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scRNA-seq of gastric tumor shows complex
intercellular interactionwith an alternative T
cell exhaustion trajectory

Keyong Sun1,7, Runda Xu 1,7, Fuhai Ma2,3,7, Naixue Yang1,4,7, Yang Li 2,7,
XiaofengSun1,5, Peng Jin2,WenzheKang2, Lemei Jia1, JianpingXiong2, HaitaoHu2,
Yantao Tian 2 & Xun Lan 1,4,5,6

The tumormicroenvironment (TME) in gastric cancer (GC) has been shown to
be important for tumor control but the specific characteristics for GC are not
fully appreciated. We generated an atlas of 166,533 cells from 10 GC patients
with matched paratumor tissues and blood. Our results show tumor-
associated stromal cells (TASCs) have upregulated activity of Wnt signaling
and angiogenesis, and are negatively correlated with survival. Tumor-
associated macrophages and LAMP3+ DCs are involved in mediating T cell
activity and form intercellular interaction hubs with TASCs. Clonotype and
trajectory analysis demonstrates that Tc17 (IL-17+CD8+ T cells) originate from
tissue-resident memory T cells and can subsequently differentiate into
exhausted T cells, suggesting an alternative pathway for T cell exhaustion. Our
results indicate that IL17+ cells may promote tumor progression through IL17,
IL22, and IL26 signaling, highlighting the possibility of targeting IL17+ cells and
associated signaling pathways as a therapeutic strategy to treat GC.

Gastric cancer (GC), comprising many molecular subtypes, is the fifth
most common malignancy worldwide, but the third leading cause of
cancer-related mortality, with an estimated 783,000 deaths in 20181,2.
While GC is highly treatable at the early primary stage, most patients
are detected at the advanced ormetastatic stage with a relatively poor
prognosis. Immunotherapy, especially antibodies targeting PD-1 and
CTLA4, has caused a paradigm shift for the treatment of various cancer
types, such asmelanoma, but the response rate in GC is relatively low3.
Many previous studies suggested that the intertumoral heterogeneity
and individual variation of cellular composition were associated with
survival4, highlighting an unmet need to dissect the complex and
dynamic biological characteristics of the tumor microenvironment
(TME) to exploit advanced interventions to combat it.

Recently, single-cell RNA-sequencing (scRNA-seq) has been suc-
cessfully used to decipher the ecosystems of GC, to dissect and dis-
cover the underlying tumor biology of interest5–10. For example, Wang
et al. and Zhang et al., indicated the transcriptional heterogeneity and
lineage diversity in primary and metastatic gastric adenocarcinoma,
and provided signature genes for diagnosis and prognosis6,7. Zhang
et al. and Yin et al., delineated the vast cellular phenotypic remodeling
during GC occurrence and development, and also identified makers
for early GC detection5,9. Kumar et al. showed an increased plasma cell
proportions in diffuse-type gastric tumors and studied the INHBA-FAP
axis in cancer-associated fibroblasts11.

In this work, we apply scRNA-seq to map the transcriptional
landscape of immune, stromal, and epithelial compartments in
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tumors, adjacent normal tissues, and matched peripheral blood from
10 GC patients, coupled with T/B cell receptor (TCR/BCR) repertoire
profiling. Our results indicate that the stromal cells in the tumor tissue
undergo a significant transformation and exhibit extensive tumor-
promoting features. Cell-cell communication analysis shows that
TASCs, TAMs, and LAMP3+DCs are important mediators of complex
cellular interaction in the TME. Coupled with TCR clonotype infor-
mation and trajectory analysis, we show that Tc17 in GC possibly ori-
ginate from the tissue-resident memory population and can
subsequently differentiate into an exhausted state, which suggests an
alternative pathway for T cell exhaustion.Our results indicate that IL17+

cells and pathways mediating IL17+ cells communication with tumor
cells are potential therapeutic targets for treating IL17+ positive gastric
cancer.

Results
A single-cell RNA-seq atlas of gastric cancer microenvironment
To explore the cell type diversity that participates in gastric cancer
(GC) at single-cell resolution, we generated scRNA-seq profiles of all

viable cells isolated from the tumor tissues of ten primary GC patients
without treatment before sampling, as well as from matched periph-
eral blood and adjacent normal tissue (Fig. 1a and Supplementary
Fig. 1a, b and Supplementary Data 1). Meanwhile, we also performed
bulkwhole-exome sequencing (WES) and bulk RNA-sequencing for the
same samples with a few exceptions.

Wemerged expression profiles across all tissues and patients and
retained 166,533 cells after quality control (Fig. 1b), resulting in a
comprehensive atlas encompassing the entire GC ecosystem. 48.3%,
37.2%, and 14.5% of these cells originated from tumor, paratumor, and
blood tissues, respectively (Supplementary Fig. 1d). The scRNA-seq
profiles were partitioned into 12 broad lineages of the immune, stro-
mal, and epithelial compartments (Fig. 1b–d), including T cells, NK
cells, B cells, plasma cells, myeloid cells, mast cells, erythrocytes,
endothelial cells, fibroblast cells, smooth muscle cells (SMCs), epi-
thelial cells, and endocrine cells. Nearly every type of cell was found in
all patients, with the exception of endocrine cells, the majority of
which originated from patients GC07, GC08 and GC10 (Fig. 1e and
Supplementary Fig. 1e). Coupled with the scRNA-seq profiling, we
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Fig. 1 | Characterization of the gastric cancer tumor microenvironment by
scRNA-seq. a Workflow depicting sample processing and scRNA sequencing of
gastric cancer (GC), peripheral blood, and paratumor cells and subsequent analy-
tical methods. b Uniform Manifold Approximation and Projection (UMAP) of
166,533 single cells from 10 patients, colored by major cell types. c Heatmap
showing the differentially expressed genes (rows) across major cell types (col-
umns), with canonical marker genes indicated. d Dot plots showing marker genes

for clusters in Fig. 1b. Dot size indicates the proportion of expressing cells, colored
by standardized expression levels. e Fractions of cell typesdetected in each sample,
colored as in Fig. 1b. GC01–GC10 represent 10 GC patients; B/P/T represent cells
isolated from blood, paratumor, and tumor tissues, respectively; TIL represents
tumor-infiltrating lymphocyte; GC03T-R1/R2 and GC10P-R1/R2 represent two
technical replicates; GC08T-S1/S2 represent two different sites of the same tumor
tissue. Source data are provided as a Source Data file.
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generated paired TCR and BCR (T/B cell receptor) sequencing data to
investigate the state transitions within different T/B cell subtypes, as
discussed in later sections (Supplementary Fig. 1f).

Malignant cells in GC exhibit extensive heterogeneity
The cells defined as epithelial cells were extracted and re-clustered. To
distinguish tumor cells and normal cells, we firstly calculated tumor
scores based on the expression of signature genes of tumor and nor-
mal tissue using method described by Zhang et al.7 (Fig. 2a). Secondly,
we calculated copy number variants (CNV) scores of cells by

inferCNV12, an algorithm to estimate the copy number changes in the
genome with scRNA-seq data (Fig. 2b and Supplementary Fig. 2b).
Finally, we called tumor-specific mutations for each patient by com-
paring the WES data of tumor tissue versus that of paratumor tissue
and then, we searched the tumor-specific mutations in the matching
single-cell data. Such mutations were enriched in 4 clusters of epi-
thelial cells (Fig. 2c, Supplementary Fig. 2c, see Methods for details).

According to these results, as well as the expression patterns of
cell type specific genes (Fig. 2f and Supplementary Table 1), we finally
defined four main cluster types, including normal clusters, tumor
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clusters, intestinal metaplasia (IM) clusters, and an uncertain cluster
(Fig. 2d). IM_enterocyte and IM_goblet were considered as pre-
cancerous clusters as they showed neither high CNV scores nor
enrichment of tumor-specific mutations. The tissue enrichment level
of each cluster of cells agreed with this definition (Supplementary
Fig. 2d). Besides, we found a small bunch of cells closed to goblet cells
expressed several marker genes of tuft cells (Supplementary Fig. 2a).
The cell number was so small that these cells could not be isolated and
thus clustered into IM_enterocyte.

Each normal cluster contained cells from multiple patients, sug-
gesting the batch effect did not affect the clustering significantly,
whereas each tumor cluster was made of cells from a single patient,
displaying high level of intertumoral heterogeneity (Supplementary
Fig. 13f). Tumor cells from GC08 formed two distinct tumor clusters,
which implied intratumoral heterogeneity. For some patients, we got
very few epithelial cells. We note that only a small number of epithelial
cells were detected in several patients. A possible reason was that
gastric epithelial cells were more vulnerable than other cell types in
our experiment, as we observed much higher mitochondrial gene
percentages in epithelial cells (Supplementary Fig. 14f).

To validate the tumor cell clusters identified above, we exam-
ined if similar gene expression patterns can be observed in the bulk
RNA-seq data from the same patient. Because each tumor cluster
consisted of cells from a single patient, we identified the differen-
tially expressed genes (DEGs) from scRNA-seq for each patient by
comparing the tumor cell cluster vs. normal cell clusters. Similarly,
we identified DEGs from bulk RNA-seq for the same patient by
comparing the tumor tissue vs. the paratumor tissue. We took the
intersection of the two sets of DEGs and filtered themby p-value, log
fold change and cellular detection rate outside the epithelial cluster
(see Methods). The remaining DEGs showed high correlations in
expression between scRNA-seq and bulk RNA seq data (Fig. 2e),
indicating that the tumor cell clusters identified using the scRNA-
seq data exhibited gene expression pattern close to that of the bulk
tumor tissue.

Next, we investigated the gene expression patterns of the
tumor and precancerous clusters and found a widely altered
expressions for claudin genes, which were responsible for tight
junctions. CLDN3, CLDN4 and CLDN7 were expressed at an abnor-
mally high level in tumor cells and IM cells (Fig. 2f). These genes
were commonly expressed in intestines and esophagus mucosa,
according to Genotype-Tissue Expression (GTEx) data13 (Supple-
mentary Fig. 2e). On the contrary, CLDN18 was expressed by normal
gastric cells and downregulated in tumor cells. These observations
may due to irregular cell differentiations that are common during
the development of gastric cancer.

Correlation of the mean expression of highly variable genes
showed that Tumor_GC07 and Tumor GC10 were close to each other
(Fig. 2g). They shared some tumor-specific DEGs commonly expressed
by esophagus mucosa according to GTEx data (Fig. 2h, i). This obser-
vation might be related to the tumor site — Tumor_GC07 and

Tumor_GC10 were both from the cardias (Supplementary Data 1).
However, these genes were not expressed by gastroesophageal
junctions in GTEx data. DEGs between Tumor_GC08_1 and
Tumor_GC08_2 showed a widely down-regulation of metallothionein
genes in the latter (Supplementary Fig. 2f). These genes were expres-
sed by normal cells and downregulated in tumor clusters except
Tumor_GC08_1 (Fig. 2j, k). Meanwhile, Tumor_GC08_1 showed lower
enrichment of tumor-specific mutations than Tumor_GC08_2 (Sup-
plementary Fig. 2b). Our result suggested that Tumor_GC08_1 was
likely at a less advanced stage than Tumor_GC08_2 and other tumor
clusters, highlighting intratumoral heterogeneity.

Identifying potential regulatory factors driving intestinal
metaplasia
To better evaluate the IM levels of the patients, we calculated goblet
scores and enterocyte scores for scRNA clusters and bulk data
(Fig. 2l, m) using cell type signature genes (Supplementary Table 1).
GC08 and GC09 showed high levels of IM in both tumor samples and
paratumor samples. Although the pathological classification of
tumors from GC07 and GC10 were intestinal type and mixed type,
respectively (Supplementary Data 1), both tumors did not show
obvious expression of intestinal genes.

CDX2 is considered as themaster transcription factor for IM14,15. To
search genes associated with CDX2 in a robust manner, we combined
our two datasets as well as the Stomach Adenocarcinoma (STAD)
dataset of The Cancer Genome Atlas (TCGA)16 to find genes that are
correlated with CDX2 in expression. The Spearman’s rank correlation
coefficients from three datasets were multiplied together and the
genes were filtered by a low cellular detection rate outside epithelial
cells in scRNA-seq to avoid confounding effect from other cell types
(see Methods). Genes highly correlated with CDX2 included known
CDX2 targets, such as,GUCY2C, CDH17, SI and GPA3317,18 (Fig. 2n). CDX1
was another homeobox gene expressed in distal intestine and could
induce IM19,20; SOX2 was reported to be responsible for gastric speci-
fication and could interact with CDX2 at protein level21,22.

In addition to providing potential CDX2 targets, we also
examined upstream regulatory TFs of CDX2 (shown in red in Fig. 2n)
in epithelial cells by applying SCENIC, which predicts downstream
targets of TFs based on gene expression and enrichment of TF
motifs23. HNF4A was previously reported to regulate CDX2 in the
presence of GATA6, TCF4 and β-catenin24, while the function of
HOXA13, NR5A2 and NR1I2 in the regulation of CDX2 needed further
study. We conducted overexpression experiments with gastric
cancer cell lines and found that HOXA13 could upregulate CDX2 in
SGC-7901 cells but not in MKN-28 cells (Supplementary Fig. 3b, c).
Meanwhile, the overexpression of CDX2 showed varying degrees of
upregulation of HNF4A, HOXA13, NR5A2, NR1I2 and CDX1 and elon-
gated the shape of cells (Supplementary Fig. 2d–f). According to
these results, HOXA13 and CDX2 might form a positive feedback
loop under certain circumstances. The underlying molecular
mechanism deserves further study.

Fig. 2 | Profiling the epithelial cells ingastric cancer at single-cell level.UMAP of
epithelial cells, colored by: a tumor score; b inferred CNV score; c the number of
mutations. d UMAP of epithelial cells. Clusters are labeled with inferred cell
types. GMC basal gland mucous cell, PMC pit mucous cell, IM intestinal meta-
plasia. e Scatter plot showing high correlations between the log2 fold change of
DEGs from bulk RNA-seq (tumor vs paratumor) and scRNA-seq (tumor cluster vs
normal/IM cluster). f Dot plot of marker genes for epithelial cell clusters. Dot
size indicates the proportion of expressing cells, colored by standardized
expression levels. Genes in red color indicated low cellular detection rates
outside epithelial cells. g Heatmap showing the Pearson correlation between
epithelial cell clusters. Violin plot showing the expression of LYPD2, KRT7 and
KRT17 in the scRNA-seq dataset (h) and gastrointestinal tract samples from
GTEx dataset (i). jDot plot showing expression levels of metallothionein-related

genes. Dot size indicates the proportion of expressing cells, colored by stan-
dardized expression levels. Genes in red color indicated low cellular detection
rates outside epithelial cells. k Boxplot showing metallothionein score in bulk
RNA-seq dataset (left; two-sided paired t-test) and TCGA-STAD dataset (right;
two-sided Wilcoxon rank-sum test). For all boxplots in this paper: box, inter-
quartile range (IQR); horizontal line, median; whiskers, most extreme values
within ±1.5 × IQR. l Violin plot showing the goblet scores (top) and enterocyte
scores (bottom). m Bar plot showing the goblet and enterocyte scores in the
bulk RNA-seq dataset. n Heatmap showing the combined correlation of CDX2-
associated genes by taking the product of correlation coefficients generated
from our scRNA-seq, bulk RNA-seq, and the bulk RNA-seq from TCGA-STAD.
Genes in red were predicted upstream regulators of CDX2. Source data are
provided as a Source Data file.
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The stromal compartment underwent substantial remodeling
in GC
To decipher the function of stromal cells in the TME of GC, we re-
clustered all stromal cells and found a clear separation between
paratumor and tumor tissue, indicating that stromal cells in the TME
have undergone global transcriptomic changes from those in para-
tumor tissue (Fig. 3a). We then grouped these stromal cells into 12
distinct clusters, of which Endo_1, Fib_1, and SMC_1 were pre-
dominantly enriched in tumor tissues (Fig. 3b and Supplementary
Fig. 4a). Interestingly, stromal cells in paratumor had greater hetero-
geneity than those from tumors (Supplementary Fig. 4b), implying

stromal cells likely have more diverse functions under normal phy-
siological conditions but become specialized within the TME.

Notably, we found endothelial cells in stomach expressed major
histocompatibility complex (MHC) class II genes such as HLA-DRA and
HLA-DRB5 (Fig. 3c), which was confirmed by multicolor immunohis-
tochemistry (IHC) staining on tumor sections from GC patients
(Fig. 3d). Moreover, we found that Endo_1 featured downregulated
MHC class II genes (Fig. 3f), indicating that the intrinsic antigen pre-
sentation function of Endo_1 was limited. We further performed flow
cytometry on nine additional GC patient samples, which showed the
fraction of MHC class II+ endothelium in paratumors was higher than
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that in tumors (p <0.001, Student’s paired t test) (Fig. 3g and Supple-
mentary Fig. 4c), consistent with the observation in scRNA-seq data.

Both Endo_1 and Fib_1 expressed fibroblast activation protein
(FAP), a classical cancer-associated fibroblast (CAF) marker. Similarly,
we performedmulticolor IHC staining to validate the presence of FAP+

fibroblast and endothelial cells in tumors (Fig. 3e and Supplementary
Fig. 4d). Fib_1 also expressed others CAF markers, such as MMP3 and
MMP11, and inflammation-associated fibroblast markers (IL11, IL24)
that promote carcinogenesis25 (Fig. 3c and Supplementary Fig. 4g).
Genes in the Wnt signaling pathway such as, WNT2 and WNT5A, were
upregulated in tumor fibroblasts while SFRP1, an inhibitor of Wnt sig-
naling was downregulated (Fig. 3i). These genes also showed similar
expression patterns in TCGA-STAD dataset (Fig. 3j). Note that these
three genes were expressed almost exclusively by fibroblasts (Sup-
plementary Fig. 4e).

Besides, Fib_1 cells exhibited upregulation of the TWIST1-PRRX1-
TNC positive feedback pathway, which is known to promote the acti-
vation and expansion of CAFs in the TME26. Meanwhile, bone mor-
phogenetic protein 1 (BMP1) and ANGPT2, which respectively facilitate
tumor growth and angiogenesis, were expressed at significantly higher
levels in SMC_1. IHC results validated that the protein expression of
FAP, BMP1, WNT5A were upregulated in tumor (Fig. 3h). Hereafter, we
defined cells in the three tumor–enriched cell clusters, Endo_1, Fib_1,
and SMC_1 as tumor-associated stromal cells (TASCs).

Gene set variation analysis found that genes expressed in TASCs
exhibited distinct metabolic signatures and broadly participated in
cancer-related pathways (Supplementary Fig. 4f). Notably, angiogen-
esis pathway, one of the key signatures of tumor progression, was
significantly upregulated in TASCs (Fig. 3k). We then examined
potential associations between the fraction of TASCs and the survival
of patients in TCGA-STAD dataset. The cell type proportions in TCGA-
STAD were estimated by MuSiC27, an algorithm to implement bulk
tissue cell type deconvolution with scRNA-seq data. Remarkably, we
found that both of Fib_1 and SMC_1 was associated with a worse
prognosis (Fig. 3l), and individual genes such as INHBA and PLXDC1
specifically expressed by Fib_1 and/or SMC_1 also held potential
prognostic capability (Supplementary Fig. 4g, i). Kumar et al. reported
that recombinant INHBAwas sufficient to upregulate the expression of
FAP and collagen genes in normalfibroblast lines11. Besides, our in vitro
experiments also showed that CAFs-derived supernatants had the
capacity to support tumor growth for several gastric cancer cell lines
(Fig. 3m). In summary, TASCs underwent substantial remodeling and
displayed potential tumor-promoting features in GC.

Lipid-associated macrophages were enriched in tumors
Myeloid cells are highly heterogeneous immune cell populations and
provide major contributions to shaping the TME28. We identified eight
distinct clusters of myeloid cells in the GC TME, including two
monocyte clusters, two macrophage clusters, and four dendritic cell

(DCs) clusters (Fig. 4a, b). We classified the two blood-enriched clus-
ters of cells, Mono_CD14 and Mono_FCGR3A, as classical CD14+CD16-

and non-classicalCD14-CD16+ monocytes, respectively (Supplementary
Fig. 5a, b).

The Mφ_THBS1 showed comparable enrichment in both tumor
and paratumor tissues, and expressed IL1B, NLRP3, VEGFA and EREG,
similar to the pattern of resident tissue macrophages (RTMs) in colon
cancer characterized by Zhang et al.29. Meanwhile, Mφ_APOE cluster,
preferentially enriched in tumor tissue, was similar to tumor-
associated macrophages (TAMs) in hepatocellular carcinoma (HCC)
and the lipid-associated macrophages in adipose tissue by expressing
APOE, TREM2, C1QA, and GPNMB30,31. We further performedmulticolor
IHC staining to validate the presence of the two distinct macrophages
subtypes on tumor sections fromGC patients (Supplementary Fig. 5c).
Correlation analysis showed that the transcriptional profile of
Mφ_THBS1 was close to Mono_CD14, while Mφ_APOE was dissimilar to
any other clusters (Supplementary Fig. 5d). We found that Mφ_APOE
co-expressed features of both M1 and M2 macrophages32 (Fig. 4c),
indicating that the classical polarization model might not be suitable
for evaluating the state of Mφ_APOE in GC.

By dissecting the DEGs between Mφ_APOE and Mφ_THBS1, we
found that both lipid-related genes (APOE, TREM2) and lysosomal
genes (GRN, CD63, LAMP1) were highly expressed by Mφ_APOE, and
were specifically elevated in the tumor (Fig. 4d, e), indicating lipid-
associated and lysosome functions were key identifiers ofmacrophage
in GC (Fig. 4c). We next tried to identify the candidate regulators of
Mφ_APOE cells using SCENIC (Supplementary Fig. 5f). Of note, MITF,
NR1H3 and TFEC were specifically upregulated in Mφ_APOE, and the
AUCell scores of the regulons also exhibited similar patterns to the
expression of lipid-associated and lysosomal genes (Fig. 4f and Sup-
plementary Fig. 5g). MITF was previously found to be involved in
lysosomal biogenesis33. NR1H3, encoding liver X receptor alpha (LXR-
alpha), was reported to be involved in the regulation of APOE expres-
sion in macrophages and adipocytes34. To validate these findings, we
overexpressed TFEC and NR1H3 in THP-1 monocytes-derived macro-
phages, whichwas confirmed by western blot (Supplementary Fig. 5h).
Compared with control, we found TFEC/NR1H3 overexpression sig-
nificantly upregulated the expression of APOE and APOC1 in macro-
phage under different stimulations (Fig. 4g). In summary, our analysis
suggests that dysregulation in lipid and lysosome-associated functions
are hallmarks of TAMs in GC.

In addition to the three traditional DC cell types, cDC1_XCR1,
cDC2_CD1C, and pDC_LILRA4, we also found one non-classical DC cell
type, DC_LAMP3, characterized by the specific expression of LAMP3
and CCR7 (Fig. 4b). LAMP3+ DCs was also detected in hepatocellular
carcinoma and other cancer types30,35, and was capable of migrating
from tumor to lymph nodes (Fig. 4c). Based on the RNA velocity ana-
lysis, we proposed that LAMP3+ DCs were likely derived from cDC2
(Fig. 4h and Supplementary Fig. 5i). Although cDC2_CD1C cells

Fig. 3 | Dynamic restructuring of stromal cells in GC. UMAP of stromal cells
colored by cellular tissue origin (a) and inferred cell types (b). c Dot plots
showing marker genes across stromal cell subsets. Dot size indicates the pro-
portion of expressing cells, colored by standardized expression levels.
d–eMulticolor IHC staining with anti-CD31 and anti-HLA-DR antibodies showing
HLA-DR+ endothelial cells (d; n = 6), and with anti-CD31 and anti-FAP antibodies
showing FAP+ endothelial cells (e; n = 6). The scale bar represents 20 μm.
f Volcano plot showing differentially expressed genes of tumor–enriched
Endo_1 versus other endothelial cell types. Dotted lines indicate p-value < 1e−20
and |log2 (FC)| > 2 (two-sided Wilcoxon rank-sum test with Bonferroni correc-
tion). gDot plot showing the higher proportion ofMHC class II+ endothelial cells
in paratumors than that in tumors (n = 9) (two-sided paired t-test). h IHC
staining of FAP, BMP1 and WNT5A on formalin-fixed and paraffin-embedded
slides of independent biospecimens (n = 6). The scale bar represents 100 μm.
i Boxplot showing the expression of WNT-related genes in fibroblasts from

tumor (n = 1274) and those from paratumor (n = 1461). Each dot represents a
single cell (two-sided Wilcoxon rank-sum test). j Boxplot showing the expres-
sion of WNT-related genes in tumor (n = 375) and in normal tissue (n = 32). Each
dot represents a single sample (two-sidedWilcoxon rank-sum test). k Violin plot
showing the angiogenesis score in stromal and epithelial subsets. Normal.epi
and IM cells represent normal epithelial cells and intestinal metaplasia cells,
respectively (two-sided Wilcoxon rank-sum test). l Kaplan–Meier curves of
overall survival by stratifying the patients by high (top 40%) and low (bottom
40%) proportion of the respective cell type. High fractions of Fib_1 and SMC_1
are associated with poor prognosis in the TCGA-STAD cohort. HR (hazard ratio)
and p(HR) was calculated by a Cox’s proportional hazard model. m The super-
natants from GC CAFs were collected by centrifugation as conditioned medium
(CM), and incubated with six GC cell lines for 60 h. Cell survival was determined
by CCK-8 assay (n = 6). Data are presented asmean values ± SD (two-sided t test).
Source data are provided as a Source Data file.
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expressed extremely low levels of LAMP3 and CCR7, the unspliced
RNAs of LAMP3 and CCR7 were relatively high (Fig. 4I and Supple-
mentary Fig. 5j).

Tc17 cells are present in the TME of most gastric tumors
To dissect the diversity of T cells in GC, we further extracted and
reclustered T cells that had both scRNA-seq data and paired TCR

information into ten CD8+ clusters, six conventional CD4+ clusters
(CD4+ Tconv), three CD4+ Treg clusters, and one cycling cluster which
represented T cells currently progressing through the cell cycle
(Fig. 5a–c and Supplementary Fig. 6).

Both CD8_C1_LEF1 and CD4_C1_CCR7 clusters were found to
express naïve marker genes such as LEF1 and CCR7, indicating their
naïve state. In comparison, CD8_C2_CX3CR1 cells expressed genes
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associated with effector function (FCGR3A, FGFBP2). CD8_C3_GZMH
was characterized by high expression of cytotoxic genes (GZMK,
GZMH), and MHC-II genes (HLA-DRA, HLA-DRB5), which are recog-
nized as markers of T cell activation. The CD8_C4_GZMK cluster was
characterized by high expression of the GZMK, CD44, and CXCR4
genes, commonly associated with effector memory cells. We also
found a strong correlation between the transcriptional profiles of
CD8_C5_TOB1 and CD8_C6_GNLY (Supplementary Fig. 7a), both of
which were comprised of tissue-resident memory CD8+ T cells, but
can be clearly marked by the expression of TOB1/CXCR6/ANXA1,
and GNLY/XCL1/XCL2, respectively (Supplementary Fig. 6c). The
three CD4+ Tconv clusters, CD4_C2_LTB, CD4_C3_SLC2A3, and
CD4_C4_CD69, were respectively associated with blood central
memory (S1PR1, ICAM2), tissue central memory (TCF7, GPR183,
CXCR4), and tissue-resident memory (MYADM, RGS1, CD69) (Sup-
plementary Fig. 6d). CD8_C9_HAVCR2 and CD4_C5_CXCL13 differ-
entially expressed immune checkpoint genes such as CTLA4, PDCD1,
and TIGIT, knownmarkers of T cell exhaustion. CD8_C7_CD160 had a
high expression of natural killer cell marker genes (KLRC1) and
CD160, suggesting that this cluster was composed of intraepithelial
lymphocytes (IELs). CD8_C10_SLC4A10 was characterized as
mucosal-associated invariant T cells (MAITs) based on the specific
expression of SLC4A10, RORA, and TRAV1-236. Three Treg subtypes,
including Treg_C1_SELL, Treg_C2_LAG3, Treg_C3_CTLA4, exhibited
characteristic co-expression of CD4, FOXP3, and IL2RA, but were
further distinguished by cluster-specific expression of naïve mar-
kers (LEF1, SELL), follicular regulatory T cells markers (IL10, CXCR5),
and suppressive Treg markers (CTLA4, CCR8).

Surprisingly, in addition to CD4_C6_IL17A (Th17), we found that
the CD8_C8_IL17A cluster also highly expressed several known
classical markers of Th17 cells, such as IL17A, RORC (RORγt), and
IL23R. We observed that CD8+IL17+ T cells constituted more than 1%
of the total tumor infiltrated T cell population in 8 out of the 10
patients (Supplementary Fig. 6g), and the presence of CD8+IL17+

T cells in the TME of GC were subsequently confirmed by multicolor
IHC staining (Fig. 5d and Supplementary Fig. 6e). The two IL17A+

clusters, despite belonging to the two distinct classical lineages of
T cells (i.e., CD4+ and CD8+ T cells), had a highly correlated patterns
of gene expression (Supplementary Fig. 7a). Enrichment analysis
showed that the upregulated genes in CD8_C8_IL17A were sig-
nificantly enriched in Th17 cell differentiation and inflammatory
bowel disease (IBD) pathways, highly similar to that of Th17 cells
(Fig. 5e and Supplementary Fig. 6f). These results suggested
CD8_C8_IL17A and Th17 cells might have overlapping functions in
the TME of GC. These characteristics of the CD8_C8_IL17A cells were
akin to Tc17 cells37, leading us to designate this cluster Tc17.

Notably, several clusters of T cells displayed distinct patterns of
tissue distribution (Fig. 5b and Supplementary Fig. 7b). For instance,
naïve T cells were predominantly enriched in the blood; resident
memory (CD8_C5), IELs, and follicular regulatory T cells were specifi-
cally enriched in paratumor tissue, while exhausted CD8+ T cells, IL-17+

T (Tc17, Th17) cells, and suppressive Treg were largely prevalent in
tumors.

Tc17 and Th17 cells may promote tumor growth via IL17/22/
26 signaling in GC
In the past decade, a group of specialized CD8+ T cells with distinct
cytokine production, Tc17 (CD8+IL17+ T) cells, were detected in mul-
tiple types of cancers in the gastrointestinal system and were found to
be associatedwithpoor survival inpatientswith such cancers37–40. Both
the proportion of Tc17 cells and the level of cytokines produced by
Tc17 cells are reported to be negatively associated with the survival of
GC patients38,41. An attempt to understand the function of Tc17 cells in
gastric cancers using ex vivo experiments showed that Tc17 cells iso-
lated from the gastric tumor can stimulate tumor cells to produce
CXCL12, which consequently recruit myeloid-derived suppressor cells
(MDSCs) to suppress cytotoxic CD8+ T cells38.

Among the 26 genes thatwere significantly upregulated (FC> 2, p-
value < 0.01) in both Th17 and Tc17 cells (Fig. 5f and Supplementary
Data 4), IL17A, IL17F, IL22, and IL26 were reported to facilitate tumor
progression throughmultiplemechanisms42–44. Interestingly, we found
their receptors, IL17RA/IL17RC for IL17A/IL17F, IL10RB/IL22RA1 for IL22,
and IL20RA/IL10RB for IL26, were upregulated in tumor cell than in
normal epithelial cells (Fig. 5g). Consistent with our findings in the
scRNA-seq data, these receptors were also expressed higher in tumor
tissues than in normal tissues of the TCGA-STAD patients (Fig. 5h).
Thus, we hypothesized that IL17+ T cells in GC could promote tumor
growth via IL17, IL22, and IL26 signaling. Besides, TASCs such as, Fib_1
and SMC_1, also expressed higher level of IL17RA/IL17RC andmight be
regulated by Tc17/Th17.

Previous studies showed that binding of CEACAM5, also known as
carcinoembryonic antigen (CEA), on intestinal epithelial cells to CD8a
on T cells can induce a group of regulatory CD8+ T cells
(CD8+CD28−CD101+CD103+), which are not cytotoxic cells and can
inhibit proliferation of CD4+ T cells45,46. We found that the expression
of surface markers in Tc17 cells matched that of the aforementioned
regulatory CD8+ T cells almost perfectly (Supplementary Fig. 7c).
Moreover, Tc17 cells expressed the highest level of ITGAE (CD103), a
member of the integrin family, among all subtypes of T cells detected
in the single-cell analysis (Supplementary Fig. 7d), suggesting that Tc17
cells may involve in physical cell-cell contact with epithelial cells via
ITGAE-CEACAM5 interaction.

Dissecting state transition of T cell subtypes by TCR analysis
Next, we sought to understand the cell state transitions among various
subtypes of T cells using TCR clonal information and pseudotime
analyses. Among the 36,239 clonotypes found in T cells, 30,980 were
only detected once (unique TCR), while 5259 were detected in two or
more T cells (non-unique TCR). The individual clone population sizes
ranged from 1 to 569 (Fig. 6a). In general, CD8+ clusters had a higher
degree of clonal expansion47 than CD4+ clusters except for naïve CD8+

T cells (CD8_C1) (Fig. 6b and Supplementary Fig. 8a, b). We observed
that CD8_C2 (Effector), CD8_C3 (Cytotoxic), CD8_C4 (Effector mem-
ory), and CD8_C10 (MAIT) clusters had both higher proportions of
clonal cells and proportions of clonal cells with TCR shared between
blood and solid tissue (Fig. 6c). Among the high clonality clusters,
CD8_C2 was mostly derived from blood and its marker genes were

Fig. 4 | Dissection of myeloid cells showing the expansion of lipid-associated
macrophages in tumor tissues. a UMAP of myeloid cells. Clusters are labeled
with inferred cell types. b Dot plots showing marker genes across myeloid cell
subsets. Dot size indicates the proportion of expressing cells, colored by stan-
dardized expression levels. c Differences in pathway activities scored by GSVA
among the different myeloid cell clusters. The scores of pathways are z-score-
normalized. d Volcano plot showing differentially expressed genes between
Mφ_APOE and Mφ_THBS1. Dotted lines indicate p-value < 1e−20 and |log2
(FC)| > 2 (two-sided Wilcoxon rank-sum test). e Boxplot showing lysosomal and
lipid-related gene expression in macrophages. Each dot represents a single cell.
T and P represent tumor and paratumor tissues, respectively. (two-sided

Wilcoxon rank-sum test, n = 1236 for Mφ_THBS1_T, n = 926 for Mφ_APOE_T,
n = 544 for Mφ_THBS1_P, n = 244 for Mφ_APOE_P). f UMAP of myeloid cells,
colored by the AUCell scores of the TF regulon activity of NR1H3 andMITF, or by
the normalized expression of genes. g NR1H3 or TFEC overexpressed THP-1-
derived macrophages were stimulated with lipopolysaccharide (LPS) +
interferon γ (IFNγ) or Pam3CSK4. The expressions of APOE and APOC1were then
measured by qPCR. Each column represents the mean ± SD of three indepen-
dent experiments (two-sided t-test). hUMAP showing the inferred development
dynamics of DC subsets by RNA velocity. i Velocity analysis of the spliced and
unsplicedmRNAs of LAMP3 in DCs. Each dot represents one cell. Source data are
provided as a Source Data file.
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enriched in cell migration-related pathways (Fig. 6d), therefore we
speculated that CD8_C2 had the potential to infiltrate into the solid
tissue from the blood.

Consistentwith the result of a recent study48, we found that T cells
of the same clonotype were more likely to aggregate in the same
cluster or in closely related clusters rather than uniformly distributed
in all clusters (Fig. 6e, f and Supplementary Fig. 8c–e). With the single-

cell TCR sequencing, we embedded the T-cell clusters into a 3D
dimension space according the TCR-gene usage within each cluster
(Fig. 6g and Supplementary Data 5). The embedding space suggested
CD4+ T cells and CD8+ T cells had different biases on TCR-gene usage
andCD8+ T cells showed greater intra-lineage heterogeneity thanCD4+

T cells. AmongCD8+ T-cell clusters, CD8_C10 (MAIT) andCD8_C7 (IELs)
were extremely far from the other clusters in the space, indicating
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unique VDJ-gene usages in these two clusters. CD8_C10 (MAIT) had a
highly conserved usage of TRAV1-2 and a relatively high usage of
TRAJ33 in accordance with previous studies36, while CD8_C7 (IELs)
show no significant bias on VDJ-gene usage.

We then systematically evaluated relationships in their lineages by
calculating a clonotype-sharingmatrix basedon the proportion ofTCR
clonotypes shared by pairwise cell clusters (Fig. 6h and Supplementary
Fig. 8e, f). As expected, we noted that the matrix of CD4+ T cells was
sparse compared to that of CD8+ T cells, since the clonal expansion in
CD4+ T cells was much lower (Fig. 6b). Interestingly, we identified
CD8_C8 (Tc17), in addition toCD8_C3 (Cytotoxic), as a potential source
of CD8_C9 (Exhausted). Given the differences in the clonotype-sharing
matrix (Fig. 6h) and the shared proportions between blood and solid
tissue (Fig. 6c), we thus hypothesized two possible trajectories for T
cell state transition (Fig. 6i) that depicted the fates of blood-derived
CD8+ T cells and tissue-resident CD8+ T cells, respectively. In this
model, we postulated that CD8_C3 (Cytotoxic) cells were derived from
CD8_C2 (Effector; Blood origin) and could become CD8_C4 (Effector
memory) or CD8_C9 (Exhausted); alternatively, CD8_C8 (Tc17) derived
from CD8_C5 (Resident; Tissue origin) cells could transition into
CD8_C9 (Exhausted) cells.

Resident CD8+ T cells can reach exhaustion through the Tc17
trajectory
To further decipher the differentiation trajectories across these clus-
ters, we first extracted cells that shared the same clonotypes among
the clusters in eachpotential trajectory, and thenweusedRNAvelocity
analysis to interrogated their directionality embedded on a diffusion
map49 (Fig. 6j, k and Supplementary Fig. 9a, b). We identified a strong
directional stream from blood-derived CD8+ T cells to the exhausted
population via CD8_C3 (Cytotoxic) cells (Fig. 6j, left). Along this tra-
jectory to exhaustion, the cytolytic scores of T cells gradually
decreased and the exhaustion scores gradually increased (Fig. 6l, m).
Consistent with the result of the clonotype-sharing analysis, RNA
velocity showed tissue-resident CD8+ T cells also exhibited a direc-
tional stream toward the exhausted population via Tc17 cells (Fig. 6j,
right), suggesting tissue-resident CD8+ T cells could differentiate into
Tc17 cells in the TME, and subsequently give rise to exhausted
phenotype.

Henceforth, we named the two trajectories of T-cell exhaustion
“the cytolytic-exhaustion trajectory” and “the Tc17-exhaustion trajec-
tory”. Despite reaching the exhausted state in the end, we found that
the exhaustion scores were significantly elevated along the Tc17-
exhaustion trajectory compared to that of the cytolytic-exhaustion
trajectory (Fig. 6m). Moreover, Tc17 has the lowest cytolytic score in
non-naïve CD8+ T cells despite undergone extensive clonal expansion,
while CD8_C2 (Effector) T cells ranked first in the list (Fig. 6b and
Supplementary Fig. 9c). Overall, the cytolytic score was decreasing
along the cytolytic-exhaustion trajectory and increasing along the
Tc17-exhaustion trajectory (Fig. 6m). In summary, our observations

suggest that tumor-infiltrating CD8+ T cells can reach the exhausted
state through both cytotoxic T cells and Tc17 cells in the TME of GC.

Distinct transcription programs are associated with the two
exhaustion trajectories
Tc17 cells differ from cytotoxic T cells (CD8_C3) not only in their
transcriptional profile (Fig. 5a and Supplementary Fig. 7a) but also in
the VDJ gene usages of TCR (Fig. 6g), suggesting that these two sub-
types of T cells may recognize two different sets of antigens and are
functionally distinct. We speculated that Tc17 cells and cytotoxic
T cells could give rise to two separate types of exhausted T cells with
distinct transcriptional programs. Supporting this notion, differential
gene analysis showed that Tc17-derived exhausted T cells highly
expressed keratin KRT86, while cytolytic-cell-derived exhausted T cells
highly expressed GZMK (Fig. 7a, b and Supplementary Fig. 9d).

To investigate the underlying mechanism driving the distinct
transcriptional programs of the two trajectories (Fig. 7c), we focused
our analyses on dynamics of transcription factors (TFs) that are dif-
ferentially expressed and activated in the two paths. Along the
cytolytic-exhaustion trajectory, we found many classical TFs were
expressed at the exhausted state, such as PRDM1 and TOX2 that were
known to promote T cell exhaustion. While the expressions of some
TFs like EOMES were high at the beginning, extended over the cyto-
toxic state, and disappeared at the end of the exhausted state. In the
exhaustion period of the trajectory, we also observed expression of
TFs less described in the context of T cell exhaustion, includingNR3C1,
CEBPD, and ATF3. Along the Tc17-exhaustion trajectory, we found
RORA and RORC, classical master regulators in Th17 cells, were
expressed in Tc17 cells, suggesting both TFs participated in main-
taining the cellular state of Tc17 cells. TFs like BHLHE40 and CREM
expressed at the end of the Tc17-exhaustion trajectory may promote
the exhausted state of Tc17 cells.

We next used SCENIC to identify TFs that differentially activated
along the two trajectories (Fig. 7d). ThroughSCENIC, combinedwith the
pseudotime and gene expression analysis, we found that both the
expression of EOMES and its downstream targets were high in the
cytolytic-exhaustion trajectory compared to thatof theTc17-exhaustion
trajectory (Fig. 7c–f). Similarly, RUNX2 was identified as a potential key
regulator in the Tc17-exhaustion trajectory due to the high expression
of these factors and their downstreamtargets (Fig. 7c–f). To summarize,
our analyses highlighted the distinct regulatory program along the two
exhaustion trajectories and identified potential key modulators of the
two processes.

Tumor-associated stromal and myeloid cells are key mediators
of the complex cellular interaction
In order to dissect the complex network of communication among
the various cell types that participate in GC, we next identified
putative cell-cell interactions in both tumor and normal tissue
by CellPhoneDB50. Obviously, interactions involving TASCs and

Fig. 6 | Phenotype transition of CD8+ T cells based on both TCR sharing and
trajectory analysis. a The association between the number of T cell clones and the
number of cells per clonotype. The dashed line separates non-clonal and clonal
cells, with the latter identified by repeated usage of TCRs. b Bar plot showing the
score of clonal expansion in each T cell subset. c Comparison between the pro-
portions of clonal cells (x-axis), and the clone sharing between blood and solid
tissues estimated by Morisita–Horn similarity index (y-axis) in each cluster.
d Differences in migration-related pathway activities scored by GSVA among dif-
ferent CD8+ T cell subsets. e The distribution of clonal clonotypes in CD8+ T-cell
subsets and cyclingT cells. Lighter color indicates higher cell number; Cell numbers
were capped at 5. f Proportions of cells from a single cluster for each clonotype.
Permutation was performed among cluster labels and clonotype labels (two-sided
Wilcoxon rank-sum test, n = 1558 for both real and permutated CD8+ T cell clono-
types, n = 1046 for both real and permutated CD4+ T cell clonotypes). g Three-

dimensional plots showing the PCA embedding of T-cell subsets according to the
bias in VDJ-gene usage of each cluster. h Heat map showing the fraction of clono-
types belonging to a primary phenotype cluster (rows) that are shared with other
secondary phenotypeclusters (columns). iUMAPof T cells coloredby selectedTCR
clonotypes. Red and cyan arrows indicate the state transition of blood-derived and
tissue-derivedCD8+ T cells, respectively. jDiffusionmaps showing the RNAvelocity
of cells from the cytolytic trajectory (left) and theTc17 trajectory (right).kDiffusion
maps showing the pseudotime of the cytolytic trajectory (left) and the Tc17 tra-
jectory (right), which were calculated according to RNA velocity. l Violin plot
showing the cytolytic score (left) and the exhaustion score (right).m Gaussian
process regression curves with a 95% confidence interval showing the dynamics of
the cytolytic score (left) and the exhaustion score (right) along the pseudotime of
the cytolytic trajectory (excluding CD8_C4_GZMK) and the Tc17 trajectory,
respectively. Source data are provided as a Source Data file.
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macrophage cells dominated the TME networks (Supplementary
Fig. 10a, b and Supplementary Data 6).

Focusing on TASCs, we found tumor cells had more interactions
with stromal cells than did normal or tumor-like epithelial cells (Sup-
plementary Fig. 10c). Fib_1 expressed a wealth of growth factors for
tumor cells, such as HGF, FGF7, and BDNF (Fig. 8a), in agreement with
other studies wherein the HGF-MET and FGF7-FGFR4 axes were shown
to be promising therapeutic targets for GC and other tumors51,52.
Notably, we found that HGF was negatively associated with survival in
the TCGA-STAD dataset (Supplementary Fig. 10d). Furthermore,
VEGFA-dependent angiogenesis and ephrin-Ephbidirectional signaling
pathways were also found in Endo_1 and tumor cells. Remarkably,
TASC subtypes exhibited intimate signaling networks (Fig. 8b). For
example, TEK expressed by Endo_1, is the receptor for ANGPT2
expressed by SMC_1, suggesting that SMC_1 is involved in regulating
endothelial cell survival and migration53. In addition, TASCs expressed
high levels of Notch ligands JAG1 and DLL1 that interact with Notch
receptors NOTCH1, NOTCH3, and NOTCH4 on Endo_1 and/or SMC_1,
which is consistent with the results of the GO function enrichment
analysis (Supplementary Fig. 10e). Endo_1 demonstrated strong acti-
vation of the TNF, VEGF, PDGF, PGF, and Notch signaling pathways
(Fig. 8a, b), which are widely involved in the biological process of

angiogenesis54. Notably, TASCs were the key supplier for cytokines in
these pathways (Fig. 8b). This analysis further explained the cause of
upregulation of angiogenesis in TASCs (Fig. 3k). By performing the
correlation analysis among each cell type, we found that the propor-
tions of TASC subtypes were highly positive correlated in both our
dataset and TCGA-STAD cohort (Fig. 8c and Supplementary
Fig. 11b–d).

Further, we analyzed the molecular interactions between
Mφ_APOE and TASCs, which had a dominant interaction in GC (Fig. 8a
and Supplementary Fig. 10a, b). Mφ_APOE was predicted to interact
with TASCs via OSM, IL6, IL1B, and TNF, which are key activators of
stromal cells55. Secretion of CSF1 and IL34 by SMC_1 and/or Fib_1, and
their interaction with CSF1R on Mφ_APOE were previously reported to
contribute to survival, proliferation, and differentiation of macro-
phages and monocytes56. Consistently, the expression of IL34 was
negatively associated with survival in the TCGA-STAD dataset (Sup-
plementary Fig. 10d). Endo_1 and Fib_1 both expressed high levels of
PROS1, which interacts with AXL expressed by Mφ_APOE to impair the
antitumor immune response by macrophage57. Interestingly, the pro-
portion of Mφ_APOE also demonstrated positive correlations with
TASCs in both our dataset and TCGA-STAD (Fig. 8c, and Supplemen-
tary Fig. 11b). Moreover, our in vitro co-culture experiment evinced
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Fig. 7 | Dynamics of TF activities along the T-cell exhaustion trajectories and
the potential promoting effect of IL17+ T cells on gastric tumors. a Gaussian
process regression curves with a 95% confidence interval showing the dynamic
expression of KRT86 along the pseudotime of the cytolytic trajectory (excluding
CD8_C4_GZMK) and the Tc17 trajectory. b UMAP showing the expression of KRT86
in T cells. c Heatmaps showing the expression of highly variable genes along the
pseudotime of the cytolytic trajectory (excluding CD8_C4_GZMK) and the Tc17
trajectory. The color bar on the top represents cell clusters as in Fig. 6g; The color
bar on the right annotates all the highly variable TFs and some specific marker

genes. d Dot plot showing the AUCell scores of TF regulon activity calculated by
SCENIC for CD8+ T-cell subsets. The size of each dot represents the standardized
expression level of TFs. eGaussian process regression curveswith a 95% confidence
interval showing the dynamic expression of EMOES (left)and RUNX2 (right) along
the pseudotime of the cytolytic trajectory (excluding CD8_C4_GZMK) and the Tc17
trajectory. f UMAP showing the expression of EMOES (left)and RUNX2 (right) in
T cells. Red and cyan arrows indicate the state transition of blood-derived and
tissue-derived CD8+ T cells, respectively. Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-022-32627-z

Nature Communications |         (2022) 13:4943 12



that certain cytokine secreted by CAFs could induce THP-1 monocyte-
derived macrophages into the states of macrophages in the GC TME,
upregulating the marker genes of both Mφ_APOE and Mφ_THBS1
(Fig. 8d). The Mφ_APOE score showed a continuous increasement,
while the Mφ_THBS1 score displayed slight variation during the
induction (Fig. 8e). We also found cytokines interacting with TASCs,
such as IL6 and OSM, were highly expressed by induced macrophages
(Supplementary Fig. 11e). Together, our results suggested that
Mφ_APOE and TASCs, were locked into a mutually reinforcing

feedback loop via several L-R pairs to maintain the pro-tumoral
microenvironment.

Next, we investigated significant L-R interactions associated with
lymphocytes in TME (Fig. 8f and Supplementary Fig. 11a). CD80 and
CD86onmyeloid cells were found toprovide co-stimulatory signals for
CD8+ and CD4+ Tconv cells via CD28, while CTLA4 on Tc17, Th17, Treg,
and CD8+ exhausted T cells can act as an antagonist of this interaction
by competing for ligand binding with higher affinity58. In addition, we
identified the CD40LG-CD40 and CCL20-CCR6 interaction pairs
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between CD4_C4/C6 and DC_LAMP3/cDC1_XCR1, suggesting CD4+

T cells were involved in the activation and recruitment of DCs.
Interestingly, DC_LAMP3 cells were predicted to deliver both

attracting (CCL19-CCR7/CXCR3 and CCL17/CCL22-CCR4) and activating
(CD70-CD27/TNFRSF17 and IL15-IL2RB/IL2RG) signals to lymphocytes,
but on the other hand, DC_LAMP3 inhibited anti-tumor T cell activity
through a high expression of CD274 (PD-L1). TASCs, DC_LAMP3, and
tumor cells, all highly expressed NECTIN2 and PVR (CD155), whose
interaction with TIGIT blocks T-cell activation and proliferation59.
Multicolor IHC staining confirmed the interaction of NECTIN2-TIGIT
on tumor sections from GC patients (Fig. 8f and Supplementary
Fig. 11f). This analysis suggested that interfering the NECTIN2/PVR-
TIGIT axis may serve as a promising therapeutic strategy for the
treatment of GC.We found thatmany types of lymphocytes expressed
ENTPD1 (CD39), which converts ATP into adenosine together with
CD73 to prevent immune activation. Adenosinemay subsequently bind
with DC_LAMP3 via ADORA2A to induce IDO1 expression (Fig. 4b),
which has been found to participate in suppressing effector T and NK
cells, as well as differentiation and activation of Tregs andMDSCs60. In
summary, it is evident that myeloid populations can regulate the state
of lymphocytes by complex L-R interactions, and that stromal cells can
also inhibit lymphocyte activity via contact-dependent mechanisms.

Discussion
We present a comprehensive single-cell transcriptome atlas of GC,
which described a detailed and complex taxonomy of immune, stro-
mal, and epithelial subsets, and we further illuminated their molecular
signature and intercellular communication. The most obvious phe-
nomenon was the extensive remodeling of cellular composition in the
TME. Suppressive Tregs, TASCs, TAMs, Tc17, and CD8+ exhausted
T cells were enriched in the tumor, whereas mast cells, endocrine, and
follicular regulatory T cells were enriched in paratumor. Notably, a
high proportion of TASCs was associated with a worse prognosis. By
ligand and receptor analysis, we observed TASCs, Mφ_APOE and
LAMP3+ DCs, as the keymediators in complex intercellular networks of
interaction, orchestrated the immunosuppressive microenvironment
and promoted tumor progression. Blocking these interactions, such as
the IL34-CSF1R and TIGIT-NECTIN2 axes, may potentially activate
the TME or prime the TME to increase the efficacy of existing
immunotherapies in GC.

We observed that Tc17 cells may promote tumor growth via
cytokines, IL17, IL22, and IL26. However, both IL22 and IL26 were
expressed at very low level in bulk sequenced tumor samples of the
TCGA-STAD dataset (Supplementary Fig. 7e). Such discrepancy can be
explained if Tc17 cells physically interact with tumor cells, therefore,
the influence of the cytokines produced by Tc17 cells was profound in
the vicinity of epithelial cells despite the overall low expression in the
tumor tissue, highlighting the power of single-cell analysis. Investi-
gating the interaction between Tc17 cells and tumor cells in detail
would also be an interesting direction for future studies. We demon-
strated that Tc17 cells might originated from tissue-resident memory
T cells and differentiate into the exhausted state via the analyses of
clonotype and RNA velocity, depicting an alternative exhaustion

pathway in addition to the cytolytic-exhaustion path of T cells. More-
over, we identified TFs that are potential key regulators in the two
exhaustion trajectories. Therefore, we hypotheses that these TFs can
be manipulated, using CRISPR or RNAi, to induce the premature
terminal-exhaustion of Tc17, and to intercept the exhaustion process
of cytotoxic T cells. In summary, our results highlighted the ther-
apeutic potential of targeting IL17+ T cells or its protumoral signaling
(IL17/22/26) to treat IL17+ gastric cancer patients.

Collectively, out study illustrated a complex biological picture of
GC, expound the associations between the cell subsets and tumor
progression, and suggested some promising hints for tumor treat-
ment. We hope that this cell atlas will survey as a valuable resource for
GC research in the future.

One limitation of our study is the small number of patients.
Therefore, the results of our analysis are exploratory, and should be
further validated in large-scale scRNA-seq cohorts. Secondly, scRNA-
seq lacks the crucial information of spatial distribution and chromatin
accessibility of the various types of cells. In the future, weplan to apply
spatial transcriptomics and scATAC-seq to dissect the positional rela-
tionship of these interacting cell types inferred by CellPhoneDB, and
investigate the function of TFs in the remolding of cell states. Thirdly,
our findings, such as the protumoral characteristics of TASCs, should
be further verified and extended in patient-derived xenografts (PDXs),
patient-derived organoids (PDOs) or other model systems. What’s
more, we will further investigate the underlying molecular mechan-
isms and regulatory pathways of cellular phenotypic remodeling in GC
by genetically engineered mouse models (GEMMs) and other
approaches.

Methods
Patients and samples
This study was approved by Independent Ethics Committee of the
National Cancer Center/Cancer Hospital, Chinese Academy of Medical
Science, and Peking Union Medical College, and all patients signed
informed consent. Thirty gastric cancer patients who were pathologi-
cally diagnosed with GC were enrolled in this project, and they
received none chemotherapy, radiation, or drug treatment before
tumor resection. Detailed clinical information for these patients is
provided in Supplementary Data 1. For patients GC03-GC10, their
paired adjacent paratumor tissues were obtained during surgery. The
adjacent paratumor tissues were taken more than 2 cm away from the
matched tumor tissue. For patients GC06, GC07, GC08, and GC10, we
also collected their peripheral bloodprior to their surgical procedures.
For patient GC08, we collected two spatial sites within one tumor due
to the large tumor size.

Sample collection, single-cell suspension processing, flow cyto-
metry, and cell sorting
Briefly, fresh tissue samples were cut into small slices and enzyma-
tically digested in the 10ml RPMI-1640medium containing 10% fetal
bovine serum (FBS; GIBCO, Cat: 16000044), 1 mg/ml Collagenase
type II (Gibco, Cat: 17101015), 1 mg/ml Collagenase type IV (Gibco,
Cat: 17104019), 2 mg/ml Dispase II (Roche, Cat: 4942078001), 1 mg/

Fig. 8 | The cell-cell interaction networks showed important pathways for
tumor progression. a Dot plot of selected ligand-receptor interactions in
tumors. Cell subsets are shown on the x-axis; ligand (red) and receptor (black)
pairs are shown on the y-axis. The color of the circle denotes the proportion of
patients with a significant interaction (p-value < 0.01) in the total patients with
these interacting cell subsets. The p-values were generated by CellphoneDB
which uses a one-sided permutation test to compute significant interactions.
b Heatmap of scaled expression of selected ligand-receptor pairs for Endo_1,
Fib_1, and SMC_1. c Heatmap showing the Spearman’s rank correlation coeffi-
cients between the inferred proportions of different cell types in TCGA-STAD
dataset. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 (P-value were

calculated by two-sided t-test and the exact values can be found in the Source
Data). d Heatmap showing the mean expression of the marker genes of both
Mφ_APOE and Mφ_THBS1 in THP-1 monocyte-derived macrophages that were
co-cultured with gastric CAFs in a transwell system, cultured by gastric CAFs
conditioned mediums (CM), or cultured by standard medium for 24 h, 48 h,
60 h, 72 h. e Bar plot showing theMφ_APOE andMφ_THBS1 scores. Each column
represents the mean ± SD of three duplicates. fHeatmap of scaled expression of
selected ligand-receptor pairs between lymphocytes (right) and other subsets
(left) in tumors. g Multicolor IHC staining with anti-TIGIT and anti-NECTIN2
antibodies, exemplified by patient GC769812 (n = 6). The scale bar represents 20
μm. Source data are provided as a Source Data file.
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mLDNase I (Roche, Cat:10104159001), at 37 °Cwith 150 rpm rotation
for 30min. Following digestion, digested tissue pieces were passed
through a 70-μm filter. The suspended cells were spun down at
400 g at 4 °C for 5min and resuspended in ACK lysis buffer for 3min
on ice to remove red blood cells. After washing twice with 1x PBS
(GIBCO, Cat: C10010500BT), the cell pellets were resuspended in
sorting buffer (PBS containing 2% FBS). Peripheral blood mono-
nuclear cells (PBMCs) were isolated using HISTOPAQUE-1077
(Sigma-Aldrich, Cat: 10771) solution according to the manufacturer
instructions. After red blood cells were removed via the same pro-
cedure described above, PBMCs were also resuspended in the
sorting buffer. All samples were stained for sorting at 1 × 106 cells per
ml for 20min on ice with Fixable Viability Dye eFluor™ 506
(eBioscience, Cat: 65-0866-18; 1:1000) for live-dead discrimination.
For patients GC02 and GC08, tumors were stained with PerCP-Cy5.5
Mouse Anti-Human CD45 (BD Bioscience, Cat: 564105; 1:200) and PE
Mouse Anti-Human CD3 (BD Bioscience, Cat: 555340; 1:200) anti-
bodies to additionally isolate and enrich tumor-infiltrating T cells.
Fluorescence-activated cell sorting (FACS) was performed on a
FACSAria III instrument (BD Biosciences).

For comparing the proportion of MHC class II positive endothe-
lium in tumor versus para-tumor tissue, single-cell suspensions of
paired tumor and paratumor tissues from another nine patients were
stained with Fixable Viability Dye eFluor™ 506 (1:1000), AF700mouse
anti-human CD45 (BioLegend, Cat: 304023; 1:200), PB mouse anti-
EPCAM (BioLegend, Cat: 324217; 1:200), PE mouse anti-CD31 (BioLe-
gend, Cat: 303105; 1:200) and FITC mouse anti-HLA- HLA-DR, DP, DQ
(BioLegend, Cat: 361705; 1:200) antibodies.

Single cell RNA-seq library preparation
The scRNA-Seq, scTCR-seq, and scBCR-seq libraries were prepared
following the protocol provided by the 10X genomics Chromium
Single Cell Immune Profiling Solution kit. Briefly, FACS-sorted cells
were washed oncewith sorting buffer and resuspended in ice-cold PBS
containing 1% FBS. The concentration of single cell suspensions was
adjusted to 800–1200 cells/ul using a hemocytometer. 7000–14,000
cells were loaded in one channel, which resulted in a recovery of
4000–8000 cells. After partitioning cells into nanoliter-scale Gel
Beads-in-emulsion (GEMs) using Chromium Single Cell 5′ Library & Gel
Bead Kit (10× genomics, Cat: 1000006), reverse transcription (RT) was
performed in a thermal cycler (Bio-Rad C1000 Touch). Then GEMs
were broken, barcoded-cDNA was purified with Dynabeads MyOne
SILANE and amplificated by polymerase chain reaction (PCR). The
resulting amplified-cDNA was then used for 5′ gene expression library
construction, TCR, and BCR enrichment. 50ng of cDNA was used for
fragmentation, end-repair, size-selection with SPRIselect beads,
adapter ligation, and sample indexPCR to construct 5′gene expression
library. Following two rounds of semi-nested PCR amplification using
Chromium Single Cell V(D)J Enrichment Kit (10× genomics, Cat:
1000005, 1000016), 50ng of enriched TCR/BCR product was used to
construct scTCR/BCR-seq library. For GC03-tumor and GC10-
paratumor tissues, two technical replicates of scRNA-seq libraries
were processed to evaluate technical stability (Supplementary Fig. 1c).
All libraries were sequenced on an Illumina Hiseq Xten with 150 bp
paired-end reads.

Single cell RNA-seq data processing
FASTQ reads of 10× scRNA sequencing data were processed with
GRCh38 reference genome using Cell Ranger (version 3.1, 10× Geno-
mics). The processed matrices of different batches were merged and
the following analyses were done by scanpy (version 1.4.5)61. Cells with
less than 400 UMI counts, less than 200 genes, or greater than 30% of
mitochondrial RNA counts were filtered. Genes expressed by less than
3 cells were removed. The filtered expression matrix was normalized
by the total number of UMIs per cell andwas log2-transformed. Finally,

the filteredmatrix contains 166,533 cells, 1620 genes per cell, and 5518
counts per cell, on average.

Scaled data of all cells were used for principal component analysis
(PCA) using highly variable genes. The first 10 principal components
and 500 neighbors were used for UMAP embedding with the first 2
principal components as UMAP initialization. Then, the Leiden algo-
rithm was used to define clusters.

Different cell types were isolated and went through PCA, UMAP,
and Leiden clustering independently for further analysis. For these
analyses, thefirst 30principal componentswere used and thenumbers
of neighbors ranged from 30 to 100, according to the cell numbers.
Subclusters expressing contradictorymarkers (Supplementary Data 2)
of known different cell types were removed as potential doublets.
T cells with greater than 2 TRB or 2 TRA sequences were regarded as
doublets. For T cells analysis, only cells with detected TRB sequences
were used and the filter threshold of mitochondrial RNA counts was
altered to 20%. In the remaining cells in of the T&NK cluster excluding
αβ T cells lacking TCR information, we identified 4 NK clusters, 4
Gamma-delta (γδ) T clusters and 2 NKT clusters (Supplementary Fig.
12a–e). B cells, which make up a considerable part of immune cell
compartment, were further grouped into 7 subsets (Supplementary
Fig. 12f–j). Other subsets were discussed in detail in main text. Differ-
ent cell subsets were named according to the expression of marker
genes for clusters (Supplementary Data 3).

Single-cell TCR-seq and BCR-seq data processing
10X genomics provides software for assembling V(D)J sequences and
annotating consensus T cell receptor (TCR). Using the “Cell Ranger for
V(D)J” pipeline, 78% of T cells annotated by transcriptomic data were
assigned a TCR sequence. Overall, 4.8% of these T cells were assigned
two TRB sequences and 8.6% were assigned two TRA sequences.
Considering that the raw definition of clonotype grouping was only
based on sequences in each sample, we combined clonotypes with
identical TCR sequences among different samples of each patient.
Finally, we detected 36,239 total clonotypes in all patients, most of
which (30,980) were non-clonal clonotypes. The other clonotypes
consisted of more than one cell and the largest clonotype size was 569
from patient GC10.

Bulk sequencing data processing and single-cell variants
extraction
FASTQ reads of WES data were aligned on GRCh38 reference and the
somatic mutations were called by Strelka262 with paired tumor-normal
samples. These mutations called from WES data were used as a refer-
ence to extractmutations in the scRNA-seq data using VarTrix tailored
for 10X Genomics single-cell data. (The software is available at https://
github.com/10xgenomics/vartrix). The expression quantification was
performed with Salmon63 using the FASTQ reads of RNA-seq data with
GRCh38 reference.

Batch correction for T cell analysis
In the part of the T-cell analysis, SCTransform from Seurat 3.1.064 was
used to remove batch effect (variable.features.n = 10000, do.scale =
TRUE), and the output data was used for PCA, UMAP, and Leiden
clustering. For the evaluation of batch effects of T cells after the cor-
rection as well as of other cell types, see Supplementary Note 1. In
addition, Supplementary Note 2 provides an evaluation of the
robustness and necessity of T-cell clusters.

Ratio of observation to expectation for tissue enrichment
analysis
To evaluate the tissue preference of cell clusters, the observed cell
number of each cell cluster from each tissue was divided by the
expected cell number to get the ratio of observation to expectation
(Ro/e) as described by Zhang et al.30. For a two-way table (cell clusters
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for rows, tissues for columns) of a particular cell type, the expected cell
number was calculated by (row total×column total)/n, where n is the
total observed cells in the table.

Cellular detection rate and the combinations of different
datasets
To calculate the cellular detection rate (CDR) of a particular gene in a
certain cell type, we divided the number of cells expressing that gene
by the total cell number in that cell type. In other words, CDR is equal
to one minus the dropout rate.

To combine the DEGs from our scRNA-seq and our bulk RNA-seq
for the same patient, we filtered the DEGs from bulk RNA-seq by
adjusted p-value < 0.05 and |log2(FC)| > 1. For DEGs from scRNA-seq,
we filtered them by adjusted p-value < 1e−10, |log2(FC)| > 1 and CDR
outside epithelial cells < 5%. The intersection of remaining DEGs from
the two datasets was shown in Fig. 2e.

To combine the correlation analysis fromour scRNA-seq, our bulk
RNA-seq, and the bulk RNA-seq from TCGA-STAD, we firstly selected
genes with CDR outside epithelial cells < 5% and then calculated the
Spearman’s rank correlation between CDX2 and other genes with the
three datasets independently. The correlation coefficients from the
three datasets were multiplied together to get the combined
correlation.

Copy number variation (CNV) analysis
For each patient, epithelial cells excluding endocrine cells were con-
sidered as the putative tumor epitheliumdataset. Other cells including
immune cells and stromal cells were considered as the reference
dataset. The initial CNV value of each single cell were estimated by
infercnv (version0.99.0) basedon transcriptomicprofiles as described
by Puram et al.12. To quantificationally evaluate the CNV level of each
single cell to identify malignant cells, we defined CNV_Score by cal-
culating the mean squares of CNV values across the genome. The CNV
results of WES (Supplementary Figs. 2a and 16) were generated by
CNVkit with paired tumor and paratumor/blood samples.

The calculation of tumor scores by expression patterns
We calculated malignant scores and non-malignant scores for epithe-
lial cells using AddModuleScore function in Seurat64, with the malig-
nant gene set and the non-malignant gene set described by Zhang
et al.7. These gene signatures were derived from the top 50 differential
expression genes between paired tumor and normal tissue samples
from the TCGA-STAD dataset (Supplementary Data 8). The tumor
scores were calculated by subtracting the non-malignant scores from
the malignant scores.

Similarity analysis
Pearson correlation or Spearman’s rank correlation was used to eval-
uate the similarity across cells, genes, or cell clusters. For cell clusters,
the mean values of 1000 highly variable genes of the cells in each
cluster were used to calculate the pairwise Pearson correlation. For
cell-cell correlation, the first 50 principal components of each cell were
used to calculate the pairwise Pearson correlation. For gene-gene
correlation (co-expression analysis) in T cells, all the T cells with TCR
information were used to calculate the pairwise Pearson correlation.
As for the annotation bar on the top of Supplementary Fig. 7c, each
gene was annotated to a T cell cluster as well as a tissue type with the
highest mean expression among clusters or tissue types.

Gene sets enrichment analysis
Gene sets of KEGG pathways and Gene Ontology were obtained from
MSigDB65. Angiogenesis scores were calculated based on “angiogen-
esis (GO:0001525)”. Cytolytic score, Anti-inflammatory score,M1 score
and M2 score were calculated with gene sets of “Cytolytics effector

pathway”, “Anti-inflammatory”, “M1 Signature”, and “M2 Suppressive
Signature”, respectively, from Azizi et al.32.

For the scores of cell clusters shown in the heatmaps, the mean
expression level of each cell cluster was used to calculate the score by
GSVA (version 1.30.0) with default parameters66. For the score of a
single cell shown in the boxplots, the average expression of the genes
(z-score transformed) in the gene set was calculated.

The activity of transcription factor regulon
The activity of transcription factor regulons was evaluated by SCENIC
(version 1.0.1)23. In brief, regulons were detected by calculating the co-
expression of TFs and genes, followed by motif analysis. AUCell score,
ranged from 0 to 1, was then calculated by the algorithm for each cell
to evaluate the activity level for each TF regulon. The regulon analyses
were implemented independently for different main cell types.

Inferring cell-cell communication
For systematic analysis of cell-cell interactions, we used CellPhoneDB
(version 2.0)67, a statistical algorithm for predicting cell-cell interaction
networks from single-cell transcriptomic data. Ligand-receptor pairs
were stored in CellPhoneDB and some immune-related pairs were
downloaded from published literature30. In consideration of inter-
tissue interactions, wedivided eachcell subtype intoblood, paratumor
or tumor sections and then remained sections based on the Ro/e value
>1 as tissue-enriched subtypes. For each patient, we identified poten-
tial ligand-receptor pairs between two cell subtypes by measuring the
expression of a receptor by one cell type and a ligand by another. The
cell subtypes with fewer than 20 cells were excluded in each patient.
Only ligands and receptors expressed in greater than 30% cells in any
given subtypes were considered. To ensure high-confidence interac-
tions, our pairwise subtypes analysis was performed by randomly
permuting the subtype labels of all cells 1000 times. After permuta-
tions, statistical significance was assessed by the empirical p-value for
each ligand-receptor pair between two cell subtypes. The interactions
that were significant (p-value < 0.01) in at least one patient were
counted when calculating the number of all possible interactions
between the clusters.

The visualization of all networks was performed using Cytoscape
(version 3.6.1)68. The nodes and edges each represent the cell subtypes
and interactions in a network. The size of node is the total number of
significant interactions with other cell subtypes, and the thickness of
edges is the relative number of interactions between the connecting
subtypes.

RNA velocity and pseudotime analysis
The bam files generated by Cell Ranger were used to recount the
spliced reads and unspliced reads using DropEst (version 0.8.6)69. The
RNA velocity analysis was donewith scvelo (version 0.1.25)70 in python.
In brief, after the gene selection and normalization, the first- and
second-order moments were calculated with scv.pp.moments() func-
tion. The full splicing kinetics were recovered with scv.tl.recov-
er_dynamics() function and the velocities were obtained with
scv.tl.velocity() function in dynamical mode. The velocities were pro-
jected onto diffusion maps and visualized as streamlines with
scv.pl.velocity_embedding_stream() function. The spliced vs.
unspliced phase portraits of individual genes were visualized with
scv.pl.velocity(). The pseudotimes of cells were obtain with scv.tl.re-
cover_latent_time() function.

Assessing the clonal migration between blood and tissues
To assess the migration potential of T cell clusters, we applied the
Morisita–Horn similarity index to account for the number of shared
clonotypes and the distribution of clone sizes between blood and solid
tissue71. The Morisita–Horn similarity index is calculated by in each
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cluster:

Index =
2 ∑

n

i= 1
TiBi

∑
n

i = 1
ðT2

i +B
2
i Þ

ð1Þ

where Ti = ti/TN and Bi = bi/BN, bi and ti are the clone sizes of the ith
clonotype in blood and tumor tissue, and BN and TN are the total
number of clone size of all clonotypes in blood and tumor tissue,
respectively. There are over all n clonotypes in both tissues. The higher
the index, the higher the migration potential between blood and
tumor tissue.

The usage of VDJ genes of T cell clusters
Through single-cell TCR sequencing,wedistinguished theVDJ genes of
each T cell. For each T cell cluster, the frequency of occurrence for VDJ
genes was calculated. This VDJ-usage matrix was scaled with z-score
before the PCA.

Estimating cell type proportions in bulk RNA-seq data
We applied MuSiC (ver. 0.2.0)27 to implement bulk tissue cell type
deconvolution with scRNA-seq data. All defined subclusters in the
scRNA-seq were used as reference. Subclusters with cell numbers lar-
ger than 3000 were down-sampled to 3000 cells to lighten the com-
putation. Bulk RNA-seq data from TCGA-STAD were used for the
deconvolution.

Immunohistochemistry and multiplexed immunofluorescence
staining
For immunohistochemistry, the 5-μm tissue sections of formalin fixed
paraffin-embedded (FFPE) tissue were deparaffinized, and antigen was
retrieved with sodium citrate, then stained with anti-FAP (abcam, Cat:
ab207178; 1:250), anti-BMP1 (abcam, Cat: ab205394; 1:100), and anti-
WNT5A antibodies (abcam, Cat: ab179824; 1:100). The images were
captured with a Pannoramic scan (3DHISTECH). Multiplex staining of
FFPE tissue was performed using the Opal 7-Color IHC kit (Akoya
Biosciences, Cat: NEL811001KT) according to manufacturer’s instruc-
tion. Briefly, the sectionswereblockedwith 10%normal goat serum for
30min after deparaffinization, rehydration, antigen retrieval, and
endogenous peroxidase inactivation. Then, the sections were incu-
bated with primary antibodies of different panel in a humidified
chamber at 4 °C overnight, followed by horseradish peroxidase-
conjugated secondary antibody incubation and tyramide signal
amplification (TSA). The slides weremicrowave heat-treated after each
TSA operation. Nuclei were stained with DAPI after all the antigens
above had been labeled. The stained slides were imaged and scanned
using theVectraQuantitative Pathology Imaging Systemsand analyzed
by Phenochart Image Analysis Software (Akoya Biosciences) version
1.0.12. The primary antibodies and IHCmetrics used in this paper were
listed in Supplementary Data 7.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw sequence data reported in this paper have been deposited in
the Genome Sequence Archive in BIG Data Center, Beijing Institute of
Genomics (BIG), Chinese Academy of Sciences. The raw sequence
data are accessible at the following address (Access numbers:
HRA000704). The processed expressionmatrices and cell annotations
have been deposited intoOpenArchive forMiscellaneousData (OMIX)
database with accession ID: OMIX001073. All other relevant data
supporting the key findings of this study are available within the article

and its Supplementary Informationfiles. Sourcedata areprovidedwith
this paper.

Code availability
Example scripts to process and analyze data are available at https://
github.com/Lan-lab/sc-GC. Detailed information will be available from
the corresponding authors upon reasonable request.
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