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Controlling gene expression with deep
generative design of regulatory DNA

Jan Zrimec 1,2,8 , Xiaozhi Fu 1,8, Azam Sheikh Muhammad 3,
Christos Skrekas1, Vykintas Jauniskis1,4, Nora K. Speicher3, Christoph S. Börlin1,5,
Vilhelm Verendel3, Morteza Haghir Chehreghani3, Devdatt Dubhashi3,
Verena Siewers1, Florian David1, Jens Nielsen 1,5 & Aleksej Zelezniak 1,6,7

Design of de novo synthetic regulatory DNA is a promising avenue to control
gene expression in biotechnology and medicine. Using mutagenesis typically
requires screening sizable random DNA libraries, which limits the designs to
spanmerely a short section of the promoter and restricts their control of gene
expression. Here, we prototype a deep learning strategy based on generative
adversarial networks (GAN) by learning directly from genomic and tran-
scriptomic data. Our ExpressionGAN can traverse the entire regulatory
sequence-expression landscape in a gene-specific manner, generating reg-
ulatory DNA with prespecified target mRNA levels spanning the whole gene
regulatory structure including coding and adjacent non-coding regions.
Despite high sequence divergence from natural DNA, in vivo measurements
show that 57% of the highly-expressed synthetic sequences surpass the
expression levels of highly-expressed natural controls. This demonstrates the
applicability and relevance of deep generative design to expand our knowl-
edge and control of gene expression regulation in any desired organism,
condition or tissue.

Gene expression is a fundamental process underlying the cellular
functionality of all living organisms. Researchers have been trying to
control it for decades, since it can help us design efficient gene
therapies1 andmicrobial cell factories2, hopefully curing cancer among
other diseases and aiding the transformation to a sustainable biobased
society. Our ability to control gene expression derives from under-
standing the cell’s intrinsic regulatory code3, which can be used to
design new regulatory sequences leading to desired expression
levels4–6. State-of-the-art machine learning approaches have recently
proven highly useful in this endeavor, expanding our knowledge of the
DNA regulatory grammar underlying gene expression7–10, helping us to
design promoter and gene sequences11,12 and accurately predict gene

expression across multiple model organisms7,13. The striking capacity
of random DNA to evolve into functioning regulatory sequences by
introducing only a small number of base pair mutations14,15 suggests
that the richness and plasticity of cis-regulatory grammar results in a
vast functional regulatory sequence space, far larger than the one
currently observed in natural systems8. By learning this regulatory
sequence space using advanced deep learning approaches11,16,17, we can
in principle design systems that precisely traverse it to generate reg-
ulatory sequence variants with targeted expression levels.

Popular strategies to design synthetic regulatory DNA of varying
expression levels include stacking multiple known functional
sequence motifs4,6,18,19 and applying random mutagenesis to a specific
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region, most commonly the promoter8,20–23 though also UTRs24–26 and
terminators27,28 have been targeted, typically in a form of short
sequence segments of <100bp. Using in silico screening approaches7,8,
which evaluate the fitness of candidate sequences by predicting their
expression levels, more intricate solutions based on evolutionary
computation29 have been implemented, including genetic
algorithms15,24,29–31. However, these algorithms still employ random
mutagenesis in every round of sequence evolution, relying solely on
the sequence-function mapping of the predictive models29,32. Rather
than to generate valid sequences predicted to improve the target
objective, they produce selection candidates via arbitrary sequence
changes, many of which are not feasible regulatory DNA. This can
potentially lead to highly untrustworthy predictions (predictor
pathologies)33–35 and local minima problems32, exacerbating the diffi-
culty of finding the small subset of sequences that satisfy the target
objective in the enormous search space. Therefore, the search for
functional sequence variants frequently requires experimental
screening with multiple rounds of trial and error or experimentally
testing enormous sequence batches5,8. The inherent inability in relat-
ing sequence to expression and the high resource intensiveness of the
mutagenesis-based approaches are also themajor factors constraining
the explored DNA to only short segments of single regulatory regions
and specific reporter genes15,24. This ultimately limits gene expression
control, thus not fulfilling the key design objective.

Alternatively, the idea of novel solutions for regulatory DNA
design, facilitatedbydeepneuralnetworks, is to directlygenerate valid
sequences by learning functional and biologically feasible sequence
spaces11,12,33,36. This can resolve many mutagenesis-related problems
and helps to optimize resources after the generative step, both in the
case of experimental11,37 or in silico screening33,36, as sequence validity
enables testing lower amounts of candidates and alleviates predictor
pathologies33–35. However, despite not being restricted by sequence
length, as no brute force testing ofmutations spanning large sequence
spaces is required, current generative approaches also focus on mere
single regulatory regions11 or shorter segments17 and are rarely tested
experimentally33. As evidenced by the strong agreement between
protein and mRNA levels38–41, mRNA transcription, a major determi-
nant of protein abundance, is controlled by the interaction of cis-reg-
ulatory patterns across the whole regulatory structure of the gene.
This comprises coding and regulatory regions that include promoters,
untranslated regions (UTRs) and terminators, each encoding a sig-
nificant amount of information related to mRNA levels7,8,24,27. Ulti-
mately, to accurately control gene expression, the entire gene
regulatory structuremust be fine-tuned3,7,42,43. Therefore, based on the
recent achievements in modeling DNA and protein spaces11,12,44, we
hypothesize that state-of-the-art generative deep neural networks are
capable of learning the entire DNA regulatory landscape directly from
natural genomic sequences and transcriptomic data. By leveraging
information from the whole gene regulatory structure including the
coding region3,7, de novo regulatory DNA with highly accurate target
expression levels can be generated, helping to overcome the limita-
tions of existing approaches and enabling precise and gene-specific
navigation of the regulatory sequence space in potentially any organ-
ism and tissue.

In the present study, we use deep learning frameworks to
demonstrate that a generative modeling approach can successfully
design de novo functional regulatoryDNA in Saccharomyces cerevisiae.
First, we train a deep generative adversarial network (GAN) only on
natural genomic sequences spanning the whole gene regulatory
structure and find that the generated regulatory sequences exhibit
properties highly similar to those of natural regulatory DNA. Next,
using an optimization procedure that couples the generative network
with a highly accurate deep predictive model7,17 (ExpressionGAN), we
add coding sequence information to the generative approach and
learn to precisely navigate the regulatory sequence-expression

landscape of a specific gene across almost 6 orders of magnitude of
expression levels, accurately controlling the sampling of sequences
with targeted expression levels. Similarly, we then train and optimize
additional generators based on commonly used single regulatory
region parts15,24, demonstrating how the use of the whole gene reg-
ulatory structure canoutperformsingle-region solutions by expanding
the achievable dynamic range of expression levels. By sampling
20,000 generated regulatory sequences with high and low predicted
expression levels from ExpressionGAN and measuring their sequence
properties, including cis-regulatory grammar and core promoter fea-
tures, we observe that the generated DNA carries known sequence
determinants of gene expression control. Finally, we experimentally
verify a selection of the generated sequences that retain a natural or
even higher level of dissimilarity (>33%) to any currently known reg-
ulatory sequence. We find that experimentally measured mRNA
expression levels recapitulate predicted ones across 3 orders of mag-
nitude. In fact, 57% of the constructs designed to be highly expressed
surpass the gene expression level of natural high-expression control
sequences, demonstrating the effectiveness of the generative
approach for designing functional regulatory DNA in practice.

Results
Implementing a generative strategy to design regulatory DNA
Based on the knowledge that the whole gene regulatory structure is
involved in controlling gene expression3, we previously demonstrated
the combined DNA sequence across all regulatory regions (Fig. 1a:
promoter, 5′ UTR, 3′ UTR and terminator) is highly predictive of gene
expression7. We also observed that gene expression of individual
genes varies across themajority of biological conditions within amere
1-fold range for >80% of yeast protein-coding genes7. The dynamic
range of gene expression (Fig. 1b: spanning nearly 5 orders of magni-
tude of median TPM values across the whole range of biological con-
ditions) is thus predictable directly from the DNA sequence,
irrespective of the biological conditions (Fig. 1c: R2

test = 0.8, models
tuned and tested on independent held-out datasets, see the “Methods”
section). Apart from the properties of the coding region, the most
relevant parts of DNA for these predictions were the respective
sequences of the 4 regulatory regions totaling 1000bp (as illustrated
in Fig. 1a). Moreover, training and testing multiple deep neural net-
works using sequence data from different region combinations as
input andmedian TPM values as the target (Fig. 1b) demonstrated that
only the whole gene regulatory structure spans the key regulatory
features important for predicting the full dynamic range of mRNA
expression levels7.

Driven by these findings, we aimed to improve upon current
mutagenesis capabilities15,30,45 with a more controlled approach for
mapping sequence-function landscapes and designing synthetic reg-
ulatory DNA. We thus implemented a deep generative modeling
strategy tomimic realistic regulatory sequence properties, by learning
the genetic regulatory landscape comprising evolutionarily encoded
expression rules and grammar directly from natural genomes. We
trained a generative model (generator) using sequences spanning the
whole gene regulatory structure (Fig. 1a) and a generative adversarial
network (GAN) approach46, where a discriminator networkwas used to
train a generator, both comprising 6 convolutional layers (Fig. 1d,
Supplementary Fig. 1, see the “Methods” section). As input data from
which to learn the distribution of the gene regulatory sequence space,
we used 4238 sequences spanning the promoter (Fig. 1a: 400bp),
UTRs (100 and 250 bp, respectively), and terminator (250bp) from
yeast. The data was split into training (90%) and testing datasets (10%),
where the amount of training data was similar to that used in previous
successful GAN implementations16,47 and the testing data was used to
represent natural sequences to evaluate model performance and
control for overfitting. The performance of the generator was vali-
dated by quantitatively verifying that the sequence properties of the
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generated variants reflected those of natural sequences present in the
testing dataset (Fig. 1e, f, Supplementary Fig. 2, see the “Methods”
section). The tested DNA sequence properties included: (i) sequence
compositional validity, (ii) sequence similarity measures, and (iii)
known cis-regulatory grammar (Fig. 1a, Supplementary Table 1). For
instance, the average number of regulatory motifs including tran-
scription factor binding sites (TFBS) and their combinations increased
with the progression of training, peaking at 200,000 training itera-
tions (Fig. 1e).

Deep generative model designs natural-like regulatory DNA
When studying the composition of the generated DNA after training
(Fig. 1c: 200,000 training iterations of GAN), the majority of the syn-
thetic sequences (86%) displayed properties similar to those of natural
sequences (Figs. 1f and2a, b). In each sequence, themodel recapitulated
not only the properties related to basic sequence composition, such as
GC content (Fig. 2c: average GC content within 1.1% of values in natural
sequences) and UTR sizes (Fig. 2d, e: average length of generated UTRs
within 8 bp of natural ones) but also the known DNA regulatory
grammar3 (see Fig. 1a). This included (i) canonical motifs of transcrip-
tion factor binding sites (TFBS) from the Jaspar database48, identified (q-
value <0.05) using FIMO49, and corepromoter elements comprising the
TATA box50,51 in promoters (ii) Kozak sequences in 5′ UTRs52,53, (iii) ter-
mination related motifs, including positioning, efficiency, and poly-AT
motifs6,54 in 3′ UTRs and terminators, (iv) previous deep learning-
uncovered expression-related motifs and motif associations7, as well as
(v) positions predicted to be depleted of nucleosomes55,56 (Fig. 2a, b,
Supplementary Fig. 3, see the “Methods” section). We observed that on

average, the overall number of regulatory motifs and positions in the
generated sequences (Fig. 2a, b), surpassed those found in natural test
sequences by up to 28%, except for a ~4% decrease with core promoter
elements (Supplementary Fig. 4). We also verified that the generated
sequences retained a sequence diversity similar to that of natural
sequences, with the average pairwise sequence identity of both the
generated and test datasets to the training dataset equaling ~67%
(Supplementary Fig. 2), showing that the nucleotide composition of
generated variants was as variable and dissimilar to natural sequences
as they were amongst themselves (Fig. 2f). This ensures that the model
does not overfit the training dataset, simply reproducing it, and shows
that the generator instead generalizes and designs de novo regulatory
sequences with properties of natural regulatory DNA across the entire
regulatory sequence landscape.

Gene-specific navigation of the regulatory sequence-expression
landscape
Next, in order to exploit the generative model to produce regulatory
DNA with target expression levels, we set up an optimization
procedure17,57 to guide sequence evolution (Fig. 3a). Briefly, we
implemented a joint deep neural network architecture, termed
ExpressionGAN, by coupling together the regulatory DNA sequence-
generator and gene expression-predictor models within the thor-
oughly validated activation-maximization framework17,32,58 (Fig. 3a).
The principle behind this approach is to exploit the generator’s ability
to design regulatory sequences with realistic DNA properties by using
the predictor to guide it and fine-tune generated sequences toward
target gene expression levels. For the predictor, we used the

Fig. 1 | Implementing a generative strategy to design regulatory DNA.
a Schematic depiction of the Saccharomyces cerevisiaenatural genomic sequencing
datasetwas used to train both the predictive (P)7 and generative (G)models used in
the study. The dataset spanned thewhole gene regulatory structureof 1000 bp and
included promoter, terminator, and untranslated regions (UTRs) as well as codon
frequencies of coding regions. The different natural sequence properties related to
DNA cis-regulatory grammar and further analyzed with the generator are indicted:
transcription factor binding sites (TFBS, blue), core promoter elements (green), 5′
UTR elements (yellow), termination-related motifs (orange), deep learning-
uncovered7 motifs (red) and motifs association rules (gray), and nucleosome
depletion (dashed lines) (see Supplementary Table 1 for a full list of tested seq.
properties).bMedian expression levels per gene (red line) derived from 3025 RNA-
Seq experiments59, with a 1-fold change marked in either direction (blue lines).
c Performance of the deep predictivemodel of gene expression on the test dataset

(n = 424), trained on natural genomic sequences spanning the whole gene reg-
ulatory structure. Red line denotes the least squares fit. d Overview of the gen-
erative adversarial network (GAN) approach, which iteratively trains a generative
and discriminative deep neural network, the former learning to generate realistic
sequences using random points in the latent space and the latter learning to dis-
criminate between natural and generated sequences46, resulting in a highly accu-
rate generator.eProportionofTFBS (blue),DNAmotifs (red), andmotif association
rules (gray)7 in samples of generated sequences across generator training iterations
(n = 64 each) relative to average amounts found in the natural test set. Red line
denotes an equal amount. Boxes denote interquartile (IQR) ranges, centersmark
medians and whiskers extend to 1.5 IQR from the quartiles. f Relative amount of
generated sequences with properties similar to those of the natural test set (see
Supplementary Table 1 and Supplementary Fig. 2). Source data are provided as a
Source Data file.

Article https://doi.org/10.1038/s41467-022-32818-8

Nature Communications |         (2022) 13:5099 3



experimentally validated highly-accurate model of yeast gene
expression7 (R2

test = 0.8, Fig. 1c), trained on data derived from 3025
RNA-Seq experiments59 with natural genomic sequences comprising
whole gene regulatory structures used as explanatory variables to
predict the target gene expression levels (Fig. 1a, b, model tuned and
tested on independent held-out datasets). The trained generator and
predictor neural networks were coupled in an optimization loop
navigating the latent space of the generator to draw optimized
sequence variants (Fig. 3b, see the “Methods” section). Since the pre-
dictor also evaluates variables describing the coding region (see Fig. 1a:
64 codon frequencies), this procedure in fact couples the generated
regulatory sequences to a specific gene of interest.

Merging the results of both maximization and minimization of
gene expression and using t-distributed stochastic neighbor embed-
ding (t-SNE) dimensionality reduction60 over the latent vectors con-
firmed that with this approach, desired expression levels are mapped
to the identified latent subspace, resembling a continuous manifold,
and covering regulatory sequence evolution in a range of almost 6
orders of magnitude of expression levels (Figs. 3c and 4a, b,

Supplementary Fig. 5). Thus, with optimization, the dynamic range of
expression levels of the generated sequences increased over 3-fold
compared to those obtained by randomly sampling the unoptimized
generator (in equally sized samples), surpassing the whole natural
range of expression levels (Fig. 1b: 4 orders of magnitude of median
TPMacross conditions), entirely for a specific gene of interest, by ~40%
(Fig. 3c: GFP coding sequence shown). As before, analysis of sequence
identity verified that the sequences produced by the generator opti-
mization were not similar to any natural ones and retained the natural
median sequence diversity of 67% (Supplementary Fig. 6). This sug-
gested that points in the generator’s latent space with desired
expression levels can be sampled, which generalize beyond the natu-
rally available gene expression levels, to generate unique sequences
with feasible natural-like regulatory DNA properties.

Enhanced control of expression using whole gene regulatory
structure
In order to compare our approach with existing solutions and deter-
mine whether using the whole gene regulatory structure outperforms

a

b

c d e f

Fig. 2 | Deep learning-generated sequences exhibit properties of natural reg-
ulatory DNA. a, b Cumulative positional distribution of known DNA regulatory
grammar elements (see Fig. 1a) across the regulatory regions of a generated syn-
thetic and b natural sequences (n = 425 each). Shown are yeast TFBS48 identified (q-
value < 0.05) using FIMO49 (blue) and TATA core promoter elements50,51 (green) in
promoters, Kozak sequences52,53 in 5′ UTRs (yellow), termination related motifs
(positioning, efficiency and poly-ATmotifs)6,54 in 3′UTRs and terminators (orange),
and deep learning-uncovered expression-related motifs and motif association
rules7 (red) as well as nucleosome depletion55,56 (gray) across all regions. Note that
the amount of Kozak sequences and nucleosome depleted positions are not shown
to scale, with 4-fold and 200-fold dilutions, respectively, to improve visualization
(see separate comparisons across elements in Supplementary Fig. 3). TSS denotes

the transcription start site, Start/Stop the coding sequence start/stop positions and
TTS the transcription termination site. c GC content in the equal-sized subsets of
generated synthetic (red) and natural test sequences (blue) across the regulatory
regions (n = 425 each). d Distribution of 5′UTR lengths in the synthetic (red) and
(blue) natural sequences. Boxes denote interquartile (IQR) ranges, centersmark
medians and whiskers extend to 1.5 IQR from the quartiles. e Distribution of 3′UTR
lengths in the synthetic (red) and natural (blue) sequences. f T-distributed sto-
chastic neighbor embedding (t-SNE) dimensionality reduction60 over the sequence
identity distance matrix among equal amounts of combined generated (red) and
natural (blue) sequences (n = 2000 each). Source data are provided as a Source
Data file.
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solutions based on single regulatory regions, we next trained and
optimized six additional generativemodels using the sameprocedures
as for ExpressionGAN detailed above (see the “Methods” section). In
addition to using whole single regions in the respective ranges defined
above (see Fig. 1a), specifically the promoter (400 bp), UTRs (100 and
250bp, respectively) and terminator (250 bp), we also used two
shorter parts of the promoter featured in recent studies15,31. These
included an 80bp proximal promoter region located between −170
and −90 bp upstream of the transcription start site (TSS)8,15 and the
core promoter region located −170 bp upstream up to the TSS31,61. We
compared the dynamic ranges between either median or extreme
predicted expression levels in generated sequence samples after
100,000 optimizer iterations of maximization and minimization
(Fig. 4a, b). Interestingly, we observed that out of the single region
generators, the terminator-based generator showed the highest
expression range of ~3 orders of magnitude, whereas the 5′ UTR and
80bp proximal promoter-based generators resulted in the lowest
ranges of ~1 and ~2 orders of magnitude, respectively (Fig. 4b: values
approximate both median and maximum ranges). Importantly, the
dynamic range of ExpressionGAN (generator based on the whole gene
regulatory) was from 29% to 277% larger in the case of median
expression values with best performing (terminator) and worst per-
forming (5′ UTR) generator variants, respectively (Fig. 4b), reflecting a
6 to 358-fold increase between median expression levels of max-
imization- and minimization-based sequence samples (Fig. 4a). This
was further supported by analyzing the relevance of different reg-
ulatory region combinations (Supplementary Fig. 7), showing that the
regions jointly contribute to gene expression control3.

Utilizing available published proximal promoter15 and 5′ UTR
sequence designs24, we explored the potential of using the whole gene
regulatory structure to unlock awider range of gene expression than is
achievable by using the shorter sequence designs. When comparing
published expression measurements and our predictions for a set of
80 bp proximal promoters, recently designed using a genetic algo-
rithm under a strong-selection weak-mutation regime yielding both

maximization and minimization of expression levels15, we observed
a good correlation (Spearman’s ⍴ =0.51, p-value < 1e−16, Fig. 4c). As
ExpressionGAN was found to achieve a 2-fold higher median expres-
sion range than the proximal promoter-solution (Fig. 4a, b), we ran-
domly sampled 128 of these proximal promoter sequence designs
(from both maximized and minimized expression groups)15 and
expanded them with all 4238 available native gene regulatory struc-
tures, yielding 542,464 sequence constructs that were used to analyze
any additional dynamic potential with the already optimized short
sequences. Indeed, we observed that a dynamic range spanning an
order of magnitude of predicted expression levels was achievable
(Fig. 4d: between 10th and 90th percentiles of expression levels). We
next performed a similar experiment with a set of 5′ UTRs also
designed using a genetic algorithm24, selecting sequences at their
respective optimal number of evolutionary rounds yielding thehighest
predicted protein expression levels as estimated from cell growth.
Similarly, as above, we observed a good correlation (Spearman’s
⍴ = 0.55, p-value < 1e−16) between the published growth rates and our
expression predictions (Fig. 4e). Moreover, by building whole gene
regulatory structures around a random subset of 128 of the 5′ UTR
sequence designs, yielding 542,464 sequence constructs, we again
observed that a range of over an order of magnitude of predicted
expression levels could still potentially be unlocked (Fig. 4f: between
10th and 90th percentiles of expression levels). This suggests that,
generally, short single-region sequence designs might not be capable
of controlling gene expression across its full dynamic range. Thus,
despite the sequences being optimized in their restricted sense15,24,
gene expression cannot be driven to its actual extremes without
proper optimization of the gene regulatory structure with all adjacent
regulatory regions.

Generated regulatory DNA carries sequence determinants of
gene expression control
Next, we asked which sequence features of the generated synthetic
sequences can be inferred to control gene expression and how the cis-

Fig. 3 | Predictor-guided generator optimization enables gene-specific navi-
gation of the regulatory sequence-expression landscape. a Schematic depiction
of the procedure to optimize the generator using a trained predictor7, which
introduces codon frequency information into the generative approach and
explores the input latent space of the generator to produce sequence variants
across the whole range of gene expression, providing precise navigation of the
gene regulatory sequence-expression landscape. b Predicted expression levels of
generated sequence variants across optimization iterations set to either maximize
(red) or minimize (blue) expression levels (n = 64,000). Black lines denote average

expression levels and TPM transcripts per million. c T-distributed stochastic
neighbor embedding (t-SNE)60 mapping of the input latent subspaces that produce
unique sequence variants spanning ~6 orders of magnitude of gene expression
(blackand coloreddots: progressionof low tohigh expression levels ismarkedwith
progression from blue to red, respectively), uncovered using the predictor-guided
generator optimization. Black dots represent selections of 10 sequence variants per
each of the 4 expression groups covering a 4 order-of-magnitude range of pre-
dicted expression levels from TPM ~10 to ~10,000. Source data are provided as a
Source Data file.
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regulatory grammar might interact to define expression levels. For
this, high and low expression levels were contrasted by sampling
ExpressionGAN-generated sequences after 50,000 optimizer itera-
tions (Fig. 3b) and segregating them based on the strength of pre-
dicted expression levels into high (TPM> 100) and low expression bins
(TPM< 100) of 10,000 samples each (Fig. 5a), also verifying that they
were valid and different from any natural sequence. We observed a
significant difference (Wilcoxon rank-sum test p-value < 1e−16) in GC
content between the high and low expression sequences, with pro-
moters and terminators displaying a 7% higher and UTRs a 12% lower
GC content in the high expression sequences compared to low
expression ones (Fig. 5b, c). In accordance with the knowledge that
UTR length is related to mRNA stability9, a 28% (Wilcoxon rank-sum
test p-value < 1e−16) increase in 5′UTR size wasmeasured between the
high and low expression sequences (Supplementary Fig. 8). Further-
more, as expected based on the previous findings7,18, we observed on
average a 67% higher amount (Wilcoxon rank-sum test p-value < 1e−16)
of identified promoter TFBSs (FIMO49 q-value < 0.05) in the high
expression sequences compared to low expression ones (Supple-
mentary Fig. 9), with the number of TFBS significantly correlated
(Spearman’s ⍴ = 0.36, p-value < 1e−16, respectively) with the predicted
gene expression levels (Fig. 5d, e). The type of TFBS was however not
found to be related with and thus indicative of the expression levels,
though a weak correlation (Spearman’s ⍴ =0.13, p-value < 1e−16) was
observed between average expression levels of natural genes where a
TFBS was found and the predicted expression level of the generated
sequence carrying it (Supplementary Fig. 10). Previous studies have
shown that, apart from transcriptional regulation, Kozak sequence62

composition also affects overall mRNA levels by regulating mRNA

degradation rates25,63,64, with adenine enrichment resulting in higher
levels of gene expression52. Accordingly, we detected a moderate
correlation (Spearman’s ⍴ between 0.44 and 0.51, p-value < 1e−16)
between the number of adenines in the 5–15 bp region upstreamof the
start codon, respectively, and predicted gene expression levels (Sup-
plementary Fig. 11). On average, high expression sequences carried
87% more (Wilcoxon rank-sum test p-value < 1e−16) adenines than low
expression sequences (Fig. 5f). Similarly, in the 3′ UTR and terminator
regions, both the presence and number of poly-A/T, positioning
(consensus 5′-AAWAAA-3′)54,65 and efficiency motifs (5′-TATDTA-3′)27

were correlated (Spearman’s ⍴ between 0.06 and 0.51, p-value < 1e−16,
respectively) with the predicted expression levels (Supplementary
Fig. 12), with a 9%, 6%, and 45% higher amount of motif-carrying
sequences, respectively, found in the high expression sequences
compared to low expression ones26 (Fig. 5g). The numbers of known
expression-related motifs and motif association rules7 across all reg-
ulatory regions were also found to be 26% and 125% higher (Wilcoxon
rank-sum test p-value < 1e−16), respectively, in the high expression
sequences compared to low expression ones7,18 (Fig. 5e), and thus
were significantly correlated (Spearman’s ⍴ was 0.36 and 0.26, p-
value < 1e−16, respectively) with the predicted expression levels
(Supplementary Fig. 13). This suggested that, for controlling gene
expression levels, the optimized ExpressionGAN attributes at least
partial relevance to each known DNA sequence feature, with full
expression control likely achieved by combining multiple relevant
sequence properties8,9,28.

Since the corepromoter is arguably themost crucialDNAelement
in transcriptional regulation7,61, we next verified if our generative
model also recapitulates the main properties of this region (Fig. 5c). In

a

b

c d

e f

Fig. 4 | Whole gene regulatory structure unlocks a wider range of expression
control than single regulatory regions. a Predicted gene expression levels with
optimized generators of different single regulatory region parts or sequences
spanning the whole gene regulatory structure (n = 64 per specific generator opti-
mization target sample, maximization marked red, minimization blue). Boxes
denote interquartile (IQR) ranges, centersmarkmedians andwhiskers extend to 1.5
IQR from the quartiles. b Dynamic ranges between median (gray) and extreme
values (red) in the optimized sequence samples from a. c Correlation analysis
between published experimentally measured gene expression levels (defined
medium) of 80bpproximal promoter sequences (−170 to−90 relative to TSS)15 and
our predictions (n = 10,282). Red line denotes the least-squares fit. The T-test was
used. d Increases (red) and decreases (blue) of predicted gene expression levels

with a random subset of the 80bp proximal promoter designs15 when expanded
and combined with all 4238 native gene regulatory structures to create 1000bp
constructs (n = 542,464). Black dots denote median levels, black lines the inter-
quartile range and gray lines the 10th and 90th percentiles, respectively.
e Correlation analysis between published estimated cell growth of 5′ UTR designs
(at the optimal level of evolutionary rounds)24 and our predicted gene expression
levels (n = 200). Red line denotes the least-squares fit. The T-test was used.
f Increases (red) and decreases (blue) of gene expression levels with a random
subset of the 5′ UTR designs24 when expanded and combined with all 4238 native
gene regulatory structures to create 1000bp constructs (n = 542,464). Black dots
denotemedian levels, black lines the interquartile range and gray lines the 10th and
90th percentiles, respectively. Source data are provided as a Source Data file.
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yeast, ~20% of genes are known to contain a strong TATA box (con-
sensus 5′-TATAWAWR-3′)50, whereas the large majority of the remain-
ing genes carry a TATA-like element66,67 that differs from the TATA
consensus by up to 2 bases and can still recruit the TATA-binding
protein (TBP), though with lesser affinity67. In accordance with this, we
observed thatover 18%of the generated sequences contained at least a
single TATA consensus motif and 99% of them contained a TATA-like
sequence in their core promoters. Whereas the high expression
sequences carried an almost 4-fold and significantly (Wilcoxon rank-
sum test p-value = 1.9e−14) higher number of TATAmotifs in the [−100,
TSS] region compared to the [−200, −100] region, low expression
sequences carried a 5-fold (Wilcoxon rank-sum test p-value < 1e−16)
higher number of TATAmotifs in the [−200, −100] region compared to
the high expression sequences (Fig. 5h, Supplementary Fig. 14).

Another prominent core promoter feature is the general richness of
thymine in the −75 to TSS region as well as the presence of T-rich and
T-poor 4-mer motifs (see the “Methods” section)51,68. Indeed, we
observed a 39% higher (Wilcoxon rank-sum test p-value < 1e−16)
T-richness in the high expression sequences (Supplementary Fig. 14),
carrying over 2-fold more (Wilcoxon rank-sum test p-value < 1e−16)
T-rich elements, compared to low expression sequences that con-
tained 2-fold more (Wilcoxon rank-sum test p-value < 1e−16) T-poor
elements (Fig. 5i, c). Moreover, in accordance with previous findings69,
mammalian-like INR sequences (consensus 5′–‘YYANWYY’−3′) that are
known to cluster around the TSS region were found in 36% of the
generated core promoters. There were over 2-fold more (Wilcoxon
rank-sum test p-value < 1e−16) high expression sequences with at least
one INR motif than low expression sequences (Fig. 5j: region −30 to

Fig. 5 | ExpressionGAN-generated regulatory DNA carries sequence determi-
nants of gene expression control. aDistribution of predicted expression levels of
generated sequence samples from low (blue) and high (red) expression bins
(n = 10,000 each) after 50,000 iterations of ExpressionGAN optimization (see
Fig. 3). TPM denotes transcripts per million. b–k Panels display sequence proper-
ties of the generated sequences from the low (blue) and high (red) expression bins.
bGC content across the regulatory regions of the generated sequences (n = 10,000
each). c Overview of findings across the whole generated synthetic regulatory
constructs as well as the core promoter regions. Nuc. occ. denotes higher
nucleosome occupancy. d Correlation analysis between the amount of identified
TFBS48 (FIMO49 q-value <0.05) in promoters and predicted expression levels of the
generated sequences (n = 20,000). Red line denotes the least squares fit. The T-test
was used. e Amount of yeast transcription factor binding sites (TFBS) and deep
learning-uncovered expression-related motifs and motif association rules7

(n = 10,000 each). f Amount of adenines conserved in 5, 10, and 15 bp 5′ UTRs
upstream of the start codon52 (n = 10,000 each). g Number of termination-related
elements, including Poly-A/T, positioning and efficiency motifs27,54,65 (n = 10,000
each).h Proportion of sequences carrying a conserved TATA box50 in the distal and
proximal parts of the core promoter region51 (n = 10,000 each) (Fig. 5c). i Amount
of T-rich and T-poor motifs in the region up to 75 bp upstream of the TSS51,68

(n = 10,000 each). j Proportion of mammalian-type INR motifs in the region up to
30bp upstream of the TSS69 (n = 10,000 each). k Proportion of predicted nucleo-
some depletion55,56 in the region up to 50bp upstream of the TSS70,71 (n = 10,000
each). For box plots in b, e–g, boxes denote interquartile (IQR) ranges, centers
mark medians and whiskers extend to 1.5 IQR from the quartiles. For bar plots in
h–k, error bars represent 95% confidence intervals. Source data are provided as a
Source Data file.
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TSS) and a 44% more frequent (Wilcoxon rank-sum test p-value < 1e
−16) occurrence of INR in promoters lacking a strong TATA box69

(Supplementary Fig. 14). Finally, based on nucleosome occupancy
predictions55,56 and as expected based on the fact that nucleosome
depletion aids promoter accessibility and transcription activation70,71,
positions in the [−50, TSS] region displayed on average 60% higher
(Wilcoxon rank-sum test p-value < 1e−16) nucleosome depletion in the
high expression sequences compared to the low expression sequences
(Fig. 5k). This demonstrated that ExpressionGAN recapitulates the
main functional properties of the core promoter (Fig. 5c) with the
combined results suggesting that it can recreate both low and high
expression-related properties across the whole gene regulatory
structure in accordance with existing knowledge.

In vivo gene expression control using generated regulatory DNA
In order to test the validity and efficacy of the procedure and to verify
that the generated sequence variants are active in vivo and correspond
to the predicted gene expression levels, we selected a group of gen-
erated sequences across a 4 order-of-magnitude range of predicted
expression levels (Fig. 3c: TPM of ~10, ~100, ~1000, and ~10,000). For
this, since the prior results showed that not all sequence properties
were strongly divergent among the different expression levels (e.g.
similar UTR lengths among high and low expression sequences, see
Supplementary Fig. 8), we used a selection procedure that retained

sequences with properties similar to those of natural sequences in
each respective expression range to remove outliers (see the “Meth-
ods” section). The exception was that sequences that with the lowest
sequence similarity to natural ones were preferred (Fig. 6a, Supple-
mentary Fig. 15) and, importantly, sequence diversity was maximized
in each expression range so that no two tested sequences were alike
(Fig. 6b, Supplementary Fig. 15), in order to test a wide range of unique
sequence variants and not merely multiple versions of a common
variant. Moreover, to ensure proper core promoter function by facil-
itating TATA-binding protein (TBP) interaction67, we retained only
sequences carrying TATA or TATA-like motifs with up to 2 mutations
from theTATA sequenceconsensus. The resulting generated sequence
selections displayed properties similar to those of natural sequences
(Supplementary Fig. 16, Fig. 1a, Supplementary Table 1), indicating that
they are potentially functional, with the overall amounts of cis-reg-
ulatory motifs observed to steadily increase in proportion to the pre-
dicted gene expression levels (Fig. 6c). Unfortunately, as a result of the
restrictions imposed by sequence synthesis technology, limiting the
possibility to synthesize very lowly or highly-expressed sequences (<10
and >1000 TPM), we succeeded in testing 17 regulatory sequence-GFP
constructs across the 3 order-of-magnitude range of expression levels
from ~10 to ~1000 TPM (Figs. 3c and 6d, see the “Methods” section).
Additionally, regulatory sequences of the POP6 (predicted TPM of 64)
and RPL3 (predicted TPM of 303) genes7 were used as low and high

Fig. 6 | Gene expression control using generated regulatory DNA is validated
in vivo. a Sequence homology of the experimentally validated variants produced
by generator optimization (red) (see Supplementary Table 2) and natural test
sequences (blue) to the respective closest representative sequences in the training
dataset across the 4 regions of the gene regulatory structure (n = 81 each).
b Sequence homology within the experimentally validated expression groups
spanning 3 orders of magnitude of predicted expression levels (TPM of ~10, ~100
and ~1000, Supplementary Table 2;n = 12, 18, 21, respectively) as well as the natural
test set (n = 192), across the 4 regions of the gene regulatory structure: promoter
(gray), 5′ UTR (red), 3′ UTR (blue), terminator (white). c Proportion of TFBS (blue),
DNAmotifs (red) andmotif association rules (gray)7 in the experimentally validated
generated sequence variants (n = 12, 18, 21, respectively) relative to average
amounts found in the natural test set (n = 192). Red line denotes equal amount to
natural test set. d Quantitative PCR (qPCR) measurements of mRNA levels with
groups of generated sequence variants across 3 orders of magnitude of predicted
expression levels (TPM of ~10, ~100 and ~1000, Supplementary Table 2; n = 12, 18,
21, respectively). Natural regulatory regions of the POP6 and RPL3 genes were used

as low and high controls with a predicted TPM of 64 and 303, respectively (n = 15
each). Spearman correlation coefficient and T-test results shown. e Schematic
depiction of the mutagenesis strategy that included in silico screening, where a
randommutagenesis procedure (M) was coupled with a predictor (P) of yeast gene
expression7, which was also used to inform the mutational procedure on which
positionswere themost relevant tomutate. fAmountofmutated sequencevariants
that achieved an over 50% increase (red) or decrease (blue) in predicted gene
expression levels by mutating 10% (40 bp) of whole promoter regions (400bp) or
only themost relevant promoter positions (n = 14 each). gQuantitative PCR (qPCR)
measurements of mRNA levels with 10 mutated RPL3 sequence variants predicted
to achieve ~2-fold increases (n = 18) or decreases (n = 12) in expression levels from
the native regulatory sequence (see Supplementary Table 2). Native regulatory
regions of the RPL3 and POP6 geneswere used ashigh and low expression controls,
respectively (predicted TPM of 303 and 64, respectively; n = 6 each). For box plots
in a–d, f, g, boxes denote interquartile (IQR) ranges, centersmark medians and
whiskers extend to 1.5 IQR from the quartiles. Red dots in d, g show separate
measurements. Source data are provided as a Source Data file.
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controls, respectively. Although mRNA levels were measured, the GFP
gene was used due to its low effect on cell growth (Supplemen-
tary Fig. 17).

Weobserved that experimentalmeasurements of themRNA levels
produced by each construct achieved a strong correlation with the
predicted levels (Spearman’s ⍴ = 0.74, p-value < 1.6e−14, Fig. 6d, Sup-
plementary Fig. 18). The measured levels were also significantly cor-
related (Spearman’s ⍴ between 0.37 and 0.75, p-value < 1e−2) with
specific regulatory sequence properties including the number of cis-
regulatory motifs7, 5′ UTR length9,72, nucleosome depletion55,56 and
presence of an A-rich Kozak sequence52 (Supplementary Fig. 19), sup-
porting our findings that the generated DNA carries sequence deter-
minants of gene expression control (Fig. 5). Despite this, on average,
the measured expression levels reflected the predicted expression
range only in the group of constructs with the predicted TPM of ~100
(Fig. 6d: avg. measured TPM of 114), whereas a 7.7-fold and 2.5-fold
difference between predictions andmeasurements was observed with
the lower (predicted TPM ~10, avg. measured TPM 77) and higher
groups (predicted TPM ~1000, avg. measured TPM 397), respectively.
Nevertheless, although we were unable to generate sequences with
expression lower than the POP6 control, within the highest expression
group, 4 out of 7 regulatory constructs (57%) displayed average
expression levels that surpassed those of the natural highly-expressed
RPL3 control by up to 2.7-fold (Fig. 6d, Supplementary Table 2). This
demonstrates that our generative procedure enables the design of de
novo gene regulatory DNA that exceeds native highly expressed genes
by learning thenatural regulatoryDNAvariationdirectly fromgenomic
data, without relying on conventional experimental screening.

Finally, a primary advantage of ExpressionGAN is that it constrains
the exploration of regulatory sequence space using natural regulatory
principles incorporated in the generator, thus providing the predictor
with feasible and biologically-consistent sequence candidates (Fig. 3a).
On the other hand, mutational approaches, such as random
mutagenesis8,14,23 and genetic algorithms15,30, rely solely on a predictive
model to test the fitness of arbitrary and potentially infeasible muta-
tions, which can lead to highly untrustworthy results33–35. To test the
performance of such a rudimentary sequence design approach, we
used conventional random mutagenesis coupled with in silico
screening by the gene expression-predictor7 (Figs. 1c and 6e, see the
“Methods” section). We designed sequences spanning the whole gene
regulatory structure as with the generative approach above, but since
thewhole accessible dynamic rangewas not being tested and thus full-
scale mutagenesis was unnecessary, the UTR and terminator regions
were kept intact and we focused on mutating either the whole pro-
moter region (Fig. 1a: 400 bp7) or only the most relevant parts of it
(Supplementary Fig. 20: 77 bp on average per sequence, Fig. 6e). To
sustain predictor functionality and avoid pathologies, as sequences far
outside the biologically allowed sequence space could push it into
unpredictable behavior, we controlled the amount of mutated
sequence between 1% and 10%. By creating and assessing 16.8 million
sequence variants at different parameters using regulatory sequences
of 7 natural genes as starting points (Supplementary Fig. 21), we
obtained a distribution of sequence variants with different amounts of
mutations (Supplementary Fig. 21: 1%, 2%, 5%, and 10%) and predicted
expression levels, enabling the further selection and testing of variants
that achieved desired expression changes.

When aiming to achieve an over 50% increase or decrease in
mRNA expression levels, we found that on average, atmost 0.3% of the
sequence variants were predicted to achieve the desired effect when
mutating 10% (40bp) of whole promoter regions (Fig. 6f). This
increased to 0.4% when mutating the most relevant promoter regions
(Fig. 6f), whilst greatly decreasing with lower percentages of mutated
sequence size (Supplementary Table 3). Analogously as for the vali-
dation of ExpressionGAN, we selected and experimentally tested 10 of
the mutated regulatory sequence variants of the RPL3 gene (among

the highest expressed genes in yeast) with the largest predicted (~2-
fold) increase or decrease from the native levels, including both whole
and only relevant-region mutational strategies and different percen-
tages of mutated sequence size (5% and 10%, Supplementary Table 4,
see the “Methods” section). Of the tested variants, 40% corresponded
with predictions, and none of these were variants designed to increase
expression levels but only to decrease them (Fig. 6g, Supplementary
Fig. 22). This indicates that sequences designed by the random
mutagenesis approach are unlikely to function as predicted, especially
when trying to increase expression levels, necessitating multiple
roundsof selectionandexperimental testingdespite theuseof in silico
screening. In contrast, operating fully within the biologically feasible
sequence space, ExpressionGAN can generate highly divergent con-
structs (Fig. 6a, b: avg. pairwise seq. identity of ~67% or lower) that
achieve target expression levels, without requiring subsequent
experimental screening.

Discussion
In the present study, we explored whether de novo functional reg-
ulatory DNA, spanning the whole gene regulatory structure and pro-
ducing desired gene expression levels, can be generated just from the
knowledge of natural regulatory sequences. There are over 1060 ways
to construct a mere 100bp promoter sequence, covering more DNA
variation than exists in all living species on our planet. Experimentally
exploring even a tiny fraction of such an enormous sequence space is
challenging and often infeasible due to the vast species diversity and
complexity of eukaryotic gene regulation. Here, we thus used state-of-
the-art deep learning models7,17,46,57,73 to learn and map the functional
DNA regulatory sequence space to gene expression levels directly
from natural genomic data in Saccharomyces cerevisiae, enabling the
design of expression systems in a controlled manner.

This was made possible by incorporating multiple recent advan-
ces that enabled us to develop our supervised deep generative mod-
eling approach: (i) sequences spanning the whole gene regulatory
structure3 within natural genomic datasets7 (Fig. 1a: 1000 bp across all
cis-regulatory regions), (ii) highly accurate predictive models of gene
expression levels that can explain over 82% of expression variation
from regulatory sequence alone7 (Fig. 1b), (iii) deep generative mod-
elingprocedures that are capable of learning andexpanding functional
coding12,37 and regulatory11,17,33 sequence spaces from natural genomic
data (Fig. 1d), and (iv) optimization procedures that are thoroughly
validated17,57,73 and allowed us to include coding region information in
sequence design, enabling gene-specific fine-tuning of generators
across the whole range of expression levels (Fig. 3a, c). With the latter,
due to the possibility to connect deep neural networks in end-to-end
differentiable architectures, the existing capability of deep generative
models to learn the DNA regulatory sequence space from natural
genomic data11 was expanded using optimization guided by predictive
models (Fig. 3a). This enabled us to gain control over the generator’s
mapping of the regulatory sequence space to the respective expres-
sion levels andnavigate the functional regulatory sequence-expression
landscape, to produce generated sequences with desired expression
levels in a range of almost 6 orders ofmagnitude of TPM (according to
computational predictions, Figs. 3b, c and 4a, b). We can thus design
unique regulatory sequence variants (Fig. 6a, b) that are nevertheless
functional and contain natural-like properties and cis-regulatory
grammar (Figs. 2 and 5), even surpassing the expression level of natural
highly-expressed genes (Fig. 6d). Moreover, since our DNA-generator
has learned the generalized functional regulatory sequence space, it
can generate a practically infinite supply of unique sequence samples
for any gene. It traverses only the most relevant sequence subspace
instead of randomly sampling candidates from all 41000 possible
sequence variants, which would otherwise be needed to explore the
1000 bp of regulatory DNA. Therefore, by advancing generative
models to span the whole gene regulatory structure and by mapping
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sequence generation directly to the entire dynamic range of expres-
sion levels, we present a validated solution for gene expression control
in eukaryotic species.

We tested different functional aspects of ExpressionGAN and
compared it with existing solutions experimentally or computation-
ally: (i) experimentally validating ExpressionGAN-generated sequences
(Fig. 6), (ii) comparing the use of the whole gene regulatory structure
to single regulatory regions and shorter promoter parts, commonly
used with mutagenesis15,24,31 (Fig. 4), (iii) comparing the properties of
generated sequences to natural ones (Fig. 2) and testing whether they
contain known DNA regulatory grammar and properties that drive
gene expression (Fig. 5), and (iv) contrasting the generative approach
with a standard mutational one that does not inherently model the
allowed sequence-function landscape (Fig. 6). The experimental ana-
lysis was designed specifically to test the most divergent possible
sequence variants, with an average sequence identity well below 70%
both to natural sequences and amongst themselves (Fig. 6a, b, Sup-
plementary Fig. 15). This validated the approach in vivo across 3 orders
of magnitude of expression levels with a wide range of unique
sequence variants (Fig. 6d), notmerely identifyingmutational varieties
of a common conserved and active regulatory scaffold. Furthermore,
we found that sequences spanning the whole gene regulatory struc-
ture improve the achievable dynamic range of gene expression com-
pared to the common single regulatory regions24 and shorter
proximal8,15 and core promoter parts31 (Fig. 4a, b). Despite that in
specific cases even singlenucleotide variations can have a strong effect
on expression15,74, generally due to the natural evolutionary pre-
requisites of regulatory adaptability and robustness75,76, short reg-
ulators simply cannot precisely control the full amount of expression
in comparison to longer sequences spanning multiple regulatory
regions, where regulatory adaptation is orchestrated across a range of
meticulous and interacting sequence optimizations3,9,77. Consequently,
the limitation and inability of current methods to design anything but
short sequences spanning single regulators gives strong support for
the use of generative approaches, capable of designing whole gene
regulatory structures by learning from natural genomic and tran-
scriptomic data directly, without requiring any screening experiments.
Anotable positive consequenceof using transcriptomicdata is also the
ease of relating sequence to function, namely, expression levels and
their dynamic ranges, whereas most alternative approaches focus
primarily on protein expression via relative fluorescence intensity8,15 or
cell growth24, making it harder to relate their measurements to a
comprehensible gene expression scale (e.g. TPM) and thus potentially
concealing more limited dynamic ranges than are initially understood.
Moreover, despite using here the most relevant region sizes based on
previously published results3,7, we note that the functionality of the
gene regulatory structure requires further extensive research in order
to decipher key regulatory effects and interactions, while also vali-
dating theobservations and applicabilitywithdifferent reporter genes,
organisms, and tissues. Nevertheless, since recent optimized short
sequence designs15,24 are not capable of driving gene expression fully,
with a large range of expression control remaining potentially untap-
ped (Fig. 4d, f), the use of the whole gene regulatory structure offers a
promising development focus for unlocking the full potential of gene
expression control.

Generally, the properties and evolution of non-coding regulatory
DNA are still poorly understood3,78,79, which also makes interpreting
generative DNA-sequence designs difficult. In contrast to proteins that
carry conserved and structurally characterized protein domains80,
non-coding DNA sequences comprise many different cis-regulatory
elements (Fig. 1a), including multiple binding sites for transcription
factors79, components of the transcription machinery67,69 and chro-
matin remodeling proteins3, as well as transcription initiation52,53 and
termination27,54,65 related factors, which ultimately regulate and define
the levels of gene expression. Recent studies have also shown that

other factors, such asweakmotifs and interactions8,motif associations
across multiple regulatory regions7, and DNA structural
properties10,81,82 are also strongly informative for gene expression
predictions and might play an important role in expression
regulation3,8. Therefore, it remains challenging to objectively define
what constitues biologically feasible functional DNA, without relying
on complex data-driven models for predictions7,13. Nevertheless,
mining for the majority of the known, previously uncovered DNA
regulatory grammar (Fig. 1a) showed that already with the initial non-
optimized generator variant, generated sequences exhibit properties
highly similar to those of natural regulatory DNA (Fig. 2), suggesting
that adversarial network training sufficiently captures the regulatory
sequence diversity present in natural DNA. Furthermore, coupling the
generative and predictive models enables further rational design of
regulatoryDNA (Fig. 3a, c), as the generator is guided to operatewithin
the feasible DNA sequence space learned by the predictor to produce
functional DNA across the whole range of expression levels. This
contrasts previous generative approaches with an arbitrary sampling
of sequence spaces11,12,32, instead, through model-based supervision,
enabling controlled sequence design towards desired expression
levels. The optimized ExpressionGAN-generated sequence variants are
therefore found to carry known determinants of gene expression
control (Fig. 5), reflecting the high and low expression-related prop-
erties expected based on previously published results3,7,18,51,68,70. Apart
from correctly generating overall higher numbers of transcription
activation-related DNA motifs and properties in highly-expressed
genes compared to low ones, the generative model also learned to
reproduce the relative positioning and co-occurrence ofmotifs, highly
relevant for defining gene expression levels3,19, across all cis-regulatory
regions (Fig. 5). This demonstrates that our generative approach is well
suited for the particular task of regulatory sequence design, inherently
learning the general structure and features of regulatory DNA and
mutating or combining them in novel yet functional ways.

By comparing the generative strategy of regulatory DNAdesign to
amutational one, we demonstrated experimentally that the generative
approach is more suitable when using models trained purely on nat-
ural genomic data. Random mutagenesis-based approaches are com-
monly based on a similar brute-force strategy, starting with an existing
natural sequence and traversing the sequence-expression landscape
randomly, a set of mutations at a time, without considering the func-
tional sequence context15,32. Since the computational and experimental
screening processes that test the functionality of the designed
sequences are decoupled from the sequence design stage29, they
require multiple isolated runs and experimental trials to progress
beyond local minima and develop functional sequences32. This is the
case even when using predictive models that can accurately map
regulatory sequence to gene expression7 (Fig. 6e–g). Moreover, since
many biologically infeasible sequence variants are produced and can
lead to untrustworthy predictions, they could be the reasonbehind the
low success rate of the mutagenesis-produced sequence designs33–35.
Apart from optimization, informing the mutational procedure by
constraining themutatedpositions toonly relevant ones (Fig. 6e), such
as those specified by the predictor that contains important binding
sites7, might also be an insufficient strategy to improve mutagenesis.
This is potentially due to the large number of position-specific inter-
actions for each single nucleotide position that affect protein-
binding22,83, which are spread beyond only the most important bind-
ing sites and their immediate vicinity3,8,11. For instance, constraining
mutagenesis to the surrounding bases of the −35 and −10 promoter
binding sites in E. coli led to producing very few functional variants11,84,
suggesting that the sequence beyond these regions contains impor-
tant information for generating functional promoters. Similarly, we
observed only a very small increase in the capacity to create sequences
with increased or decreased expression levels when mutating only
relevant positions (Fig. 6f).On theother hand, the generative approach
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utilizes two knowledge-based models (Fig. 3a: both generator and
predictor) and not only a single predictive model (Fig. 6e), where the
sequence generator models the whole functional regulatory sequence
landscape, producing natural-like functional sequence variants and
not merely randomly mutated variants of existing sequences. Due to
this, the generative approach explores the allowed sequence space,
overcoming the drawback of exploring subspaces that contain infea-
sible sequence variants, such as when using random mutagenesis.
Moreover, the problem of sequence-to-expression relevance is
resolved by quantitatively mapping positional interactions across
whole sequences, learning which positions are the most important for
binding and functionality11,12. The generative strategy can thus produce
fully functional DNA while deviating much farther from the known
sequence space (natural level of ~33% or higher sequence divergence)
compared to the mutational strategy, which shows limitations already
with designs of at most 10% mutated sequence.

In synthetic biology, alternative bio-manufacturing hosts offer
multiple benefits for speeding up bioprocess development85 to facil-
itate high-yield manufacturing86, bring new drug candidates to the
clinic and maximize the use of manufacturing facilities during a
pandemic87. To reach desired expression levels that are predictable,
robust, and tunable, well-characterized gene regulatory parts are
required for building genetic constructs42. When expressing a gene of
interest, all regulatory regions have been shown to affect gene
expression levels. For instance, the promoter can be strongly depen-
dent on the choice of the terminator7,88, and both are gene-context
dependent and have to bematchedwith the coding region comprising
an optimal codon usage to facilitate gene expression89–91. While there
are tens of thousands of sequenced genomes, our capability to
develop suchadvancedexpression systems is highlyunderdeveloped92

and primarily limited by the costly experimental screening approaches
used to design and characterize short parts of single genomic
regions4,8,11. This remains challenging for many industrially important
strains due to low transformation efficiencies93, as the screening
techniques are intrinsically limited to organisms with high transfor-
mation efficiencies, targeting specific reporter genes under a parti-
cular biological condition94–97. Considering the costs and resource
requirements of synthetic library construction and testing as well as
potential benefits of generative modeling, the use and further devel-
opment of mutagenesis for regulatory sequence design may not be
worthwhile, apart from exploring the intrinsic functionality of
expression regulation8. Instead, we demonstrate that the generative
approach can produce regulatory DNA spanning the whole gene reg-
ulatory structure, while also considering information from the coding
sequence, thus mimicking complete natural regulatory systems in
order to ensure control over the full dynamic range of gene expres-
sion. The advantages of the proposed approach are that (i) it requires
only natural genomic data as input, with no need for library con-
struction and costly experimental screening, (ii) it could be expanded
to any set of genes in virtually any sequenced organism, including
those organisms with low transformation efficiencies, and (iii) it could
be used to produce even condition-dependent models and regulatory
sequences, including tissue/cell-type specific DNA designs with con-
trollable gene expression levels. Therefore, we foresee this as a highly
versatile and lucrative strategy to expand our knowledge of gene
expression regulation as well as increase expression control in syn-
thetic biology and metabolic engineering applications.

Methods
Data
S. cerevisiae S288C genome sequence data, including gene sequences,
as well as transcript and open reading frame (ORF) boundaries, were
obtained from the Saccharomyces Genome Database (https://www.
yeastgenome.org/)98,99 and additional published transcript and ORF

boundaries were used100,101. Coding and regulatory regions were
extractedbasedon the transcript andORFboundaries. DNA sequences
were one-hot encoded, untranslated region (UTR) sequences were
zero-paddedup to the specified lengths (Fig. 1a: promoter of 400bp, 5′
UTRof 100bp, 3′UTRof 250bp, and terminator of 250bp)7 and the 64
codon frequencies were normalized to probabilities.

For gene expression levels, processed raw RNA sequencing Star
counts were obtained from the Digital Expression Explorer V2 data-
base (http://dee2.io/index.html)59 and filtered for experiments that
passed quality control, yielding 3025 high-quality RNA-Seq experi-
ments. Raw mRNA data were transformed to transcripts per million
(TPM) counts102 and genes with zero mRNA output (TPM< 5) were
removed. Prior to modeling, the mRNA counts were Box-Cox
transformed103 with lambda set to 0.22. As the mRNA counts and
ORF lengths were significantly correlated due to the technical nor-
malization bias from fragment-based transcript abundance
estimation104, we regressed out the gene length from mRNA counts.
Specifically, the residual of a linearmodel, based onORF lengths as the
response variable and mRNA counts as the explanatory variable, was
used as the corrected response variable, after which no correlation
between gene length and its expression could be measured.

To obtain training datasets, we considered that for the initial 4975
protein-coding genes with genomic sequence information (predictor
variables), median expression levels (response/target variable) across
the RNA-Seq experiments varied within 1 relative standard deviation
(RSD = σ/μ) for 85% of the genes7. We, therefore, used DNA sequences
of the regulatory and coding regions of these 4238 genes with RSD< 1
for training (Supplementary Fig. 1). For predictive modeling, the data
comprised paired gene regulatory structure sequences as input vari-
ables and median mRNA counts as target/response variable, where a
total of 3433 gene data instances were randomly selected for training
the model, 381 for tuning the model hyperparameters and 424 for
testing. For generative modeling, a total of 3814 regulatory structure
sequences were used for training and the remaining 424 were used as
unseen test data. Here, the data was balanced prior to training by
distributing the corresponding mRNA counts across 30 bins and
sampling input sequence data from all bins such that all the values
were uniformly represented instead of using the initial distribution
(Supplementary Fig. 23: the Box-Cox transformed data shown).

Deep predictive modeling
To train a predictive model that predicts gene expression levels from
whole gene regulatory structure data, the deep neural network archi-
tecture of 3 CNN layers and 2 dense (FC) layers was used3,7,105,106. The
networkwas trained consecutively, first on regulatory sequences input
to the first CNN layer and then the dense layers were replaced and the
whole network retrained using the numeric variables (codon fre-
quencies) appended to the output of the last CNN layer and input to
the first dense layer. Batch normalization107 and weight dropout108

were applied after all layers and max-pooling109 after CNN layers. The
Adam optimizer110 with mean squared error (MSE) loss function and
ReLU activation function111 with uniform112 weight initialization were
used. In total, 24 hyper-parameters (see initial value ranges in Sup-
plementary Table 5) were optimized using a tree-structured Parzen
estimators approach via the Hyperopt package v0.1.1113 at default set-
tings for 1500 iterations. The best models were chosen according to
the minimal MSE on the validation set with the least spread between
training and validation sets. The coefficient of determination (R2) was
defined asR2 = 1� SSResidual=SSTotal [Eq. 1], whereSSResidual is the sumof
residual squares of predictions and SSTotal is the total sum of squares,
and statistical significance was evaluated using the two-tailed F-test.
For training deep models and data collection, Tensorflow v1.12.0 and
Keras v2.2.0 software packages were used and accessed using the
Python interface.
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Deep generative modeling
To devise a system to generate realistic DNA regulatory sequences
corresponding to the whole gene regulatory structure, we trained a
generative model using a generative adversarial network (GAN)
approach46 (Fig. 1d, Supplementary Fig. 1). In order to capture all the
levels of regulatory information across the input sequences, both the
generator and discriminator equally comprised 6 convolutional neural
network (CNN) layers of opposite orientation, where the first (last) 5
layers were residual blocks containing skip connections with a residual
factor of 0.317,114. Each CNN layer comprised 100 filters, a kernel size of
5 and a stride of 1. The dense layer sizewas equal to the input sequence
size (1000) × CNN filter size (100). The Adam optimizer110 with the
Wasserstein loss function (WGAN)115,116 and ReLU activation function111

with uniform112 weight initialization were used. The learning rate
parameter was set to 1e−5, beta1 to 0.5 and beta2 to 0.9, and the batch
sizewas64. The ratio of the discriminator to generator updateswas set
to 5. The dimensionality of the latent space was set to 200 after testing
GANs with 100, 200, and 1000 dimensional latent spaces and finding
no improvement in performance over this size, showing that it suffi-
ciently captured the key information in the DNA sequence data. For
single region generators, the exception was with models with a
sequence size smaller than 200bp (5′ UTR, proximal and core pro-
moter generators), where the dimensionality of the latent space was
set to 100. The latent space was sampled according to a standard
normal distribution during training.

To generate sequences that manifest desired target expression
levels by connecting the functional regulatory DNA space modeled by
the generator with expression levels and coding sequence information
modeled by the predictor, a DNA-based activation maximization
approach17,73 was used that incorporates both the trained generator
and predictor models (Fig. 2a). This approach has been tested with
generative modeling of both regulatory DNA17,32 as well as in other
domains, such as imagemodeling,where its demonstration equals that
of biological experimental validation57,73 due to human-level perfor-
mance being the benchmark there. The optimal trained generative
model to use for optimization was identified at iteration 200,000
(Fig. 1c, Supplementary Fig. 2), further supported by comparing the
properties of generators obtained at 6 different training iteration
checkpoints (100,000, 200,000, 300,000, 500,000, 700,000 and
1,000,000) after optimization, which included the percentage of
unique generated sequences, range of predicted gene expression
levels and amounts of sampled sequences across thewhole expression
range (Supplementary Fig. 24). Optimizations were run for 100,000
iterations and, to increase the breadth of the investigated latent sub-
space, 10 optimization runs were performed with different initial
random states. The results were merged to obtain a set of 6,062,804
unique sequences that were used for further analysis.

To obtain a selection of sequences for experimental validation,
the following selectionprocedurewas used. Four expressionbins were
defined to cover a 4 order of magnitude range of expression levels
within a 10% range above or below the TPM values of 10, 100, 1000,
and 10,000. Approximately 100 sequences per expression bin and per
optimization seed were randomly selected from the above merged
optimized sequence dataset, yielding 5706 sequences. Next, by com-
paring 16 sequence properties (see underlined properties in Supple-
mentary Table 1) of the generated sequence selection to those of
natural test sequences, 452 sequenceswere sub-selectedwith all tested
sequence properties within the ranges defined by natural test
sequences. From here, the experimental set was constructed by ran-
domly selecting 10 sequences in eachexpressionbin, by optimizing for
the highest sequence diversity within each expression bin, whilst
retaining the natural sequence diversity (avg. seq. id. ~0.67). The final
set of 40 selected sequences was thus highly diverse and as different
from natural sequences as these are among themselves, representing
as yet unseen sequence variants. Further limitations with sequence

synthesis when ordering the selected generated variants as gene
fragments from either TWIST Bioscience (www.twistbioscience.com)
or IDT (gBlocks, https://eu.idtdna.com/) (Supplementary Table 6)
resulted in the final experimental set of 17 sequences (Supplementary
Table 7), with 4 from the expression bin of ~10 TPM, 6 from ~100 TPM
and 7 from ~1000 TPM (Supplementary Table 2).

Mutagenesis approach
To design regulatory sequence variants with the mutation procedure,
promoter sequences were randomly mutated at different settings for
the percentage of the mutated sequence size: 1% (4 bp), 2% (8 bp), 5%
(20 bp), and 10% (40 bp). This was done while verifying that all muta-
ted variants were different from any of the natural sequences, thus the
mutation size also corresponded to the distance from the closest
natural sequence. The maximum mutation size of 10% was used in
order to limit using the predictor too far outside of its operational
range, defined by the natural training sequence space, which can
potentially cause incorrect predictions34,117. 300,000 mutations were
performed per each of the eight settings per gene scaffold sequence.

Either whole promoter sequences of 400bp or only the most
relevant positions weremutated. For the latter, the predictor was used
to inform the mutational procedure by querying its sensitivity to
specific positions in the promoter sequence (Fig. 6e), so that only the
most sensitive and thus relevant positionswerepreferentially used as a
guide for targeted mutagenesis (Supplementary Fig. 20). To calculate
the relevance of the different DNA positions for model predictions,
defined as Relevance= ðY � YoccludedÞ=Y [Eq. 2], where Y is the model
prediction, an input dataset with sliding window occlusions was used
with the predictive model to obtain predictions118,119 (Supplementary
Fig. 25). The window size of the occlusions was set to either 1 or 10 bp.
To obtain only highly sensitive regions, relevance z-scores above a
cutoff of 1 were selected.

To calculate the number of mutated sequence variants that
achieved an over 50% increase or decrease in predicted gene expres-
sion level, regulatory sequence scaffolds from the following 7 genes
were used: YDR541C, POP6, PMU1, YBL036C, MNN9, RPC40, RPL3.
Experimental sequence selection was performed with the RPL3 gene,
where the mutated sequences were sorted and selected based on the
largest achieved increases and decreases, targeting ~2-fold changes, as
well as according to the limitations imposed by DNA sequence man-
ufacturers. Thus, only sequenceswith amutated sequence size of 5 and
10% were selected, where either the whole promoter or only relevant
positions with a window size of 10 bp were mutated. When selecting
for increased expression while mutating whole promoters, only
sequenceswith amutated size of 10% achieved the targeted changes in
predicted expression levels. Two representatives were selected for
increased gene expression per combination of settings and a single
representative for decreased expression, yielding the 10 tested
sequence constructs (Supplementary Table 4).

Experimental strain construction
The S. cerevisiae strain S288C (ATCC no. 204508) was used as the base
strain for all genetic engineering. Promoter (including 5′ UTR) and
terminator (including 3′ UTR) DNA sequences were ordered as gene
fragments from either TWIST Bioscience (www.twistbioscience.com)
or IDT (https://eu.idtdna.com/). The exception was the RPL3 promoter
and RPL3 terminator, for which fragments could not be synthesized
due to sequence complexities, and were thus amplified from the
genome with promoter_YOR063W_fwd, promoter_YOR063W_rev, and
terminator_YOR063W_fwd, terminator_YOR063W_rev primer pairs,
respectively (Supplementary Table 8). For the promoter-GFP-
terminator constructs, the UBIMΔkGFP* version of the GFP gene
from Houser et al.120 was used (Supplementary Table 9).

Integration of the promoter-GFP-terminator constructs into the
genome at the XI-2 locus was performed using the CRISPR/Cas9
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plasmid (pCFB2312) and gRNA helper vectors (pCFB3044) from the
EasyClone marker-free system121. Transformations into the S288C
strain were performed via the following procedure. The S288C strain
harboring pCFB2312 was cultivated in YPDmedium consisting of 10 g/
L yeast extract (Cat#Y1625, Merck), 20 g/L peptone (Cat#1072241000,
Merck), 20 g/L glucose (Cat#1083422500, Merck) supplemented with
200mg/L G418 (Cat#10131035, Thermo Scientific) and grown into
competent cells freshly at OD600 1.3-1.5. 300ng pCFB3044 and 1μg
fragments were transformed into the competent cells by the standard
lithium acetate (LiAc)/single-stranded DNA (SS-DNA)/polyethylene
glycol (PEG) method122 and plated on YPD agar plates containing
200mg/L G418 and 100mg/L nourseothricin (Cat#AB-102, Jena
Bioscience GmbH).

Promoter-GFP-terminator fragments were prepared by ligating
three fragments: the promoter with 90bp overlap to the genome and
90bp overlap to the GFP gene, the GFP gene, and the terminator with
90bp overlap to the GFP gene and 90bp overlap to the genome. The
exception was the RPL3 promoter and terminator, which were ampli-
fied from the S288C genome with a shorter 40bp overlap flanking the
primers. Fragmentswere preparedby ligating the promoter, GFP gene,
and terminator fragments together with a linearized pUC19 plasmid
(Cat#OGS590, Merck) by Gibson assembly123, for which 5μL of frag-
ment and vector mixture was mixed with 5μL Gibson Mastermix
(Cat#E2611, NEB) and incubated in 50 °C for 1 h before transforming
into E. coli DH5α competent cells. The pUC19 vector was linearized by
PCR with the pUC19_fwd and pUC19_rev primer pair (Supplementary
Table 8), with 20 bp overlaps flanking the ends for the Gibson
assembly. All plasmids were extracted using the GeneJET Plasmid
Miniprep Kit (Cat#K0502, Thermo Scientific) and used as the tem-
plates for the promoter-GFP-terminator fragments with the L90 and
R90 primer pair (Supplementary Table 8). To obtain strains with cor-
rectly integrated fragments at the XI-2 locus, colonies were verified
with PCR using the 909121, GFP_rev and 910121, GFP_fwd primer pairs
(Supplementary Table 8) and the fragments were sequence-verified at
Eurofins Genomics (https://eurofinsgenomics.eu/) after amplifying
them with the L90, R90 primer pair (Supplementary Table 8).

For the mutagenesis experiment, designed promoter_RPL3 var-
iants were ligated with GFP and the native terminator_RPL3 with the
methods described above (Supplementary Table 9). For the generative
experiment, the different generated synthetic promoters and termi-
nators corresponding to 17 whole constructs were ligated with GFP
with the methods described above (Supplementary Table 7). PCR
reactions were carried out with Phusion High-Fidelity Polymerase
(Cat#F-530, Thermo Scientific) and gel-purified with GeneJET Gel
Extraction Kit (Cat#K0691, Thermo Scientific). Primers were designed
using the Primer3 software (https://benchling.com) and synthesized
by IDT (https://eu.idtdna.com/).

RNA extraction and quantitative PCR
All yeast strains were cultured and monitored in a 48-well FlowerPlate
(m2p-laboratories GmbH, Germany) at 30 °C and 1200 rpm using a
microbioreactor Biolector (m2p-laboratories GmbH, Germany). Cul-
tures were started from a preculture grown overnight, at an OD600 of
0.03 in 1mLminimalmediawith 2% glucose (Supplementary Table 10).
OD600 was monitored in real-time by the Biolector approximately
every 20min. After 15 h of cultivation, when the cells were in a mid-
exponential growth phase, the cells were collected and immediately
used for RNA extractionwith the RNeasyMini Kit (Cat#74104, Qiagen).
For each batch of cultivation, the S288C wild-type strain, as well as the
two integration strains with the POP6 and RPL3 regulatory regions,
were used as control groups. All cultivations were performed in bio-
logical triplicates.

cDNA was synthesized with QuantiTect Reverse Transcription Kit
(Cat#205311, Qiagen) by adding 50ng of total RNA to a final RT

reaction volumeof 20μL. 1μL of the cDNAwasused as a templatewith
the Thermo Scientific DyNAmo Flash SYBR Green PCRMaster Mix in a
Mx3005P QPCR System (Agilent Technologies, USA). A 2 step qPCR
protocol was used: 10min initialization at 95 °C and 40 cycles of each:
30 s 95 °C and 60 s 60 °C. S. cerevisiae TAF10124 was selected as the
reference gene and the qPCR primer pair for TAF10 was used (Sup-
plementary Table 8: TAF10_qPCR _fwd and TAF10_qPCR _rev). qPCR
primers for GFP (Supplementary Table 8: GFP_qPCR_fwd and
GFP_qPCR_rev) were designed using IDT’s PrimerQuest tool v2.2
(https://eu.idtdna.com/pages/tools/primerquest). The qPCR primers
were synthesized by IDT (https://eu.idtdna.com/).

Measurements were performed in separate batches due to the
constraints of the measurement plate size of 96 wells. For each qPCR
batch, samples from the S288C wild-type strain, as well as the two
integration strains with the POP6 and RPL3 regulatory regions, were
included as the respective reference, low-expression, and high-
expression control groups. Each sample has technical duplicates.
Cycle thresholds (Ct) of the reporter gene were normalized relative to
the Ct value of TAF10124. The 2−ΔΔCT (avg. 2pddct) value was used as the
indicator of the relative expression level of GFP for each construct125,
where the wild-type strain was used as the reference (Supplementary
Table 2 and S4). The values were equalized across all qPCR batches
based on the known TPM values of the native POP6 and RPL3 controls
present in every batch, using a linear curvefit to infer theTPMvalues of
each replicate of the generated constructs.

Data analysis and software
The performance of the generative model was monitored by measur-
ing the sequence properties of the generated variants, including (i)
sequence compositional validity, (ii) sequence similaritymeasures, (iii)
predicted gene expression levels, and (iv) known cis-regulatory
grammar (Supplementary Table 1), and by testing, if they reflected the
properties of natural sequences. DNA sequence homology was calcu-
lated with the ratio function in the python-Levenshtein package
v0.12.2, equaling the Levenshtein (edit) distance divided by the length
of the sequence. The Jaccard distance between two DNA sequences
was defined as the intersection over the union of sets of their unique
k-mers of size 4. Knownmotifs were located based on the shortest edit
distance between sequence segments and themotif, using thedistance
function in the python-Levenshtein package v0.12.2, except for deep
learning-uncovered motifs and motifs associations7 for which the
partial_ratio function from the fuzzy-wuzzy package v0.18.0 was used,
and TFBS for which the fimo49 and tomtom126 functions from Meme
suite v5.0.2127 were used. Nucleosome depletion was calculated using
the R package nuCpos v3.855,56. Samples of 64 generated or natural test
sequences were used per parameter except where stated otherwise.

For analysis of high and low expression bins, 20,000 generated
sequences were sampled from ExpressionGAN after 50,000 optimizer
iterations and verified to be valid (Supplementary Table 1) and unique
to any natural sequence. The high expression bin was defined as
1e2 < TPM< 1e5 and the low expression bin as 1e0 < TPM< 1e2, where
the upper and lower limits were used to remove outliers (Fig. 5a). The
T-rich and T-poor motifs included 5′-[‘TTTT’, ‘TTCT’, ‘GTTC’, ‘CTTT’,
‘TTC’, ‘CTTA’, ‘TCTA’]−3′ and 5′-[‘AGGA’, ‘AC’, ‘GAGC’, ‘AGCA’, ‘ACGG’,
‘AAGA’, ‘AGCG’]−3′, respectively, as defined in previous studies51,68.

Python v3.6 (www.python.org) and R v3.6 (www.r-project.org)
were used for computations. For statistical hypothesis testing, Scipy128

v1.5.4wasusedwith default settings. All statistical testswere two-tailed
except where stated otherwise. For correlation analysis, the Spearman
correlation coefficient is reported and statistical significance was tes-
ted using a T-test. For data analysis, Tensorflow v2.4.1, Pandas v1.1.5,
Scikit–learn v0.24.2, Scikit-bio v0.5.6, Biopython v1.78, Tidyverse
v1.3.0, and packages were used. Seaborn v0.11.1 was used for
visualization.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Genomic data, transcript and gene boundaries used in this study were
obtained from the Saccharomyces Genome Database (https://www.
yeastgenome.org/) and Ensembl (https://www.ensembl.org/), RNA
sequencing data from the Digital Expression Explorer V2 database
(http://dee2.io/mx/), DNA sequence motifs from the Meme suite
motifs databases file (http://meme-suite.org/) and additional data
from the cited references (links to rawdata in SupplementaryTable 11).
Sequence data generated in this study are provided in Supplementary
Tables 6, 7, and 9, and experimental data in Supplementary Tables 2
and 4. Source data were deposited to the Zenodo repository and are
available at https://doi.org/10.5281/zenodo.6811225.

Code availability
Codewasdeposited to theGithub repository and is available at https://
github.com/JanZrimec/ExpressionGAN.
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