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Using multiple sampling strategies to
estimate SARS-CoV-2 epidemiological
parameters from genomic sequencing data

Rhys P. D. Inward 1 , Kris V. Parag 2,3,5 & Nuno R. Faria 1,2,4,5

The choice of viral sequences used in genetic and epidemiological analysis is
important as it can induce biases that detract from the value of these rich
datasets. This raises questions about how a set of sequences should be chosen
for analysis.Weprovide insights on these largely understudied problems using
SARS-CoV-2 genomic sequences from Hong Kong, China, and the Amazonas
State, Brazil. We consider multiple sampling schemes which were used to
estimate Rt and rt as well as related R0 and date of origin parameters. We find
that bothRt and rt are sensitive to changes in samplingwhilstR0 and thedate of
origin are relatively robust. Moreover, we find that analysis using unsampled
datasets result in the most biased Rt and rt estimates for both our Hong Kong
and Amazonas case studies. We highlight that sampling strategy choices may
be an influential yet neglected component of sequencing analysis pipelines.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is
an enveloped single-stranded zoonotic RNA virus belonging to
the Betacoronavirus genus and Coronaviridae family1. It was first
identified in late 2019 in a live food market in Wuhan City, Hubei
Province, China2. Within a month, SARS-CoV-2 had disseminated
globally through sustained human-to-human transmission. It was
declared a public health emergency of international concern on
the 30 January 2020 by the World Health Organisation3. Those
infected with SARS-CoV-2 have phenotypically diverse symptoms
ranging from mild fever to multiple organ dysfunction syndromes
and death4.

Despite the implementation of non-pharmaceutical interven-
tions (NPIs) and rollout of vaccination programmes in many coun-
tries to control their epidemics, as of the 16 July 2022, over 557
million SARS-CoV-2 cases and 6.3 million deaths have been reported
worldwide5. These NPIs can vary within and between countries and
include restrictions on international and local travel, school closures,
social distancing measures, and the isolation of infected individuals
and their contacts6. The key aim of NPIs is to reduce epidemic
transmission, oftenmeasuredby epidemiological parameters such as
the time-varying effective reproduction number (Rt at time t) and

growth rate (rt), which both provide updatingmeasures of the rate of
spread of a pathogen (see Table 1 for detailed definitions)7,8.

However, there is currently great difficulty in estimating and
comparing epidemiological parameters derived from case and death
data globally due to disparities in molecular diagnostic surveillance
and notification systems between countries. Further, even if data are
directly comparable, the choice of epidemiological parameter can
implicitly shape insights into how NPIs influence transmission
potential9,10. As such, there is a need to supplement traditional esti-
mates with information derived from alternative data sources, such as
genomic data11, to gain improved and more robust insights into viral
transmission dynamics12,13.

Phylodynamic analysis of virus genome sequences have increas-
ingly been used for studying emerging infectious diseases, as seen
during the current SARS-CoV-2 pandemic14–17, recent Ebola virus
epidemics in Western Africa18 and the Zika epidemic in Brazil and
the Americas19,20. Transmissibility parameters such as the basic
reproduction number (R0), Rt and rt can be directly inferred from
genomic sequencing data or from epidemiological data, while other
epidemiological parameters such as the time of the most recent
common ancestor (TMRCA) of a given viral variant or lineage can only
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be estimated from genomic data. This is of particular importance for
variants of concern (VOC), genetic variants with evidence of increased
transmissibility,more severe disease, and/or immune evasion. VOC are
typically detected through virus genome sequencing and only limited
inferences can be made using epidemiological data alone21.

Currently, SARS-CoV-2 virus genomes from COVID-19 cases are
being sequenced at anunprecedented pace providing awealth of virus
genomic datasets22. There are currently over 11.9 million genomic
sequences available on GISAID, an open-source repository for influ-
enza and SARS-CoV-2 genomic sequences23. These rich datasets can be
used to provide an independent perspective on pathogen dynamics
and can help validate or challenge parameters derived from epide-
miological data. Specifically, the genomic data can potentially over-
come some of the limitations and biases that can result from using
epidemiological data alone. For example, genomic data are less sus-
ceptible to changes at the government level such as alterations to the
definition of a confirmed case and changes to notification systems24,25.
Inferences from virus genomic data improve our understanding of
underlying epidemic spread and can facilitate better-informed infec-
tion control decisions26. However, these advantages are not straight-
forward to realise. The added value of genomic data depends on two
related variables: sampling strategy and computational complexity.

Themost popular approaches used to investigate changes in virus
population dynamics include the Bayesian Skyline Plot27 and Skygrid28

models and the Birth-Death Skyline (BDSKY)29. These integrate Markov
Chain Monte Carlo (MCMC) procedures and often converge slowly on
large datasets30. As such, currently available SARS-CoV-2 datasets con-
taining thousands of sequences become computationally impractical
to analyse and sub-sampling is necessary. Although previous studies
have examined how sampling choices might influence phylodynamic
inferences30–34, this remains a neglected area of study35, particularly
concerning SARS-CoV-2 for which sequencing efforts have been
unprecedented36. To our knowledge, there are no published studies
concerning SARS-CoV-2 which explore the effect that sampling strate-
gies can have on the phylodynamic reconstruction of key transmission
parameters. Incorrectly implementing a sampling scheme or ignoring
its importance can mislead inferences and introduce biases30,37.

This raises the important question that motivates our analysis:
how should sequences be selected for phylodynamic analysis and
which parameters are sensitive or robust to changes in different
sampling schemes. Herewe explore howdiverse sampling strategies in
genomic sequencingmay affect the estimation of key epidemiological
parameters. We estimate R0, Rt, and rt from genomic sequencing data
under different sampling strategies from a location with higher
genomic coverage represented by Hong Kong, and a location with
lower genomic coverage represented by the Amazonas state, Brazil.
We then compare our estimates against those derived from reference
case data. By benchmarking genomic inferences against those from
casedatawe canbetter understand the impact that sampling strategies
may have on phylodynamic inference, bolster confidence in estimates

of genomic-specific parameters such as the origin time (or TMRCA)
and improve the interpretation of estimates from areas with hetero-
geneous genomic coverage.

Results
Sampling schemes
Hong Kong. Hong Kong reacted rapidly upon learning of the emer-
gence of SARS-CoV-2 in Wuhan, Hubei province, China, by declaring a
state of emergency on the 25 January 2020 and bymobilising intensive
surveillance schemes in response to initial cases38. This appeared to be
successful in controlling the first wave of cases. However, due to
imported cases from Europe and North America, a second wave of
SARS-CoV-2 infections emerged prompting stricter NPIs such as the
closure of borders and restrictions on gatherings38. Following these
measures, the incidence of SARS-CoV-2 rapidly decreased (Fig. 1).
HongKong has a high sampling intensity with 11.6% of confirmed cases
sequenced during our study period. Further, Hong Kong has high
quality case data with a high testing rate through effective tracing of
close contacts, testing of all asymptomatic arriving travellers and all
patients with pneumonia39.

The number of cases within Hong Kong for eachweekwas used to
inform the sampling schemes used within this study. This resulted in
the unsampled scheme having N = 117 sequences, the proportional
sampling scheme having N = 54 sequences, the uniform sampling
scheme having N = 79, and the reciprocal-proportional sampling
scheme having N = 84 sequences (Supplementary Fig. 3).

Amazonas. The Amazonas state of Brazil had its first laboratory con-
firmed case of SARS-CoV-2 inMarch 2020 in a traveller returning from
Europe40. After a first large wave of SARS-CoV-2 infections within the
state that peaked in earlyMay 2020 (Fig. 2), the epidemic waned, cases
dropped, remaining stable until mid-December 2020. The number of
cases then started growing exponentially, ushering in a second epi-
demic wave. This second wave peaked in January 2021 (Fig. 2) and
coincided with the emergence of a new SARS-CoV-2 VOC, designated
P.1/Gamma14.

To combat this second wave, the Government of the Amazonas
state suspended all non-essential commercial activities on the 23
December 2020 (http://www.pge.am.gov.br/legislacao-covid-19/).
However, in response toprotests, these restrictionswere reversed, and
cases continued to climb. On the 12th of January, when local trans-
mission of P.1/Gamma was confirmed in Manaus, capital of Amazonas
state41, NPIswere re-introduced (http://www.pge.am.gov.br/legislacao-
covid-19/) which seemed to be successful in reducing the case inci-
dence in the state. However, cases remained comparatively high
(Fig. 2). Amazonas has a sampling intensity with 2.4% of suspected P.1/
gamma cases sequenced during our study period.

The number of cases within the Amazonas state informed
the sampling schemes used within this study. This resulted in
the unsampled scheme having N = 196 sequences, the proportional

Table 1 | Key parameters and definitions for SARS-CoV-2

Parameter Definition

Basic reproduction number (R0) Average number of individuals infected by a single infected person in a fully susceptible population

Time-varying or effective reproduction num-
ber (Rt)

Average number of secondary infections generated per effective primary case at a certain time point and in the
presence of susceptible depletion or interventions

Growth rate (rt) Rate of change of the logarithm of the number of new cases (i.e., the case incidence) per unit of time

Incubation period Time between infection and symptom onset

Infectious period Period in which an infectious host can transmit infectious agents to a susceptible individual

Generation interval Time between infection events in an infector–infectee pair

Time of the most recent common ancestor or
origin time

Date in which viral variant is thought to have emerged

Serial Interval Time between symptom onsets in an infector–infectee pair
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sampling scheme having N = 168 sequences, the uniform sampling
scheme having N = 150, and the reciprocal-proportional sampling
scheme having N = 67 sequences (Supplementary Fig. 4).

Root-to-tip regression
The correlation (R2) between genetic divergence and sampling dates
for theHongKongdatasets rangedbetween0.36 and0.52andbetween
0.13 and 0.20 for the Amazonas datasets (Supplementary Fig. 2). This
implies that the Hong Kong datasets have a stronger temporal signal.
This is likely due to the Hong Kong datasets having a wider sampling
interval (106 days) compared with the Amazonas datasets (69 days).
A wider sampling interval can lead to a stronger temporal signal42. The
gradient (rate) of the regression ranged from 1.16 × 10−3 to 2.09 × 10−3

substitutions per site per year (s/s/y) for the Hong Kong datasets and
4.41 × 10−4 to 5.30 × 10−4 s/s/y for the Amazonas datasets.

Estimation of evolutionary parameters
Themean substitution rate (measured in units of number of s/s/y) and
the TMRCA was estimated in BEAST, for both datasets, and the esti-
mation from all sampling schemes was compared.

Hong Kong. For Hong Kong, the mean substitution rate per site per
year ranged from 9.16 × 10−4 to 2.09 × 10−3 with sampling schemes all
having overlapping Bayesian credible intervals (BCIs) (Supplementary
Table 2 and Supplementary Fig. 5A). This indicates that the sampling
schemedid not have a significant impact on the estimationof the clock
rate. Moreover, the clock rate is comparable to estimations from the
root-to-tip regression and to early estimations of the mean substitu-
tion rate per site per year of SARS-CoV-213.

Molecular clock dating of the Hong Kong dataset indicates that
the estimated time of the most common recent ancestor was around

Fig. 1 | Confirmed incident SARS-CoV-2 cases from Hong Kong until 7th of May 2020. The arrows represent policy change-times38.

Fig. 2 | Confirmed incident SARS-CoV-2 cases from Amazonas state, north Brazil until 7th of February 2021. The arrows represent key policy change-times52.
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December 2020 (Fig. 3B and Supplementary Table 2). This is a few
weeks before the first confirmed case which was reported on the 18
January 2021. Once again, all sampling strategies have overlapped BCIs
and with the range in means differing by around three weeks, a rela-
tively short time scale, suggesting that the sampling scheme does not
significantly impact the estimation of the TMRCA.

Brazil. For the Gamma VOC in the Amazonas state, the mean sub-
stitution rate ranged from 4.00 × 10−4 to 5.56 × 10−4 s/s/y with all sam-
pling schemes having overlappedBCIs (Fig. 3D, Supplementary Table 2
and Supplementary Fig. 5B). This indicates that sampling strategy does
not impact the estimation of the clock rate, supporting findings from
the Hong Kong dataset. This also supports estimations from the root-
to-tip analysis (Supplementary Fig. 2).

Molecular clock dating estimated a TMRCA mean around late
October to early November (Fig. 3D and Supplementary Table 2). This
is around five weeks before the date of the first P.1 case identified in
Manaus used in our study. All sampling schemes have overlapping BCI
consistent with the conclusion from the Hong Kong data that TMRCA
is relatively robust to sampling.

Estimation of basic reproduction number
We found fromusing genomic data, HongKonghad a posteriormean
R0 estimate of 2.07 (Fig. 3A) across all sampling strategies. Using a
proportional sampling strategy gave the highest posterior mean R0

estimate of 2.38 with the unsampled sampling strategy giving the
lowest posteriormeanR0 estimate of 1.87. Overall, Brazil had a higher
posterior mean R0 estimate with a value of 2.24 (Fig. 3B) across all
sampling strategies. The uniform sampling strategy yielded the

highest posterior mean R0 estimate of 2.50 while the unsampled
sampling strategy gave the lowest one of 1.82. Using case data, we
found similarly found that Hong Kong had a lower R0 of 2.17 (95%
credible interval (CI) = 1.43–2.83) when compared with Amazonas
which had a R0 of 3.67 (95% CI = 2.83–4.48). All sampling schemes for
both datasets were characterised by similar R0 values (Fig. 3) indi-
cating that the estimation of R0 is robust to changes in sampling
scheme.

Time-varying reproduction number and growth rate
We estimate Rt and rt for local SARS-CoV-2 epidemics in Hong Kong
and Amazonas, Brazil. Our main results showing these two parameters
and JSD metrics are shown in Figs. 4–7.

Hong Kong. We applied the BDSKYmodel to estimate the Rt for each
dataset subsampled according to the different sampling strategies
(Fig. 4). We compared these against the Rt from incidence data,
derived from EpiFilter. Based on the proportional sampling scheme,
which had the lowest JSD (Fig. 4E), we initially infer a super-critical Rt

value, with a mean ∼2, that appears to fall swiftly in response to the
state of emergency and the rapid implementation of NPIs. A steady
transmission rate subsequently persisted throughout the following
weeks around the critical threshold (Rt = 1). This period is followed by
a sharp increase in Rt, peaking at amean value of 2.6. This is likely due
to imported cases fromNorth America and Europe38. This led to a ban
on international travel resulting in a sharp decline in Rt (Fig. 1).
However, this decline lasted around a week with the mean Rt briefly
increasing until more stringent NPIs such as the banning of major
gatherings were implemented. Following this, the Rt continued its

Fig. 3 | R0 estimated from BDSKY (using sequence data) and TMRCA for Hong Kong and Brazil. A, B Represent Hong Kong and C, D represent the Amazonas State,
Brazil. The central line represents the posterior mean and with intervals representing 95% highest posterior density interval.
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sharp decline falling below the critical threshold, with transmission
becoming sub-critical (Fig. 4). The proportional sampling scheme
showed the most divergence from all other sampling schemes whilst
the uniform and reciprocal-proportional sampling schemes were
almost identical (Fig. 4F).

These resultsweremirrored in the estimationof rt. (Fig. 5), where
estimates derived from the proportional sampling scheme showed
the least divergence (Fig. 5E). There was an initial decline in the rt,
which steadied at a value of ~0, indicating that epidemic stabilisation
had occurred. This stable period is followed by an increase in rt
peaking at around a 0.050 per day (Fig. 5B). In response to NPIs, the rt
starts to decrease, falling below 0, indicating a receding epidemic.
The rate of this decline peaks at ~−0.075 per day (Fig. 5B). Unlike
the estimation of Rt (Fig. 4), the unsampled sampling scheme showed

themost divergence from all other sampling schemes (Fig. 5F). It also
has a high divergence from estimates derived from EpiFilter
when compared the proportional sampling scheme which was
themost closely related to EpiFilter (Fig. 5E). Once again, the uniform
and reciprocal-proportional schemes are the most closely rela-
ted (Fig. 5E).

Brazil. The uniform, reciprocal-proportional, and proportional sam-
pling schemes all showed a similarly low JSD (Fig. 6E). Based on these
sampling schemes, we initially infer super-critical transmission (Rt > 1)
with a mean value of 3 (Fig. 6). From this point, the Rt declines,
although it remains above the critical threshold (Rt = 1) formuch of the
study period. Sub-critical transmission (Rt < 1) was only reached after
the re-imposition of NPIs. This implies that initial restrictions, such as

Fig. 4 | Rt estimated from both the Birth Death Skyline (BDSKY) and EpiFilter
methods for HongKong. Titles indicate the sampling scheme used in panelsA–D.
The light-shaded area represents the 95% highest posterior density interval. The
solid line represents themeanRt estimatewith EpiFilter in green and BDSKY in blue.
The black line plots the number of cases. We refer to Fig. 1 for a brief description of

key events 1–3. The Jensen Shannon Distance (JSD) is given in E and ranks the
sampling strategies based on how similar the BDSKY estimates under those stra-
tegies are to those derived from EpiFilter (smaller values are better). F provides the
pairwise JSD between the BDSKY estimates under different sampling strategies,
showing often appreciable difference among strategies.

Article https://doi.org/10.1038/s41467-022-32812-0

Nature Communications |         (2022) 13:5587 5



the suspension of commercial activities, were likely insufficient for
suppressing spread. Only after more stringent restrictions were
imposed didRt become sub-critical. However, there is no evidence of a
sharp decrease in Rt once restrictions were re-imposed, which may
suggest limited effectiveness. The unsampled sampling scheme again
showed themost divergence fromall other sampling schemes (Fig. 6F)
and the highest divergence from the case data estimate (Fig. 6E) with
the uniform and proportional sampling schemes showing the most
similarity. As such, applying no sampling strategy/opportunistic sam-
pling leads to, from the perspective of comparing to EpiFilter, themost
biased estimates.

Based on the proportional sampling scheme, which had the
lowest JSD (Fig. 7E) we infer a steady decline in rt which matches the
pattern seen with the Rt value (Fig. 7). The initial rt implied a 0.250
per day. Subsequently, the rt falls over the study period. rt falls below

0 after the re-imposition of NPIs declining at −0.030 per day by the
end of the study period. There is no evidence of any noticeable
declines in rt when interventions were introduced indicating that
they might not have significantly impacted the growth rate of P.1/
gamma. The unsampled sampling scheme was again most divergent
from other sampling schemes as well as from estimates derived from
EpiFilter with the uniform and reciprocal-proportional being most
similar.

Discussion
In this study, we applied phylodynamic methods to available SARS-
CoV-2 sequences fromHong Kong and the Amazonas state of Brazil to
infer their key epidemiological parameters and to compare the impact
that various sampling strategies have on the phylodynamic recon-
struction of these parameters.

Fig. 5 | rt estimated from both the Skygrowth and EpiFilter methods for Hong
Kong. Titles indicate the sampling scheme used in panels A–D. The light-shaded
area represents the 95%highest posterior density interval. The solid line represents
the mean rt estimate with EpiFilter in orange and Skygrowth in blue. The black line
refers to the number of cases. We refer to Fig. 1 for a brief description of key events

1–3. The Jensen Shannon Distance (JSD) is given in E and ranks the sampling stra-
tegies based on how similar the Skygrowth estimates under those strategies are to
those derived from EpiFilter (smaller values are better). F provides the pairwise JSD
between the Skygrowth estimates under different sampling strategies, showing
often appreciable difference among strategies.
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We estimated the basic reproductive number of SARS-CoV-2 in
Hong Kong to be 2.17 (95% CI = 1.43–2.83). This supports previous
estimates of the initial R0 in Hong Kong38,43 which estimated R0 to be
2.23 (95% CI = 1.47–3.42). For the Amazonas state in Brazil, we esti-
mated theR0 to be 3.67 (95%CI = 2.83 –4.48). Although the population
of Amazonas State may not be fully susceptible to P.1/Gamma14,44, this
should not affect the comparison among sampling schemes.We found
that R0 is robust to changes in sampling schemes (Fig. 3A, C).

For the Hong Kong dataset, the proportional sampling scheme
was superior to all other sampling schemes in estimating Rt. It suc-
cessfully predicted the initial super-critical Rt, its decline in response
to rapidNPIs, and subsequent increase anddecline during the second
wave of infections (Fig. 4B). This was in comparison to the uniform

sampling scheme, which provided the worst (largest) JSD (Fig. 4D)
and an Rt estimate that was largely insensitive to NPIs. The propor-
tional sampling scheme, alongside the uniform sampling scheme,
best estimated rt (Fig. 5B, C). In contrast, for the Amazonas dataset,
the uniform sampling scheme best estimated the Rt and rt (Fig. 6C)
whilst the proportional sampling scheme best captured rt (Fig. 7C).
It captured both its initial super-critical Rt and high rt alongside their
subsequent decline.

We found that estimates from all sampling schemes were distinct
from those obtained using the unsampled data and that on some
instances the sampling schemes were also appreciably different from
one another (see panel F in Figs. 4–7) with the uniform and reciprocal-
proportional sampling strategies being most similar. This highlights

Fig. 6 | Rt estimated from both the Birth Death Skyline (BDSKY) and EpiFilter
methods forAmazonas, Brazil.Titles indicate the sampling schemeused in panels
A–D. The light-shaded area represents the 95% highest posterior density interval.
The solid line represents the mean Rt estimate with EpiFilter in green and BDSKY in
blue. We refer to Fig. 2 for a brief description of key events, including 5 which
corresponds to the second lockdown. Event “a” corresponds to the suspension of
commercial activities in Manaus; event “b” corresponds to the resumption of

commercial activities in Manaus52. The Jensen Shannon Distance (JSD) is given in
panel E and ranks the sampling strategies based on how similar the BDSKY esti-
mates under those strategies are to those derived from EpiFilter (smaller values are
better). Panel F provides the pairwise JSD between the BDSKY estimates under
different sampling strategies, showing often appreciable difference among
strategies.
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how different sampling schemes can produce significantly differing
estimates of epidemiological parameters andunderscores the need for
considering sampling and its potential impact on estimations.

OurRt estimates are consistentwith previous estimates of Gamma
VOC’s transmissibility in Amazonas state14. This contrasted with the
unsampled data in which the rt increased at the end of the period
(Fig. 7A). This highlights that unlike R0, both Rt and rt are sensitive to
changes in sampling and that even related epidemiological parameters
like Rt and rt may require different sampling strategies to optimise
inferences.

Molecular clock dating of the Hong Kong and Amazonas dataset
has revealed that the date of origin is relatively robust to changes in
sampling schemes. For Hong Kong, SARS-CoV-2 likely emerged in
mid-December 2019∼5weeks before the first reported case on the 22
January 202038. The Amazonas dataset revealed that the date of the

common ancestor of the P.1 lineage emerged around late October
2020 to early November, ~5 weeks before the first reported case on
the 6th of December14, with all BCI’s overlapping for each sampling
strategy. Like the molecular clock dating, we found that the mole-
cular clock rate was robust to changes in sampling strategies in
both datasets with all sampling strategies having overlapped BCI’s
(Supplementary Table 2 and Supplementary Fig. 5). For the Hong
Kong dataset, its clock rate is comparable to early estimations of the
mean substitution rate per site per year of SARS-CoV-213. However,
the clock rate estimated for the Brazilian dataset is lower than the
initial 8.00 × 10−4 s/s/y which is used in investigating SARS-CoV-245

and that has been used in previous analyses of Gamma VOC46. This
initial estimation of evolutionary rate was estimated from genomic
data taken over a short time span at the beginning of the pandemic
introducing a time dependency bias. By using a more appropriate

Fig. 7 | rt estimated from both the Skygrowth and EpiFiltermethods for Ama-
zonas, Brazil. Titles indicate the sampling scheme used in panels A–D. The light-
shaded area represents the 95% highest posterior density interval. The solid line
represents the mean rt estimate with EpiFilter in orange and Skygrowth in blue. We
refer to Fig. 2 for a brief description of key events, including 5which corresponds to
the second lockdown. Event “a” corresponds to the suspension of commercial

activities in Manaus; event “b” corresponds to the resumption of commercial
activities in Manaus52. The Jensen Shannon Distance (JSD) is given in panel E and
ranks the sampling strategies based on how similar the Skygrowth estimates under
those strategies are to thosederived from EpiFilter (smaller values arebetter). Panel
F provides the pairwise JSD between the Skygrowth estimates under different
sampling strategies, showing often appreciable difference among strategies.
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clock rate it can improve tree height and rooting resulting in more
robust parameter estimations47.

Treating sampling times as uninformative has been shown to be
inferior to including them as dependent on effective population size
and other parameters by several previous studies30,31,34,48. Although
these studies did not consider the estimation of epidemiological
parameters, they highlight the potential of systematic biases being
introduced into the phylodynamic reconstruction by not using a
sampling scheme or by assuming an incorrectmodel for how sampling
schemes introduce information. This was supported by our results as
phylodynamic inferences with no sampling strategy applied had the
poorest overall performance for both Hong Kong and the Amazonas
state. This implies that sampling design choices can significantly
impact phylodynamic reconstruction, and that exploration of sam-
pling strategies is needed to obtain the most reliable estimates of key
epidemiological parameters.

Althoughour results provide rigorous insight into thedynamicsof
SARS-CoV-2 and the impact of sampling strategies in the Amazonas
state and Hong Kong, there are limitations. The Skygrowth and BDSKY
models do not explicitly consider imports into their respective
regions. This is particularly relevant for Hong Kong as most initial
sequences from the region were sequenced from importation events49

which can introduce error into parameter estimation50. However, as
the epidemic expanded, more infections were attributable to auto-
chthonous transmission49, and the risk of error introduced by impor-
tation events decreased. Moreover, while sampling strategies can
account for temporal variations in genomic sampling fractions there is
currently no way to account for non-random sampling approaches in
either the BDSKY or Skygrowth models51. It is unclear how network-
based sampling may affect parameter estimates obtained through
these models44 presenting a key challenge in molecular and genetic
epidemiology. Spatial heterogeneities were also not explored within
this work. This represents the next key step in understanding the
impact of sampling as spatial sampling schemes would allow the
reconstruction of the dispersal dynamics and estimation of epidemic
overdispersion (k), a key epidemiological parameter.

Finally, we compared our phylodynamic estimates against epi-
demiological inferences derived from incident case data from Hong
Kong and Amazonas state, two settings with very different diagnostic
capacity. While Hong Kong has high quality case data with a high
testing rate39, there is a large underreporting of SARS-CoV-2 cases in
the Amazonas state52,53. Future epidemiological modelling work is
needed to compare parameter estimates obtained from case data,
death data, and excess death data across different settings. This will
improve the benchmarks we use to compare sequence-based esti-
mates against.

This work has highlighted the impact and importance that
applying temporal sampling strategies can have on phylodynamic
reconstruction. Although more genomic datasets from a variety of
countries and regions with different sampling intensities and propor-
tions are needed to create a more generalisable sampling framework
and to dissect any potential cofounders, this study has demonstrated
that genomic datasets that commonly feature opportunistic sampling
(i.e., there is no deliberate strategy design) can introduce significant
uncertainty and biases in the estimation of epidemiological para-
meters. This finding signifies the need for more targeted attempts at
performing genomic surveillance and epidemic analyses particularly in
resource-poor settings with limited genomic capability.

Methods
Empirical estimation of the reproduction number, time-varying
effective reproduction number, and growth rate
Epidemiological datasets. Two sources of data from the Amazonas
state, Brazil, and one source of data from Hong Kong were used to
calculate empirical epidemiological parameters. For the Amazonas

state, case data from the SIVEP-Gripe (Sistema de Informação de Vig-
ilância Epidemiológica da Gripe) SARI (severe acute respiratory infec-
tions) database from the 30 November 2020 up to 7 February 2021
were used. Here we were interested in cases caused by the Gamma
VOC first detected in Manaus14. The number of Gamma cases was
calculated by using the proportion of Gamma viral sequences uploa-
ded to GISAID within each week (Supplementary Fig. 1). For Hong
Kong, all case data were extracted from the Centre of Health Protec-
tion, Department of Health, the Government of the Hong Kong Special
Administrative region up to the 7 May 2020. Owing to lags in the
development of detectable viral loads, symptom onset and sub-
sequent testing54; the date on which each case was recorded was left
shifted by 5 days within our models55 to account for these delays in
both datasets.

Basic reproduction number. The R0 parameter was estimated using a
time series of confirmed SARS-CoV-2 cases from both Hong Kong and
the Amazonas state. To avoid the impact of NPIs, only data up to the
banning ofmass gathering inHongKong (27March 2020) anduntil the
imposition of strict restrictions in theAmazonas state (12 January 2021)
were used. We estimated R0 from weekly counts of confirmed cases
using maximum likelihood methods. The weekly case counts were
assumed to be Poisson distributed and were fitted to a closed
Susceptible-Exposed-Infectious-Recovered (SEIR) model (Eq. (1)) by
maximising the likelihood of observing the data given the model
parameters (Table 2). Subsequently, the log-likelihood was used to
calculate the R0 by fitting β, the effective contact rate.

λ=
βI
N
dS
dt

= � λS
dE
dt

= λS� γE
dI
dt

= γE � σI
dR
dt

= σI ð1Þ

Togenerate∼95%confidence intervals (CIs) forR0, non-parametric
bootstrapping was used with 1000 iterations.

Time-varying effective reproduction number. To estimate Rt from
case time series data the EpiFilter method56 was used. EpiFilter
describes transmission using a renewal model; a general and popular
framework that can be applied to infer the dynamics of numerous
infectious diseases from case incidence57. This model describes how
the number of new cases (incidence) at time t depends on Rt at that
specified time point and the past incidence, which is summarised by
the cumulative number of cases up to each time point weighted
by the generation time distribution. EpiFilter integrates both Baye-
sian forward and backward recursive smoothing. This improves
Rt estimates by leveraging the benefits of two of the most popular Rt

Table 2 | Parameter estimates used within the deterministic
SEIR model

Parameter Description Value (source)

R0 =βα Basic Reproduction Number Estimated

N Population of Hong Kong 7,481,800 persons80

Population of Amazonas state 4,207,714 persons81

β Effective Contact Rate Estimated

α Infectious Period 0.07 per day82

λ Force of Infection Estimated

γ Progression from E to I 5.26 per day83

σ Progression from I to R 14.3 per day82

S Estimated number of Susceptibles Estimated

E Estimated number of Exposed Estimated

I Number of Infected Weekly case counts

R Estimated number of Recovered Estimated
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estimation approaches: EpiEstim58 and theWallinga-Teunismethod59.
EpiFilterminimises themean squared error in estimation and reduces
dependence on prior assumptions, making it a suitable candidate for
deriving reference estimates. We use these to benchmark estimates
independently obtained from genomic data. We assume the gen-
eration time distribution is well approximated by the serial interval
(SI) distribution58, which describes the times between symptom
onsets between an infector–infectee pair. We describe the specific SI
distributions that we used in the next subsection.

Growth rate. AfterRthas been inferred, theWallinga-Lipsitch equation
for a gammadistributedgeneration timedistribution (Eq. (2))was used
to estimate the exponential epidemic rt60. The SI for Hong Kong was
derived from a systematic review and meta-analysis61 and a study
exploring SI in Brazil was used for the Amazonas datasets62. The SI was
assumed to be gamma distributed. The gamma distribution is repre-
sented by gamma (ε, γ) with ε and γ being the shape and scale para-
meters respectively.

rt = ε ðR
1
γ

� �
t � 1Þ ð2Þ

SARS-CoV-2 Brazilian Gamma VOC and Hong Kong datasets
All high-quality (<1% N, or non-identified nucleotide), complete
(>29 kb) SARS-CoV-2 genomes were downloaded from GISAID23 for
HongKong (up to 7May 2020) and theAmazonas state, Brazil (from30
November 2020up to 7 February 2021). Using theAccession ID of each
sequence, all sequences were screened and only sequences previously
analysed and published in PubMed, MedRxiv, BioRxiv, virological, or
Preprint repositories were selected for subsequent analysis. For both
datasets, sequence alignment was conducted using MAFFTV.763. The
first 130 base pairs (bp) and last 50bps of the aligned sequences were
trimmed to remove potential sequencing artefacts in line with the
Nextstrain protocol64. Both datasets were then processed using the
Nextclade pipeline for quality control (https://clades.nextstrain.org/).
Briefly, the Nextclade pipeline examines the completeness, diver-
gence, and ambiguity of bases in each genetic sequence. Only
sequences deemed ‘good’ by the Nextclade pipeline were selected.
Subsequently, all sequences were screened for identity and in the case
of identical sequences, for those with the same location, collection
date, only one such isolate was used. Moreover, PANGO lineage clas-
sification was conducted using the Pangolin22 (v2.3.3) software tool
(http://pangolin.cog-uk.io) on sequences from theAmazonas state and
only those with the designated P.1/Gamma lineage were selected
(Supplementary Figure 1).

Maximum Likelihood tree reconstruction
Maximum likelihood phylogenetic trees were reconstructed using
IQTREE265 for both datasets. A TIM2 model of nucleotide substitution
with empirical base frequencies and a proportion of invariant sites was
used as selected for by the ModelFinder application66 for the Hong
Kong dataset. For the Brazilian dataset, a TN model of nucleotide
substitution67 with empirical base frequencies was selected for. To
assess branch support, the approximate likelihood-ratio test based on
the Shimodaira–Hasegawa-like procedure with 1,000 replicates68,
was used.

Root-to-tip regression
Toexplore the temporal structureof both theBrazilian andHongKong
dataset, TempEst v.1.5.369 was used to regress the root-to-tip genetic
distances against sampling dates (yyyy-mm-dd). The ‘best-fitting’ root
for the phylogeny was found bymaximising the R2 value of the root-to-
tip regression (Supplementary Fig. 2). Several sequences showed
incongruent genetic diversity and were discarded from subsequent
analyses. This resulted in a final dataset of N = 117 Hong Kong

sequences and N = 196 Brazilian sequences. The gradient of the slopes
(clock rates) provided by TempEst were used to inform the clock prior
in the phylodynamic analysis.

Subsampling for analysis
Four retrospective sampling schemes were used to select a subsample
of Amazonas and Hong Kong sequences. Each sampling period was
broken up into weeks with each week being used as an interval
according to a temporal sampling scheme (without replacement). This
temporal sampling schemewasbasedon thenumber of reported cases
of SARS-CoV-2.

The temporal sampling schemes that we explored were:
• No sampling strategy applied: all sequences were included

without a sampling strategy applied (equivalent to opportunistic
sampling).

• Proportional sampling: weeks are chosen with a probability
proportional to the value of the number of incident cases in each
epi-week.

• Uniform sampling: all weeks have equal probability.
• Reciprocal-proportional sampling: weeks are chosen with a

probability proportional to the reciprocal of the incident
number of cases in each epi-week.

These sampling schemes were inspired by those recommended
by the WHO for practical use in different settings and scenarios70.
Proportional sampling is equivalent to representative sampling, uni-
form sampling is equivalent to fixed sampling whilst the unsampled
data includes all sampled sequences. Reciprocal-proportional sam-
pling is not commonly applied in practice and was used as a control
within this study.

Bayesian evolutionary analysis
Date molecular clock phylogenies were inferred for all sampling
strategies applied to the Amazonas and Hong Kong dataset using
BEAST v1.10.471 with BEAGLE library v3.1.072 for accelerated like-
lihood evaluation. For both the Amazonas andHong Kong datasets, a
HKY substitution model with gamma-distributed rate variation
among sites and four rate categories was used to account for among-
site rate variation73. A strict clockmolecular clockmodel was chosen.
Both the Amazonas and Hong Kong dataset were analysed under a
flexible non-parametric skygrid tree prior74. Four independent
MCMC chains were run for both datasets. For the Amazonas dataset,
each MCMC chain consisted of 250,000,000 steps with sampling
every 50,000 steps. Meanwhile, for the Hong Kong dataset, each
MCMC chain consisted of 200,000,000 steps with sampling every
40,000 steps. For both datasets, the four independent MCMC runs
were combined using LogCombiner v1.10.471. Subsequently, 10% of
all trees were discarded as burn in, and the effective sample size of
parameter estimates were evaluated using TRACER v1.7.275. An
effective sample size of over 200 was obtained for all parameters.
Maximum clade credibility (MCC) trees were summarised using Tree
Annotator71.

Phylodynamic reconstruction
Estimation of the basic and time-varying effective reproduction
numbers. The Bayesian birth-death skyline (BDSKY) model29 imple-
mented within BEAST 2 v2.6.576 was applied to estimate the time-
varying transmissibility parameter Rt (Table 3). An HKY substitution
model with a gamma-distributed rate variation among sites and four
rate categories73 was used alongside a strict molecular clock model.
The selected number of intervals for both datasets was 5, representing
Rt changing every 2.5 weeks for the Hong Kong datasets and every
2 weeks for the Brazilian datasets, with equidistant intervals per step.
An exponential distribution was used with a mean of 36.5 per year for
the rate of becoming infectious, assuming ameandurationof infection
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of 10 days15. A uniform distribution prior was used for the sampling
proportion, which models changes in case ascertainment. Four inde-
pendent MCMC chains were run for 50 million MCMC steps with
sampling every 5000 steps for each dataset. These MCMC runs were
combined using LogCombiner v2.6.5.76 and the effective sample size of
parameter estimates evaluated using TRACER v1.7.275. We obtained an
effective sample size above 200 for all parameters (indicating con-
vergence) and plotted all results using the bdskytools R package
(https://github.com/laduplessis/bdskytools).

Estimation of growth rates. For each dataset, a scaled proxy for rtwas
obtained from the Skygrowthmethod77 within R. Skygrowth uses a non-
parametric Bayesian approach to apply a first-order autoregressive
stochastic process on the growth rate of the effective population size.
The MCMC chains were run for one million iterations for each dataset
on their MCC tree with an Exponential (10−5) prior on the smoothing
parameter. The Skygrowthmodelwasparameterised assuming that the
effective population size of SARS-COV-2 could change every two
weeks. To facilitate a comparison of the scaled proxy for rt estimated
by Skygrowth and exponential rt estimated by EpiFilter, the rt estimated
by the Skygrowthmethodwas rescaled to the exponential growth rate.
This was achieved by adding a gamma rate variable to the scaled proxy
for rt, which assumed a mean duration of infection of 10 days15, to
calculate Rt. Subsequently, the Wallinga-Lipsitch equation (Eq. 2) was
used to convert Rt into the exponential growth rate60.

Comparing parameter estimates from genetic and epidemiolo-
gical data
To compare estimates derived from epidemiological and genetic
data the Jensen-Shannon divergence (DJS)

78, which measures the
similarity between two probability mass functions (PMFs), was
applied. The DJS offers a formal information theoretic evaluation of
distributions and is more robust than comparing Bayesian credible
intervals (BCIs) since it considers both the shape and spread of a
given distribution. The DJS is a symmetric and smoothed version of
the Kullback-Leibler divergence (DKL) and is commonly used in the
fields of machine learning and bioinformatics. The DKL between two
PMFs, P and Q, is defined in Eq. (3) below79, with x spanning the
common domain of those PMFs.

DKL P∣∣Mð Þ=
X
x

P xð Þlog PðxÞ
QðxÞ

� �
ð3Þ

To calculate the PMF for each epidemiological parameter, the
cumulative probability density function was extracted for eachmodel,
converted to a probability density function and a discretisation pro-
cedure was applied to generate the associated PMF.

The Jensen-Shannon distance (JSD) is a metric which takes the
square-root of the total DJS and is the metric that we used to compare

parameter estimations from differing sampling strategies. The JSD can
be calculated using Eq. 4 with P andQ representing the two probability
distributions and DKL as the KL divergence. A smaller JSD metric indi-
cates that two probability distributions (P andQ) aremore similar with
a Jensen-Shannon distance of 0 uniquely indicating that both dis-
tributions are equivalent. Themean JSDwas taken over all intervals for
the BDSKY and Skygrowthmodels to obtain an overall measure of the
level of estimated similarity across the epidemic trajectory. We do not
expect the JSD to perfectly alignwith the 95%highest posterior density
interval if the shapes of distributions from different schemes are very
different.

JSD P∣∣Qð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
D

KL
P∣∣Mð Þ+ 1

2
D

KL
Q∣∣Mð Þ

r
whereM =

1
2
ðP +QÞ ð4Þ

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All genomic data can be found here: https://www.gisaid.org/ (GISAID
Acknowledgements in Supplementary Table 4). Hong Kong case data
was taken from: https://www.chp.gov.hk/. Brazilian case counts were
taken from the SIVEP-GRIPE database. Accession numbers of sequen-
ces used can be found within Supplementary Tables 2 and 3.

Code availability
Code reproducing the analyses presented in this study are
freely available at https://github.com/rhysinward/Phylodynamic-
Subsampling.
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