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Experimental demonstration of adversarial
examples in learning topological phases

Huili Zhang 1,4, Si Jiang 1,4, Xin Wang1,4, Wengang Zhang1, Xianzhi Huang1,2,
XiaolongOuyang1, Yefei Yu1, YanqingLiu1,Dong-LingDeng1,3 &L.-M.Duan 1

Classification and identification of different phases and the transitions
between them is a central task in condensedmatter physics. Machine learning,
which has achieved dramatic success in a wide range of applications, holds the
promise to bring unprecedented perspectives for this challenging task. How-
ever, despite the exciting progress made along this direction, the reliability of
machine-learning approaches in experimental settings demands further
investigation. Here, with the nitrogen-vacancy center platform, we report a
proof-of-principle experimental demonstration of adversarial examples in
learning topological phases. We show that the experimental noises are more
likely to act as adversarial perturbations when a larger percentage of the input
data are dropped or unavailable for the neural network-based classifiers. We
experimentally implement adversarial examples which can deceive the phase
classifier with a high confidence, while keeping the topological properties of
the simulated Hopf insulators unchanged. Our results explicitly showcase the
crucial vulnerability aspect of applying machine learning techniques in
experiments to classify phases of matter, which can benefit future studies in
this interdisciplinary field.

Machine learning, or more generally speaking artificial intelligence, is
currently taking a technological revolution to modern society and
becoming a powerful tool for fundamental research in multiple
disciplines1,2. Recently, machine learning has been adopted to solve
challenges in condensedmatter physics3–5, and in particular, to classify
phases of matter and identify phase transitions6–11. Within this vein,
both supervised11–15 andunsupervised learning7,16–21methods havebeen
applied, enabling identifying different phases directly from rawdata of
local observables, such as spin textures and local correlations11–13. In
addition, pioneering experiments have also been carried out with
different platforms22–25, including electron spins in nitrogen-vacancy
(NV) centers in diamond22, cold atoms in optical lattices23,24, and doped
CuO2

25, showing unparalleled potentials of machine learning approa-
ches compared to traditional means.

An intriguing advantage of machine learning approaches in
identifying phases of matter is that they may require only a small

portion of data samples, without too much prior knowledge about
the phases22. Therefore, they may substantially reduce the experi-
ment cost in practice and are particularly suitable for exploring
unknown exotic phases. However, the existence of adversarial
examples26–30, which can deceive the learning model at a high con-
fidence level, poses a serious concern about the reliability of
machine-learning approaches as well. The study of whether adver-
sarial examples are potential obstacles in the experimental settings,
and the experimental demonstration of adversarial examples in
learning phases of matter, are still lacking hitherto. In this work, we
find that the experimental noises are more likely to act as adversarial
perturbations when a larger percentage of the input data are drop-
ped or unavailable for the neural network-based classifiers. We pre-
sent an experiment to implement adversarial examples and study
their properties with a solid-state quantum simulator consisting of a
single NV center in a diamond.
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The NV center in diamond is a point defect31, consisting of a
nitrogen atom that substitutes a carbon atom and a nearest-neighbor
lattice vacancy, as shown in Fig. 1a. It has long coherence time at
room temperature and can be conveniently manipulated through
lasers or microwaves, making this system versatile for applications in
quantum networks32–35, high-resolution sensing36–39, quantum infor-
mation processing40–44, and quantum simulation45–47, etc. Here, with
the NV center platform, we experimentally demonstrate adversarial
examples in learning topological phases, with a focus on the peculiar
Hopf insulators48,49. More concretely, we first train a phase classifier
based on deep convolutional neural networks (CNNs) so that it can
correctly classify experimentally implemented legitimate samples
with confidence close to one. We then show even though our legit-
imate samples have high fidelity (99.7% on average), when some data
samples are dropped randomly, the tiny experimental noise can
significantly affect the performance of the classifier. We also
experimentally demonstrate that even without data dropping, the
phase classifier based on neural network could be unreliable: after
adding a tiny amount of carefully designed perturbations to the
model Hamiltonian, the phase classifier would misclassify the
experimentally generated adversarial examples with a confidence
level up to 99.8%. The fidelity between the legitimate and corre-
sponding adversarial samples is large (the average fidelity is 93.4%),
ensuring that the adversarial perturbations added are small indeed.
In addition, we extract the topological invariant and topological links
by traditional means and demonstrate that they are robust to
adversarial perturbations. This sharp robustness contrast between
the traditional methods and machine-learning approaches clearly
showcases the vulnerability aspect of the latter, highlighting the
demand for in-depth investigations about the reliability of machine-
learning approaches in adversarial scenarios and for developing
countermeasures.

Results
Machine learning of topological phases
To experimentally implement adversarial examples and demonstrate
the vulnerability of machine learning in topological phases, we first
train a phase classifier based on deep neural networks to predict
topological phases with high accuracy. Concretely, we focus on an
intriguing three-dimensional (3D) topological insulator called theHopf
insulator48,49, whose Hamiltonian in the momentum space reads:

HTI = ∑
k2BZ

Ψy
kHkΨk = ∑

k
Ψy

kuk � σΨk, ð1Þ

where uk = (ux, uy, uz) with ux =2ðsinkx sinkz +Ck sin kyÞ, uy =
2ðCk sin kx � sin ky sinkz Þ, and uz = sin

2kx + sin
2ky � sin2kz � C2

k;Ψ
y
k =

ðay
k,",a

y
k,#Þ are fermionic annihilation operatorswith pesudo-spin states

∣ "� and ∣ #� at each momentum k in the Brillouin zone (BZ);
σ = (σx, σy, σz) are Paulimatrices,Ck � cos kx + cos ky + cos kz +h. Hopf
insulators are peculiar 3D topological insulators that originate from
the mathematical theory of Hopf fibration and elude the standard
periodic table for topological insulators and superconductors for free
fermions50,51. They can manifest the deep connection between knot
theory and topological phases of matter in a visualizable fashion47,52.
Their topological properties can be characterized by a topological
invariant (the Hopf index) χ48,49, defined as:

χ = �
Z
BZ

F � Ad3k, ð2Þ

whereF is theBerry curvature defined as Fμ =
1
8π ϵμντû � ð∂νû ×∂τ ûÞwith

ûðkÞ � uðkÞ=∣uðkÞ∣, ϵμντ being the Levi-Civita symbol, and
∂ν,τ � ∂kν,τ

(ν, μ, τ∈ {x, y, z}); A denotes the Berry connection obtained
by Fourier transforming∇ ×A = F with the Coulomb gauge∇ ⋅A = 0
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Fig. 1 | Experimental setup and the topological phase classifier. a The structure
of a nitrogen-vacancy center in a diamond crystal. The blue, yellow, and gray
spheres represents vacancy, nitrogen, and carbon atoms, respectively. b The
structure of 3D convolutional neural network (CNN) classifier. The input data are
density matrices sampled from a 10 × 10× 10 regular grid in the momentum space,
and each density matrix is represented by three real indices among the Bloch
sphere. With two 3D convolution (Conv3D) layers, one max pooling layer and one
fully connected layer, the classifier outputs the probabilities P(χ =0, 1, − 2) for each
phase. c The potential limitation of the CNN classifier on data with random drop-
ping. The classifier can correctly classify the cleandata of topologically trivial phase
(h = 3.2, χ =0) withmore than 80% of the data samples dropped, but the adversarial

ratio (Adv. ratio) also increases as the dropping ratio increases. The error bars are
obtained from 100 random data dropping trials. d The ratio of adversarial per-
turbations around the phase transition point. The random simulated perturbations
are more likely to behave as adversarial perturbations when h approaches the
transition point. Even when no data samples are dropped, the simulated pertur-
bations may mislead the classifier. The situation becomes more serious when the
dropping ratio increases to 20% and 40%. e The experimental procedure for the
preparation andmeasurement of the ground states of theHopfHamiltonian at each
momentum k. The dashed rectangle inserted before the final measurement
represents a π/2 pulse with different phases. The directions of the electron spin on
the Bloch sphere at three different time points are shown below the sequence.
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(see Methods). For the Hamiltonian HTI, direct calculations yield χ =−2
if ∣h∣ < 1, χ = 1 if 1 < ∣h∣ < 3, and χ =0 otherwise.

We numerically generate 5000 samples with varying h∈ [−5, 5]
and train a 3D CNN in a supervised fashion. Figure 1b shows the
structure of the CNN classifier we use. The 3D CNN model, which has
three-dimensional structure and presents the translational symmetry,
is suitable for learning phases with Bloch indices of density matrices in
the momentum space. The input data are reconstructed density
matrices in the momentum space. The classifier’s outputs are classifi-
cation confidences for the phase being χ =0, 1, or − 2, denoted by
P(χ =0), P(χ = 1), or P(χ = − 2), respectively. After training, the classifier
obtains near-perfect performance on the numerically generated data,
with accuracies of 99.2% and 99.6% on the validation and training sets,
respectively (see Supplementary Note 5).

As shown in ref. 22, a well trained CNN classifier can correctly
identify the phases with high (≥90%) probability even when over 90%
of data are randomly dropped. This would significantly reduce the
experimental cost since much fewer data samples are required. How-
ever, the existence of experimental noises is a challenge for the CNN
models to showcase this advantage in reality. To test the robustness of
the classifier on dropped data with noise, we numerically simulate
1000 tiny perturbations which are randomly sampled from the Gaus-
sian distribution. We find that some of the simulated perturbations,
when added into the legitimate samples, will mislead the classifier.
Such perturbations, though not carefully crafted, behave like adver-
sarial perturbations as well. As shown in Fig. 1c, although the classifier
can correctly identify the phases on the clean data withmore than 80%
of density matrices in the discretized momentum space dropped, the
ratio of adversarial perturbations also increases rapidly. This problem
becomes more serious when the testing samples are closer to the
phase transition point: as shown in Fig. 1d, dropping only 40% of the
data will increase the ratio of adversarial perturbations to about 68%,
which makes the precise identification of phase transition points
unpractical.

Experimental implementation
We use a single NV center as a simulator to experimentally implement
the model Hamiltonian in Eq. (1). The ground state of the NV electron
spin consists of ∣ms =0

�
and degenerate ∣ms = ± 1

�
state with zero-field

splitting of 2.87GHz53,54. Our setup is based on a home-built confocal
microscope with an oil-immersed lens. To enhance photon collection
efficiency, a solid immersion lens is fabricated on top of the NV center.
Amagnetic field of 472 Gauss is applied along the NV symmetry axis to
polarize the nearby nuclear spins and remove degeneracy between
states ∣ms = ± 1

�
. We use the subspace ∣ms =0

�
and ∣ms = � 1

�
, denoted

as ∣0i and ∣� 1i of the electron spin in the experiment. The experiment
sequence is shown in Fig. 1e. The spin state is initialized to ∣0i by
optical pumping. Then, a microwave (MW) is applied to adiabatically
evolve the spin state. By tuning the amplitude, frequency, and phase of
MW, the electron spin is evolved to the ground state of the corre-
sponding Hamiltonian at a given momentum point k22,55. The electron
spin states at three different evolution time points are shown below
the sequence in Fig. 1e. After the adiabatic evolution, quantum state
tomography is performed, and the state densitymatrices are retrieved
via maximum likelihood estimation56.

To obtain density matrices sampling of the Hamiltonian in Eq.(1),
we mesh the momentum space k = (kx, ky, kz) into 10 × 10 × 10 grids
with equal spacing. We use ground state density matrices of Hk with
h = 0.5, 2, 3.2 as legitimate samples. These legitimate samples are used
as ground truth to evaluate the topological phase classifier and latter
generate corresponding adversarial examples.Toalleviate the effect of
experimental Gaussian noise on misleading the classifier, we imple-
ment all reconstructed states with a very high fidelity: for all three
legitimate samples with h = 3.2, 2, 0.5, the average fidelities are
99.77(41)%, 99.78(41)%, and99.77(45)%, respectively (for thefidelity on

eachmomentum point, see Supplementary Fig. 2). The table in Table 1
presents the classifier’s output for three legitimate samples, which are
all correct classifications with nearly unity confidence.

Although the experimental noises in the implemented legitimates
samples are tiny, we find that they can still affect the classifier’s per-
formance when we try to use machine learning methods to reduce
experimental data. As shown in the lower panel of Fig. 2a, we randomly
drop the experimentally implemented density matrices of the legit-
imate sample with h = 3.2. We find that the experimental noises will
decrease the classification confidence P(χ =0) as the ratio of dropped
data increases, and act as adversarial perturbationswhen the dropping
ratio increases to 60%. This result is consistent with the numerical
simulation, indicating that there is a trade-off for themachine learning
methods between the number of data samples used and the robust-
ness to experimental noises. This trade-off cannot be attributed to the
decreasing of the quality of the experimental data: we show the fidelity
distribution in the upper panel of Fig. 2a, where the average fidelity �F
and minimum fidelity Fmin are almost unchanged when the dropping
ratio increases. Thephenomenon that the classifierwould bemisled by
tiny perturbations is not limited to the case where a large portion of
data is dropped. Actually, with the full data, there are various kinds of
tiny perturbations that can make the classifier give incorrect predic-
tions, which is known as the vulnerability of neural networks to
adversarial perturbations. This may rise severe problems for machine-
learning approaches to the classification of different phases ofmatter,
which drives us to experimentally implement these adversarial exam-
ples and study their topological properties.

We now consider implementing adversarial examples by adding
tiny adversarial perturbations without data dropping. Choosing the
loss function L as the metric to evaluate the performance of the clas-
sifier, we first search for numerical adversarial examples which can
mislead the classifier by solving an optimization problem30: finding a
bounded perturbation δ adding to the legitimate samples’ data to
maximize the loss function L. We employ various strategies to
approximately solve this optimization problem, including the fast
gradient sign method (FGSM)57, projected gradient descent (PGD)57,
momentum iterative method (MIM)58 and differential evolution algo-
rithm (DEA)59–61. More concretely, we apply PGD and MIM to obtain
continuous adversarial perturbations based on all three legitimate
samples62, and apply DEA to obtain one adversarial example with dis-
crete perturbations based on the legitimate sample with h = 3.2 (see
Supplementary Note 6).

We remark that the existence of numerical adversarial examples
does not guarantee that we can implement them in real experiments
due to inevitable experimental imperfections—the experimental noises
may wash out the bounded and carefully crafted adversarial pertur-
bations. In fact, as shown in refs. 63,64, certain noises that are typical in
experiments would nullify the adversarial examples. In the worst case,
when the noise is in the opposite direction of the adversarial

Table 1 | The classifier’s prediction results

Input P(χ = 0) P(χ = 1) P(χ =−2)
h = 0.5 Leg. 0 0 1

Adv.(C.) 0 0.776 0.224

h = 2.0 Leg. 0 1 0

Adv.(C.) 0.004 0.293 0.703

h = 3.2 Leg. 1 0 0

Adv.(C.) 0.002 0.998 0

Adv.(D.) 0.262 0.738 0

The output on experimentally implemented legitimate (Leg.) samples and their corresponding
adversarial (Adv.) examples. The classifier successfully identifies the phase label for legitimate
samples with nearly unity confidence. Yet, it is deceived by experimentally implemented
adversarial examples, making incorrect predictions with confidence larger than 0.5. C. (D.)
represents adversarial examples obtained by continuous(discrete) attacks.
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perturbation, the experimentally implemented adversarial examples
will no longer be able to mislead the classifier. To this end, we
numerically simulate the experimental noises acting on these
numerically obtained adversarial examples and examine their perfor-
mances on the classifier. After the simulation, for each scenario we
select one examplewith the strongest robustness against experimental
noises and reconstruct its corresponding Hamiltonian. The compar-
ison between densities for the experimentally implemented legitimate
and adversarial examples are shown in Fig. 2b, c. Figure 2d shows the
average fidelity for each kz value with h = 2. All adversarial examples
bear high fidelities (larger than 93%), but the classifier incorrectly
predicts their phase labels with a high confidence level, as shown in
Table 1.

Demonstration of adversarial examples
In the previous section, we illustrate that the experimentally imple-
mented adversarial examples, which maintain a high fidelity with
respect to original legitimate data, can mislead the topological phase
classifier. In this section, we further demonstrate the effectiveness of
these adversarial examples from the physical perspective. In Fig. 3a–c,
with h = 3.2, we plot experimentally implemented density matrices of
legitimate samples, adversarial examples with continuous perturba-
tions, and adversarial examples with discrete perturbations. From the
comparison, the obtained adversarial examples look almost the same
as the original legitimate ones. It is surprising that even local discrete
changes, as shown in Fig. 3c, can mislead the classifier to make
incorrect prediction. This result is at variance with the physical
intuition that Hopf insulators are robust to local perturbations due to
their topological nature48,49, indicating that the neural network
based classifier does not fully captured the underlying topological
characteristics30.

Focusing on classifying topological phases of Hopf insulators, we
expect that the adversarial perturbations should not change the
topological properties, including the integer-valued topological
invariant and the topological links associatedwith theHopf fibration48.
We use a conventional method, which is based on the experimentally
measured data, to probe the Hopf index65,66. The results are shown in

Table 2 (see Supplementary Note 4). We find that each adversarial
example’s Hopf index has only a negligible difference to the corre-
sponding legitimate ones, all close to the correct integer numbers.

The momentum-space spin texture of Hopf insulators harbors a
knotted structure, which is called the Hopfion67. In Fig. 3d–f, we show
cross sections of the measured spin textures before and after adding
continuous and discrete adversarial perturbations. The spin textures
present an illustration on 3D twisting of the Hopfion, which keep ori-
ginal structure and are almost not affected by adversarial perturba-
tions. A more intuitive demonstration of Hopf links can be derived if
we consider the preimage of a fixed spin orientation on the Bloch
sphere, which will form a closed loop in the momentum spaceT3. For
topological nontrivial phases, the loops for different orientations are
always linked47. As shown in Fig. 4,weplot the 3Dpreimage contours of
legitimate and adversarial examples in R3 in the stereographic coor-
dinates of S3, with h =0.5, orientations S = ð�1,� 1,0Þ=

ffiffiffi
2

p
and ð0,1,�

1Þ=
ffiffiffi
2

p
on the Bloch sphere (see Supplementary Note 7). We observe

that the loops are correctly linked together as h = 0.5 corresponds to
topological nontrivial χ = −2 phase, for both legitimate and adversarial
examples. This result illustrates that the adversarial perturbations do
not affect the Hopf link, despite the fact that they alter the predictions
of the classifiers drastically.

A possible defense strategy against adversarial perturbations is
adversarial training. The basic idea is to retrain the classifier with a new
training set that contains both legitimate and adversarial samples28.
Here, we retrain the phase classifier with both carefully crafted
adversarial examples and samples with experimental noises. We find
that this adversarial training strategy can indeed substantially enhance
the robustness of the classifier against adversarial perturbations and
experimental noises. Yet, after adversarial training the classifier’s
performance near the phase transition points becomes poorer. This is
attributed to the fact that adversarial training will flatten weight
parameters in general (See Supplementary Note 8).

Discussion
The above sections showcase that the adversarial perturbations do not
affect the topological properties of topological phases. The incorrect

Fig. 2 | Experimentally implemented adversarial examples. a The classification
confidence for experimental (Exp.) and theoretical (Theo.) data at h= 3.2 with differ-
ent dropping ratios. For theoretical (experimental) data, the classifier gives correct
predictions with 75% (60%) of the data samples dropped. The panels in the upper row
show the fidelity distribution of the remaining data when the dropping ratios are 30%,
60%, and 75%, respectively. The average fidelity �F and minimum fidelity Fmin remain
almost unchanged at different dropping ratios.bDensitymatrix of the experimentally
implemented legitimate sample ρleg at k= (0.2π, 0.6π, 1.4π) and h=0.5, with fidelity

99.68(31)%. c Density matrix of the experimentally implemented adversarial example
ρadv at the same parameter point as in b, with fidelity 99.23(26)%. d Upper panel: the
averagefidelity for each kz value in the interval [0, 1.8π] withh=2betweennumerically
generated and experimentally implemented adversarial examples. The angular
direction represents the different values of kz and the radial direction represents the
fidelity. The overall average fidelity is 99.65(46)%; Lower panel: the average fidelity
between experimentally implemented legitimate samples and adversarial examples.
The overall average fidelity is 93.40%.
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predictions given by the classifier indicate that the classifier does not
learn the accurate and robust physical criterion for identifying topo-
logical phases, which is consistent with the theoretical prediction in
the recent paper30. How to exploit the experimental data to make the
classifier better learn physical principles, and balance the trade-off
between the number of data samples used and the classification
accuracy in real experiments, is an interesting and important problem
worth further investigation. In addition, recent experiments have
demonstrated the simulation of non-Hermitian topological phases
with the NV platform68 and a theoretical work on learning non-
Hermitian phaseswith exotic skin effect in anunsupervised fashionhas
also been reported17. In the future, it would be interesting and desir-
able to study adversarial examples for unsupervised learning of
topological phases, both in theory and in experiment.

In summary, we have experimentally demonstrated the adversarial
examples in learning topological phaseswith a solid-state simulator. Our

result showcases that neural network-based classifiers are vulnerable to
tiny adversarial perturbations, which may originate from experimental
noises, or be carefully designed. In the former case, we showed that
there is a trade-off between the number of data sample used and the
robustness to tiny experimental noises. For the latter case, we imple-
mented the adversarial examples in experiment and studied their
properties, such as the high fidelity, unchanged topological invariant,
and topological link. These results reveal that current machine learning
methodsdonot fully capture theunderlyingphysical principles and thus
are especially vulnerable to adversarial perturbations, and inevitable
experimental noises when only a small portion of data are accessible.

Methods
Experimental setup
Our experiment is implemented on a home-built confocal microscope
at room temperature. The 532 nm diode laser passes through an
acoustic optical modulator setting in a double-pass configuration. The
laser can be switched on and off on the time scale of ~20 ns with on-off
ratio to 10,000:1. A permanent magnetic provides the static magnetic
field of 472Gauss. Themagneticfield is precisely alignedparallel to the
symmetry axis of the NV center by observing the emitted photon
numbers69. With this magnetic field, a level anticrossing in the elec-
tronic state allows electron-nuclear spin flip-flops, which polarizes the
nuclear spin70. The magnetic field also removes the degeneracy
between ∣ms = ± 1

�
states. The spin state is initialized by a 3μs laser

excitation, then a MW modulation is implemented by programming
two orthogonal 100 MHz carrier signals, which are generated by
arbitrary waveform generator. The MW is amplified and guided
through coaxial cables to gold coplanar waveguide close to the NV
center. The emitted photons are collected through an oil -immersed
objective lens (NA = 1.49) and detected by an avalance photodiode.

Fig. 3 | Visualization of experimentally realized density matrices for the Hopf
insulators with h = 3.2. a–c The first component's magnitude of the input data for
h = 3.2 at kz =0.8π, π and 1.2π. a Legitimate sample with h = 3.2 implemented in the
experiment. b Adversarial examples realized in the experiment with continuous
perturbations generated by the projected gradient descent method. The average
fidelity between the experimentally implemented adversarial examples and legit-
imate samples is over 98%. c Adversarial examples realized in the experiment with
discrete perturbation generated by the differential evolution algorithm. Among
1000 density matrices as input, only seven of them have been changed and

successfully mislead the classifier. d–fMeasured spin texture for kz =π, h = 3.2. For
each subfigure, kx and ky vary from 0 to 1.8π with equal spacing of 0.2π. At each
momentum k, the state can be represented on the Bloch sphere. The arrows in the
plane show the directionof the Bloch vector projected to the x − yplane. The colors
label the z component of the Bloch vector. d Legitimate sample with h = 3.2
implemented in experiment. e Adversarial examples implemented in the experi-
ment with continuous perturbations generated by the momentum iterative
method. f Adversarial examples implemented in the experiment with discrete
perturbation generated by the differential evolution algorithm.

Table 2 | TheHopf index calculated by using the conventional
discretization approach

Input h = 0.5 h = 2 h = 3.2

Theory (N→∞) −2 1 0

Theory (N = 10) −2.045 1.041 0.011

Leg. samples −2.056 1.039 0.009

Adv. examples (C.) −2.039 0.952 0.026

Adv. examples (D.) − − 0.073

For a 10 × 10 × 10grid, the theoretical value for theHopf index is shown in the third row,where the
small deviations from the corresponding integers are causedby thediscretization error in the 3D
momentum integration. The Hopf indices of experimentally implemented legitimate (Leg.)
samples, and adversarial (Adv.) examples with continuous (C.) anddiscrete (D.) attacks are close
to the theoretical values.
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The spin state is readout by counting the spin-dependent number of
photons. To enhance collection efficiency, a solid immersion lens with
6.74μm diameter is fabricated. The fluorescence count is about 260
kcps under 0.25 mW laser excitation, with the signal-noise ratio about
100:1. The sequence is repeated 7.5 × 105 times, collecting about
3.9 × 104 photons.

Adiabatic passage approach
Consider the electron subspace spanned by the ∣0i and ∣� 1i states, in
a rotating frame, the effective Hamiltonian with variable time t reads

Heff =
0 ∣ΩðtÞ∣eiφ

∣ΩðtÞ∣e�iφ �ΔωðtÞ

 !
, ð3Þ

whereΩ(t) is the MW amplitude, φ is the MW phase, Δω(t) =ω0 −ωMW,
and ω0 and ωMW are NV resonant frequency and MW frequency,
respectively. In the matrix form, the Hamiltonian Hk reads:

Hk =
0 ux � iuy

ux + iuy �uz

 !
: ð4Þ

We terminate the adiabatic evolution at time tc to satisfy
ΔωðtcÞ=ΩðtcÞ=uz=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
x +u2

y

q
. Phaseφ= � arctanðuy=uxÞ is kept constant

in the adiabatic evolution. To satisfy the adiabatic condition22:

∣
_ ψðeÞ∣ _ψ

ðgÞD E
Ee � Eg

∣≪1, ð5Þ

where ∣ψg� and ∣ψe� are ground and excited states of the Hamiltonian
HTI, and Eg and Ee are energies of the ground and excited states,
respectively. We use Ωmax = 2π × 7:81 MHz and Δωmax = 2π × 10 MHz
during the adiabatic passage process for a total time of 1500 ns.

Conventional method to obtain the Hopf index with experi-
mental data
Weuse the discretization scheme introduced in refs. 65,66 and applied
in ref. 47 to calculate the Hopf index directly from experimental data.
The Hopf index can be written as:

χ = �
Z
BZ

F � Ad3k, ð6Þ

where F is the Berry curvature with and A is the associated Berry
connection satisfying∇ ×A = F. To avoid the arbitrary phase problem,
we can use a discretized version of the Berry curvature65,66:

FμðkJ Þ=
i
2π

ϵμντ lnUνðkJ Þ lnUτðkJ + ν̂Þ: ð7Þ

The U(1)-link is defined as

UνðkJ Þ=
ψðkJ Þ∣ψðkJ + ν̂Þ
D E
∣ ψðkJ Þ∣ψðkJ + ν̂Þ
D E

∣
, ð8Þ

with ν̂ 2 fx̂,ŷ,ẑg, which is a unit vector in the corresponding direction.
This discretizedversionofFcanbecalculated afterperformingquantum
state tomography at all points kJ on the momentum grid. We can also
obtain the Berry connectionAby Fourier transforming∇×A= Fwith the
Coulomb gauge∇ ⋅A=0. Finally, instead of doing the integral, we sum
over all points on the momentum grid to obtain the Hopf index χ. It is
shown in22,47 that for a 10× 10× 10 grid, this method is quite robust to
variousperturbations andcanextract theHopf indexwithhighaccuracy.

The simulation of experimental noise and random dropping
trials
To test the robustness of the neural network-based classifier against
experimental noises and random data dropping, we numerically
simulated 1000 tiny experimental noises and 100 different data point
dropping sequences on the theoretically calculated data with h = 3.2
and χ =0. Each experimental noise is simulated by the 10 × 10 × 10 × 3
independent variables sampled from the normal distribution:

ϵ ~N ð0,0:04Þ: ð9Þ

Thenoise is directly addedon theBlochvector for eachdensitymatrix.
After this, we normalize the obtained vector so that it still represent a
pure state on the Bloch sphere. The noise is tiny enough to keep the
high fidelity (F =0:9899). The data dropping is implemented by
sequentially replacing the Bloch vectors ðnðkÞ

x ,nðkÞ
y ,nðkÞ

z Þ at randomly
selected k point by a zero vector (0, 0, 0).

Data availability
The data generated in this study have been deposited in the zenodo
database under accession code https://doi.org/10.5281/zenodo.
6830983.

Code availability
The data analysis and numerical simulation codes are available at
https://doi.org/10.5281/zenodo.6811855.
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