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Regional gene expression signatures are
associated with sex-specific functional con-
nectivity changes in depression

Aleksandr Talishinsky1,2, Jonathan Downar3,4 , Petra E. Vértes 5,
Jakob Seidlitz 6,7, Katharine Dunlop1,2, Charles J. Lynch1,2, Heather Whalley 8,
Andrew McIntosh 8, Fidel Vila-Rodriguez 9, Zafiris J. Daskalakis10,
Daniel M. Blumberger4,11 & Conor Liston 1,2

The neural substrates of depression may differ in men and women, but the
underlying mechanisms are incompletely understood. Here, we show that
depression is associated with sex-specific patterns of abnormal functional
connectivity in the default mode network and in five regions of interest with
sexually dimorphic transcriptional effects. Regional differences in gene
expression in two independent datasets explained the neuroanatomical dis-
tribution of abnormal connectivity. These gene sets varied by sex and were
strongly enriched for genes implicated in depression, synapse function,
immune signaling, and neurodevelopment. In an independent sample, we
confirmed the prediction that individual differences in default mode network
connectivity are explained by inferred brain expression levels for six
depression-related genes, including PCDH8, a brain-specific protocadherin
integral membrane protein implicated in activity-related synaptic reorgani-
zation. Together, our results delineate both shared and sex-specific changes in
the organization of depression-related functional networks, with implications
for biomarker development and fMRI-guided therapeutic neuromodulation.

Depression (major depressive disorder) is a highly heterogeneous
psychiatric syndrome with a weak correspondence to its biological
substrates. In large-scale epidemiological studies, the lifetime inci-
dence of depression is two-fold higher in women, such that female sex
is among the strongest known risk factors1, but the mechanisms
underlying sex differences in depression are poorly understood.
Modest but statistically significant differences are evident in
depression-related effects on brain structure2,3 and in the types of
symptoms that tend to occur in men versus women1,4. For example,

comorbid substance use disorders are more common in men with
depression, while anxiety symptoms aremore common inwomenwith
depression4–7. Recent studies have also identified sexually-dimorphic
gene expression signatures8,9, suggesting that sex-specific mechan-
isms may contribute to depression at both a molecular and a sys-
tems level.

Functional magnetic resonance imaging (fMRI) has become one
of the most important tools for studying depression neurobiology in
humans. Multiple studies have identified alterations in resting state
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functional connectivity (rsFC) in the default mode network (DMN),
limbic areas, and other depression-related networks10–14, which have
potential utility for predicting treatment response and as biomarkers
of remission15–18. Default mode network (DMN) hyperconnectivity is
among the most consistently replicated findings in rsfMRI studies of
depression10,13,15,19,20, and may also be involved in other neuropsychia-
tric disorders21, including dementia22, schizophrenia23, and autism24,
among others. It has been implicated in anxious rumination and
negative biases in self-referential processing21,25 and is a potential
therapeutic target for neurostimulation and biofeedback
interventions26,27. Other studies have identified abnormal interactions
between the DMN and cognitive control networks, which may con-
tribute to cognitive control deficits13,26,28. However, while many studies
have observed DMN hyperconnectivity in depression, others have
not29,30, and at least one recent large-scale analysis found a reduction in
rsFC in this network11. Surprisingly, relatively few studies to date have
tested for sex-specific effects on rsFC in depression, due in part to
power constraints. Whether depression is associated with distinct
patterns of circuit dysfunction in women versus men remains unclear.

The mechanisms that give rise to rsFC effects in depression are
also notwell understood. Large-scale genome-wide association studies
involving >100,000 subjects have identified numerous genetic risk
variants, but they also underscore a highly polygenic inheritance pat-
tern, inwhich eachvariant confers only a small increase in risk31–35. How
dozens or even hundreds of genetic variants interact to regulate
depression pathophysiology is unknown. Undoubtedly, the mechan-
isms are complex and multifactorial, but converging evidence from
other areas of study support the hypothesis that spatial variation in the
brain transcriptome could influence functional connectivity36,37. For
example, recent reports indicate that regional differences in gene
expression may contribute to the neuroanatomical distribution of
morphometric and connectivity effects in neuropsychiatric disease
states including autism and schizophrenia38–41. In at least one recent
report, the expression of astrocyte- and interneuron-related genetic
markers was correlated with spatial patterns of abnormal functional
connectivity associatedwith depression andnegative affect42.Whether
regional differences in gene expression explain the specific connec-
tions and networks exhibiting rsFC changes in depression, and whe-
ther these genetic correlates differ by sex, is unknown.

Here, we aimed to test the hypothesis that 1) depression is asso-
ciated with sex-dependent patterns of abnormal connectivity; 2) some
depression-related genes may influence pathophysiology by mod-
ulating functional connectivity in depression-related networks; and 3)
different gene expression modules may be important in men and
women with depression. Leveraging a large-scale rsfMRI dataset
comprising scans from over 500 individuals with depression and
healthy controls, we first tested whether depression is associated with
rsFC effects that vary by sex, focusing on the default mode network—
which has been consistently implicated in depression and anxious
rumination in multiple fMRI studies19,43–45—and on five regions of
interest that exhibit sexually dimorphic transcriptional effects in
depression8. Our analyses identified rsFC effects shared by both men
andwomen, aswell asmultiple sex-specific abnormalities in thedefault
mode network and in all five ROIs, to varying degrees. They include
multiple targets for therapeutic neuromodulation interventions that
are informed by functional mapping andmay benefit from accounting
for sex differences. Finally, using microarray data from two datasets—
the Allen Human Brain Atlas46 and Brainspan47—we showed that
regional differences in the expression of depression-related genes
explain the neuroanatomical distribution of circuits and networks
exhibiting altered rsFC in men and women with depression. Bioinfor-
matic analyses showed that these gene sets are enriched for
depression-related genes, GWAS-confirmed risk variants, and genes
implicated in synapse function and immune signaling. They also
identified specific genes that are transcriptionally altered in

depression, regulated by GWAS-confirmed risk variants, and predict
individual differences in functional connectivity in men and women
with depression.

Results
Shared and sex-specific rsFC effects in a depression-related
network
Default mode network (DMN) hyperconnectivity is a consistently
replicated finding in many10,13,15,19,20, but not all29,30, rsfMRI studies of
depression, and apotential therapeutic target for neurostimulation26,27.
Importantly, none of these previous reports were designed to investi-
gate sex differences. Thus, we began by implementing an unbiased,
whole-brain quantification of rsFC abnormalities within the DMN and
between the DMN and other functional networks in depression. This
analysis was implemented in a rsfMRI dataset comprising 371 patients
(n = 223 women) with treatment-resistant depression (actively
depressed, moderate or severe intensity, mean HAMD in males =
23.2 ± 4.8, mean HAMD in females = 23.8 ± 4.3) and 182 healthy control
subjects (n = 103 women) acquired on three scanners (see Supple-
mentary Table 1 and Supplementary Methods for additional details,
including preprocessing, quality control, and correction for scanner
effects). BOLD signal time series were extracted for 360 cortical areas
defined by an extensively validated functional parcellation48 and
19 subcortical regions49. These functional parcels were used to gen-
erate rsFC matrices between 77 default mode network ROIs and the
rest of the brain.

Our analysis revealed widespread main effects of depression on
DMN connectivity spanning most of the brain, with the most sig-
nificant effects localized to the anterior cingulate, dorsomedial pre-
frontal cortex, lateral prefrontal cortex, and insula (Fig. 1a), in
agreement with previous work10,13,20,43. We also detected significant
main effects of sex (Supplementary Fig. S1) and sex-by-depression
interactions (Fig. 1b) that have not been extensively examined in pre-
vious work and were localized primarily to a large area of the medial
prefrontal cortex and the temporal pole. Post-hoc contrasts within
each sex identified multiple effects shared by both sexes (Fig. 1c, d, f),
including reduced connectivity with anterior cingulate and insular
nodes of the cingulo-opercular control network and increased con-
nectivity with the specific visual network, temporal language network,
and dorsolateral prefrontal areas. However, many effects were sex-
specific (Fig. 1e, g), and the strongest effects were driven by men. Of
note, hyperconnectivity within the DMN—among the most extensively
studied correlates of depression10,13,20,43 —occurred almost exclusively
in men in our sample and was driven by the temporal pole, middle
temporal gyrus, orbitofrontal cortex, and dorsomedial prefrontal
cortex (Fig. 1e). In contrast, in women with depression, rsFC was
modestly decreased inmost of these areas (Fig. 1g).We also found that
these effects were not driven by scanner-related artifacts: comparable
effects were observed in an analysis restricted to data from n = 371
patients with depression (n = 223 women) and n = 85 healthy controls
(n = 52 women) acquired on a single scanner (Supplementary Fig. S2),
validating our approach to controlling for scanner-related confounds
(see Supplementary Methods). Of note, men and women with
depression in our sample did not differ with respect to symptom
severity (Supplementary Table 1), which indicates that the differing
effects in men and women were not driven simply by severity. Instead,
different connectivity abnormalities may contribute to depression in
males vs. females, with DMN hyperconnectivity being more important
in males and other features being more important in females
(see below).

To further understand the relationship between depression sta-
tus, sex, and DMN connectivity, we plotted post-hoc t test results for
effects of depression within each sex and for effects of sex within each
diagnosis (Fig. 2a–e). We found that rsFCwithin the DMNwas elevated
in both men with depression (Fig. 2b) and healthy control women
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(Fig. 2d), compared to healthymenwith no history of depression. That
is, the relative paucity of effects of depression on connectivity within
the DMN in women was due to the fact that DMN connectivity was
increased in healthy control women relative to healthy control men.
These effects were evident throughout multiple sub-regions of the
DMN, including anterior (dorsomedial prefrontal, rostral anterior

cingulate), posterior (precuneus, posterior cingulate), and lateral areas
(middle temporal, inferior parietal).

DMN hyperconnectivity is one of the most extensively studied
findings in fMRI studies of depression10,13,20,43, but most studies to date
have treated sex as a covariate and were not designed to investigate
interactions between sex and depression. Furthermore, the results
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above were obtained from subjects with treatment-resistant depres-
sion of moderate-to-severe intensity, who may differ from patients
with other types of depression. To evaluate the extent to which these
results generalize to other subject samples scanned and preprocessed
under different conditions, we repeated this analysis in
n = 3789 subjects (n = 109 of whom had symptomatic MDD) from the
UK Biobank database using DMN nodes derived from an ICA-based
functional parcellation implemented by UK Biobank investigators (see

Fig. 2f and Supplementary Methods). Again, male subjects who self-
reported significant depressive symptoms at the time of their scan
(n = 28) showed significant DMN hyperconnectivity compared to
healthy controlmen (n = 1907), but female subjects did not (n = 81with
self-reported depressive symptoms, n = 1773 healthy controls)
(Fig. 2g–j). As in our primary sample, rsFC in most DMN sub-regions
was also elevated in healthy control women compared to healthy men
without depression (Fig. 2i). A similar pattern was observed in a larger

Fig. 1 | Shared and sex-specific rsFC abnormalities in a depression-related
network. a, b Color maps representing the neuroanatomical distribution of sig-
nificant (FDR q <0.05) F-statistics from 2-way ANOVA for rsFC features connecting
77 default mode network (DMN) nodes and the rest of the brain in n = 371 patients
withmajor depressive disorder (MDD) (n = 223 women) vs. n = 182 healthy controls
(n = 103 women). The neuroanatomical distribution of significant main effects of
MDD (a) and MDD-by-sex interactions (b) are summarized for each functional
parcel by summing across the significant effects in the 77 DMN nodes and plotting
the result on a brain surface and accompanying subcortical image. c, d Summary
t-statistics fromposthoc t-tests comparingmale (c) and female (d)MDDpatients vs.
healthy controls, summarized by grouping neuroanatomically adjacent Glasser
HCPMM1 parcels within each network. Colors in each tile represent the average
t-statistic for all rsFC features in a given region that exceed a threshold of p <0.05
uncorrected. Positive t-statistics denote increased rsFC in MDD. Regions with at
least one significant (FDR q <0.05)MDD effect orMDD-Sex interaction effect in the
ANOVA depicted in (a, b) are demarcated with an asterisk. e–g Color maps

representing the neuroanatomical distribution of the significant post-hoc t-test
results depicted in (c, d), summed as in (a, b). rsFC features that were significantly
abnormal in (e) men with depression, g women with depression, or (f) both men
and women are plotted separately. White dashed circles denote sex-specific DMN
effects discussed in the main text. Black dashed circles denote shared effects dis-
cussed in the main text. DMN default mode network, pDMN posterior DMN (pre-
cuneus, posterior cingulate), dmPFC dorsomedial prefrontal cortex, vmPFC
ventromedial PFC, rACC rostral anterior cingulate, mTG medial temporal gyrus,
vlPFC ventrolateral PFC, IPL inferior parietal lobule, PHC parahippocampal cortex,
FP fronto-parietal network, dlPFC dorsolateral PFC, TPJ temporo-parietal junction,
COP cingulo-opercular network, dACC dorsal anterior cingulate, FEF/SMA frontal
eye field/supplementary motor area, DAN dorsal attention network, Lang language
network, Subcort subcortical ROIs, PM/VM/OA posterior multimodal, ventral
multimodal, orbito-affective networks, SOM somatosensory-moto network, Aud
auditory network, Vis visual network.
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Fig. 2 | Sex-dependent effects of depression on DMN connectivity in two
independent samples. a Default mode network (DMN) ROIs in the Glasser par-
cellation used in our primary analyses. b–e Circle plots (facilitating comparisons
with the UK Biobank parcellation in [f–j]) depicting rsFC effects for six DMN sub-
regions comparing four groups of subjects: healthy men (n = 79), men with MDD
(n = 148), healthywomen (n = 103), andwomenwithMDD (n = 223). Colors andband
thickness scale with the mean of all significant (unadjusted p <0.05) t-statistics.
Warm colors denote increased connectivity in MDD patients compared to controls
(b, c) or in women compared to men (d, e). dmPFC dorsomedial prefrontal cortex,
vmPFC ventromedial prefrontal cortex, rACC rostral anterior cingulate, PCC/Pre-
cuneus posterior cingulate and precuneus,mTGmedial temporal gyrus, IPL inferior
parietal lobule. f Six UKBioBank ICA components comprising theDMNare depicted
in sagittal, coronal, and axial brain images. The component numbers in the upper
left of each image specify the ICA component as defined in the UK Biobank ICA
parcellation, available at https://www.fmrib.ox.ac.uk/ukbiobank/. Component 5 =
posterior cingulate/precuneus (PCC/Precun); 7 = ventromedial prefrontal cortex

(vmPFC); 9 = medial temporal gyrus (mTG); 13 = dorsomedial PFC (dmPFC); 21 =
dorsal PFC; and 49 = inferior parietal lobule (IPL). g–j Circle plots (facilitating
comparisons with the Glasser parcellation in [a–e]) depicting rsFC effects for six
DMN sub-regions comparing four groups of subjects as in (b–e): healthy men
(n = 1907), men with probable MDD who also reported severe MDD symptoms at
the time of their scan (n = 28), healthy women (n = 1773), and women with probable
MDD who also reported severe MDD symptoms at the time of their scan (n = 81).
Warm colors denote increased connectivity in symptomatic UKB subjects with
probable MDD compared to controls (g, h) or in women compared to men (I, j).
Effects showing a significant MDD-by-sex interaction effect (FDRq <0.05) are
highlighted in green. Note that we used circle plots to represent the results in order
to facilitate comparisons between the two parcellations. In the Glasser parcellation,
each region includedmultiple functional parcels, so each band represents themean
of all significantly different connections between a given pair of regions. In the UKB
parcellation, each region is represented by just one ICA-based functional parcel, so
each band represents a single t-statistic between a given pair of regions.
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cohort of UK Biobank subjects who were classified by UK Biobank
investigators as having a probable MDD history based on a previously
established UK Biobank protocol50 (Supplementary Fig. S3, n =
1458 subjects [921 female]) but were not necessarily symptomatic at
the time of their rsfMRI scan. Together, these results show that within-
network DMN hyperconnectivity is correlated with depression status,
but in multiple subject cohorts recruited and scanned under differing
conditions, this effect is driven by men. Within-network DMN hyper-
connectivity also occurs in a large number of women without any
history of depression—a finding with implications for future studies of
sex differences in depression vulnerability and interpreting bio-
markers of remission15.

Sex-dependent rsFC effects in five transcriptomic regions of
interest
Large-scale genome-wide association studies have identified at least
223 genetic variants associated with 426 genes conferring risk for
depression31–33,51,52. It is unclear how they interact to modulate
depression pathophysiology, but converging evidence from other
disorders support the hypothesis that common genetic variants and
regional differences in gene expression can influence functional net-
work organization36,38–42. Recent RNA sequencing studies have identi-
fied sexually dimorphicgene expression changes related todepression
in five key brain regions: subgenual cingulate cortex (Brodmann Area
[BA] BA25), dorsal prefrontal cortex (BA8/9), nucleus accumbens
(NAc), orbitofrontal cortex (BA11), and anterior insula8. All five ROIs
have been implicated in multiple fMRI studies of depression43,53–58, but
sex effects have not been examined. Whether regional differences in
gene expression explain the neuroanatomical distribution of con-
nectivity changes in depression is also unknown. Motivated by these
findings, we first tested whether these five regions with sex-specific
transcriptomic effects also exhibit connectivity effects that vary by sex.

We found distinct effects of depression on rsFC in men versus
women in all five ROIs, to varying degrees (Fig. 3a–c). Sex-specific
effects weremore common than shared effects in allfive ROIs (Fig. 3d).
Only dorsal prefrontal cortex (BA8/9) showed a large number of
shared effects (Fig. 3d), and most effects were strikingly different in
men vs. women, often in opposing directions (Fig. 3a–c), with hyper-
connectivity predominating in men and hypoconnectivity pre-
dominating in women. In the subgenual cingulate cortex—a
therapeutic target for deep brain stimulation and transcranial mag-
netic stimulation17,18,59—depression effects on rsFC were also highly
divergent in men and women. In men with depression, subgenual
cingulate connectivity was increased with posterior cingulate areas of
the DMN and decreased with the anterior insula, temporal pole, and
lateral prefrontal cortex, among other areas (Fig. 3c). None of these
effects were observed in women (Fig. 3a). In the anterior insula, orbi-
tofrontal cortex, and nucleus accumbens, the vast majority of
observed effects were specific to one sex, and only a small proportion
(7.5–13.8%) were shared by both sexes (Fig. 3d). Of note, there is
increasing interest in using subgenual cingulate connectivity with the
dorsolateral prefrontal cortex to inform prefrontal target selection for
therapeutic TMS17,18. The nucleus accumbens, orbitofrontal cortex, and
dorsomedial prefrontal cortex are also potential direct or indirect
targets for TMS, DBS, or both60–63. One implication of these results is
that fMRI-guided target selection strategies might benefit from
accounting for sex.

Because the likelihood of observing effects specific to one sex
could depend on the number of significantly altered connections and
oneffect size,we testedwhether thenumber of sex-specific effectswas
larger than expected by chance compared to shuffled data with ran-
domly permuted sex labels. We found strong evidence for sex-specific
effects in three of the five regions (Fig. 3e). Mass univariate ANOVA
analyses showed a similar pattern (Supplementary Fig. S4a–d): main
effects of effects and significant sex-by-diagnosis interactions were

most pronounced in dorsal prefrontal cortex (BA8/9). We also
observed nominally significant sex-by-diagnosis interactions in the
other four regions, but they did not survive FDR correction for mul-
tiple comparisons at the whole-brain level. Finally, we performed an
unbiased whole-brain search to evaluate the degree to which sex-
specificity in depression effects in these five ROIs was also observed in
other brain areas. This analysis identified additional candidate regions
with strong evidence of effects that differed by sex (Supplementary
Fig. S4e). Together, these findings indicate that men and women with
depression exhibit distinct patterns of abnormal functional con-
nectivity in five transcriptomic ROIs that are therapeutic targets and
that show divergent gene expression changes in depression8.

Transcriptional signatures underlying sex-specific rsFC effects
The results above show that men and women with depression exhibit
differing connectivity effects in five key brain regions that also fea-
tured sexually dimorphic transcriptomic effects in a previous report8.
In all five regions, specific subsets of connections were altered in
depression, and the spatial pattern of affected connections differed in
men and women. We hypothesized that regional differences in the
expression of depression-related genes—i.e. genes with altered
expression inpost-mortembrain tissue and genes linked to depression
risk and pathophysiology—would explain the neuroanatomical dis-
tribution of connectivity effects in men and women with depression.
To test this, we mapped normative regional gene expression profiles
for 21,120 microarray probes in the Allen Human Brain Atlas46, which
provides regional gene expression data from n = 6 subjects (n = 1
woman, ages 24–57), to the Glasser HCPMM1 functional parcellation
used in Figs. 1–348 using established methods. (Of note, our analysis
was designed to detect genes with strong regional differences in
expression that might contribute to the spatial distribution of con-
nectivity effects in the depressed brain, regardless of whether those
genes exhibit sex-biased expression, which could not be characterized
in AHBA. As described below, we also replicated key findings using a
second gene expression atlas, Brainspan64,65, acquired from n = 8
individualswith balanced sex composition [4 females], ages 18–40, but
profiling a smaller number of brain regions.) Among these21,120 genes
were 4571 genes showing abnormal expression that was specific to
men with depression as defined in a previous transcriptomic study8

and 4766 genes with abnormal expression that was specific to women
with depression. We used partial least squares regression (PLS-R)66 to
identify combinations of genes whose regional expression patterns
best explained the neuroanatomical distribution of depression-related
connectivity effects for each of the five seed ROIs depicted in Fig. 3,
examiningmen and women separately (Fig. 4a). To test whether PLS-R
identified reproducible gene-connectivity associations, we performed
10 iterations of 10-fold cross validation to estimate model perfor-
mance in held-out data.

We found that regional differences in depression-related gene
expression were spatially correlated with the neuroanatomical dis-
tribution of connectivity effectsmost reliably in both training data and
held-out data in three ROIs (Fig. 4b–e; Supplementary Fig. S5, Sup-
plementary Table 2): the subgenual cingulate cortex (BA25) in both
females and males, the nucleus accumbens (NAc) in females only, and
the dorsal prefrontal cortex (BA8/9) in males only. We evaluated the
statistical significance of these associations using a spatially aware null
permutation test (or “spin test”)67 that preserves local homogeneity in
brain transcriptional data (further details provided in Supplementary
Methods). This approach revealed significant associations between
gene expression and connectivity abnormalities for six of ten models
tested (Supplementary Fig. S5): dorsal prefrontal cortex (BA8/9) in
men, anterior insula in women, NAc in women, BA11 in women, and
BA25 in women andmen. In four of these models involving three ROIs
(male and female BA25, female NAc, and male BA8/9), gene-
connectivity associations were reproducible in held-out data (100
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iterations of PLS-R using random 90% subsamples of subjects), with
statistically significant correlations in held-out subjects (Fig. 4b–e).
Although we focus here on the most robust results in these four
models, we also observed nominally significant correlations for all ten
models (Supplementary Fig. S5), in a commonly used, randomly
shuffled permutation testing framework68–70. Together, these results
show that regional differences in gene expression explain the neu-
roanatomical distribution of abnormal rsFC in men and women with
depression, most reliably in the subgenual cingulate (BA25), dorsal
prefrontal cortex (BA8/9), and nucleus accumbens.

To understand the degree to which distinct gene sets explained
connectivity abnormalities in these ROIs in men and women with
depression, we identified the most important genes in each model
by ranking the 21,120 genes by their PLS loading weight (their
contribution to predicting connectivity abnormalities seeded from
each ROI). Genes with the highest positive loading weights, which
showed greater expression in cortical areas exhibiting abnormally

increased connectivity in depression, are depicted in Fig. 4f. Two
patterns were evident. First, within each sex, genes with the highest
positive loading weights in the subgenual cingulate cortex (BA25)
model also had high positive loading weights in the nucleus
accumbens model, but not in the dorsal prefrontal cortex (BA8/9)
model, where connectivity abnormalities were explained by differ-
ent genes. Second, the most important genes in each model tended
to vary by sex: that is, genes with the highest positive loading
weights for a given ROI in women tended to have lower loading
weights for the same ROI in men, and vice versa, especially for BA25
and BA8/9. The same two patterns were evident for genes with the
strongest negative loading weights (Fig. 4g), which were highly
expressed in cortical areas exhibiting abnormally decreased con-
nectivity in depression. We confirmed these patterns quantitatively
and showed that they were not restricted to the top-ranked genes in
each model by testing for correlations between the full 21,120-gene
loading weight vectors for each model (Supplementary Fig. S6).
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Fig. 3 | Sex-specific rsFC changes in five transcriptomic regions of interest.
a–c Color maps of depressed vs healthy t-statistics showing the neuro-anatomical
distribution of rsFC abnormalities that are (a) female-specific, b shared between
sexes, or (c) male-specific in five transcriptomic seed ROIs labeled in rows,
depicting the peak t-statistic across both hemispheres for each functional parcel.
Parcels with significant (FDR q <0.05) main effects of MDD or MDD-by-sex inter-
actions are outlined in green and presented in detail in Supplementary Fig. S4. To
illustrate how sex-specificity is not driven by stringent thresholding, we also plot

nominally significant effects (unadjusted p <0.05) in the parcels not outlined in
green. d Venn diagrams depicting the number of sex-specific vs. shared con-
nectivity effects at a liberal threshold (unadjusted p <0.05) at each seed ROI. Sex
specificity was even more pronounced at more stringent thresholds (Supplemen-
tary Fig. S4c, d). e Boxplots depicting the distribution of female- (left) and male-
specific (right) connectivity effects in a null model with sex labels randomly per-
muted 1000 times. Red dots represent the empirically observed number of sex-
specific effects from (d). † = p <0.1; * = p <0.05; ** = p <0.01.
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Qualitatively, we also found that a majority of the most important
genes in these models have been previously implicated in depres-
sion, nervous system development, synapse function, or immune
signaling (Fig. 4f, g).

Next, we performed three analyses to more directly test the
hypothesis that genes related to depression or sex are important
predictors of the neuroanatomical distribution of abnormal con-
nectivity in men and women with depression. First, we used fast gene
set enrichment analyses (fGSEA)71,72 to test whether genes exhibiting
sex-specific transcriptional effects in a recent postmortem RNA
sequencing study8 were overrepresented among highly weighted

genes in the PLS-Rmodels of the corresponding sex in our dataset. We
found that in all four PLS-R models, transcriptomic signatures of
depression from the corresponding sex were significantly over-
represented among genes with the largest loading weights (Fig. 4h),
with themost significant enrichments occurring in themaleBA8/9PLS-
R model (Fig. 4i). Second, we used the same approach to test for
enrichment of genes associated with depression-related risk variants.
We found that genes modulated by GWAS-confirmed risk
variants31–33,51,52 and genes implicated in MDD via the DisGeNET73 plat-
formboth showed significant enrichments in our PLS-Rmodels (Fig. 4j,
k, Supplementary Fig. S7). Finally, we found that genes previously
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Fig. 4 | Distinct transcriptional signatures underlying sex-dependent rsFC
effects in depression. a Schematic representing partial least squares regression
(PLS-R) analysis for uncovering spatial relationships between regional gene
expression patterns and rsFC abnormalities in five transcriptomic ROIs (BA25, NAc,
BA11, BA8/9, aIns). b–e PLS-R identified multivariate spatial correlations between
gene expression and rsFC effects thatwere statistically significant and reproducible
in cross-validation in four models: female BA25 (b), female NAc (c), male BA25 (d),
and male BA8/9 (e). In each scatterplot, individual data points represent gene
expression and rsFC effects for a given brain region, projected into a space defined
by the first PLS component. The correlation for the first PLS component (ρ) and the
mean correlation in held-out data across 10 iterations of 10-fold cross validation
(ρho) are depicted at the top. Statistical significance was evaluated compared to
shuffled predictor data (spin test + FDR correction; see Online Methods). * = FDR
q <0.05. f, g Heatmaps depicting the loading weight (LW) Z-scores for the top 5
genes (in rows) with the strongest positive LWs (f) and the strongest negative LWs
(g) in the PLS models depicted in (b–e), shown in columns. For comparison pur-
poses, we also plot the corresponding models for the same three ROIs in the
opposite sex, which were nominally significant (Prand < 0.05, see Supplementary
Fig. 5). Black tiles in the gray tables to the right of each heatmap denote mem-
bership of corresponding genes (labeled in rows) in selected gene sets relevant to
MDD, as defined by a recent large-scale depression GWAS52 (“MDD GWAS”), the
DisGeNet platform, or an RNA-seq study identifying differentially expressed genes
in brain tissue in MDDpatients (“MDDDEX”)8, or implicated in neurodevelopment,

synapse function, or immune signaling as per the corresponding Gene Ontology
Biological Process terms. h fGSEA results for differentially expressed genes in
depression. In all four PLS models, genes predicting the spatial distribution of
connectivity abnormalities in MDD are enriched for genes that show increased
(green) or decreased (red) expression in a previously publishedRNA-seq analysis of
brain tissue donated by MDD subjects of the corresponding sex8. fGSEA-generated
normalized enrichment scores (x-axis), p-values (plotted in each bar), and adjusted
p-values (darkened bar color if FDR q <0.05) are plotted. Negative enrichment
scores denote enrichment among genes with negative LWs in the PLS regression
model, and positive enrichment scores denote enrichment among genes with
positive LWs. i Histograms depicting the number of genes (y-axis and qualitative
color gradient) with increased (left, green) or decreased (right, red) expression in
males with MDD in each loading weight decile of our PLS-R ranked gene list for the
male BA8/9 model. Error bars signify the 95% confidence interval of expected
number of genes per decile in 10,000 simulations using random gene sets.
j, k fGSEA results for depression-related risk genes as defined inDisGeNet database
(j) andgeneswhose expression innervous system tissue ismodulatedby significant
SNPs from the most recent large-scale depression GWAS52 (k). l,m Gene Ontology
(GO) analysis identified enrichments for GO Biological Process terms containing
the corresponding phrases (listed in rows) at the (l) top and (m) bottom of LW-
ranked gene lists in the four PLS models listed in (b–e). Significance of GO
enrichment (i.e. -log(FDRq)) depicted in color scale.
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shown to have sex-biased brain expression also showed significant
enrichment among the most negative-loading genes in all four PLS-R
models (Supplementary Fig. S8)—effects that were especially pro-
nounced for genes exhibiting sex-biased expression early in life.

To delineate the specificity of these enrichments, we tested for
over-representation of risk genes for other diseases, including other
neuropsychiatric disorders (Supplementary Fig. S9). There was no
evidence of enrichment for genetic risk variants associated with
prostate cancer, colon cancer, breast cancer, or autism in any model,
or for hypertension or type-2 diabetes in the female models. However,
genes explaining connectivity abnormalities in BA8/9 in men were
enriched for genetic variants conferring risk for hypertension and
type-2 diabetes—an unexpected but interesting result in light of work
linking depression and the metabolic syndrome74,75. Among other
neuropsychiatric disorders, genetic risk variants for bipolar disorder,
schizophrenia, and Alzheimer’s disease were significantly over-
represented in one or more models. Next, we used standard bioin-
formatic approaches to evaluate whether the most important genes in
each model implicate specific biological functions. Gene ontology
(GO) analysis showed that genes with the strongest positive or nega-
tive loading weights were enriched for pathways associated with
synaptic transmission, ion channels, immune signaling, and develop-
ment (Fig. 4l, m), and that the most highly prioritized biological
functions varied by region and sex (Supplementary Fig. S10).

Validating and replicating transcriptomic correlates of abnor-
mal connectivity in depression
Together, the results above indicate that connectivity abnormalities
and their most important transcriptomic correlates differ in men and
women with depression, and they support the hypothesis that at least
some genetic risk variants contribute to depression pathophysiology
by modulating functional connectivity. However, an important lim-
itation of these findings is that they are derived from post-hoc corre-
lational analyses involving just one neuroimaging dataset and one
normativegene expression atlas. Thus,we implemented three analyses
aimed at replicating and validating our findings and testing key pre-
dictions, leveraging additional datasets.

First, we sought to replicate our gene set enrichment findings
using the Brainspan gene expression atlas, mapping 20,287 gene
expression probes for 30 brain regions (15 per hemisphere, acquired
from n = 8 individuals, 4 females, 4 males, ages 18–40) to the Glasser
HCPMM1 functional parcellation, as described above for AHBA.
Although theBrainspanatlas profiles a smaller number of brain regions
than the AHBA, it has the advantage of a more balanced sex compo-
sition, enabling us to examine male and female gene expression pat-
terns separately. As above, we used partial least squares regression to
identify combinations of genes whose regional expression patterns
best explained the neuroanatomical distribution of depression-related
connectivity effects, focusing on the four models with robust gen-
eralization to held-out data in Fig. 4b, e, butmodeling gene expression
in men and women separately using the Brainspan dataset. As above,
we found that regional differences in gene expression explained the
neuroanatomical distribution of connectivity effects in all four models
involving BA25 in men and women, NAc in women, and BA8/9 in men
(r =0.64–0.70 for first PLS component, P = 0.003–0.023 by permuta-
tion testing). Next, we repeated the gene set enrichment analyses,
testing for the enrichment of genes that 1) are transcriptionally altered
in depression, 2) have been implicated in depression via GWAS or the
DisGeNET platform, and 3) exhibit sex-biased brain expression early in
life. Despite the fact that the AHBA and Brainspan atlases profiled
different brain regions with potentially distinct gene expression pat-
terns, we still found that in all three analyses, a majority of significant
enrichments that were observed using the AHBA data replicated in the
Brainspan data (Supplementary Figs. S7, 8). We also evaluated the
extent to which our AHBA analyses could have been influenced by

training a PLS-R model to predict connectivity abnormalities in female
brains using predominantlymale gene expression data. To test this, we
trained PLS-R models to predict the spatial pattern of abnormal con-
nectivity in one sex based on Brainspan transcriptomic data derived
fromeither the samesex, the opposite sex, or both sexes. Therewasno
significant difference in performance across the three conditions
(Supplementary Fig. S11), indicating that regional differences in gene
expression are more important than sex differences in explaining the
spatial distribution of abnormal connectivity in our sample.

Having replicated key findings in the Brainspan dataset, we set out
to further validate our PLS results and more directly test the hypoth-
esis that GWAS-confirmed genetic risk variants influence pathophy-
siology bymodulating the brain expression of specific genes, which in
turn regulate functional connectivity in depression-related networks.
To this end, we aimed to test whether individual differences in the
expression of specific depression-related genes were associated with
individual differences in functional connectivity in a new dataset,
focusing initially on the male BA8/9 PLS-R model, which showed the
strongest enrichments for GWAS-related genes (Fig. 4k) and for genes
that are transcriptionally altered in men with depression (Fig. 4h). To
limit the number of hypotheses tested and reduce the likelihood of
false positives, we searched for a convergence of genes meeting three
criteria (Fig. 5a): 1) genes with expression patterns that were strongly
correlatedwith abnormal connectivity seeded fromBA8/9 inmenwith
depression (i.e. loading weights in the top or bottomdecile in themale
BA8/9 PLSmodel in Fig. 4); 2) genes that were transcriptionally altered
in the brains of men with depression in a prior report8; and 3) genes
whose expression is controlled by GWAS-confirmed risk variants for
depression (see OnlineMethods).We identified four genes thatmet all
three criteria: PRSS16 and MRM2, with increased expression in
depression, and ZKSCAN8P1 and PCDH8, with decreased expression in
depression, regulated by five MDD risk alleles involving rs72839477,
rs67981811, rs12525684, rs2806933, and rs11772627 76.

Because datasets including both brain transcriptomic profiling
and rsfMRI mapping in human subjects with depression are not
available, we instead used an establishedmethod to infer relative gene
expression levels in the human brain in 1,458 UK Biobank subjects (537
males) with a history of depression, using each subject’s genotype at
the five risk alleles specified above to predict the expression of PRSS16,
MRM2, ZKSCAN8P1, and PCDH876. We then tested whether inferred
expression levels for these depression-related genes were associated
with depression-related rsFC patterns similar to those observed in our
cohort of men with depression. As predicted, genotypes involving a
larger number of depression risk alleles were associated with pro-
gressively increased rsFC between BA8/9 and the DMN inmales with a
history of depression (Fig. 5b, c). Interestingly, this effect was not
present in females with a history of depression (n = 921, Fig. 5b),
lending further support to a sex-specific role for these genes in mod-
ulating connectivity abnormalities in men with depression, as pre-
dicted by our PLS-R models.

Third, we performed an analogous analysis in women with
depression, focusing on the female BA25 model, which showed the
strongest enrichments for GWAS-related genes and for genes that are
transcriptionally altered in women with depression. We identified just
two genes that met all three criteria described above (Fig. 5d):
KLHDC8B andTMEM161B-AS1, with increased expression indepression,
regulated respectively by two GWAS-confirmed risk alleles, rs7617480
and rs3099439. Because the UK Biobank brain parcellation does not
include a seed constrained specifically to BA25, we tested whether
these SNPsmodulate rsFCbetweenUKBiobank’s “anterior DMN” seed,
which includes BA25 as well as other anterior DMNareas. As predicted,
we found that the depression risk alleles at rs7617480 and rs3099439
were modestly associated with decreased rsFC between the anterior
DMN and the rest of the DMN in females with a history of depression,
although this trend was not statistically significant (P = 0.067, Fig. 5e,
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f). In contrast, this trend was not present in males with a history of
depression (n = 537).

Together, these analyses replicate key findings in a separate gene
expression atlas and lend independent support to a model linking
heritable genetic risk variants, transcriptomic programs, and
depression-related connectivity abnormalities (Fig. 5g). Specifically,
they are consistent with a model in which select GWAS-confirmed
genetic risk variants contribute to pathophysiology in depression by
regulating the expression of specific genetic pathways that in turn
modulate functional connectivity in the default mode network and
other depression-related circuits, acting through sexually divergent
mechanisms.

Simulating implications for biomarker development and future
studies
The results above define significant sex-specific connectivity
abnormalities in the default mode network and to varying degrees, in
five transcriptomic regions of interest. To better understand the
degree to which sex differences of the magnitude observed here are
not only statistically significant but are also strong enough to influence
future studies, we performed two concluding analyses. First, moti-
vated by inconsistent findings in rsfMRI studies of depression and
varying sample demographics, we tested whether sex differences in

rsFC are of sufficient magnitude to significantly alter the results of a
study, depending on the sex composition of a study sample, focusing
on DMN connectivity abnormalities—one of the most commonly stu-
died targets in depression neuroimaging. To this end, we tested for
DMN connectivity differences in 1000 bootstrapped subsamples of
our data (n = 140 MDD patients, n = 70 healthy controls) for each of
seven different sex compositions ranging from 100% men to 100%
women. We found that the results varied markedly with sex compo-
sition (Fig. 6a, b). In general, increased male representation in simu-
lated study sub-samples was associated with more significant
hyperconnectivity within the DMN (Fig. 6a). Even samples with 50%
women vs. 67% women—a range that is common in existing studies—
yielded significantly different results, such that most hyperconnectiv-
ity findings were not evident in samples with 67% women (Fig. 6b).
These results show that sex differences in rsFC are not only detectable
but also biologically significant and could explain someof the variation
in rsfMRI results in the previous studies10,11,13.

Second, there is substantial interest in developing and optimizing
fMRI biomarkers for diagnosing subtypes of depression and other
psychiatric conditions and informing treatment decisions12,17,18,77–79. To
test whether sex differences in rsFC are sufficient to influence the
performance of diagnostic fMRI biomarkers, we trained elastic-net
regularized general linear models (EN-GLM) to predict depression
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genotype on DMN connectivity, covarying for age. Error bars = SEM. c PCDH8
expression (left) was spatially correlated with depression-related connectivity
abnormalities seeded from BA8/9 (right) in both AHBA (ρA) and Brainspan (ρB).
Qualitatively similar associations were observed for PRSS16, MRM2, and
ZKSCAN8P1. d Analogous to (a), schematic for selecting genes for validation of the
female BA25model. Two genesmet all three criteria: TMEM161B-AS1 and KLHDC8B.

e Association between individual differences in anterior DMN (aDMN)-to-DMN
connectivity in n = 1458 UK Biobank subjects with a history of depression and
individual differences in polygenic depression risk at twoMDD risk alleles (at SNPs
rs3099439and rs7617480) that have been shown tomodulate the expressionof the
two genes identified in (d), i.e. increasing the expression of TMEM161B-AS1 and
KLHDC8B76, a transcriptional pattern previously associated with depression in
women8 and demarcated qualitatively in the color bars below the x-axes. Individual
differences in DMN connectivity were modestly associated with genotype at these
two depression risk alleles in females (t = –1.83, P =0.067, n = 921) but not in males
(t =0.13, P =0.90, n = 537), in a linear model of the effect of genotype on DMN
connectivity, covarying for age. Error bars = SEM. f KLHDC8B expression (left) was
spatially correlated with depression-related connectivity abnormalities seeded
from BA25 (right) in both AHBA (ρA) and Brainspan (ρB). Qualitatively similar
associations were observed for TMEM161B-AS1 in AHBA but not in Brainspan.
g Diagram representing a model in which select GWAS-confirmed genetic risk
variants contribute to pathophysiology in depression by regulating the expression
of specific genetic pathways that in turn modulate functional connectivity in
depression-related brain networks. In this work, we used genotypes at SNPs related
to depression via previous GWAS52 (bottom right) as instrumental variables to infer
associations (grey dotted line) between connectivity patterns in depression (top
left) and genes of interest (top right)whose expression in nervous tissuewas shown
to be modulated by depression-related genotypes in previous eQTL analyses76.
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status based on rsFC (Fig. 6c), trained either on men and women
separately or on data from both sexes, iteratively evaluating perfor-
mance in strictly held-out data (train: 2/3 of sample, test: 1/3 of sam-
ple). Compared to an EN-GLM trained and tested on men and women
together, independent of sex, sex-specific EN-GLMs showed con-
sistently higher accuracy rates (Fig. 6d, e). To investigate which con-
nectivity featuresweremost consistently predictive ofMDDstatus, the
feature-level beta-weights were averaged at each connectivity feature
over the 100 GLM iterations, and the absolute values of these con-
nectivity feature beta-weights were then summed across columns for
each ROI (Fig. 6f). In accordwith our analyses above, the results varied
by sex: dorsomedial prefrontal cortex and other regions of the default
mode network had consistently high beta weights in the male EN-
GLMs, whereas cingulo-opercular regions of the supplementarymotor
area, superior frontal gyrus, and dorsal anterior cingulate cortex had
consistently high beta weights in the female EN-GLMs (Fig. 6f). These
results provide further evidence for robust sex differences in rsFC
features that consistently predict depression status, and show that the
magnitude of these effects is sufficient to influence diagnostic
performance.

Discussion
Female sex is among the strongest known risk factors for depression
and a potentially critical contributor to diagnostic heterogeneity, but
the underlying neurobiological mechanisms are not well understood.
Our results make three contributions to advancing our understanding
of those mechanisms. First, they show that depression is associated
with distinct connectivity abnormalities in men and women in the
default mode network and to varying degrees, in five transcriptomic
regions of interest that exhibit sexually dimorphic gene expression

changes in depression and are important therapeutic targets. Hyper-
connectivity within the default mode network—one of the most com-
monly studied features of depression—was driven almost entirely by
men in two large-scale datasets. Similar to recent observations in RNA
sequencing analyses of postmortem brain tissue8, sex-specific effects
on connectivity were more common than shared effects, and many
connections were altered in opposing directions in men and women
with depression. Second, our results confirm that sex differences are
not only statistically detectable but also of sufficient magnitude that
they are likely to be biologically meaningful. rsfMRI analyses of DMN
connectivity abnormalities in bootstrapped subsamples with varying
sex compositions yielded markedly different results, and diagnostic
classifiers trained separately on men and women outperformed those
trained onmen andwomen together. Of note, two of the ROIswith the
most significant sex-specific effects—dorsomedial prefrontal cortex
(BA8/9) and subgenual cingulate cortex (BA25)—are therapeutic tar-
gets for deep brain stimulation and TMS17,18,59, treatment modalities
that are increasingly guided by functional connectivitymapping. Sex is
not a known predictor of response to these treatments, but our results
suggest that functional targeting strategies could benefit from
accounting for sex differences.

Third, our results indicate that a subset of genes that have been
implicated in depression may contribute to pathophysiology by
modulating functional connectivity in specific circuits. Our data show
that regional differences in the expression of partially overlapping but
distinct gene sets explain which specific circuits and networks exhibit
abnormal connectivity in men and women with depression. The most
robust spatial associationswere identified for rsFC changes at theBA25
and nucleus accumbens seeds in women, and the BA25 and BA8/
9 seeds inmen. Consistent with our hypothesis, these gene sets varied
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by brain region and sex and were enriched for genes linked to GWAS-
confirmed risk variants and genes that are known to be differentially
expressed in post-mortem RNA-seq studies of depression. Of note,
differences between BA25 and BA8/9 in cellular morphology and cor-
tical laminationmayalso account in part for thesegene set differences.
We also identified reproducible enrichments for genes with sex-biased
expression early in life, and genes involved in synapse function,
immune signaling, andneurodevelopment—findings in accordwith the
results of recent GWAS studies in depression as well as other psy-
chiatric disorders31,42,80.

We validated our initial observations supporting this model in
three ways. First, we confirmed that depression has sex-specific effects
on functional connectivity in two independent, large-scale datasets,
replicating key results from the Toronto sample in the UK Biobank
database, despite differences in fMRI data acquisition and preproces-
sing and patient characteristics such as a history of treatment resis-
tance. Second, we confirmed that our PLS results linking abnormal
connectivity and gene expression are robust in cross validation and
reproducible using two independent gene expression atlases. Third,
we were able to formulate predictions about associations between
specificGWAS-confirmed risk variants, the expressionof specific genes
with known transcriptional effects, and individual differences in rest-
ing state functional connectivity—and then test them in the UK Bio-
bank dataset, leveraging previously established methods for inferring
cortical gene expression. We identified four genes (PRSS16, MRM2,
ZKSCAN8P1, and PCDH8) that were strongly implicated in explaining
abnormal dorsomedial prefrontal connectivity in our PLS-Rmodel that
are transcriptionally altered in the brains of men with depression, and
whose expression is controlled by GWAS-confirmed risk variants. We
then tested whether inferred expression levels for these depression-
related genes were associated with rsFC patterns similar to those
observed inour cohort ofmenwithdepression, leveraging thegenome
sequencing and rsfMRI data from the UK Biobank. In this independent
sample,we showed that individual subject genotypes involving a larger
number of depression risk alleles—and larger inferred transcriptional
abnormalities—were associated with progressively increased rsFC
between BA8/9 and the DMN in men with a history of depression,
but not in women. Similar trends were observed for a different set of
genes implicated in connectivity abnormalities in women with
depression, but these effects did not reach significance. Of note,
PCDH8 (Fig. 4c) is an especially promising target for future studies. Its
expression in the brain ismodulated by a GWAS-confirmed risk variant
(rs2806933)52,76; its expression is abnormal in the brains of men with
depression but not in women with depression8; and the neuroanato-
mical distribution of abnormal dorsomedial prefrontal connectivity in
men with depression is correlated with regional differences in the
expression of PCDH8 in both AHBA and Brainspan (Fig. 4c). PCDH8
encodes a protocadherin integral membrane protein involved in cell
adhesion in the brain81 in response to neural activity82,83. Its expression
at synapses has been implicated in long-termpotentiation and activity-
induced synaptic reorganization82–84. Thus, converging evidence from
multiple sources indicate that PCDH8 is well situated to modulate
pathophysiology by regulating functional connectivity.

Several important limitations are also noteworthy. First, while our
analyses identified a multitude of sex-specific effects, it is also impor-
tant to emphasize that neither connectivity abnormalities nor their
gene expression correlates were totally non-overlapping. On the con-
trary, and unsurprisingly, there were many effects shared by both
sexes. As in other medical conditions in which sex is a risk factor85–87,
our results suggest that some of the molecular and circuit-level
mechanisms contributing to pathophysiology in depression are dif-
ferentially important in men versus women, while others are shared.
Second, rsFC measures are influenced by many factors, and sex dif-
ferences could be related to a combination of physiological factors like
differences in respiration and cardiovascular physiology88,89, in

addition to changes in synaptic connectivity and other neurobiological
mechanisms. Subtle differences in clinical symptom profiles and
comorbidities could also contribute: as noted above, some studies
suggest that comorbid substance use disorders are more common in
men with depression, while comorbid anxiety disorders and atypical
symptoms are more common in women with depression4–7. Our data
also do not speak to the important question of whether the sex dif-
ferences we observed are due primarily to sex-related biological fac-
tors, gender-related psychosocial factors, or a combination of the two.
Third, our primary analyses were limited to cross-sectional data
acquired at a single point in time from individuals with treatment-
resistant depression who were currently experiencing a depressive
episode of moderate or severe intensity. Longitudinal studies90–92 in
more heterogeneous samples will be necessary for determining whe-
ther the sex differences we identified are also evident in mild depres-
sion, whether they persist in older adults and in women after
menopause, and understanding how they vary with the onset, remis-
sion, and recurrence of depressive episodes over time. Indeed, the
functional connectivity effects that we observed—and sex-related
variation in their expression—could be mood state-dependent,
attenuating in remission. In accord with this hypothesis, in multisite
analyses involving a preponderance of patients in remission, there
were no pronounced gender differences in depression effects on brain
structure (white matter integrity, cortical thickness)93,94. Fourth, our
focus on default mode network connectivity was motivated by prior
studies of this network, but it is important to emphasize that con-
nectivity abnormalities in the DMN are not specific to depression.
Different patterns of DMN dysfunction may play a role in multiple
neuropsychiatric disorders, including Alzheimer’s disease, autism, and
schizophrenia, as well as depression38–41. Multiple GWA studies have
identified shared genetic risk factors across numerous neuropsychia-
tric disorders, consistent with genetic epidemiological data indicating
that neuropsychiatric disorders tend to co-occur both within indivi-
duals and across individuals in a family19–23,95,96. In agreement with
GWAS results, fGSEA revealed enrichments in our study not only for
depression-related genes but also for genes implicated in schizo-
phrenia, bipolar disorder, and in one model, Alzheimer’s disease
(Supplementary Fig. S9). Future studies will be needed to determine
the extent towhichourfindings are specific to depression andwhether
similar transcriptional and network-level mechanisms may also con-
tribute to other neuropsychiatric conditions.

Finally, gene expression data from the Allen Human Brain Atlas
provide powerful tools for understanding the molecular correlates of
neuroimaging effects, with proven utility in other contexts38–41,68, but
they also have limitations. They are derived from brain tissue donated
by just five healthy men and one healthy woman, most of whom are
middle-aged, so they do not capture the full extent of individual
variability in cortical gene expression, and they do not allow us to
account sex differences in gene expression in our PLS regression
models. To ensure our results were not driven by sex biases in the
AHBA dataset, we replicated key findings in a second gene expression
atlas (Brainspan) with balanced sex composition. Although the genes
explaining abnormal connectivity for each seed in Fig. 4 were enriched
for gene sets exhibiting sex-biased expression early in life, we also
found that models trained on sex-congruent transcriptomic data did
not outperform models trained on transcriptomic data from the
opposite sex (Supplementary Fig. S11). This suggests that regional
differences in gene expression are more important than sex differ-
ences in gene expression in explaining the spatial distribution of
abnormal connectivity in our sample, and that the most important
genes identified in both the AHBA andBrainspan samples did not show
strong differences in expression in men vs. women. Instead, sex-
specific effects on connectivity may arise downstream of gene
expression programs, e.g. through varying effects on neuronal func-
tion in the male vs. female brain. Of course, these findings do not rule
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out the possibility that future studies incorporating cortical gene
expression data from many male and female brains might identify
additional gene expression modules with strong sex biases that could
not be detected in the present study. Simulations in a recent preprint
underscore how these models are also prone to overfitting, especially
when the number of observations per feature is relatively small97.
Mitigating this concern, we showed that the connectivity/gene
expression associations we detected are stable and robust in cross-
validation in held-out data and generalize to a second gene
expression atlas.

Still, PLS regression models are by definition correlative and
cannot be used to establish causal relationships between gene
expression and connectivity abnormalities. Instead, PLS
regression38–41,68,98 and related approaches12,77,99,100 are powerful,
emerging tools in systems neuroscience for inferring complex multi-
variate associations between connectivity abnormalities and cortical
gene expression patterns, and for formulating testable hypotheses
about candidate mechanisms, which could be evaluated in future
studies. Althoughwemight expect the precise gene loadingweights to
vary in prospective replication samples97, it should still be possible to
evaluate inferences about disease-associated gene sets and candidate
gene modules. Understanding how gene expression differences in
postmortem tissue and GWAS-confirmed risk variants interact to
contribute to psychiatric pathophysiology is a fundamental challenge
and even formulating hypotheses has been difficult. To this end, our
analyses prioritized at least six genes implicated in depression by high-
powered GWAS52, transcriptional analyses8, and our PLS-R models: in
females, TMEM161B-AS1 and KLHDC8B, and in males, PRSS16, MRM2,
ZKSCAN8P1, and PCDH8—a known regulator of activity-dependent
synaptic reorganization. How these genes and associated biological
pathways contribute to depression risk is unknown. Our results pro-
vide independent support in two datasets for the testable hypothesis
that they could be involved in regulating connectivity changes in
depression-related networks.

Methods
Subjects
All participants provided informed consent, and research protocols
were approved by Institutional Review Boards at all sites. Participants
in some studies received amodest cash compensation for their time in
participating in the study, as described in the original reports from the
respective studies below.

Toronto Dataset. This dataset included 384 participants diagnosed
with treatment-resistant major depressive disorder and 87 healthy
individuals. (As explained below, our primary analysis focused on data
from n = 371 subjects that met our quality control requirements.) TRD
participants were originally recruited from the THREE-D Study (Clin-
icalTrials.gov ID: NCT01887782),whichwas a noninferiority trial aimed
at assessing the antidepressant efficacy of two forms of non-invasive
brain stimulation. To be eligible for inclusion, participants were
between 18 and 65 years of age and had no contraindications to MRI,
and participants with depression had a MINI-confirmed DSM-5 diag-
nosis of unipolar depression; a score of ≥18 on the 17-item Hamilton
Rating Scale for Depression at their screening visit (HRSD101); failed to
respond to at least one adequate or two inadequate antidepressant
interventions in the current depressive episode; and were on a stable
dose of psychotropic medication for at least four weeks prior to the
start of the study. Subjects were excluded from the study if they were
actively suicidal; had a MINI-confirmed diagnosis of bipolar I or II; a
diagnosis of psychotic disorder or psychotic symptoms in the current
major depressive episode; or a history of substance dependence or
abuse within the past 3 months. All healthy controls had no history of
any psychiatric disorder, confirmed by trained assessors in a clinical
interview; had a 17-item HRSD score of ≤ 8; and were not currently (or

in the last four weeks) on any psychotropic medication, or medication
that could significantly affect brain perfusion or activity. For additional
details on subject recruitment and a full list of inclusion and exclusion
criteria, see102.

fc1000Datasets. To supplement our healthy control subject pool, we
used publicly available fMRI data from 97 healthy volunteers from the
open-source “1000 Functional Connectomes” (fc1000) online
resource at (https://www.nitrc.org/frs/?group_id=296). Out of 35
available fc1000 data sets, the “ICBM” (n = 86), “NewYork_a” (n = 84),
and “Cleveland CCF” (n = 31) cohorts were selected due to their larger
sample size and similar demographic and scanning characteristics to
the Toronto dataset (3 T scanner; TR< 3000ms; scanned with eyes
closed). Of these 201 subjects, 31 subjects were excluded because they
did not meet our scan quality controls (described below), 25 subjects
under age 18 were excluded, and a further 48 subjects under age 38
were excluded to ensure that controls and subjects with depression
did not show significant differences in age. To maintain subject con-
fidentiality, all files available through the fc1000 project are com-
pletely deidentified and anonymized. Each subject’s age, sex, and
handedness data are freely available for download at (https://www.
nitrc.org/frs/?group_id=296), with group mean age, sex distribution,
and other site- and scanner-related information available at (https://
www.nitrc.org/docman/?group_id=296). Note that subjects in this
sample were free of psychiatric history by self-report and described as
“healthy controls”, but they did not undergo a structured clinical
diagnostic interview to confirm this assumption.

UK Biobank Dataset. To test the generalizability of our findings
involving sex differences in the Toronto MDD cohort, we repeated
the analyses in Fig. 2 in an independent subject cohort from the UK
BioBank. UK Biobank is a health resource aiming to prevent, diag-
nose and treat numerous disorders. It is comprised of 502,617
individuals whose genetic and environmental data (e.g. lifestyle,
medications) were collected between 2006 and 2010 in the United
Kingdom (http://www.ukbiobank.ac.uk/). UKB received ethical
approval from the Research Ethics Committee (reference 11: /NW/
0382). This study has been approved by the UKB Access Committee
(Project #4844). Written informed consent was obtained from all
participants. Using data field 20126 (“Bipolar and Major Depression
Status”), we identified UK BioBank subjects with completed fMRI
scans (https://www.fmrib.ox.ac.uk/ukbiobank/) and classified them
as healthy controls (n = 1907 males, 1773 females) if they fell under
the “No Bipolar or Depression” category, or as “Probable MDD his-
tory” (n = 537 males, 921 females) if they fell within the “Probable
Recurrent Major Depression (severe)”, “Probable Recurrent Major
Depression (moderate)”, or “Single Probable Major Depression
Episode” categories. Because many patients with a probable MDD
history may not have been actively depressed at the time of their
scan, our primary analyses in Fig. 2 focused on a subset of subjects
in this category who were symptomatic at the time of their fMRI
scan, defined as subjects who reported severe MDD symptoms on
survey responses taken at the time of their scan. Self-reported
symptoms were classified as severe if they responded “nearly every
day” to any of the following four UK BioBank data fields: 2050
(frequency of depressedmood in the last 2 weeks), 2060 (frequency
of unenthusiasm/disinterest in the last 2 weeks), 2070 (frequency of
tenseness/restlessness in the last 2 weeks), or 2080 (frequency of
tiredness/lethargy in the last 2 weeks). The age of UK BioBank
subjects included in this analysis ranged from 46 to 77, and the
means and standard deviations for these groups were as follows:
healthy control males (mean = 61.7, sd = 7.6), males with probable
MDD history (mean = 60.6, sd = 7.3), males with probable MDD
history and symptomatic MDD (mean = 58.2, sd = 7.4), healthy
control females (mean = 60.5, sd = 7.2), females with probable MDD
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history (mean = 58.8, sd = 7.2), and females with probable MDD
history and symptomatic MDD (mean = 56.0, sd = 7.3).

MRI data acquisition
Toronto dataset. Participants with depression (n = 384) and healthy
controls (n = 87) underwent neuroimaging on the same scanner. (As
explained below, our primary analysis focused on data from
n = 371 subjects that met our quality control requirements.)
Scan acquisition parameters have been previously published
elsewhere103–105. Briefly, all scans were acquired on Toronto Western
Hospital’s 3 T GEHDxMRI system equipped with an 8-channel phased-
array head coil. For each participant, two datasets were acquired: a
high resolution, T1-weighted fast spoiled gradient-echo structural
dataset (TE = 12ms, flip angle = 20°, 116 sagittal slices, thickness =
1.5mm, no gap, 256 ×256 matrix, FOV = 240mm), and a 10-minute
resting-state functional MRI dataset in the eyes closed condition (T2*-
weighted EPI, TE = 30ms, TR = 2000ms,flip angle = 85°, 32 axial slices,
thickness = 5mm, no gap, 64×64 matrix, FOV = 220mm).

fc1000 dataset. n = 84 subjects from the “ICBM” sample
n = 84 subjects from the “NewYork_a” sample, and n = 31 subjects from
the “Cleveland CCF” sample were scanned on a 3 T MRI system in the
eyes closed condition (TR = 2000, 2000, and2800ms respectively; 23,
39, and 31 slices, respectively; 128, 192, and 127 volumes, respectively).
The scan durations were 6.4min, 5.93min, and 12.81min (3 scans x
4.27mins / scan) in the “NewYork_a”, “Cleveland CCF”, and “ICBM”

sites, respectively. T1 and T2* MR echo-planar image files for these
subjects were downloaded from the “1000 Functional Connectomes”
(fc1000) online resource at (https://www.nitrc.org/frs/?group_
id=296).

UK biobank dataset. n = 19,831 subjects from the UK BioBank sample
were scanned on one of two 3 T MRI systems in the eyes open condi-
tion (TR = 735ms, TE = 39ms, 64 slices, slice thickness = 2.40mm, 490
volumes). Scans lasted for a duration of 6minutes. Note that these
subjects were used for an independent replication analysis in Fig. 2,
but their data were not integrated and combined with data from
the Toronto and fc1000 datasets. Additional details on fMRI data
acquisition parameters can be found at (https://www.fmrib.ox.ac.uk/
ukbiobank/)106.

MRI data preprocessing
UK BioBank data were downloaded in a preprocessed format, using a
pipeline developed by UK BioBank investigators and described
elsewhere106. The following preprocessing steps were applied to data
in the Toronto and fc1000 samples:

Structural MRI data preprocessing. T1 anatomical volumes in the
Toronto and fc1000 samples were cropped to a smaller field of view
(150mm in z plane) using FSL’s automated robustfov tool and
aligned to the 2mm MNI atlas template using a rigid, 6-degrees-of-
freedom (DOF) FLIRT transformation. This image was segmented
into gray matter, cerebrospinal fluid, and white matter masks using
FSL’s FAST. A non-linear transformation between the ACPC aligned
T1-weighted anatomical image and MNI atlas (2mm) was estimated
using FNIRT. A brain extraction was then performed using a binar-
ized MNI brain mask, transformed from atlas space into native
image space using an inverse transformation calculated using FSL’s
invwarp tool.

Functional MRI data preprocessing. Slice-time correction was per-
formed using FSL’s slicetimer program. Correction for head motion
was performed using FSL’s MCFLIRT tool107. Functional data were co-
registered to the ACPC-aligned T1-weighted anatomical image using
FSL’s epi_reg program and transformed into atlas space using the non-

linear transformation defined above in the T1 anatomical data. All
denoising procedures were performed on these preprocessed, atlas-
transformed images.

Functional MRI data denoising. Functional data was denoised using
the aCompCor strategy108 implemented in the CONN toolbox (version
17.0; https://web.conn-toolbox.org). Denoising steps included linear
de-trending and nuisance regression (5 principle components from
eroded white matter and cerebrospinal fluid masks from the afore-
mentioned tissue segmentation; 6 motion parameters and first-order
temporal derivatives; and point-regressors to censor time points with
mean frame-wise displacement > 0.2mm). Residual time-series were
band-pass filtered (0.01Hz < f <0.1 Hz) after regression to avoid rein-
troduction of nuisance-related variation in the time-series. Finally,
temporal masks were created to flag motion-contaminated frames for
scrubbing. High-motion volumes were identified by framewise dis-
placement (FD) calculated as the sum of absolute values of the dif-
ferentials of the three translational motion parameters and three
rotationalmotion parameters. 13 TRD subjects and 33HC subjects had
<5minutes of scan time after censoring for excessive head motion.
These 13MDDand 33HC subjectswere excluded from further analysis.

ComBat harmonization to control for scanner- and site-related
effects. Our healthy control subject pool was drawn from four scanner
sites: Toronto and three sites in the fc1000 dataset (“ICBM”, “New-
York_a”, and “Cleveland CCF”). To control for scanner- and site-related
confounding effects while preserving covariates of interest (in this
case: sex, age, and MDD status) in rsFC data, we used the ComBat
Harmonization method109–112. This method uses an empirical Bayesian
framework to estimate additive and multiplicative scanner site effect
parameters using parametric empirical priors. The data is then adjus-
ted by subtracting the additive effect parameter and dividing by the
multiplicative effect parameter112. Effects of depression on rsFC in the
DMN in both men and women were similar in an analysis restricted to
data from just one site (Supplementary Fig. S2), indicating that COM-
BAT harmonization was effective for controlling for scanner effects
and didnot introduce spurious artifacts driving the observed effects in
the multi-site sample.

Data analysis: effects of depression and sex on rsFC in the DMN
and five transcriptomic regions of interest (Figs. 1–3)
First, we implemented an unbiased, whole-brain quantification of rsFC
abnormalities within the DMN and between the DMN and other func-
tional networks in depression. We restricted this analysis to the DMN
and its interaction with other networks, because the DMN is one of the
most commonly studied functional networks in depression neuroi-
maging and restricting our search space would increase statistical
power to detect modest sex effects, relative to a fully whole-brain
search. Preprocessed BOLD signal time series were extracted for 360
cortical areas defined by an extensively validated functional
parcellation48 and 19 subcortical regions49. These functional parcels
were used to generate rsFC matrices (i.e. Fisher-Z transformed corre-
lationmatrices) between 77 defaultmode network ROIs and the rest of
the brain. In Fig. 1, we used two-way factorial ANOVA to test for main
effects of depression diagnosis and sex-by-depression interactions on
features in these rsFC matrices. Post-hoc t-tests were used to identify
significantly altered in rsFC features inmenwith depression vs. healthy
controlmen and inwomenwith depression vs. healthy control women.
The Benjamini-Hochberg procedure was used to control the false
discovery rate (FDR q <0.05) 113.

In Fig. 2, we replicated our initial findings from the Toronto
dataset in an independent sample from the UK BioBank
(n = 3789 subjects, n = 109 of whom had symptomatic MDD), in order
to test the extent to which these results generalize to other subject
samples scanned and preprocessed under different conditions. This
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analysis was performed on rsFC matrices represented functional con-
nectivity between six DMN nodes derived from an ICA-based func-
tional parcellation implemented by UK Biobank investigators. That is,
data preprocessing, ICA parcellation, and rsFC estimation were and
implemented and shared by the UK Biobank, and we downloaded and
analyzed these rsFC matrices, which are available for download at
https://www.fmrib.ox.ac.uk/ukbiobank/ and included six components:
UK Biobank component #5 = posterior cingulate/precuneus (PCC/
Precun); component #7 = ventromedial prefrontal cortex (vmPFC);
component #9 = medial temporal gyrus (mTG); component #13 =
dorsomedial PFC (dmPFC); component #21 = dorsal PFC; and com-
ponent #49 = inferior parietal lobule (IPL).

In Fig. 3 and Supplementary Fig. S4, we used two-factor ANOVA to
test for main effects of depression diagnosis and sex-by-depression
interactions on rsFC seeded from each of five transcriptomic regions
of interest that exhibited sexually dimorphic gene expression sig-
natures in a recent report8: subgenual cingulate cortex (Brodmann
Area [BA] BA25), dorsal prefrontal cortex (BA8/9), nucleus accumbens
(NAc), orbitofrontal cortex (BA11), and anterior insula. Again, post-hoc
t-tests were used to identify significantly altered in rsFC features in
men with depression vs. healthy control men and in women with
depression vs. healthy control women. Venn diagrams were used to
depict rsFC features that were significantly altered in men with
depression, women with depression, or both. We also tested whether
the number of sex-specific effects (i.e. rsFC features that were altered
in men with depression but not women with depression, or vice versa)
was larger than expected by chance compared to shuffled data with
randomly permuted sex labels.

Data analysis: PLS regression relating gene expression and
abnormal rsFC (Figs. 4, 5)
As described below, we first mapped normative regional gene
expression profiles for 58,692 microarray probes covering 21,120
genes in the Allen Human Brain Atlas (AHBA), which provides regional
gene expression data from n = 6 subjects (n = 1 woman, ages
24–57)46,64,65, and for normalized microarray expression values for
21,392 genes in the Brainspan dataset47, which provides regional gene
expression data from n = 8 subjects (n = 4 women, ages 18–40), to the
functional parcellation defined in Fig. 148. Next, we used partial least
squares (PLS) regression66 to identify genes whose regional expression
patterns co-vary with regional depression-related connectivity chan-
ges for each of the five transcriptomic seed ROIs listed above: BA25,
BA8/9, NAc, BA11, and anterior insula. This analysis was performed
separately for depression-related connectivity changes observed in
male subjects and in female subjects. To interpret PLS results, we used
gene ontology and gene set enrichment analyses to understand which
molecular pathways were enriched among the most highly associated
genes. Finally, we tested whether disease-associated genetic variants
that modulate the expression of the highest-loading genes in nervous
tissue exert sex-specific effects on seed-based rsFC to the default
mode network in men and women with depression.

Mapping regional gene expression to fMRI data. For the Allen
Human Brain Atlas analyses, microarray expression data was
downloaded for all six human brain donors (H0351.1009,
H0351.1016, H0351.1015, H0351.2002, H0351.1012 and H0351.2001)
from http://human.brain-map.org/static/download. For the Brain-
span analyses, RNA-seq reads per kilobase per million (RPKM)
values averaged to genes were downloaded for eight brain donors
(H376.X.52, H376.X.53, H376.XI.50, H376.XI.52, H376.XI.53,
H376.XI.54, H376.XI.56, H376.XI.60) from https://www.brainspan.
org/static/download.html.

Most genes in the AHBAhadmultiple probes, soprobe expression
values for the same gene were averaged, as described in previous
literature68,70,114,115, to obtain gene expression values for 21,120 genes at

eachmicroarray sample site. Sample sites (provided inMNI coordinate
space) were assigned to all voxelswhose Euclideandistancewaswithin
a 2mm radius of the sample site in MNI coordinate space, as recom-
mended in previous literature114. If two or more sample sites were
assigned to the same voxel, the expression values for a given gene
across the multiple sample sites were averaged to yield a representa-
tive gene expression value for each gene at that voxel in each subject.
Thesevoxel-level gene expression valueswere then assigned toGlasser
parcellation cortical ROIs using grayordinates from parcellated CIFTI
files downloaded from the Human Connectome Project (https://www.
humanconnectome.org/study/hcp-young-adult). Voxel-level gene
expression values were then averaged across all voxels participating in
a given Glasser ROI to yield representative gene expression values for
21,120 gene probes at each Glasser ROI. In the interest of modeling
normative regional variation in humanbrain gene expression in the six
AHBA subjects, and to avoid the impact of inter-individual variation in
gene expression, we used Z-score normalization (i.e. subtracting the
mean and dividing by the standard deviation for each regional gene
expression profile in a given subject) to normalize regional gene
expression data for each of the six AHBA subjects, as recommended in
previous literature38,114. Because only 2/6 AHBA subjects had micro-
array data from the right cerebral hemisphere, left and right hemi-
spheric gene expression data in each subject were mirrored as in
previous literature40,116, such that gene expression values at ROIs with
only left hemispheric data were reflected onto their right hemispheric
counterparts, and ROIs with right and left hemispheric data in 2/6
AHBA subjects were averaged for each gene. Finally, the subject-
normalized representative expression values for each of 21,120 genes
at each ROI were averaged across all six brains, creating an aggregate
regional gene expression matrix for 348 cortical ROIs that were
assigned sample sites in at least one of the six brains (i.e. 360 – 348 = 12
GlasserROIswerenot coveredbyAHBAgene expressiondata andwere
excluded fromPLS analyses). This resulted in a 348ROI-by-21,120 gene
matrix, which was then Z-transformed again (i.e. each gene expression
vector was demeaned and divided by its standard deviation) to obtain
a final matrix of normalized regional gene expression value Z-scores
(hereafter referred to as “X”).

For Brainspan data, the regional gene expression Z-score matrix
was generated similarly for 15 out of 16 regions per hemisphere with
available RNA-seq data. These regions included the dorsolateral pre-
frontal cortex, ventrolateral prefrontal cortex, orbital frontal cortex,
anterior cingulate cortex, inferior parietal cortex, superior temporal
cortex, inferolateral temporal cortex, primary auditory cortex, primary
visual cortex, primary motor cortex, primary somatosensory cortex,
amygdala, cerebellar cortex, hippocampus, and striatum. The ‘med-
iodorsal thalamus’ region was excluded because it was not present in
our functional brain parcellation. Glasser HCPMM1 parcellation
regions were mapped anatomically to the 15 regions. Genes were
excluded if they had zero expression in all regions in donor brain
tissue, or if they did not have an associated Entrez ID. Each subject’s
regional gene expression vectors were Z-score normalized, reflected
across hemispheres, and averaged across male subjects (n = 4) and
female subjects (n = 4), as described above for AHBA data. This resul-
ted in one 30 ROI-by-20,287 matrix representing regional gene
expression in females and one 30 ROI-by-20,287 matrix representing
regional gene expression in males.

Gene-neuroimaging partial least squares regression. Partial least
squares regression (PLS-R) was used to uncover latent structures with
maximal covariance between regional gene expression and regional
connectivity change in MDD. PLS is an established multivariate tech-
nique fordiscovering associations between large numbersof predictor
variables and response variables66. We trained separate PLS-R models
for men and women and for each of five transcriptional regions of
interest: BA25, BA8/9, BA11, nucleus accumbens, and anterior insula,
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resulting in a total of ten models (5 ROIs x 2 sexes) trained on AHBA
data. In each model, the predictor matrix was the 348 ×21,120 AHBA
regional gene expression matrix “X”, described above, and the
response variable was a 348-element vector, representing the effect
size for depression-related connectivity abnormalities associated with
each cortical parcel, seeded from one of the five ROIs. The NIPALS
algorithm was used to approximate PLS-R results using published
code69, which is available at (https://github.com/jmmonteiro/spls).
This resulted in PLS components for each seed ROI representing sex-
specific latent structures of covariance between gene expression and
MDD-associated connectivity change (Fig. 4a). Stability of PLS loading
weights for individual genes in the “X” predictor matrix was estimated
using a bootstrap procedure, in accordance with previous literature68:
the 348 ROIs (rows) of both the “X” and “Y” matrices were identically
resampled with replacement and run through PLS over 10,000
resampling iterations to obtain standard deviations for loading
weights of each gene (column) in the “X”matrix. For each PLS model,
the ratio of each gene’s empirical PLS loading weight to its loading
weight standard deviation from the bootstrap procedure was used to
rank the genes. All normalized gene LWs for each of the 10 PLSmodels
can be found in Supplementary Table 2. For sex and seed-region pairs
that yielded significant and reproducible PLSmodels using AHBA data
(Fig. 4b–e), additional PLS models were trained in the same manner
using female- and male-specific regional gene expression matrices
derived from Brainspan data (described above) to predict depression-
related connectivity changes observed in females and males,
respectively.

Statistical testing of PLS components. To test whether the observed
gene-neuroimaging relationships uncovered by the PLS models were
statistically significant, we compared the empirical Pearson correlation
betweenPLScomponentsderivedusing real data tonull distributions of
10,000 Pearson correlations derived using 10,000 spatially permuted
response vectors, “Yk”, for k = 1:10,000. In this null model (“spin test”),
the rows of the neuroimaging vector “Y” were permuted using random
rotations of the spherical projection of the cortical surface, performed
using a published spatial permutation technique designed to preserve
the native correlational structure of variables across the cortical
surface117. Thiswas accomplishedusing the ‘rotate-parcellation’package
by Frantisek Vasa, which is available for download at https://github.
com/frantisekvasa/rotate_parcellation. By preserving local auto-
correlations in cortical surface variables, the “spin test” provides a
nullmodelwithmore stringent controls for false positives, compared to
a randompermutation null model. For comparison with previous work,
we also generated a less stringent, spatially naïve null model by ran-
domly permuting all 348 ROIs in the “Y” vector over k = 10,000 itera-
tions. For a given iteration, the Pearson correlation between the gene
expression scores (i.e. the projection of the gene expression predictor
matrix into its computed loading weights “uk”) and the permuted
connectivity abnormality vector “Yk”was used as a test statistic (Eq. (1)):

ρk =CorrðX * uk,YkÞ ð1Þ

where for iteration k of 10,000 iterations, the test statistic is the cor-
relation ρk, X is the gene expression predictor matrix, uk are the null
gene loading weights computed by PLS on iteration k, and Yk is the
permuted “Y” seed- and sex-specific connectivity change vector for
iteration k. Ten separate null models were computed: one for each of
five seed-ROI response vectors “Y” in males and one for each seed-ROI
response vector in females.We then compared the distributions of null
correlations ρk in each seed-ROI specific null model in each sex to the
empirical correlations ρm (Supplementary Fig. S5) observed between
the connectivity change response variables and gene expression
scores (i.e. projection of X into the respective model loading weights
um) in the PLS models derived from unpermuted data, using the same

computation as for the null correlations (Eq. (2)):

ρm =CorrðX * um,YÞ ð2Þ

Wedefined significant PLS components to be above the 95th percentile
of the null distribution of correlations ρk for the spatially rotated (pspin)
and randomly permuted (prand) null models described above. All
p-values were adjusted for multiple comparisons (10 PLS-R models
tested: 5 ROIs x 2 sexes) using the Benjamini-Hochberg approach for
FDR correction118.

Reproducibility testing of PLS components. To test whether the
observed gene-neuroimaging relationships uncovered by the PLS
models were reproducible, we performed a ten-times ten-fold cross
validation of PLS models in held-out data. Separate male and female
PLSmodels were trained as before but using random90% sub-samples
of the male and female subject pools, with equal proportions of sub-
jects with depression in the 90% training and 10% testing sub-samples.
PLSmodels trained on 90%of subjects were then tested on their ability
to predict depression-related effects on rsFC in the remaining 10%
held-out subjects. Predictive ability in held-out data was measured
using the same Pearson rho test statistic as above, but with loading
weights (utrain) trained on 90% of data and response vectors (Ytest)
derived from 10% held out subject sub-samples:

ρho =CorrðX * utrain,YtestÞ ð3Þ

Where ρho is the Pearson rho test-statistic in held-out data and X is the
21,120-gene expression predictor matrix described above. This was
calculated 100 times (ten times 10-fold cross validation) using 100
different random sub-samples of 10% held out subjects for each PLS
model. The depression diagnostic labels were then randomly
permuted and the null ρho was computed across 100 iterations (ten
times ten-fold cross validation) again for shuffled data. For each
iteration of 10-fold cross-validation, the mean Pearson rho across 10
folds from real and permuted data was compared using a corrected
resampled t-test119,120. This generated 10 p-values, each representing a
different random 10-fold split of the dataset. To determine statistical
significance, we Bonferroni-corrected the 10 p-values and then applied
an omnibus hypothesis test to determine whether gene-rsFC associa-
tions in training data were reproducible in any train-test splits of our
dataset, as described in previous neuroimaging work69,121,122.

Bioinformatic analysis of PLS results. For statistically significant PLS
models, the resulting ranked gene lists were tested for over-
representation of gene ontology (GO) terms (Supplementary
Fig. S10) and for gene sets of interest (listed in Supplementary Table 3)
using the online GOrilla tool (http://cbl-gorilla.cs.technion.ac.il/), and
the Bioconductor “fGSEA” package (https://bioconductor.org/
packages/release/bioc/html/fgsea.html)123, respectively. fGSEA ana-
lyses were performed using 10,000 null permutations and all other
settings set to defaults. The org.Hs.eg.db package, version 3.11.4,
which freely available for download in R through Bioconductor, was
used to interconvert gene identifiers between entrez ID’s, Ensembl
ID’s, and HGNC symbols.

PLS result validation using genotype data. To determine whether
brain expression of genes implicated in our PLS models predict
individual differences in rsFC in a new dataset, we leveraged the
Genome Tissue Expression Database (https://www.gtexportal.org/
home/datasets; significant cis-QTL variant-gene pairs v8) to identify
SNPs modulating nervous system tissue expression levels (i.e.
‘expression quantitative trait loci’, or ‘eQTLs’) of sex-specific genes
implicated by our PLS models. We then tested whether different
alleles of these eQTLs exerted an additive effect on rsFC in 1458 UK
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Biobank subjects with a probable history of MDD (see UK Biobank
subjects description above) who were genotyped and rsfMRI-scan-
ned, testing males (n = 537) and females (n = 921) separately. To
limit the number of SNP-rsFC associations tested, we restricted our
eQTL search to SNPs that have previously shown a genome-wide
significant association with depression in two separate cohorts
from themost recent large-scale GWAS52, and to genes thatmeet the
following conditions:
1. PLS loadingweight in the top or bottomdecile among 21,120 gene

loading weights from each of four significant PLS models of
depression-related rsFC changes in female BA25, female NAc,
male BA25, and male BA8/9.

2. Expression in nervous system tissues modulated in the same
direction by MDD GWAS SNPs from the most recent GWAS52 and
by depression status in post-mortem transcriptional studies8.

Tested SNPs were also controlled for standard QCmeasures: they
were excluded if they showed missingness in >10% of subjects, minor
allele frequency >5%, and significant deviation from Hardy-Weinberg
equilibrium (determined using Chi-square test with alpha=0.05 and 1
degrees of freedom). Subjects were excluded if their sex recorded in
the dataset (UKB data field 31) was not identical to their genotype-
inferred sex (UKB data field 22001) or if they were determined by UK
Biobank protocols124,125 to be outliers based on heterozygosity and SNP
missingness (UKB data field 22027).

This search yielded two eQTLs that promoted female-specific
transcriptional patterns in depression, and five eQTLs that promoted
male-specific transcriptional patterns in depression: In females, the
MDD risk allele of the SNP rs7617480 increased nervous tissue
expression of KLHDC8B, and the MDD risk allele of rs3099439
increased expression of TMEM161B-AS176. In males, the MDD risk
alleles of rs72839477 and rs12525684 increase nervous tissue expres-
sion of PRSS16, the MDD risk allele of rs11772627 increases expression
of MRM2 (alternatively known as ‘FTSJ2’ or ‘FJH1’), theMDD risk alleles
of rs72839477 and rs67981811 decrease expression of ZKSCAN8P1
(alternatively known as ‘ZNF192P1’ or ‘ZNF389’), and the MDD risk
allele of rs2806933 decreases expression of PCDH876. We then sought
to determine whether theseMDD risk alleles that promote sex-specific
transcriptional patterns also promote sex-specific connectivity pat-
terns in depression at the seed regions tested. In the analysis in
Fig. 5a–c, PRSS16, MRM2, ZKSCAN8P1, and PCDH8, were spatially
associated with male-specific connectivity changes in depression at
the BA8/9 seed in our PLS-R models in Fig. 4, so we tested whether
connectivity between theBA8/9 seed (i.e. UKBiobank ICAnode 21) and
the rest of the DMN (i.e. UK Biobank ICA nodes 5, 7, 9, 13, and 49) was
additively associated with the number of MDD risk alleles across the
five SNPs listed above. Likewise, in the analysis in Fig. 5d–f, KLHDC8B
and TMEM161B-AS1 were spatially associated with female-specific
connectivity changes in depression at the BA25 seed in our PLS-R
models in Fig. 4, so we tested whether connectivity between BA25
(approximated in the UK Biobank parcellation as the “anterior DMN”
parcel, i.e. UK Biobank ICA node 7) and the rest of the DMN (i.e. UK
Biobank ICA nodes 5, 9, 13, 21, and 49) was additively associated with
the number of MDD risk alleles across the two SNPs listed above. To
investigate these SNP-rsFC relationships in the context of depression
pathophysiology, we tested for linear associations between MDD risk
allele count and DMN rsFC in 1458 UK Biobank subjects (921 females)
with a ‘Probable MDD history’ (see UK Biobank subjects description
above). Quantitative trait modeling of mean rsFC across the DMN
nodes listed above was performed using a linear model (R function
‘lm’) with genotype (represented as an integer sum of MDD risk alleles
in a given subject across the MDD GWAS SNPs above) as the predictor
variable, and age as a covariate. Imputed genotype data (UKB Field
22828) was downloaded from UK Biobank for all 19,831 rsfMRI-
scanned subjects using the ‘gfetch’ tool (https://biobank.ctsu.ox.ac.uk/

showcase/showcase/docs/instruct_gfetch.html). Subject genotype
data for the SNPs listed above were extracted from the down-
loaded.bgen files and converted to binary PED format using qctool
version 2 (https://www.well.ox.ac.uk/~gav/qctool_v2/) for quantitative
trait association analysis in R. Multiple comparison correction was not
performed due the small number of hypothesis-driven multi-allelic
score effects (n = 2) that were tested.

Data analysis: simulating the impact of sex differences in
rsFC (Fig. 6)
To better understand the degree to which sex differences of the
magnitude observed here could influence future studies and bio-
marker development efforts, we performed two concluding analyses.
First, to determine whether sex-specific effects were large enough to
influence study outcomes based on sex composition, we simulated
1000 MDD rsFC studies using sub-samples with varying sex composi-
tions, ranging from0% female to 100% female. In each simulated study,
140 MDD subjects and 70 HC subjects were sub-sampled from our
original cohort of 553 ComBat-harmonized subjects using one of seven
different sex-compositions (0% female, 20% female, 33% female, 50%
female, 67% female, 80% female, and 100% female) applied equiva-
lently to the MDD and HC sub-samples. For each sub-sample iteration,
two-tailed t-tests were used to determine significance of MDD effects
at each DMN rsFC feature, as well as at the mean of all rsFC features
connecting the 77 DMN nodes. As above, the Benjamini-Hochberg
procedure was used to control the false discovery rate (FDR
q <0.05) 113.

Second, we trained elastic-net regularized general linear models
(EN-GLMs) in a sex-specific manner to predict MDD status in separate
hold-out samples ofmales and of females, andwe compared these sex-
specific EN-GLMs to an EN-GLM trained and tested on samples of
combined males and females. 145 subjects were randomly selected
from each grouping (male, female, or combined sex) to train the
respective EN-GLM, and a separate and non-overlapping group of
72 subjects was randomly selected from the same grouping to test the
sensitivity and specificity of each trained EN-GLM (Fig. 6c). This pro-
cedure was performed 100 times to obtain a mean performance level
(i.e. area under the ROC curve for predicting MDD status in the held-
out sample) for the combined-subject, male-only, and female-only EN-
GLMs (Fig. 6d, e). Data from the 72 test subjects were strictly held out
fromall aspects of the trainingprocedureon each iteration. In eachEN-
GLM, an alpha value of 0.5 was used to allow for equal parts ridge and
lasso regularization. The GLM was performed with the MATLAB func-
tion “lassoglm”, which iterated over 80 different lambda values,
allowing for comparison of GLM performance at different numbers of
features (ranging from 1 to ~400) included in the GLM. The feature-
level beta-weights were averaged over the 100 GLM-iterations to yield
robust beta-weights at each connectivity feature. The absolute value of
these connectivity feature beta-weights was then summed across col-
umns for each ROI, yielding a summed absolute loading weight for
each of the 379 ROIs in our analysis. The summed absolute loading
weight was then plotted on a brain surface (Fig. 6f) to provide an
anatomical depiction of features relevant toMDDdiagnosis prediction
for each of the three EN-GLMs.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
There were no new raw data generated in this study. All preprocessing
and analysis were performed on pre-existing data sets as described in
the Methods section. The THREE-D study fMRI and UK Biobank data
are available under restricted access to protect patient privacy. Access
can be obtained upon reasonable request by contacting the authors of
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this paper who manage each dataset: Dr. Jonathan Downar for the
Three-D data set, and Dr. Andrew Macintosh for the UK Biobank
dataset. UK Biobank access can also be obtained via a centralized
application process at www.ukbiobank.ac.uk/enable-your-research/
apply-for-access. The Allen Human Brain Atlas and Brainspan data-
sets are freely available and may be downloaded at the links provided
in the Methods section. The gene ranking results of partial least
squares regression analyses applied to AHBA and Brainspan data are
made available in Supplementary Table 2, and Gene Ontology terms
derived from those ranked gene lists are made available in Supple-
mentary Table 3.

Code availability
The code used for machine learning analyses described in this
manuscript is made available along with example data in the fol-
lowing Github repository: https://github.com/AlexTalishinsky/Sex_
Dimorphic_Depression_rsFC_Gene_Correlates. The original version
used for the manuscript is citable via the Zenodo repository at the
following link: https://doi.org/10.5281/zenodo.6825246. No novel
algorithms were used in the analyses therein.
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