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Mutated processes predict immune
checkpoint inhibitor therapy benefit
in metastatic melanoma

Andrew Patterson 1,2 & Noam Auslander 2

Immune Checkpoint Inhibitor (ICI) therapy has revolutionized treatment for
advanced melanoma; however, only a subset of patients benefit from this
treatment. Despite considerable efforts, the Tumor Mutation Burden (TMB) is
the only FDA-approved biomarker in melanoma. However, the mechanisms
underlying TMB association with prolonged ICI survival are not entirely
understood and may depend on numerous confounding factors. To identify
more interpretable ICI response biomarkers based on tumor mutations, we
train classifiers using mutations within distinct biological processes. We eval-
uate a variety of feature selection and classification methods and identify key
mutated biological processes that provide improved predictive capability
compared to the TMB. The top mutated processes we identify are leukocyte
and T-cell proliferation regulation, which demonstrate stable predictive per-
formance across different data cohorts of melanoma patients treated with ICI.
This study provides biologically interpretable genomic predictors of ICI
response with substantially improved predictive performance over the TMB.

Melanoma is a highly aggressive disease and the deadliest form of skin
cancer. Deaths from melanoma account for ~60% of skin cancer
mortality1,2. Prognosis greatly dependson the stage atwhich the cancer
is discovered. Whereas almost all patients diagnosed with localized
melanoma survive for at least five years, less than a third of patients
diagnosed with distant metastasized melanoma survive over the same
period3. The majority of patients with metastatic melanoma do not
benefit from surgery, chemotherapy and radiation alone4,5. Targeted
therapies such as BRAF and MEK inhibitors have dramatically
improved the prognosis of patients with metastatic melanoma that
harbor specific mutations6–8. However, only a subset of the patients
can benefit from these treatments, and the majority of those develop
resistance over time9,10. In recent years, Immune Checkpoint Inhibitor
(ICI) therapy has been approved for patients with advanced disease,
demonstrating durable remission in up to half of the patients5,9,11.

The first antibody developed for clinical ICI treatment targets the
cytotoxic T-lymphocyte antigen 4 (CTLA-4). CTLA-4 is a T-cell surface
protein which binds to B7-1 and B7-2 expressed by antigen-presenting
cells (APC)12, resulting in suppression of immune response by the

T cells. Ipilimumab, a human monoclonal antibody targeting CTLA-4,
was the first ICI agent to demonstrate increased progression-free
survival (PFS) and overall survival (OS) compared to more traditional
cancer treatment methods12–14. Subsequently, clinical targeting of the
programmed cell death receptor 1 (PD1), which binds to its ligand-
receptor PD-L1 to elicit tumor immune escape, hasmarkedly improved
the treatment of melanoma and demonstrated durable responses in
other types of cancer15,16. Several potential new ICI antibodies are
currently being explored, such as those targeting the regulatory sur-
face glycoprotein TIM-317. While 40–60% of patients with advanced
melanoma experience benefit from ICI, a substantial fraction of
patients do not benefit from this treatment, which can incur severe
autoimmune adverse events13,14,18,19. Therefore, it is critical to uncover
tumor characteristics that predict response to ICI.

Numerous biomarkers have been proposed for the prediction of
ICI response, but most have not been validated for clinical use. Gene
expression biomarkers include PDL-120, CD3821, TIM-322, and CXCL923

expression, cytolytic activity24, as well as machine learning-derived
signatures such as IPRES25, TIDE26, IMPRES27, Immonophenoscores28,
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and others29,30. However, a recent meta-analysis evaluated the repro-
ducibility of ICI biomarkers and found that only a subset of these
maintained any predictive performance31. To date, gene expression
signatures predicting ICI response have not been incorporated into
clinical use, likely due to limited reproducibility and lack of bench-
marking standards, among other factors32. Genomic biomarkers of ICI
benefit havemetmore success in terms of clinical use. In 2017, the U.S.
Food and Drug Administration (FDA) approved the first biomarker for
anti-PD1 efficacy based on high levels of microsatellite instability (MSI-
H)33. However, MSI-H is only found in a subset of gastrointestinal and
endometrial tumors. In 2020, the high tumor mutation burden (TMB-
H), quantifying the number of mutations in a tumor, has been
approved by the FDA as a marker for anti-PD1 efficacy34. While TMB-H
has been associated with ICI benefit across different cancer types,
there are several challenges for its utility. For example, TMB is tumor
type-specific; moreover, TMB-H status does not preclude tumor pro-
gression, and lowTMBdoes not preclude response35,36. In addition, the
mechanism underlying the clinical utility of the TMB is unclear.
Therefore, there is a need for additional genomic ICI response bio-
markers with improved predictive performance that are more biolo-
gically interpretable. Recent studies have examined the mechanistic
link between anti-PD1 response or resistance and mutated biological
processes such as interferon signaling, MHC presentation, and
beta-catenin37,38, prompting a need for process-level ICI response
biomarkers.

Here, we use tumor mutation data in the context of biological
processes to predict patient response to anti-PD1 treatment. We first
investigate whether the mutation burden in genes that belong to dif-
ferent biological processes correlate with anti-PD1 benefit. We then
apply feature selection methods to distinct processes to identify sub-
sets of genes inwhich themutational countpredicts anti-PD1 response.
This revealed sets of mutated genes in several biological processes
with a comparable predictive ability of anti-PD1 response to TMB.
Employing nonlinear classification methods further enhanced the
predictive performance of classifiers based on mutated genes in spe-
cific biological processes. The advantage of thesemethods is that they
can capture intricate relations between themutated genes in a process
and anti-PD1 responses, simultaneously weighing mutations that con-
tribute to either response or resistance. Evaluating decision-tree
algorithms and neural network architectures, we found that random
forest maintains the most robust performance across different data-
sets, accurately predicting response and overall survival in indepen-
dent datasets spanning over 500 melanoma patients in total. In
particular,mutations in genes belonging to the leukocyte-proliferation
and T-cell regulation processes demonstrate consistently high pre-
dictive performances. This study provides a potential way forward
for understanding ICI treatment responses and constructing biologi-
cally interpretable predictors of treatment benefit based on
mutation data.

Results
Study design
To evaluate whether mutated genes within biological processes can
predict ICI treatment responses in metastatic melanoma, we obtained
training and validation mutation and clinical datasets from metastatic
melanoma patients treated with anti-PD1. For all experiments, models
were trained on the same designated training dataset, and evaluated
using the same designated validation dataset (see “Methods”).
Throughout this work, we used Gene Ontology (GO)39,40 to aggregate
genes into biological processes. We first investigated whether the
mutation load in genes belonging to distinct biological processes can
accurately predict ICI responses. For each GO biological process, we
counted the number of mutations in that process per sample in the
training datasets and used these values to predict anti-PD1 responses.

These analyses revealed that the total mutation counts in distinct
biological processes were only mildly predictive of response (Supple-
mentary Data 1). We surmised that only a subset of the mutated genes
within specific biological processesmay be predictive of ICI responses.
To identify subsets of genes within distinct biological processes in
which the mutation count best predicts ICI response, we applied fea-
ture selection methods to mutations in each biological process.

Selecting subsets of mutations in biological processes
We used the sum of mutations in selected subsets of genes within
distinct biological processes to predict melanoma ICI responders vs.
non-responders. The area under the receiver-operating characteristic
curve (ROC AUC) was used to evaluate the predictive capacity of
mutations in subsets of genes belonging to eachbiological process.We
used a training dataset to build a classification model, and a validation
dataset to select biological process-based models with high ICI pre-
dictive performance. Both the training and validation datasets are
therefore considered part of the training process, in which all biolo-
gical processes are examined. The subset of biological process-based
classifiers that yield substantially better ICI predictive performance
compared to the TMB on both the training and validation datasets
were later evaluated on independent test datasets, as illustrated in
Supplementary Fig. 1A (see “Methods” for information about each
dataset). We first employed greedy forward feature selection that
iteratively finds the best new feature to add to a set of selected fea-
tures. In this process, the algorithm starts with an empty set, and then
iterates over all genes in a biological process, to add the gene that best
improves the predictive performance. When using the greedy forward
selected genes within each biological process, several biological pro-
cesses showed high predictive performance on the training dataset,
(ROC AUC>0.75). However, none of these predictors maintained high
performance in the validation dataset (that is, at least 90% of the
training performance, Supplementary Data 2). We reasoned that the
greedy feature selection strategy impaired generalization by conver-
ging into local optimum. We therefore applied randomized forward
feature selection, which sequentially selects features to add using a
probabilistic function (see “Methods” for details). In contrast to the
greedy forward selector, four processes that performed well on
the training dataset maintained high performancewhen applied to the
validation dataset (Supplementary Data 2 and Supplementary Fig. 1B).
These include RNA polymerase II transcription regulation, enzyme
regulator activity, the establishment of protein localization, and reg-
ulatory regions of nucleic acid binding (Supplementary Fig. 1B). We
next applied a genetic algorithm feature selection41–43. This method
outperformed the forward selection algorithms, where selected sub-
sets ofmutated genes in 15 processesmaintainedhigh performanceon
the validation dataset (Supplementary Fig. 1B and Supplementary
Data 2). The best-performing processes include immune response,
leukocyte differentiation, and cell motility (Supplementary Fig. 1B).
Several genes that were frequently selected within these processes
have important roles in melanoma progression and prognosis. These
include CD44, shown to have an effect on tumor progression and
subsequent poor prognosis44,45 and TNFSF14, a regulator of T-cell
proliferation that is commonly expressed in melanomas46.

Importantly, using all three feature selection methods, the bio-
logical processes with best performance on the training dataset per-
formed significantly better on the validation dataset compared to
processes that showed poor performance on the training dataset
(Supplementary Fig. 1C). We found a positive correlation between the
performances of selected subsets of mutated genes in different bio-
logical processes across the feature selection methods (Supplemen-
tary Fig. 1D). Overall, these results support the premise that subsets of
mutated genes within specific biological processes maintain compar-
able predictive performance to that of the TMB.
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Nonlinear mutational process-based classification
While using selected subsets of mutated genes indicates several top
pathways are approximately equivalent to the TMB, none of the
best-performing processes demonstrated a substantial improve-
ment over the TMB. To obtain an ICI response predictor that out-
performs the TMB based on tumor mutations, we examined
alternative classification techniques. We reasoned that accounting
for complex interactions between mutated genes in biological

processes may be critical for the prediction of ICI response. We
therefore applied nonlinear classifiers tomutated genes within each
biological process. First, we trained decision-tree algorithms,
including random forest (RF) and gradient boosting (GB), using
mutations in all sequenced genes within a biological process. The
top biological processes using both methods showed a strong
predictive capability across the training and validation datasets
(Fig. 1A and Supplementary Fig. 2). In contrast to the sum of
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Fig. 1 | Nonlinear classifiers enhance the prediction performance of melanoma
ICI response based on mutations within biological processes. A Bar plot
showing the RF validationperformances for top process-basedmutation classifiers.
The dashed lines indicate randomperformance (thick line) and the performance of
the tumor mutation burden (thin line). B ROC curves demonstrating the RF vali-
dation performance when using mutations within leukocyte-proliferation regula-
tion process (upper panel) andwithin the T-cell proliferation process (lower panel).
C The genes selected by different trees in the RF model that is trained using

mutations in the leukocyte-proliferation regulation process. The values denote
feature importance, by mean decrease in impurity. D ROC curves demonstrating
the validation performances of two neural network architectures (LSTM and FNN)
when trained on mutations within the hormone-mediated signaling process (left
panel), leukocyte-proliferation regulation process (middle panel), and the T-cell
proliferation regulation process (right panel). Source data are provided as
Source Data 1.
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mutation classifiers, the top decision-trees predictors substantially
exceeded TMB performance for the validation dataset (Fig. 1A,
Supplementary Fig. 2, and Supplementary Data 3). Interestingly,
leukocyte-proliferation regulation and T-cell proliferation regula-
tion were among the top biological processes, both directly linked
to ICI-related immune responses; checkpoint inhibitor antibodies
prevent T-cell inhibition and promote the proliferation of effector
T cells47, and their response to these treatments requires their
proliferation and presence in the tumor microenvironment48

(Fig. 1B). We investigated the mutated genes in the leukocyte-
proliferation regulation process with the highest contribution to
the RF prediction capacity. We found that mutations in the beta-
catenin gene CTNNB1 had the highest contribution for prediction, in
agreement with recent findings that activation of this gene in mel-
anoma cells is associated with a reduction in T-cell antitumor
response49. In addition, among the top contributing genes in that
process, we found IL2, a gene with known antitumor activity by
increasing T-cell proliferation and previously used clinically to treat
cancers5,50, and CD137, another known target for antibody-mediated
immunotherapy previously tested in clinical trials51 (Fig. 1C). To
further investigate nonlinear predictors that may capture complex
interactions between mutated genes within these processes, we
evaluated two classes of neural network models using mutated
genes within the top processes. Both the Forward Neural Network
and Long Short-Term Memory Recurrent Neural Network
models demonstrated high predictive capacity when applied to

mutations within these biological processes (Fig. 1D and Supple-
mentary Data 4).

To test the potential clinical utility of the selected biological
process-based predictors, we examined their performance using an
additional test dataset where not all genes used for training were
sequenced. This dataset25 comprisesmutation and response data from
38melanomapatients treatedwith anti-PD1, but included only 59–68%
of the genes used to train the classifiers (Supplementary Data 5). This
data was unseen for the complete training and validation process, and
only the selected classifiers that demonstrated high predictive per-
formance in the validation dataset were evaluated in this dataset.
Remarkably, despite this, the process mutation RF classifiers main-
tained their high predictive performance for this dataset (Fig. 2A–D
and Supplementary Fig. 3). To test the robustness of this approach we
evaluated these classifiers when retrained using different random
seeds (see “Methods”). This analysis revealed that the performance on
both unseen datasets is maintained with the RF classifiers and is con-
sistently better compared to TMB (Fig. 2E). Notably, RF classifiers were
the most robust when presented with missing features in the test
dataset25 (Supplementary Fig. 3). Importantly, we found only mild
correlations between the overall TMB and the classification scores
yielded by the RF predictors, supporting that these biological process-
based classifiers are capturing more than just an estimate of the TMB
(Supplementary Fig. 4). Moreover, using a bootstrapping process,
we find that the top RF classifiers perform significantly better than
the TMB (Supplementary Fig. 5A, B). As expected, the number of genes
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in a process strongly correlates with the RF predictor performance in
the training dataset (by allowing more complex decision rules), how-
ever, there is only slight association between the number of process
genes and predictor performance in the validation dataset (Supple-
mentary Fig. 5C). Further exploring this, we found that using different
classifier thresholds,more responding patients are correctly predicted
with the leukocyte-proliferation regulation RF predictor compared to
the TMB (Supplementary Fig. 6). As a result, some responding patients
that are not captured by the TMB are predicted as responders by
the leukocyte-proliferation regulation RF classifier (Supplemen-
tary Data 6).

To further evaluate the potential clinical utility of these classifiers,
we assessed their ability to predict overall survival in an independent
dataset, the Memorial Sloan Kettering Cancer Center (MSKCC) data of
patients treated with anti-PD152. These data were also kept unseen for
the training and validation process and were used to test only the
selected classifiers that demonstrated high predictive performance in
the validation. This MSKCC dataset includes 321 melanoma and skin
cancer patients treated with anti-PD1, of which 313 had clinical follow-
up data. This mutation data is limited to only 468 genes in the MSK-
IMPACT targeted set. Nevertheless, the four RF mutated process
models trained previously were significantly predictive of survival in
this dataset, and in particular, the leukocyte-proliferation regulation
process was significant and strongly predictive (Fig. 3A and Supple-
mentary Fig. 7). Using the predictors based on sum of mutations and

the genetic algorithm feature selection, we found that higher number
of mutations in the leukocyte differentiation process was predictive of
ICI response (Supplementary Fig. 1B). We found that the sum of
mutations in selected genes in this processwas also strongly predictive
of overall survival in the MSKCC dataset (Fig. 3B). To evaluate the
performance of the leukocyte-proliferation regulation RF classifier in
another treatment context, we applied the model, without further
training, to predict response to CTLA-4 inhibitor therapy through an
independent dataset53. Even though it was trained to predict anti-PD1
response, the leukocyte-proliferation regulation RF classifier was pre-
dictive of anti-CTLA-4 response, demonstrating potential utility in a
larger clinical context (Supplementary Fig. 8).

Pan-cancer-mutated pathway outcome prediction
We then evaluated whether the leukocyte-proliferation regulation RF
classifier, which obtained the best performance over all datasets, may
be applicable to other cancer types. To this end, we applied it to pre-
dict overall survival for other cancer types included in the MSKCC
dataset. In addition to melanoma, three cancers (colon, bladder, and
renal) showed a positive association between the leukocyte-
proliferation regulation predictor and overall survival following anti-
PD1 treatment (Fig. 3C). When pooling samples from the three non-
melanoma cancer types together, the leukocyte-proliferation regula-
tion predictor demonstrated significant overall survival predictive
capability via log-rank test (Fig. 3D).
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Fig. 3 | Mutations in leukocyte-proliferation and differentiation processes
predict anti-PD1 overall survival. A Kaplan–Meier survival curves comparing
between anti-PD1 treatedmelanoma patients with high vs low-prediction scores of
the RF model, when trained using mutations within the leukocyte-proliferation
regulation process. The Cox proportional hazards as well as the log-rank P values
are indicated. B Kaplan–Meier survival curves comparing anti-PD1-treated mela-
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differentiation process, using the genetic algorithm feature selection. The Cox
proportional hazards aswell as the log-rank P values are indicated.CThe coefficient

(bar centers) of the proportional hazards RF predictor using mutations within the
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show the standard errors of the coefficients. D Kaplan–Meier survival curves
comparing anti-PD1-treated patients with high- vs low-prediction scores of the RF
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The Cox proportional hazards as well as the log-rank P values are indicated. Source
data are provided as Source Data 3.
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Finally, we evaluated the prognostic value of the topRFpredictors
derived through this work in different cancer types from The Cancer
Genome Atlas (TCGA) dataset. To this end, we applied the classifiers
that were trained on the Liu data based on mutations within the four
selected biological processes to 32 cancer types fromTCGA.We found
that the leukocyte and T-cell proliferation regulation process RF clas-
sifiers were predictive of overall survival in SKCM, UCEC, STAD, and
BLCA (Fig. 4A–C). Importantly, for the latter three cancer types, all four
RF process classifiers were significantly predictive of overall survival.
The leukocyte-proliferation regulation RF classifier was the strongest
predictor of survival across TCGA cancer types. Our analysis in Fig. 1C
showed that beta-catenin gene, CTNNB1, contributes most to classifi-
cation in the leukocyte-proliferation regulation RF model. While
CTNNB1 activation has been associated with immune exclusion in
melanoma cells49, itmaybe associatedwith improved ICI responses on
T cells. To better understand the context in whichCTNNB1 contributes
to the prediction of ICI response, we applied CIBERSORT54 to TCGA
samples, and investigated the association between CTNNB1mutations
and the predicted abundances of different immune cell types. Inter-
estingly, we found that different subsets of CIBERSORT-inferred T cells
are significantly higher in CTNNB1 mutated melanoma tumors com-
pared to wild-type CTNNB1 tumors (Supplementary Fig. 9 and Sup-
plementary Data 7). To better understand the association between the
leukocyte-proliferation regulation RF classifier with ICI response in
different cancer types, we correlated the classifier scores with muta-
tion signatures55 in different cancer types through TCGA (Supple-
mentary Fig. 10 and Supplementary Data 8). We found that in SKCM,
the strongest correlation observed was with signature 7, which is
linkedwith ultraviolet light exposure. Similarly, we found the strongest
correlation in LUAD to be signature 4, linked with tobacco smoking,

and the strongest association with COAD to be signature 6, linkedwith
defective mismatch repair56.

Discussion
Understanding themechanisms underlying response and resistance to
ICI therapy is critical to improving treatment of melanoma as well as
other types of cancer. Through different feature selection and classi-
fication methods, we have shown that analyzing tumor mutations in
the context of biological processes enhances the predictive perfor-
mance of ICI response compared to existing genomic predictors.
Using feature selectionmethods, we identified subsets of genes within
distinct biological processes inwhich themutation burden presents an
alternative biomarker to the genome-wide TMB. To further enhance
the predictive performance, we trained nonlinear classifiers using
mutated genes in distinct biological processes. We reasoned that
nonlinear classification methods have the potential to capture com-
plex associations between ICI responses and mutated genes within a
process. We found that using a random forest method substantially
improves the predictive capability of predictors trained using muta-
tions in specific processes, demonstrating significantly better perfor-
mance compared to the TMB. Among the processes that maintain the
best performance are leukocyte and T-cell proliferation regulation,
known to play an important role in immune infiltration and ICI treat-
ment. The predictive performance of these process classifiers is con-
sistent across multiple datasets, and remain stable across varying
sequencing coverage.

We investigate different methods to predict treatment benefit
using mutations in the context of biological processes, which
demonstrate several notable improvements over the TMB. First, the
models in this work require substantially fewer genes to be sequenced
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for prediction. For example, the leukocyte-proliferation regulation
predictor requires sequencing of 99 genes, and the T-cell proliferation
regulation predictor requires sequencing of 73 genes. We further
investigated whether using a smaller subset of genes within these
processes would retain a similar predictive power. We found that less
than 20 genes were sufficient to maintain a comparable performance,
with the caveat that for this analysis, we evaluated the performance on
the three datasets together (Supplementary Data 9). Second, devel-
oping biomarkers based on distinct biological processes improves
their interpretability, and allows investigation of the mechanisms
underlining their clinical utility. In particular, we found that using
nonlinear classifiers substantially improves the predictive capability of
mutated processes, by simultaneously accounting for mutations
associated with either resistance or response to treatment. The
methods implemented throughout this work may be applied to con-
struct mutated process predictors of response to other treatments in
different cancer types, as evidenced by the prognostic value demon-
strated in the TCGA analysis.

More generally, we found that somatic mutations within distinct
immune and signaling processes have a strongpredictive performance
of ICI responses in melanoma. This finding suggests that interactions
between tumor genetic alterations and the microenvironment under-
lie, at least in part, ICI responses. This could be facilitated through
altered antigen presentation, supported by several HLAmutations that
are frequently selected in trees within the random forest classifier
(Fig. 1C). Alternatively, or in complement, it is possible that mutated
signaling processes modulate immune infiltration in the tumor
microenvironment, supported by the selection of mutations in multi-
ple signaling genes such as beta-catenin and protein kinase and
phosphatase genes (Figs. 1B and 2C). Supporting this notion, we found
that beta-cateninmutations are associatedwith increased CIBERSORT-
inferred abundances of different T-cell subsets (Supplementary Fig. 9).
Interestingly, we find only moderate correlation between the
leukocyte-proliferation regulation classifier scores with B- and T-cell
burden scores (BCB and TCB, respectively) that have been published
recently57, supporting an independent prognostic value (Supplemen-
tary Fig. 11). In addition, patients with high BCB or TCB scores are not
associated with increased response, as reported57, whereas patients
with high leukocyte-proliferation regulation classifier scores are asso-
ciated with response, supporting the potential clinical value of this
classifier (Supplementary Fig. 11).

We additionally found that different processes were identified
when using the mutation count classifiers than those identified with
nonlinear classification methods. Interestingly, the leukocyte differ-
entiation process was selected using the genetic algorithm feature
selection, whereas the leukocyte-proliferation regulation was selected
using the decision-tree algorithms. It is possible that while mutated
leukocyte differentiation process is associatedwith ICI response, some
of themutated genes in the leukocyte-proliferation regulation process
may be associated with ICI resistance. Importantly, genes belonging to
the leukocyte-proliferation regulation process but not in the leukocyte
differentiation process include several MHC class I complex genes
(HLA-A, E, G, DRB1, DRB5, andDPB1), which are known to be associated
with immune evasion and ICI resistance58,59.

This study alsohas several potential limitations that are important
to discuss. First, despite the improved predictive performance of
random forest classifiers, RF and similar methods are more complex
andoften less interpretable for clinical use. Nevertheless, this is not the
first study demonstrating that nonlinear classification methods can
significantly improve the prediction of ICI benefit60. Incorporating
clinical features to train random forest models may potentially further
improve the performance obtained in this work, when data becomes
available60. In addition, future developments may dissect the biologi-
cal processes distinguished in thiswork to identify candidate targets to
enhance treatment sensitivity. Second, similar to the TMB, the

predictive models developed in this study account only for tumor
factors and not for the tumor microenvironment. Third, it remains
open to investigation whether the biological processes distinguished
throughout this work for melanoma also determine ICI response in
other types of cancer.

In conclusion, this study investigates mutated biological pro-
cesses that predict ICI response by employing different machine
learning methods, and pinpoints specific processes that are highly
predictive of ICI benefit in melanoma. If further investigated and vali-
dated using additional data cohorts, the predictors developed
throughout this work may present a compelling alternative to the
tumormutation burden for predicting patient response to ICI therapy.

Methods
Datasets
For training, we used 144 melanoma patients’ samples from ref. 61,
including somatic mutations and anti-PD1 response information. For
validation, we used 68 melanoma patients’ samples with somatic
mutations and clinical data from ref. 62. To further test themodels, we
used 38 anti-PD1-treated melanoma patients’ samples from ref. 25. For
all datasets, responders were defined as patients with complete or
partial response. We additionally utilized targeted mutation data and
overall survival data from the MSKCC cohort52, including melanoma,
colorectal, bladder, renal, lung, esophagus, glioma and head and neck
cancers. CTLA-4 data is from 110 metastatic melanoma patients from
ref. 53.

TCGA mutation data were downloaded from the Xena Browser63

(https://xenabrowser.net).
The processing of the WES cohorts is described in the original

publication21,51,52. Briefly, these were processed using MuTect and
Strelka for identification of small insertions or deletions. General-
ization of a classifier to different cohorts across different processing
methods is crucial to support its potential clinical utility. For further
evaluation of the datasets, we provide the sex and age distributions
across the cohorts (whenever available) in Supplementary Fig. 12.

Feature selection for biological processes mutation load
predictors
We applied three feature selection methods to mutations in genes
belonging to each biological process, to select a subset of genes that
best predict ICI response. To this end, the predictive performance is
defined to be the resulting ROC AUC when using the number of
mutations in selectedgenes in aprocess as scores, and the ICI response
as labels. The following feature selection methods were applied to the
training dataset:
1. Greedy Forward Selector. The greedy forward selection algorithm

iteratively selects genes within a process that improves the pre-
dictive performance. The algorithm starts with an empty list of
genes, and at each step, it adds to that list the gene (in a specific
biological process) that results in the highest performance when
added. For each biological process, we ran a maximum of ten
iterations, where the stopping criteria was when ten iterations
werecompleted, orwhennoneof the genes in aprocess improved
the performance when added.

2. Probabilistic Forward Selector. The probabilistic forward selec-
tor algorithm is similar to the greedy forward selector, except
that the selection of the gene to add in each step is randomized
over a set of possible genes. We defined a probability to add
a gene that improves the performance when added to
be 1

numberof total iterations + current iteration
3. Genetic Algorithm. The following steps of the Genetic Algorithm

were applied to each biological process (a) Initialization of a
population of size 20, where approximately 10% of the genes in
the biological process were randomly selected for each instance
in the initial population. (b) Evaluation of each instance in the
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population, where mutations in each gene set in the population
were summed to predict ICI response. (c) The top half of the
instances in the population, that is, those with the best predictive
performance, were selected for reproduction, with randomly
selected pairing. (d) Crossover was applied to the randomly
selected pairs, until a population size of 20 was reached. Ten
iterations of steps (b−d) were repeated, and the best solution was
retained, corresponding to the sets of mutated genes that yielded
the best performance predicting ICI response.

Decision-tree predictors for mutations within different biologi-
cal processes
We trained decision trees to predict ICI response using the training
dataset, where the classification scores obtained with these predictors
were used to predict ICI response. The following algorithms were
considered:
1. Random forest. Random Forest generates multiple decision trees

from subsets of features of the data, which are ensembled into a
single classifier, therefore reducing the risk of overfitting for large
decision trees. We used RandomForestClassifiermethod from the
sklearn.ensemble package, with 100 estimators, a max depth of 5
and a minimum sample split of 2. Other parameters were defined
to default.

2. Gradient boosting. Gradient uses boosting to integrate relatively
shallow decision trees and ensemble a set of weak learners into a
single strong learner.WeusedGradientBoostingClassifiermethod
from the sklearn.ensemble package, with 100 estimators, a max
depth of 2, a learning rate of 0.1, and the deviance loss function.
All other parameters defined to default.

For reproducibility, the random state was set to 100 throughout
this work, except for the robustness analysis.

When testing on datasets with missing values (where some of the
genes were not sequenced) the decision-tree classifiers were retrained
on the training dataset with the original random seed, for the subset of
genes present in the new data.

Neural network predictors for mutations within different bio-
logical processes
Weadditionally trained twoneural network architectures topredict ICI
response, where the resulting classification scores were used for pre-
diction. These include:
1. Feed Forward Neural Network, using one fully connected hidden

layer with five hidden units and sigmoid activation.
2. Long Short-Term Memory (LSTM) recurrent neural networks,

using one LSTM cell with five hidden units.

All neural networks were trained with tensorflow.keras, using
Adam optimizer, with 100 epochs and a batch size of 27.

Robustness analysis
To evaluate the robustness of different methods, we retrained the
classifiers using the mutations within the selected processes and
evaluated the performance of 50 retrained classifiers for each selected
process.

Survival analysis
Survival analysis was performed using the proportional hazards, using
python lifelines.statistics package. Either the sum of mutations per
process (genetic algorithm and forward feature selection) or the
classification scores (decision trees andneuralnetworks)were used for
prediction.We evaluated all resultswhen controlling for age and sex as
confounders and stratified for different cancer types in analyses
aggregating patients with different cancer types.

Bootstrapping analysis
To evaluate the significance at which the random forest classifiers
outperform the TMB in predicting ICI response, based on the four
processes selected in training, we performed a bootstrap analysis. We
downsampled 75% of each cohort 1000 times, applied each of the four
top RF classifiers to the downsampled cohort, as well as the TMB, to
obtain the prediction AUCs. The fraction of AUCs from the down-
sampling procedure in which the TMB outperformed the RF classifiers
were used as a permutation P value.

Downsampling analysis
To evaluate the smallest subsets of genes that retain the predictive
capability of the full set of genes in a process, we randomly sub-
sampled genes from each of the four processes previously selected in
training. For each run, 15–85% of the genes were subsampled and used
to train an RF model for each pathway. This was run 10,000 times for
each pathway to determine the smallest subsets of genes which
still retained predictive power across the datasets from Liu, Riaz,
and Hugo comparable to the previously generated models (>0.7
ROC Score).

Statistics and reproducibility
Data was divided into training, validation, and test sets, which corre-
sponded to data from ref. 61, ref. 62, and ref. 25, respectively. To
minimize potential overfitting and improve the generalizability of
classifiers in new datasets, training, validation, and testing datasets
were used in full. No data was excluded from any dataset. Models were
trained on the training dataset and validated using the validation
dataset. The first author was blinded to the test dataset during training
and validation. The four pathways that performed significantly better
than the TMBwere tested on the test dataset. While small variations in
performance are always expected when using different random seeds,
the results are robust for random seed selection and maintain sig-
nificantly improved performance compared to the TMB (Fig. 2E and
Supplementary Fig. 3).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data associated with this study are publicly available and addi-
tionally provided through the github directory [https://github.com/
AuslanderLab/Mutated_pathway_ICI_prediction] and Zenodo64

[https://zenodo.org/record/6998939]. The Liu et al.61 training dataset,
the Van Allen et al.53 data, and data from the MSKCC cohort52 were
downloaded from cBioPortal65 [https://www.cbioportal.org]. The Riaz
et al.62 validation dataset and Hugo et al.25 test dataset were obtained
through supplementary information of the respective publications.
TCGA mutation data was downloaded from the Xena Browser63

[https://xenabrowser.net]. The mutated biological process-based pre-
diction scores generated in this study are provided as Supplementary
Data 10. Source data are provided with this paper.

Code availability
The code to implement and reproduce all analyses presented in this
work is provided through the GitHub directory [https://github.com/
AuslanderLab/Mutated_pathway_ICI_prediction]. The sample code has
been deposited to Zenodo64 at https://zenodo.org/record/6998939.
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