as the dendritic processes, which are typically dim and
difficult to quantify compared to imaging the soma. Because denoising
neurites presents different challenges, we sought to optimize network
hyper-parameters specifically for neurites (Supplementary Fig. 18) and
chose L2 loss over L1 loss due to slightly better performance.
The optimized network recovers structures of neurites from noisy
images (Fig. 6A, Supplementary Figs. 18, 19, and Supplementary
Movie 5) showing distinct processes barely visible in noisy images.
Further, NIDDL enables quantitative characterization of neurite mor-
phology as recovered neurite structure significantly improves neurite
segmentation performance using simple methods (“Methods” –

‘Neurite segmentation’) (Fig. 6D and Supplementary Fig. 20). Com-
pared to non-deep learning based methods, NIDDL again performed
better on accuracy (Fig. 6B and Supplementary Fig. 21). Further, NIDDL
achieved similar accuracy compared to previous deep learning based
methods. To test generalizability across neurite morphology, we tes-
ted the performance across two strains labeling neurons with distinct
structures (the gentle touch neurons ALM, AVM, and PLM, and the
multimodal sensory neuron PVD in C. elegans). Models trained only on
one strain’s data achieved equivalent accuracy across other strain
(Fig. 6C and Supplementary Fig. 23). We envision NIDDL being applied
to study calcium signal distribution in complex morphologies of
mechanosensory neurons.

Discussion
In this work, we present an easy-to-train, fast, data-efficient, and gen-
eralizable deep-learning framework for denoising calcium activity
volumetric recordings. While our method has similarities to recently
developed supervised learning methods for restoring images17,20,
applications of supervisedmethods for extracting calcium traces from
volumetric recordings inmodel organismshave not been shown.Here,
we demonstrate the utility of supervised denoising methods for var-
ious calcium imaging application in C. elegans, and highlight key
advantages over previous methods, which make them attractive for
researchers to adopt easily. First, we demonstrate that networks
trainedwith temporally independent (non-video) data collected across
animals, strains, and imaging conditions can be used to recover high-
quality calcium traces from video data, thus providing several
experimental simplifications. For instance, ultrafast imaging rates for
training data collection are avoided, thus enablingmore labs to collect
data with commonly available microscopy setups. Additionally, since
networks are trained with non-video data, complex pre-registration of

images before training is circumvented, making the method suitable
for motile animals, such as C. elegans.

Second, we demonstrate that networks can be trained with order
of magnitude smaller training data (∼500 pairs of images) compared
to previous methods DeepInterpolation and DeepCAD. Temporally
sequential data used in these previous methods closely resemble the
approach of Noise2Noise23. This is because consecutive images in pre-
registered data from ultrafast recordings can be thought of as coming
from one sample with independent noise in each image such that the
expectation matches the noise-free sample image. Due to the need of
multiple images of each sample to accurately approximate the
expectation, the size of the temporal window used in DeepInterpola-
tion and DeepCAD is on the order of ∼70–300 frames; thus, these
methods tend to require large amounts of training data. In compar-
ison, supervised learning methods, can be trained with only two ima-
ges of each sample i.e., lowSNR andhigh SNR images, and donotmake
assumptions on noises in the data. Thus, supervised methods are
advantageous for dynamic data, such as those from (slow) volumetric
functional imaging where consecutive framesmay not have correlated
signals, and those frommoving samples where frames are not already
registered; furthermore, supervised methods can also be trained with
much smaller training data.

Third, we demonstrate the generalizability of networks trained in
supervised manner across different strains and experimental sessions.
This is possible because the models are trained with pairs of high SNR
and lowSNR images across a variety of conditions, animals, strains etc.,
which capture the distribution of SNR levels across experimental
conditions that researchers may expect under typical experimental
conditions. Thus, these supervised methods can achieve higher
denoising accuracy compared to unsupervisedmethods,making them
suitable for high quality calcium signal from new experimental
recordings without retraining the networks. In contrast, unsupervised
methods trained on one functional recording dataset may need to be
trained again for every new video. Furthermore, to eliminate complex
pre-registration of images in moving animal recordings during train-
ing, supervised training only needs images of stationary samples
across various conditions, and trained networks can be applied to
images in videos independently to recover high SNR traces. Thus, the
pipeline ismuchmore accessible to routine use in calcium imaging in a
wide range of scenarios, e.g., in sensory behavior, mating behavior,
and social behavior.

Finally, we have optimized networks extensively to significantly
reduce the memory footprint and inference time compared to pre-
vious deep learning methods. Our current models can achieve real-
time denoising speeds making them suitable for experiments requir-
ing real-time feedback such as optogenetic perturbations. Our
demonstrations on variety of data sets that include high-magnification
whole-brain calcium recordings, low-magnification large FOV calcium
recordings, and recovering complex neuritemorphology highlight the
utility of deep learning based denoisingmethods. We imagine that our
demonstration of deep learning methods for functional imaging

Fig. 3 | NIDDL performance generalizes across strains and experiments.
A Denoising example on images from 2 strains (OH16230 and ZIM504) with dif-
ferent cell markers when model is trained with strain-specific data. (Left) Example
max-projection noisy images from2 strains; (right) correspondingdenoised images
by 2 different networks trained on strain-specific data. Scale bar is 10μm.
B Intensity profiles along the dotted lines shown in insets in A for noisy images and
denoised images output by 3 different networks. C Comparison of strain-specific
model performance and across-strain model performance. (Left) RMSE accuracy,
(Middle) SSIM accuracy, and (Right) PSNR accuracy on noisy images from 2 strains
when networks are trainedon specific strain’s data. (n = 100, 3006, 1403, 50 images
for 4 conditions, **p <0.01, ***p <0.001, two-sided Holm-Bonferroni paired com-
parison test). D Denoising accuracy on images acquired with three different laser
power settings (lp1 – extremely low laser power, lp2 – very low laser power, lp3 –

low laser power)whenmodel is trainedwith specific laser power setting’s data only.
Data comes from strain ZIM504. (n = 88, 2728, 2728, 2262, 100, 2262, 2806, 2806,
226 images for 9 conditions, ***p <0.001, **p <0.01, two-sided Holm–Bonferroni
paired comparison test).EDenoising accuracyon images from three different days’
imaging sessions when model is trained with specific day’s data only. Data comes
from ZIM504. (n = 40, 1043, 1043, 1532, 50, 1532, 1403, 1403, 50 images for 9
conditions). F Comparisons of SNR levels in noisy images across conditions. Left –
across different strains (n = 3006, 1403 images), middle – across different laser
powers (n = 1403, 1364, 1101 images), right – across different days (n = 1403, 1532,
1043 images). Source data for C–F are provided in Source Data file. In C–F, Box
center indicatesmedian, box edges indicate 25th and 75th percentile, andwhiskers
indicate 5th and 95th percentile.
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denoising in C. elegans will inspire newer experiments in other model
systems such as hydra41–43, Drosophila44–50, and zebrafish39,51–55, where
long-term whole-brain and functional recordings are needed to
uncover neuronal basis of behaviors that evolve over long time
scales56–58. NIDDL facilitates such recordings by use of lower laser
power and shorter exposure time. Combining this technology with
microscopy techniques requiring low light dosage e.g., light
sheet9,51,59,60, or other microscopy techniques such as virtual
refocusing14, light-field reconstruction15,16, and multiphoton imaging61

will enable newer imaging paradigms, recordings of longer durations,
and faster frame rates previously not possible.

Methods
C. elegans culture
For all experiments, animals were cultured using standard
techniques62. A detailed list of strains used in this work is provided in
Table 1. All data are collected using Larval stage 4 (L4) C. elegans
hermaphrodites.
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Fig. 4 | High quality whole-brain Ca trace recovery using NIDDL. A Top – max
projection of an example image stack from a noisy whole-brain video recording
(acquired at low laser power). Bottom – corresponding deep denoised output. Cell
nuclei are labeledwith nuclear localizedGCaMP5K. Data comes from strain ZIM504
(scale bar − 10μm).BNeuron activity traces extracted from the noisy video (shown
in A), high SNR ground-truth video for the same recording (acquired at high laser
power), and deep denoised video output by network trained only on separate

image data. C Cell-wise comparison of mean absolute errors (MAE) (Left) and
Pearson correlation coefficients (Right) of traces extracted from noisy video and
denoised video to corresponding traces extracted ground-truth video. n = 80 cells.
Source data are provided in Source Data file.D Pairwise Pearson correlation among
neuron activity traces extracted from noisy video, ground-truth video, and deep
denoised video. Rows and columns correspond to 80 cells.
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Training data collection
All imagingwasperformedusingBrukerOpterra II Sweptfield confocal
microscope, with an EMCCD camera. Objective lenses used for each
type of data and other imaging parameters are described below.
1. Whole-brain data - Whole brain data was collected using ZIM504

and OH16230 strains. Animals were synchronized to L4 stage and
were immobilized in a microfluidic array device to prevent
motion. Two 3D stacks (25–30 z planes with 1μm spacing) were

acquired for each animal, one at low laser power and one at the
highest laser power setting available in microscope, 10ms
exposure time, and Plan Fluor 0.75 NA 40× air objective. Low
laser power image specifies the noisy (low SNR) image and high
laser power image specifies the clean (high SNR) image. Neural
networks were trained to predict high SNR image from low SNR
image as described in the section ‘Network Training’. To quantify
prediction generalizability across days, independent datasets
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Fig. 5 | High quality Ca trace recovery in large field-of-view imaging of spatially
distributed motor neurons. A (Top) max projection of a large FOV noisy image
stack (low laser power) showing ventral cord motor neurons (scale bar − 10μm).
(Bottom) denoised outputs generated for square box marked in the top image
(scale bar − 5μm). Inset shows intensity profile along the dotted line. Cell nuclei are
labeled with nuclear-localized GCaMP6s. B Comparison of RMSE to ground-truth
high-SNR images across noisy images, and denoised images from Median filter,
Gaussianfilter, NLM, BM3D, CARE, RCAN, andNIDDL (n = 60, 60, 60, 60, 60, 60, 72,
and 217 images correspondingly). Box center indicatesmedian, box edges 25th and
75th percentile, and whiskers 5th and 95th percentile. Source data are provided in
Source Data file. C (Top left) input noisy (low laser power) maximum projection
from a large FOV showing ventral cordmotor neurons of two animals restrained in
microfluidic device (scale bar − 10 μm). (Top right) output image denoised by
NIDDL (scale bar − 10μm). (Middle left) single pixel neuron activities extracted

from the noisy video for worm 2 in the above image. (Middle right) mean of ROI
averaged neuron activities extracted from noisy video. (Bottom left) single pixel
neuron activities extracted from the denoised video. (Bottom right) ROI averaged
neuron activities extracted from the denoised video. Arrows indicate examples of
activity transients lost when averaging across an ROI in noisy video. In contrast,
clear activity transients are present in both single pixel and ROI pixel traces
extracted from NIDDL denoised video. D (Top left) input noisy (low laser power)
max-projection of an image stack froma large FOV video recording showing ventral
cord motor neurons in a freely moving animal (scale bar − 10μm). (Bottom left)
output image deep-denoised by NIDDL (scale bar − 10μm). (Top right) single pixel
neuron activities extracted from the noisy video. (Bottom right) corresponding
single-pixel neuron activities extracted from the deep-denoised video (arrows
indicating coordinated activities). All data inA–Dwerecollected on strainOH16230
using a 20×, 0.75 NA objective (online methods).
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BComparison of RMSE accuracy across noisy images, and denoised images output
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86, 86, 443, 443 images across conditions. Box center indicatesmedian, box edges
25th and 75th percentile, andwhiskers indicate 5th and95thpercentile. Source data
are provided in Source Data file. C NIDDL denoising of images facilitate neurite

segmentation. (Top) example noisy image showing harsh touch mechanosensory
neuron PVD’s neurites, no regions are detected in noisy images with simple mor-
phological operations (see online “Methods” – ‘Neurite segmentation’). (Bottom)
corresponding NIDDL denoised output and segmented neurites in denoised image
(scale bar − 10μm). Data come from strain GT366. D Deep denoising RMSE accu-
racy comparison on noisy images from 2 strains (GT372 and GT366) that label
neurites of gentle touch and harsh touch mechanosensory neurons respectively,
when models are trained on strain-specific data. n = 129, 203, 118, 97 images for 4
conditions, ***p <0.001, two-sided Holm-Bonferroni paired comparison. Box cen-
ter indicatesmedian, box edges 25th and 75th percentile, andwhiskers 5th and95th
percentile. Source data are provided in Source Data file.
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were collected for strain ZIM504 on different days using the same
strategy. In this case, all datasets were collected at same laser
power setting. To quantify prediction generalizability across
image SNR levels, additional datasets were acquired using
ZIM504 strain at very low and intermediate low laser power
levels. To quantify prediction generalizability accuracy across
strains with nuclear localized markers, data collected across two
strains, OH16230 (nuclear localized GCaMP6s and TagRFP-T
expression in all neurons) and ZIM504 ((nuclear localized
GCaMP5K expression in all neurons), were used. In this case, data
for all strains was collected at same laser power settings.

2. Ventral cord neurons data - Images of ventral cordmotor neurons
were collected using strain OH16230. Animals were synchronized
to L4 stage and were immobilized in a microfluidic array device.
3D stacks (40 z planes with 1 μm spacing) were collected at 10ms
exposure time, using SPlan Fluor ELWD0.45NA, 20× air objective.
Two stacks were acquired for each animal, one at low laser power
andone at thehighest laser power setting available inmicroscope.

3. Neurite data - Images of neurites were collected using strain
GT372 andGT366. These strains label different cells with different
neurite morphology. GT372 labels gentle touch cells neurites that
are sparser compared to harsh touch neuron PVD’s neurites
labeled in GT366. Animals were synchronized to L4 stage and
were immobilized in a microfluidic array device. 3D stacks (40 z
planes with 1 μm spacing) were collected at 10ms exposure time,
using Plan Fluor 0.75 NA 40× air objective. Two stacks were
acquired for each animal, one at low laser power and one at the
highest laser power setting available in microscope.

Synthetic whole-brain image data generation
To generate synthetic image data across a range of SNR levels, 3D
stacks (128 × 128 × 30 pixels) were generated. Cells were simulated as
3D Gaussian distributions. Cell positions (mean of Gaussian

distributions), cell sizes (3D covariance matrices of Gaussian dis-
tributions), and cell intensities (max peak of Gaussian distributions)
were randomly generated for 60 cells and 3D intensity profiles of all
cells were added together to form the image stack. Intensity profile of
the resultant image was scaled to a maximum photon count level to
specify the peak signal in image. Six photon count levels (20, 50, 100,
200, 500, and 1000) were used. This image specified the ground-
truth clean image. To generate the corresponding noisy image, two
kinds of noises were added to the clean image, photon shot noise (no
parameter needed as the noise depends on each pixel’s intensity
level) and readout noise (normally distributed with mean 0 and 1
variance).

Semi synthetic whole-brain video data generation
To generate semi synthetic 4D (3D + t) calcium imaging video data, 3D
stacks (512 × 512 × 30 pixels) were generated for 100 time points. Here
again, cells were simulated as 3D Gaussian distributions (as described
in Synthetic image data generation section). However, here cell posi-
tions (means of Gaussian distributions) were taken from OpenWorm63

atlas to mimic cell configuration in C. elegans head. 130 cells were
randomly selected from OpenWorm atlas and positions of only those
cells were used for a specific video. This mimics the fact that typically
in whole brain recordings, not all cells are imaged due to low fluor-
ophore expression. Further, temporal intensities for each cell were
specified using experimental whole-brain recording datasets pub-
lished previously11. A 100 frame window was randomly selected from
published data, cell traces within the selected window were extracted
from the published data, and each cell in synthetic videowas randomly
assigned a trace from the selected chunk. Thus realistic experimental
calcium traces were present in synthetic video for each cell. Next,
intensities of all frames were scaled to a maximum photon count level
(using themaximum andminimumpixel intensity across all frames) to
specify the peak signal in video. Four photon count levels (100, 200,

Table 1 | List of strains used in this work

Name Genotype Experiments Reference

ZIM504 mzmEx199[Punc-31::NLSGCaMP5K; Punc-122::gfp]; lite-1 (xu7) Used for (1) collecting training data for whole-
brain images, (2) test denoising accuracy across
imaging sessions (days), (3) test denoising
accuracy across SNR in images (laser power
settings), and (4) demonstrate high quality
neuron activity trace extraction by denoising
noisy whole-brain videos

3,11

OH16230 otIs672 [rab-3::NLS::GCaMP6s + arrd-4:NLS:::GCaMP6s]. otIs670 provides a healthier
alternative to otIs669, performing better in a variety of phenotypic assays. otIs670
[UPN::NLS::TagRFP-T + acr-5::NLS::mTagBFP2::H2B +flp-1::NLS::mTagBFP2::H2B +flp-
6::NLS::mTagBFP2::H2B +flp-18::NLS::mTagBFP2::H2B +flp-19::NLS::mTagBFP2::H2B +
flp-26::NLS::mTagBFP2::H2B + gcy-18::NLS::mTagBFP2::H2B + ggr-
3::NLS::mTagBFP2::H2B + lim-4::NLS::mTagBFP2::H2B + pdfr-1::NLS::mTagBFP2::H2B +
srab-20::NLS::mTagBFP2::H2B + unc-25::NLS::mTagBFP2::H2B + cho-
1::NLS::CyOFP1::H2B +flp-13::NLS::CyOFP1::H2B +flp-20::NLS::CyOFP1::H2B + gcy-
36::NLS::CyOFP1::H2B + gpa-1::NLS::CyOFP1::H2B + nlp-12::NLS::CyOFP1::H2B + nmr-
1::NLS::CyOFP1::H2B + ocr-1::NLS::CyOFP1::H2B + osm-9::NLS::CyOFP1::H2B + srh-
79::NLS::CyOFP1::H2B + sri-1::NLS::CyOFP1::H2B + srsx-3::NLS::CyOFP1::H2B + unc-
8::NLS::CyOFP1::H2B + acr-2::NLS::mNeptune2.5 + ceh-2::NLS::mNeptune2.5 + dat-
1::NLS::mNeptune2.5 + dhc-3::NLS::mNeptune2.5 + eat-4::NLS::mNeptune2.5 + flp-
3::NLS::mNeptune2.5 + gcy-35::NLS::mNeptune2.5 + glr-1::NLS::mNeptune2.5 + gcy-
21::NLS::CyOFP1::H2B::T2A::NLS::mTagBFP2::H2B + klp-6::NLS::mNeptune2.5::-
T2A::NLS::CyOFP1::H2B + lim-6::NLS::mNeptune2.5::T2A::NLS::CyOFP1::H2B +mbr-
1::NLS::mNeptune2.5::T2A::NLS::mTagBFP2::H2B +mec-3::NLS::CyOFP1::H2B::-
T2A::NLS::mTagBFP2::H2B + odr-1::NLS::mNeptune2.5::T2A::NLS::mTagBFP2::H2B + srab-
20::NLS::mNeptune2.5::T2A::NLS::mTagBFP2::H2B] V

Used for (1) collecting training data for whole-
brain images, and ventral cord motor neurons,
(2) test denoising accuracy across strains, (3)
demonstrate high quality neuron activity trace
extraction by denoising noisy videos of ventral
cord neurons in restrained and freely moving
animals

68

GT372 aSi31[lox2272 Cbr-unc-119(+) lox2272 + mec-7p::GCaMP7F::ras-2CAAX::SL2::mScarlet-
I::ras-2CAAX] II; unc-119(ed3) III

Used for (1) collecting training data for gentle
touch neurons’ neurite denoising, (2) demon-
strate neurite denoising and segmentation

This work

GT366 unc-119(ed3) III; aEx45[ser-2p3b::GCaMP7F::ras-2CAAX::SL2::mScarlet-I::ras-2CAAX +
pDSP2(Cbr-unc-119(+)]

Used for (1) collecting training data for harsh
touch neuron PVD neurite denoising, (2)
demonstrate neurite denoising and
segmentation

This work
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500, and 1000)were used. This specified the ground-truth clean video.
To generate the corresponding noisy video, two kinds of noises were
added to each frame, photon shot noise (Poisson noise) and readout
noise (normally distributed with mean 0 and 1 variance).

Calcium imaging data collection
We demonstrate deep denoising framework’s capability to extract
high quality calcium traces from noisy videos for three applications.
1. High magnification head ganglion functional imaging - Data was

collected using ZIM504 strain. Animals were synchronized to
L4 stage and were immobilized in a microfluidic array device.
Video (3D + t) stacks (30 zplaneswith 1μmspacing, × time points)
were acquired at 10ms exposure time, using Plan Fluor 0.75 NA
40x air objective. Noisy (low SNR) frames were acquired at low
laser power. For each noisy stack, a ground-truth (high SNR) stack
was acquired alternatively. Thus, the two stacks were not
completely synchronous, however the time difference between
two stackswas very small (∼100ms) compared to the dynamics of
calcium signal. We compared the traces extracted from noisy
video after denoising it with deep neural network with the traces
extracted from ground-truth video to ensure that deep denoising
does not introduce artifacts in traces.

2. Low magnification functional imaging of ventral cord neurons in
device - Data was collected using OH16230 strain. Animals were
synchronized to L4 stage and were immobilized in a microfluidic
array device. Video (3D + t) stacks (40 z planes with 1μm spacing,
× time points) were acquired with 10ms exposure time and SPlan
Fluor ELWD 0.45NA 20× air objective. All stacks were acquired at
low laser power settings.

3. Low magnification functional imaging of ventral cord in freely
moving animals - Data was collected using OH16230 strain. Ani-
mals were synchronized to L4 stage and were sandwiched
between two agar pads on two cover-slips before imaging. 3D
stacks (20 z planes with 1 μm spacing, × time points) were
collected at 10ms exposure time using Plan Apo Lambda
0.75NA 20× air objective. All stacks were acquired at low laser
power settings. At 20× magnification, animals were tracked easily
while imaging using z stage x-y controller and kept in the field
of view.

Network optimization
We experimented with UNet17,28, Hourglass29 and DFCAN21 archi-
tectures given the past success of these networks shown in several
biological image analysis tasks such as image restoration, pose pre-
diction, segmentation etc. Architecture details of networks are shown
in Supplementary Fig. 1, 2. We tested with three hyper-parameters and
training settings as described below. In all cases, the network takes as
input a noisy (low SNR) image (512 × 512 × d) and through applications
of convolutional layerswith non-linear activation (ReLU),max-pooling,
up-sampling, feature concatenation or summation generates an out-
put image (512 × 512 × d). Here d is the depth of input and output
images. We experimented with different d values as described below.
Parameters in networkswere trained using stochastic gradient descent
with AdamOptimizer (learning rate 0.001) such that the output image
is as close as possible (per some loss function) to the corresponding
clean (high SNR) image. Training was performed on computing clus-
ters using 16GB or 32 GB GPUs.
1. Architectures – The following CNN architectures were tested.

i. UNet – An architecture very similar to conventional UNet
architecture was used with 4 down-sampling/max pooling
and 4 up-sampling layers. In this case, the first feature map
had 32 channels (i.e., 512 × 512 × 32). Depth (number of
channels) of feature maps after each max pooling based
down-sampling doubled and depth of feature maps after
each up-sampling layer halved. Similar to conventional

UNet, long range residual connections were included that
concatenate feature maps in down sampling to the feature
maps in up-sampling layers.

ii. UNet_fixed – This architecture is the same as the Unet
architecture. However in this case the depth of all feature
maps was fixed to 32. Doing so significantly reduced the
model size compared to Unet and decreased the network
training and inference time without any decrease in accu-
racy (Fig. 1B and Supplementary Fig. 3).

iii. Hourglass_wores – An architecture very similar to the
conventional Hourglass architecture was used. Compared
to the Unet architecture, where long range residual con-
nections are a direct concatenation of feature maps in
down-sampling layers to feature maps in up-sampling
layers, Hourglass architecture has side blocks with train-
able parameters (see Supplementary Fig. 2) that extract
features from down-sampling layers before max-pooling
them and adding them to the feature maps in up-sampling
layers. This enables the network to extract relevant
information from feature maps in down-sampling layers.
In our implementation, different from conventional Hour-
glass architecture, depth of feature maps within each
convolutional block was not kept fixed thus it was not
possible to include short range residual connection within
convolutional block as it requires summation of input and
output with same feature depth. Depth of the first feature
map was set as 32. Depth of feature maps after each down-
sampling layer doubled and depth of feature maps after
each up-sampling layer halved

iv. Hourglass_wres – Architecture same as Hourglass_wores
was used. However, in this case depth of feature maps in
each layer was kept fixed as 32. Further, short range resi-
dual connection within each convolutional block was used.
Keeping the depth of feature maps fixed to 32 significantly
reduced themodel size compared toHourglass_wores, and
decreased the network training and inference timewithout
any decrease in accuracy (Fig. 1B and Supplemen-
tary Fig. 3).

v. DFCAN – Architecture implementation was borrowed from
previously published code21. We were not able to train the
network when input size was 512 × 512 × 1 with published
architecture on 32GB memory GPU due to large GPU
memory requirements. Thus, we reduced the feature depth
in FCAB (feature channel attention blocks) to 32 compared
to 64 in published implementation. Further, we trained the
network with 128 × 128 × 1 images instead of 512 × 512 × 1
(used for previousmethods in this section) to further reduce
memory requirements. The number of RCABs (residual
channel attention blocks) was kept as 4 and each RCAB
contained 4 FCABs, same as published implementation. By
design for our task, the output image size is the same as the
input image size; thus, scale factor was set to 1. With these
settings, we trained several instances of networks with ran-
dom selection of same of amount of training data used for
previous architectures. However, the network did not train
well as the output images of the trained networks looked
empty across all training instances. This could be due to not
enough training data needed by DFCAN. Thus, DFCAN was
not considered for further optimization.

All models were trained on the same set of training data and
accuracy was tested on a separate held-out dataset consisting of
600 images. Based on comparable or higher accuracy achieved
by UNet_fixed and Hourglass_wres architectures compared to
other architectures andmuch smaller memory footprint of these
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architectures, we selected these architectures for our applica-
tions. Small memory footprint also provides the benefit of faster
training and faster inference, thus making models user friendly
and enabling real time applications.
Apart from architecture type, we also sought to determine if
larger filters in convolutional layers can increase accuracy as they
can take into account longer range spatial context in images. To
do so, we compared the prediction accuracy of the two selected
architectures for two sizes of convolution filters (3 × 3 vs 5 × 5).
Since we did not see significant differences in accuracy when
using 5 × 5 filters, and models with 3 × 3 filters have smaller
memory footprint, we used 3 × 3 filters.

2. Loss function – Two kinds of loss functions have been used pre-
viously for image restoration tasks, L2 loss, and L1 loss17. We asked
if one loss function may achieve higher denoising accuracy on
some datasets whereas the other may achieve higher accuracy on
others. Thus, we trained the networks with both loss functions
and compared the accuracy of models across them for all data-
sets. For high-magnification head ganglion dataset, we found that
the accuracy of all architectures was comparable across L2 and L1
losses, with L2 loss performing slightly better in SSIM metric
(Supplementary Fig. 3). Further, L1 loss showed more stable
training, as different rounds of training the network from scratch
showed lower variability in accuracy. In comparison, L2 loss-
trained network showed greater variability in performance across
different rounds of training. For harsh and gentle touch
mechanosensoryneurons’neurite data, L2 loss performed slightly
better than L1 loss (Supplementary Fig. 18).

3. 2D vs 2.5Dvs 3D training –To identify if depth context in 3D image
stacks can improve de-noising performance, we tested several
models (Supplementary Fig. 4).
a. 2D models that take as input 1 low SNR image (512 × 512 × 1)

and output 1 high SNR image (512 × 512 × 1).
b. 2.5D models that take as input a noisy 2D image and d z-

planes above it andbelow it (512 × 512 × (2d + 1)) andoutputs
1 high SNR image (512 × 512 × 1). Thus the network uses
contextual information in z planes above and below the
image to be de-noised. The output of the network
corresponds to the center z-plane of the input, i.e., the loss
is minimized with respect to the center z plane. We tested
two values of d with d = 1, and d =2. Higher values of d
increases the memory footprint of training.

c. 3Dmodels that take as input a 3D image stack consisting ofd
z-planes and outputs a 3D stack consisting of d z-planes.
Thus, all z-planes in the 3D input stack are de-noised
simultaneously. Here again we tested two values of d with
d = 1, and d =2.

All models were trained on the same set of training data, and
accuracy was tested on a separate held-out but same for all dataset
consisting of 600 images. Across these models we found that 2D
models performed best. In principle, taking contextual information
into consideration could improve performances. Our observation can
be explained by the following. For 2.5D models, noise in z-planes
around the center z plane confused the model to focus on denoising
center z-plane; further, for 3Dmodels we had to reduce the batch size
while training due tomemory constraints, which could reduce training
performance.

Denoising and extracting calcium traces
Whole-brain video. Low SNR video collected at low laser power was
first de-noised using a network trained on whole-brain image dataset.
The trained network takes as input individual noisy z planes
(512 × 512 × 1) of 3D image stacks in the video and outputs high SNR z

planes (512 × 512 × 1), which were subsequently combined to form the
de-noised video. To obtain activity traces, nuclei in ground-truth video
were first segmented using a Gaussian mixture based segmentation
method. Segmented nuclei were tracked across frames using an
automated tracking algorithm.Generated tracks of cellsweremanually
inspected and tracks for cells with minor tracking errors were semi-
manually corrected. Single pixel activity traces were extracted using
the centers of the tracked segmented masks. Activity traces were also
extracted by averaging intensity of voxels with an ROI (5 × 5 × 3 size).
Figures captions indicate what type of activity traces have been shown
in the figure. The same segmentedmasks were used to extract activity
traces from the noisy video and the de-noised video as well to get
consistent activity traces across videos and avoid any comparison
artifacts due to differences in cell segmentation procedures across
videos.

Ventral cord motor neurons in device. Here we de-noise maximum
projection images of 3D stacks in the video instead of whole 3D stacks
as in whole-brain video denoising case. Thus, in this case the trained
network takes as input a maximum projection image of a noisy stack
(512 × 512 × 40 converted to 512 × 512 × 1) in the video and outputs high
SNR maximum projection stack (512 × 512 × 1). Neuron activity traces
were extracted from themaximum projection denoised output. Single
pixel activity traces were extracted using the centers of the nuclei.
Activity traces were also extracted by averaging intensity of pixels with
anROI (3 × 3 size). Figures captions indicatewhat type of activity traces
have been shown in the figure.

Ventral cordmotor neurons in freely moving animal. Here again we
de-noise maximum projection images of 3D stacks in the video
instead of whole 3D stacks. The trained network takes as input a
maximumprojection image of a noisy stack (512 × 512 × 20 converted
to 512 × 512 × 1) in the video; and outputs high SNR maximum pro-
jection stack (512 × 512 × 1). Neuron activity traces were extracted
from the maximum projection de-noised output. To do so, cells in
maximum projection images were tracked manually using Manual-
Tracking plugin in Fiji. Subsequently, single pixel activity traces
were extracted from both noisy and de-noised videos using track
centers.

Accuracy quantification

1. Image denoising accuracy – We quantify image denoising accu-
racy using 3metrics – rootmean square error (RMSE), peak signal
to noise ratio (PSNR) and Structural Similarity Index (SSIM)64. For
eachof thesemetrics, high SNR (ground-truth) imagewas taken as
the reference, and corresponding low SNR (noisy) and network
output (denoised) images were compared to the reference. Since
maximum intensity value or dynamic range of low SNR (noisy)
images is much lower than those in high SNR (clean) images, we
normalized intensity values in all images first before calculating
the accuracymetrics to prevent arbitrary inflation of errors. Same
methodology was used for network optimization and accuracy
analysis across all datasets including high magnification whole-
brain dataset, low magnification ventral cord imaging, and high
magnification neurite dataset).

2. Activity trace from experimental whole-brain video – Single pixel
neuron activity traces were extracted from the noisy video,
ground-truth video and deep denoised video (see “Methods” –

‘Calcium imaging data collection for video acquisition details’ and
“Methods” – ‘Denoising and extracting calcium traces for activity
extraction details’). Accuracy was quantified by
a. Comparing MAE (mean absolute error) of traces extracted

fromnoisy and denoised videos to the traces extracted from
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ground-truth video.

MAEnoisy =
1
T

∑
T

t = 1
∣ynoisy, t � ygt, t ∣ ð1Þ

MAEdenoised =
1
T

∑
T

t = 1
∣ydenoised, t � ygt, t ∣ ð2Þ

Here T denotes the number of time-points in time-series, ynoise, t
and ydenoised, t denote neuron activities extracted from noisy
video and denoised videos respectively at time t, ygt, t denote
neuron activity extracted from ground-truth video at time t.
b. Comparing Pearson correlation coefficient of neuron activ-

ity traces extracted from noisy and denoised videos to the
traces extracted from the ground-truth video.

Neuron activity - curvature correlation in freely moving animal
To calculate the curvature of the body as C. elegans moves, a 4th
degree polynomial was fitted to the coordinates of tracked ventral
cord neurons to get ventral cord backbone. Since some cells go out of
field of view during animalmotion, cells thatwere consistently present
across all frameswere used to extract a backbone chunk and curvature
analysis was performedusing this backbone chuck only. The backbone
chunk was divided into 100 segments (sampled at 100 points) and
tangent angles to the backbone were calculated at these points. Neu-
ron activity traces were cross-correlated to tangent angles at all points
(shown in heat maps in Supplementary Fig. 17D). To quantify the
improvement in neuron activity-curvature cross-correlation in deep
denoised videos, cell traces were cross-correlated to local tangent
angles i.e., tangent angles to the backbone at cell’s location, and
maximum absolute value of the cross-correlation across cells was
compared when activity traces were extracted from noisy videos or
denoised videos.

Neurite segmentation
Harsh touch neuron PVD’s neurites were segmented in noisy and deep
denoised images using custom script in MATLAB. The custom script
included basic operations with functionalities available in MATLAB −
(1) image was sharpened (2) binarized with adaptive thresholding, (3)
morphologically eroded to remove segmented noise (4) small holes
were filled in image complement, and (5) structures smaller than fixed
pixel size were removed.

Comparisons against other methods
We compared the denoising performance of our optimized archi-
tectures with several methods across three accuracy metrics; RMSE,
SSIM, PSNR. The methods included traditional methods such as
Median Filtering and Gaussian Filtering, advanced non-deep learning
based methods such as NLM65, BM3D66,67, and deep learning based
methods such as CARE17, and RCAN19. Below we provide implementa-
tion details of these methods.
1. Median Filtering was implemented using default MATLAB func-

tion. Three window sizes (3, 5, and 7) for filtering were tried for
each dataset and results were reported for best performing
window size.

2. Gaussian Filtering was implemented using default MATLAB
function. Three kernel sizes or standard deviation values (1, 3, and
5) were tried for each dataset and results were reported for best
performing window size.

3. NLM method was implemented using default MATLAB function.
No parameters were set for NLM method as it automatically
estimates the degree of smoothing based on standard deviation
of noise in the image.

4. BM3D method was implemented using MATLAB implementation
available here https://webpages.tuni.fi/foi/GCF-BM3D/. Four

different values of noise standard deviation were tried (0.05, 0.1,
0.2, and 0.5) and results were reported for best performing value
for each data set.

5. CAREwas implementedusing the codeprovided at https://github.
com/CSBDeep/CSBDeep. The networkwas trained using the same
data as NIDDL, i.e., paired low SNR and high SNR images. Default
parameters provided in code were used for training except
unet_n_depth was set as 4 to be comparable to vanilla UNet
architecture that we tried.

6. RCAN was implemented using code provided at https://github.
com/AiviaCommunity/3D-RCAN. The network was trained using
the same data as NIDDL, i.e., paired low SNR and high SNR images.
Default parameters set in code were used for training.

Inference runtime comparisons - system configuration
To compare inference runtime across various deep learning methods,
the following system configurations were used.
1. GPU –QuadroM4000,memoryClockRate(GHz): 0.7725, compute

capability: 5.2, totalMemory: 8.00 GiB.
2. CPU – Intel® Xeon® CPU E5-1620 v4 @ 3.50GHz, RAM: 32 GB, 64-

bit Operating System, x64-based processor.

Statistical tests
All statistical comparisons were performed using the Paired Compar-
ison Toolbox in Origin. Holm–Bonferroni paired test was used.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sampledatasets to run trainednetworks are available at https://github.
com/shiveshc/whole-brain_DeepDenoising. Raw imaging datasets
used to train networks and various calcium imaging datasets will be
available upon request due to the large size. The data generated in this
study are provided in the Source Data file. OpenWorm atlas was
obtained from https://doi.org/10.1098/rstb.2017.038263. Source data
are provided with this paper.

Code availability
Code with example datasets is available at https://github.com/
shiveshc/whole-brain_DeepDenoising. Instructions on how to run
code on sample datasets and train on new datasets are available in the
same repository.
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