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Predicting response to immunotherapy in
gastric cancer viamulti-dimensional analyses
of the tumour immune microenvironment

Yang Chen 1,8, Keren Jia 1,8, Yu Sun 2,8, Cheng Zhang 1,8, Yilin Li 1,
Li Zhang 3,4, Zifan Chen 3,4, Jiangdong Zhang5, Yajie Hu4, Jiajia Yuan 1,
Xingwang Zhao1, Yanyan Li 1, Jifang Gong1, Bin Dong 6,7, Xiaotian Zhang1,
Jian Li1 & Lin Shen 1

A single biomarker is not adequate to identify patientswith gastric cancer (GC)
who have the potential to benefit from anti-PD-1/PD-L1 therapy, presumably
owing to the complexity of the tumour microenvironment. The predictive
value of tumour-infiltrating immune cells (TIICs) has not been definitively
established with regard to their density and spatial organisation. Here, multi-
plex immunohistochemistry is used to quantify in situ biomarkers at sub-
cellular resolution in 80 patients with GC. To predict the response to immu-
notherapy, we establish a multi-dimensional TIIC signature by considering the
density of CD4+FoxP3−PD-L1+, CD8+PD-1−LAG3−, and CD68+STING+ cells and the
spatial organisation of CD8+PD-1+LAG3− T cells. The TIIC signature enables
prediction of the response of patients with GC to anti-PD-1/PD-L1 immu-
notherapy and patient survival. Our findings demonstrate that a multi-
dimensional TIIC signature may be relevant for the selection of patients who
could benefit the most from anti-PD-1/PD-L1 immunotherapy.

Gastric cancer (GC) is the fifth most common cancer in the world
and the second leading cause of cancer-related deaths1; more than
47% of all cases occur in China. The advent of immune checkpoint
inhibitors (ICIs), targeting programmed cell death protein 1 (PD-1)
and programmed death-ligand 1 (PD-L1), has revolutionised cancer
therapy, providing robust and durable responses in GC. Clinical
trials with pembrolizumab or nivolumab monotherapy have
demonstrated a wide range of response rates in advanced GC
(10–26%), which has no selective biomarker2–4. Hence, to enhance
the efficacy of anti-PD-1/PD-L1 therapy in GC, there is an urgent need
to identify the patients who are most likely to benefit from
immunotherapy.

Many biomarkers, including tumour mutation burden (TMB), PD-
L1 expression, microsatellite instability (MSI) and Epstein–Barr virus
(EBV) infection status, have been proposed to identify susceptibility to
PD-1/PD-L1 inhibitors5,6. However, the results of several clinical trials
using these biomarkers at an individual level are not consistent; some
are even contradictory7–9. Therefore, to date, no single biomarker is
available for adequate patient stratification (not only in GC), pre-
sumably due to the complexity of the immune response to cancer.

Tumour immune cells are heterogeneous, show functional and
phenotypic plasticity and may exert both pro-tumourigenic and anti-
tumourigenic effects10. Interestingly, the distribution of different sub-
sets of immune cells and their precise location in relation to cancer
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cells have been proposed as valuable indicators for the prediction of
tumour behaviour11,12. In fact, the components of the tumour micro-
environment that may influence the therapeutic response, including
T cells, B cells, neutrophils and macrophages, are increasingly being
considered in the field13–16. For instance, previous studies have shown
that knocking down cyclic GMP-AMP synthase-stimulator of interferon
genes (STING) promotes the polarisation of tumour-associated mac-
rophage (TAM) into the pro-inflammatory subtype and induces the
apoptosis of GC cells, highlighting the negative function of STING in
TAMs17. Therefore, analysing the spatial relationships of individual
cellular and acellular components may advance the understanding of
GC biology and facilitate the development of improved tumour
immune biomarkers. The accurate identification of specific tumour
immune cell subsets requires a combination of multiple markers.
Importantly, recent developments inmultiplex immunohistochemistry
(m-IHC) have enabled the simultaneous detection of multiple antigens
in situ at a single-cell resolution18. However, these methods have not
been used to analyse immune cells in GC in the context of immu-
notherapy; most analyses have been conducted using traditional IHC.

In this work, we use m-IHC combined with digital image analysis
and machine learning to identify the immune cell features of GC clin-
ical specimens. We characterise the density and spatial patterns of
tumour-infiltrating immune cells (TIICs), their variation depending on
the GC molecular feature, as well as their prognostic significance.
These data will help to evaluate the density and spatial patterns of
TIICs in the context of anti-PD-1/PD-L1 treatment for a better under-
standing of the determinants of response to immunotherapy in GC.

Results
Clinico-pathological features of the GC patients
Eighty patients were enrolled in this study between July 2014 and
December 2019 (Table 1). Themedian age of the patients was 60 years
(range, 54–66 years), and most patients were men (76.3%). Among the
60 patients subjected to immunotherapy, 21 were treated with
standard-of-care anti-PD-1/PD-L1 antibodies and 39 were treated as
part of clinical trials (NCT03472365, NCT03713905). Archived pre-
treatment samples were available from all patients. Ten (12.5%)
patients were EBV(+) and 11 (13.75%) had confirmed deficient DNA
mismatch repair (dMMR) GC.

TIIC distribution: analysis overview
To investigate the landscape of TIICs within the GC specimens, we
quantified the density and spatial location of immune cells in 80 full-
face formalin-fixed paraffin-embedded (FFPE) samples via m-IHC
staining; the multiplex determination of the sub-cellular expression
of 16 proteins was performed (Fig. 1a). First, haematoxylin and eosin
(H&E)-stained tissue sections were reviewed by two pathologists (S.Y.
andH.Y.J.) to identify tumour core (TC), invasionmargin (IM), andperi-
tumoural normal (N) areas, which we refer to as regions of interest
(ROIs) (Fig. 1b). The m-IHC panels analysed are depicted in Fig. 1c–f. A
total of 6488 high-power fields (TC: 4477, IM: 993, N: 1018) were
imaged for all patients. A supervised image analysis system (inForm)
was used to classify each image into tumour nests and stromal areas
based on machine learning (Fig. 1g). Cell segmentation showed
nuclear, cytoplasmic andmembranous outlines. Cell phenotyping data
were obtained based on the positivity and relative intensity of all
markers in one panel. The cell density, calculated for “all” regions
(tumour + stroma), was measured separately in the tumour and
stroma. Thereafter, TIICs were analysed at the single-cell level and 26
major populations were characterised (Supplementary Fig. 1a).

TIICs are differentially distributed across distinct ROIs
To examine the distribution of TIICs within the tumour micro-
environment, we analysed their spatial density in the TC, IM, and N
areas. The enriched co-occurrence of immune populations defines a

structured immune environment (Supplementary Fig. 1a). A sig-
nificant increase in the overall density of CD68+ cells was observed
within the TC compared with that in the adjacent normal tissues; an
opposite trendwas observed for CD8+ and CD20+ cells (Fig. 2a). Next,
for a higher degree of detail, the distribution of each TIIC was
explored. CD8+, CD8+PD-1−LAG-3−, CD20+ and CD68+CD163+HLA-DR−

cells accumulated at the IM anddecreased toward theTC. In contrast,
CD8+PD-1+TIM-3+, CD8+PD-1−TIM3+, CD8+PD-1+LAG-3+TIM-3+, CD8+PD-
1+LAG-3−TIM-3+, CD4+FoxP3+CTLA-4+, CD4+FoxP3−CTLA-4+, CD68+,
CD68+HLA-DR+CD163− cells accumulated at the TC and decreased
toward the IM. Interestingly, a higher density of CD4+FoxP3+ and
CD4+FoxP3+PD-L1+ cells was found within the TC than in normal tis-
sues (Fig. 2b, Supplementary Fig. 1b), highlighting the heterogeneous
distribution of TIICs in GC.

Table 1 | Baseline characteristics of gastric cancer patients

Characteristic* Total N = 80 Immunotherapy N = 60

Age

Median, IQR 60 (54–66) 59.5 (50.5–66)

Sex (Male/Female)

Male 61 (76.3%) 46 (76.7%)

Female 19 (23.7%) 14 (23.3%)

ECOG PS

0 49 (61.3%) 38 (63.3%)

1 31 (38.7%) 22 (36.7%)

Location

GEJ 24 (30.0%) 19 (31.7%)

Non-GEJ 56 (70.0%) 41 (68.3%)

Differentiation

Moderate 23 (28.8%) 17 (28.3%)

Moderate-poor 22 (27.5%) 19 (31.7%)

Poor 35 (43.7%) 24 (40.0%)

Lauren classification

Intestinal type 38 (47.5%) 28 (46.7%)

Diffused type 18 (22.5%) 13 (21.7%)

Mixed type 24 (30.0%) 19 (31.7%)

Stage

I 3 (3.8%) 3 (5.0%)

II 9 (11.3%) 8 (13.3%)

III 29 (36.2%) 18 (30.0%)

IV 39 (48.7%) 31 (51.7%)

HER2 expression

Positive 22 (27.5%) 15 (25%)

Negative 58 (72.5%) 45 (75%)

PD-L1 expression (CPS)

≥10 36 (45.0%) 27 (45%)

5-10 10 (12.5%) 8 (13.3%)

1-5 17 (21.25%) 13 (21.7%)

<1 17 (21.25%) 12 (20%)

MMR status

pMMR 69 (86.25%) 52 (86.7%)

dMMR 11 (13.75%) 8 (13.3%)

EBV status

Positive 10 (12.5%) 9 (15.0%)

Negative 70 (87.5%) 51 (85.0%)

dMMR deficient mismatch repair, pMMR proficient mismatch repair, CPS combined
positive score.
*Percentage indicates the proportion of patientswith a specific clinical, pathologic, ormolecular
characteristic among all patients.
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Additionally, the localisation of TIICs with respect to the tumour
nest and stroma areas (defined in Fig. 1g) was further examined. CD8+,
CD4+ andCD20+ cells were located primarily in the stroma andwere less
prevalent in the tumour nest. In contrast, CD66b+ cells were more pre-
valent in the tumour nest than in the stroma (Supplementary Fig. 2a).

The infiltration profile of TIICs is different in distinct molecular
GC subtypes
To evaluate the tumour immune microenvironment in GC, we com-
pared the density of TIICs in the context of distinct clinico-
pathological factors (Fig. 2c, Supplementary Fig. 3a–e). Generally,
there were few significant differences between Lauren classification,

tumour differentiation and tumour location (oesophagogastric junc-
tion or not) with respect to densities of TIICs (Supplementary
Tables 1–5, Supplementary Fig. 4a). Additionally, there were few dif-
ferences in the density of TIICs between HER2-positive and -negative
GC (Fig. 2c). Overall, the density of total CD8+, CD4+ and CD68+ cells
was associatedwith the disease stage. Additionally, advanced-stageGC
(III-IV) samples showed a higher density of exhausted CD8+ T cells,
CD4+FoxP3− cells and so on.

Furthermore, we analysed the density of TIICs in GC of different
molecular subtypes (Supplementary Tables 6–8). Interestingly, EBV-
positive tumours showed higher densities of CD8+PD-1−LAG-3− T cells
than EBV-negative ones. EBV (+) GCs were characterised by abundant
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immune cell infiltration; however, not all EBV (+) patients responded to
immunotherapy, indicating that specific immune cell infiltration is
needed. Proficient MMR (pMMR) tumours showed a significantly
higher abundance of total CD4+, CD68+, CD20+ and CD66b+ cells than

dMMR tumours. Higher CD68+ and CD66b+ cells (neutrophils) are
known to contribute to resistance to PD-1/PD-L1 treatment in several
cancers13,19. We classified patients into four combined positive score
(CPS) groups: CPS < 1, 1 ≤ CPS < 5, 5 ≤ CPS < 10 and CPS ≥ 10.
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Remarkably, the abundance of TIICs, including CD8+, CD4+, CD68+,
CD20+ and CD66b+ cells, significantly increased with the increase in
CPS, indicating a ‘hotter’ tumour immune environment. However, the
comparison between CPS 5-10 and CPS ≥ 10 did not show a significant
difference, providing evidence for the cut-off selection in clinical trials
of anti-PD-1/PD-L1-based therapies. Altogether, as shown in Fig. 2c, our
results suggest that the infiltration pattern of immune cells depends
on, but is not restricted to, GC molecular subtypes.

Survival analyses according to the infiltration density of TIICs
Next, we sought to understand whether the number of TIICs is corre-
lated with patient survival. We found that higher levels of tumour-
infiltrating T cell subsets, including CD8+PD-1+LAG-3+TIM-3+,
CD4+FoxP3+CTLA-4+ T and CD68+STING+ cells, were associated with
inferior overall survival (OS) in 80 patients (Fig. 2d, Supplementary
Fig. 4b). CD8+PD-1+LAG-3+TIM-3+ cells [high vs. low, hazard ratio (HR)
1.98, 95% confidence interval (CI; 1.12–3.50)] and CD68+STING+ cells
[high vs. low, HR 1.83, 95%CI (1.01–3.33)] were significantly associated
with OS, as revealed by multivariate Cox analysis (Supplementary
Table 9). Collectively, these data highlight the clinical relevance of
tumour-infiltrating T cells in the survival of GC patients.

Additionally, we analysed the prognostic value of the density of
TIICs in the context of tumour and stromal cells. The data showed a
similar trend for CD4+FoxP3−CTLA-4+ T andCD4+FoxP3+CTLA-4+ T cells
in both contexts. However, higher infiltration of CD8+PD-1+LAG-3+TIM-
3+ T cells and CD68+ macrophages was associated with poorer OS with
respect to tumour nests. In addition, higher infiltration of CD8+PD-
1+TIM-3+ T cells, CD66b+ neutrophils and CD68+STING+ macrophages
was related to a shorter OSwith respect to the stroma (Supplementary
Fig. 2b). Therefore, these results highlight the value of studying
immune cell density in defined tissue regions.

Spatial analysis of GC shows a hierarchical organisation of
tumour and immune cells
Given our ability to precisely define the positions of individual tumour
cells and TIICs, we next sought to evaluate the clinical significance of
the proximity between them. The observation that certain TIICs,
including CD68+ cells, were enriched in the tumour region suggested
that the proximity of TIICs to tumour cells might influence their phe-
notype. To further study these localisation patterns, a bioinformatics
tool (pdist; see Methods) that determines the nucleus-to-nucleus dis-
tances between any two cell types was used. To incorporate both cell
proximity and quantity, an ‘effective score’ parameter was established:
the proportion of TIICs near tumour cells (within the defined distance
criteria introduced; Fig. 3a). In other words, this score was calculated
by the number of paired immune cells and tumour cells divided by the
total number of immune cells across the whole slides to maintain the
spatial variation to a large extent. Therefore, using this formula, a
higher effective score indicates that within a certain distance, there is a
higher density of tumour cells around the immune cells. Importantly,
across the three distances considered (0–10/0–20/0–30μm), CD8+PD-
1+LAG-3+ T cells and CD66b+ neutrophils were the ones with higher
effective scores (Fig. 3b).

We also calculated the distance between each TIIC and the closest
tumour cell. Neutrophils, B cells andmacrophages were located closer
to tumour cells. We then analysed the distances between TIICs and
tumour cells according to the PD-L1 CPS. In general, TIICs were located
closer to tumour cells in patients with CPS ≥ 10 (compared with the
picture with respect to all other groups; Supplementary Fig. 6a).

Interestingly, the effective scores also differed between different
GC molecular subtypes, including those depending on the EBV, PD-L1
CPS, MMR and HER2 status (Supplementary Figs. 5a–e, 6b; Supple-
mentary Tables 10–17). For instance, a significantly higher effective
score of exhausted T cells (CD8+PD-1+LAG-3+TIM-3−, CD8+PD-1−TIM-3+),
M1 (CD68+CD163+HLA-DR−) and M2 (CD68+HLA-DR+CD163−)

macrophages within a 20 µmradius was observed inHER2-negative GC
compared with that in HER2-positive GC (Fig. 3c, Supplemen-
tary Fig. 5b).

Cancer cell-adjacent TIICs are correlated with patient survival
The combination of multiplexed imaging and machine learning
implied that the density of TIICs within GC is linked to patient survival.
For further detail, the effective density (the absolute number of TIICs
near tumour cells within a 20 µm radius) was used as an additional
measurement. This radius was pre-selected to identify immune cell
populations most likely capable of effective, direct, cell-to-cell inter-
actions with tumour cells, consistent with prior studies in multiple
gastrointestinal tumour types11,20,21. Curiously, we found that patients
with higher effective densities (radius of 0–20 µm) of CD68+STING+

macrophages, CD68+HLA-DR+CD163− STING+ macrophages and neu-
trophils showed significantly shorter OS than those with lower effec-
tive densities (Fig. 3d). Importantly, the prognostic value was still
significant after adjustment using the multivariate Cox model (Sup-
plementary Table 18). Other immune cell phenotypes were not asso-
ciated with OS (Supplementary Figs. 6c and 7c). These results indicate
that the influence of TIICs on patient survival is dependent not only on
the number of TIICs but also on their proximity to tumour cells.
Overall, our data highlight that both the location and density of TIICs
should be taken into consideration for prognosis predictions.

Multi-dimensional TIIC signature predicts response to
immunotherapy
Human tumours contain exhausted T cells expressing multiple
immune checkpoints; it has been proposed that these cells mediate
resistance to PD-1 blockade. Thus, next, we investigated whether the
density of TIICs and respective effective scores were associated with
the clinical outcomes of anti-PD-1/PD-L1 immunotherapy. All 60
patients who received immunotherapy were assigned to the training
(n = 44, generated retrospectively from 15/11/2016 to 17/7/2019) and
validation (n = 16, generated prospectively from 29/7/2019 to 19/12/
2019) cohorts. Importantly, we ensured that the clinical characteristics
of the training andvalidation cohortswerebalanced (Table 2).Weused
logistic regression analysis to assess the association between TIICs and
the objective response rate (ORR) in the training cohort. Importantly,
we found that the density of CD4+FoxP3−PD-L1+ T cells and the effective
score of CD8+PD-1+LAG-3− T cells were closely associated with a posi-
tive response to anti-PD-1/PD-L1 therapy; conversely, CD8+PD-1−LAG-3−

T cells and CD68+STING+ macrophages were closely associated with a
negative response to anti-PD-1/PD-L1 therapy (Supplementary
Table 19).

The density of CD4+FoxP3−PD-L1+ T cells, CD8+PD-1−LAG3− T cells
and CD68+STING+ macrophages, and the effective score of CD8+PD-
1+LAG3− T cells were used to define a TIIC signature (Fig. 4a), with the
potential to improve the ability of identifying responders to anti-PD-1/
PD-L1 immunotherapy.Weused four types ofmachine learningmodels
and calculated the area under the curve (AUC) of the training and
validation cohorts, including extra tree classifier (ETC), AdaBoost
classifier (ABC), gradient boosting classifier (GBC) and multi-layer
perceptron (MLP) models. In the validation cohort, the average AUCs
of the four algorithms were 0.80, 0.85, 0.77 and 0.75, respectively
(Fig. 4b, c, Supplementary Table 20). The corresponding 95% CIs were
narrow, suggesting that the TIIC signature can indeed be used to
predict the response to immunotherapy (Supplementary Table 20).
Importantly, the four algorithms showed a similar performance before
and after adjusting for the hyper-parameters, indicating the strength
of the predictive value of the TIIC signature itself (Supplementary
Fig. 7a). Furthermore, we explored the predictive power of the TIIC
score combined with CPS, EBV status and MMR status. The combined
TIIC signature had a better AUC in the ETC, GBC and ABCmodels, but
not in the MLP model (Supplementary Table 21).
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We quantified the contribution of each marker in the prediction
models through feature importance using the scikit-learn package
(Supplementary Tables 22, 23). We outputted the feature importance
and the average value of each parameter to present its contribution. As
shown in Fig. 5a, the effective score of CD8+PD-1+LAG-3− cells had
higher feature importance than the density of CD68+STING+,
CD4+FoxP3−PD-L1+, or CD8+PD-1−LAG-3− cells in ETC, GBC and ABC
machine learningmodels. As presented in Fig. 5b, the effective score of
CD8+PD-1+LAG-3− cells had higher feature importance than that of the

other three immune cell types, EBV, MMR and PD-L1 CPS. Thus, the
dominant predictive marker is the spatial organisation for response to
immunotherapy.

We also evaluated the predictive values of other candidate bio-
markers. AUCs of 0.58 and 0.76 in the training and validation cohorts,
respectively, were defined for PD-L1 CPS (Supplementary Fig. 7b). We
analysed the treatment response based on EBV status, MMR status and
HER2 expression in univariate and multivariable logistic regression
models (Supplementary Table 24). EBV-positive status and dMMR
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Fig. 3 | Spatial analysis of gastric cancer shows a hierarchy of organisation of
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cancer subtypes. EBV, Epstein–Barr virus status; MMR, DNAmismatch repair; CPS,
combinedpositive score.dOverall survival of the 80patients basedon the effective
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tended to be associated with a better response. The association of
HER2 expression with treatment response was not consistent between
univariate and multivariable models. Therefore, taken together, our
data suggest that the TIIC signature has a greater power for patient
stratification (Supplementary Fig. 7b).

Prognostic use of the proposedTIIC signature in anti-PD-1/PD-L1
immunotherapy
Next, we investigated the prognostic use of the TIIC signature; the
univariate Cox proportional hazard regression model was used to
calculate the HR of each indicator. Then, we used the HR of each
indicator as the weight to multiply the value of the indicator itself and
then calculated the weighted sum of the four indicators. In this ana-
lysis,we categorisedpatients into high- and low-scoregroups based on
the TIIC signature. The difference in the survival probability over time
between the groups was calculated using the Kaplan–Meier method.
As expected, we observed a significant difference in both immune-
related progression-free survival (irPFS) and immune-related overall
survival (irOS) in the validation cohort (Fig. 5c, d, Supplementary
Table 25). Therefore, the TIIC signature might be useful to identify
patients that will show active anti-tumour immune responses a priori.

Discussion
Here, we present a detailed multistep platform for the multi-spectral
imaging of tissues that generates high-quality datasets at single-cell
resolution and may enable the guidance of precision immunotherapy
in GC. Importantly, this approach allowed us to map rare cell types
with complex phenotypes, characterise the PD-1 and PD-L1 expression
intensity in situ, and assess the value of these parameters and their
spatial arrangements as biomarkers.

The current clinical practice recommendations for GC are mainly
adapted to the disease stage and the HER2, PD-L1 CPS, EBV and MSI
status5,22. However, there is a need for more accurate prognostic
parameters to guide personalised treatments. For instance, the com-
bination of pembrolizumab, trastuzumab and chemotherapy showed
promising efficacy in HER2-positive advanced GC, with an ORR above
74.4% in stage I–III clinical trials, regardless of the PD-L1 status23,24.
However, themechanistic basis for the synergy between anti-HER2 and
anti-PD-1/PD-L1-based therapies has not been definitively established.
Our results showed that the effective scores of exhausted T cells and
M1 and M2 macrophages in HER2-negative patients were higher than
those in HER2-positive patients, suggesting an unfavourable tumour
microenvironment for immunotherapy.

While CD8+ T cell subsets are known to be associated with the
mechanism of action of these immunotherapeutic agents, a compre-
hensive and diverse panel of markers providing comparable prog-
nostic accuracy is desirable for clinical applications. A conflicting
prognostic use of CD8+ T cells has been reported, possibly because
patients with higher CD8+ T cell density also show higher PD-L1
expression25,26. In our study, CD8+ T cells were classified into sub-
categories. The combination of multiple markers enabled us to iden-
tify specific tumour immune cell subsets. We found that a higher
density of CD8+PD-1+LAG-3+TIM-3+ T cells and CD68+STING+ macro-
phages was associated with inferior OS, independently of potential
confounding factors. Importantly, these results are consistent with
those reported in diffuse large B-cell lymphoma; a high proportion of
TIM-3+, LAG-3+ and PD-1+ TIICs translated into poor survival27. Differ-
ential PD-1 expression in CD8+ T cells is indicative of T cell exhaustion.
In fact, the functional analysis of CD8+ T cells in hepatocellular carci-
noma showed that the PD-1-high sub-population produced the lowest
amounts of tumour necrosis factor (TNF) and/or interferon-gamma
(IFN-γ) upon T cell receptor stimulation28.

In addition, we found that patients with a higher effective density
(0–20 µmradius) of CD68+STING+macrophages, CD68+HLA-DR+CD163−

STING+macrophages andneutrophils showeda significantly shorterOS.

Table 2 | Baseline characteristics of 59gastric cancer patients
who received immunotherapy in the training cohort and
validation cohort

Characteristic* All N = 59 Training
cohort N = 44

Validation
cohort N = 15

P value§

Age

Median, IQR 60 (50–66) 59.5 (52.3–65) 63 (46–70) 0.43

Sex (Male/Female)

Male 45 (76.3%) 35 (79.6%) 10 (66.7%) 0.31

Female 14 (23.7%) 9 (20.4%) 5 (33.3%)

ECOG PS

0 37 (62.7%) 27 (61.4%) 10 (66.7%) 0.71

1 22 (37.3%) 17 (38.6%) 5 (33.3%)

Location

GEJ 18 (30.5%) 12 (27.3%) 6 (40.0%) 0.36

Non-GEJ 41 (69.5%) 32 (72.7%) 9 (60.0%)

Differentiation

Moderate 17 (28.8%) 9 (20.5%) 8 (53.3%) 0.019

Moderate-poor 18 (30.5%) 17 (38.6%) 1 (6.7%)

Poor 24 (40.7%) 18 (40.9%) 6 (40.0%)

Lauren classification

Intestinal type 27 (45.8%) 15 (34.1%) 12 (80.0%) 0.003

Diffused type 13 (22.0%) 10 (22.7%) 3 (20.0%)

Mixed type 19 (32.2%) 19 (43.2%) 0 (0.0%)

Stage

I 3 (5.1%) 3 (6.8%) 0 (0.0%) 0.71

II 7 (11.9%) 5 (11.4%) 2 (13.3%)

III 18 (30.5%) 14 (31.8%) 4 (26.7%)

IV 31 (52.5%) 22 (50.0%) 9 (60.0%)

HER2 expression

Positive 14 (23.7%) 41 (93.2%) 4 (26.7) 1.70E–7

Negative 45 (76.3%) 3 (6.8%) 11 (73.3%)

PD-L1 expression (CPS)

≥10 26 (44.1%) 19 (43.2%) 7 (46.7%) 0.064

5–10 8 (13.6%) 8 (18.2%) 0 (0.0%)

1-5 13 (22.0%) 11 (25.0%) 2 (13.3%)

<1 12 (20.3%) 6 (13.6%) 6 (40.0%)

MMR status

pMMR 51 (86.4%) 37 (84.1%) 14 (93.3%) 0.37

dMMR 8 (13.6%) 7 (15.9%) 1 (6.7%)

EBV status

Positive 9 (15.3%) 8 (18.2%) 1 (6.7%) 0.28

Negative 50 (84.7%) 36 (81.8%) 14 (93.3%)

Line of therapy

1 33 (55.9%) 24 (54.6%) 9 (60.0%) 0.45

2 16 (27.1%) 11 (25%) 5 (33.3%)

≥3 10 (17.0%) 9 (20.5%) 1 (6.7%)

Type of anti-PD-1/PD-L1 therapy

Monotherapy 19 (32.2%) 18 (40.9%) 1 (6.8%) 2.67E–7

Combination therapy

chemotherapy 18 (30.5%) 17 (38.6%) 1 (6.7%)

Anti-VEGF 4 (6.8%) 4 (9.1%) 0 (0.0%)

Anti-CTLA-4 2 (3.4%) 2 (4.6%) 0 (0.0%)

Anti-HER2 16 (27.1%) 3 (6.8%) 13 (86.7%)

ORR

CR/PR 19 (32.2%) 14 (31.8%) 5 (33.3%) 0.91

SD/PD 40 (67.8%) 30 (68.2%) 10 (66.7%)

dMMR deficient mismatch repair, pMMR proficient mismatch repair, CPS combined
positive score.
*Percentage indicates the proportion of patientswith a specific clinical, pathologic, ormolecular
characteristic among all patients.
§To compare characteristics between subgroups, we used the χ2 test for categorical variables
and Mann–Whitney U test for non-normally distributed continuous variables.
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In fact, both the density and effective density of CD68+STING+ macro-
phageswere associatedwith inferior survival. These results alignedwith
those reported in previous studies suggesting that STING or macro-
phages are negative prognosticators of GC17,19. Therefore, our results
further validate the negative prognostic value of STING, particularly in
the context of defined macrophage subtypes. Altogether, our findings
support the concept that a combinationof spatialmarkers enhances the
prognostic value in the context of GC.

Our primary aim was to evaluate the density and spatial patterns
of TIICs in the context of anti-PD-1/PD-L1 treatment for predicting

response to immunotherapy in GC. The density of CD4+FoxP3−PD-L1+

T cells and the effective score of CD8+PD-1+LAG3− T cells were asso-
ciated with a positive response to anti-PD-1/PD-L1 therapy. A higher
effective score indicated a higher number of paired immune cells and
tumour cells divided by the total number of immune cells across the
whole slides. These results are consistent with those of a previous
study, showing that a high percentage of CD8+PD-1+TIM-3−LAG-3− cells
is correlated with longer median irPFS and higher ORR29. Previous
reports suggested that CXCL13 (encoding an effector chemokine) is
among the most up-regulated genes in PD-1+ tumour-infiltrating cells;
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Fig. 4 | The TIIC signature predicts the response to anti-PD-1/PD-L1-based
immunotherapy. a Definition of the tumour-infiltrating immune cell (TIIC) sig-
nature. Red arrows highlight specific immune cells. b Average area under the curve
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operating characteristic (ROC) curves for the performance of the identified TIIC
signature and combined TIIC signature in gastric cancer patients subjected to
immunotherapy in the validation cohort. ETC extra tree classifier, GBC gradient
boosting classifier, ABC AdaBoost classifier, MLP multi-layer perceptron.
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such an up-regulation might underlie the attraction of other immune
cell subsets into the tumour tissues27. In addition, PD-1+ TILs were
found at the tumour–host interface, suggesting that these cells may
have an active function in the recruitment of immune subsets into the
tumour30. Deletion of CD274 (which encodes PD-L1) in T cells enhances
adaptive tumour immunity and activates TAMs, indicating that the use
of anti-PD-1/PD-L1 inhibitors will enhance immunity in tumours with a
high density of CD4+FoxP3−PD-L1+ T cells31.

Interestingly, CD8+PD-1−LAG3− T cells and CD68+STING+ macro-
phages were associated with a negative response to anti-PD-1/PD-L1
therapy. In fact, theCD8+PD-1−LAG-3−Tcell typewas able to specifically
identify a sub-set of patients with a poor immunotherapy response,
potentially allowing for the selection of an alternate therapeutic regi-
men. The high expression of STING in TAMs was associated with poor
survival, not only in our study but also in a previous investigation on
GC17. A functional study showed that knockdown of STING promotes
the polarisation of macrophages into the pro-inflammatory subtype,
leading to the apoptosis of GC cells. The use of STING antagonists in
synergism with PD-1 blockade induced durable anti-tumour immunity
with the suppression of peritoneal dissemination of colon cancer and,
ultimately, cancer eradication32. Since peritoneal metastases are a fatal
presentation of gastrointestinal cancers, the same combination ther-
apeutic strategy should be considered to prevent peritoneal carcino-
matosis in GC. Collectively, these observations indicated multiple
layers of organisation within tumours and effectively predicted the
immunotherapy response. Indeed, this study offers further insights
into the nature of GC immunity. The information generated can be
harnessed for the development and optimisation of effective immu-
notherapy strategies. Our data clearly show that TIICs have a dominant
function in response to ICIs. Importantly, we propose a TIIC signature
to predict immunotherapy response.

Our study is not without limitations. Although the m-IHC
method used is undoubtedly advantageous over traditional IHC, a
consensus set of protein markers for myeloid-derived suppressor
cells has not yet been defined, and therefore differences in marker
selection will exist. Further studies, including spatial transcriptomics
and in vivo and in vitro validation, are essential, with the potential to
provide additional biological insights into TIICs in GC. The reason
why tumours develop a given TIIC signature is a fundamental ques-
tion and is worthy of further study. Furthermore, we acknowledge
that some immune cell subsets defined by us can be related to one
another as ‘daughter cells’with distinct phenotypes but derived from
the same ‘ancestor cell’. Therefore, independent studies are war-
ranted to confirm our findings.

On the contrary, the strengths of the study include the acqui-
sition of the entire tumour microenvironment in all slides, followed
by the standardised selection of discrete ROIs. Our study clearly
highlights the benefits of computer-assisted cell-density quantita-
tion over the visual assessment of the proportion of positive cells
for a given marker by a pathologist alone. Nevertheless, although
our results support the prognostic and predictive significance of
TIICs in GC, further studies in large cohorts, ideally from pro-
spective clinical trials, are required to confirm our findings. Com-
parative studies are also needed to show the clear advantage of
using the method that we propose here for the evaluation of
immune cell infiltrates.

Overall, our results highlight the multi-dimensional marker eva-
luation of tumour immune infiltrates as a robust and quantitative
predictive tool for GC. The exploration of the microenvironment
composition of GC samples would offer critical insights into the
complex and heterogeneous immune landscape associated tumour
progression and immunotherapy treatment response.
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Fig. 5 | Feature importance of the TIIC signature and predictive value of the
TIIC signature in immune-related survival. a, b The feature importance of each
marker in the prediction model. c, d Kaplan–Meier curves of the (c) immune-
related progression-free survival (irPFS) and (d) immune-related overall survival

(irOS) of anti-PD-1/PD-L1-treated patients stratified by the tumour-infiltrating
immune cell (TIIC) signature in the validation cohort. Log-rank (Mantel–Cox) test
was used for analysis.
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Methods
Patients and specimens
FFPE GC tissues were obtained from the Department of Pathology,
Peking University Cancer Hospital. GC tissues included 80 pre-
treatment samples from 80 subjects with histologically confirmed
gastric adenocarcinoma diagnosed between July 2014 and December
2019. Among the 60 patients subjected to immunotherapy, 21 were
treated with standard-of-care anti-PD-1/PD-L1 antibodies and 39 were
treated as part of clinical trials (NCT03472365, NCT03713905). We
excluded patients with concurrent autoimmune diseases, HIV, or
syphilis. This study was approved by the Ethics Committee of the
Peking University Cancer Hospital (NCT03472365, NCT03713905)33,34.
All participants or their legal guardians signed informed consent
forms. EBV status was determined using in situ hybridisation with
probes against Epstein–Barr encoded RNA 1 (EBER1). Additionally, the
MMR status was assessed using IHC analysis of the expression of the
DNA mismatch repair proteins MLH1, MSH2, MSH6 and PMS2, as
previously described35. CPS was defined as the number of PD-L1-
positive tumour cells (partial or complete membrane staining), lym-
phocytes and macrophages (membrane staining or intracellular
staining, or both) divided by the total number of viable tumour cells
multiplied by 1002. Responders were defined as patients with a RECIST
complete response (CR) or partial response (PR), while non-
responders were defined as those with progressive disease (PD) or
stable disease (SD). OSwas defined as the period fromdiagnosis to the
time of death or end of follow-up, whichever occurred first. irOS was
defined as the time from initial immunotherapy to the day of death or
the end of follow-up, whichever occurred first. irPFSwas defined as the
time from initial immunotherapy to the day of disease progression,
death or the end of follow-up, whichever occurred first.

Multiplex immunohistochemistry
Multiplex IHC staining was performed to visualise the expression of
CD8, PD-1, TIM-3, LAG-3, CD4, FoxP3, CTLA-4, PD-L1, CD68, CD163,
HLA-DR, STING, CD20 andCD66b in tumour tissues in four panels. The
specimens were collected within 30min after tumour collection and
fixed in formalin for 24–48 h. Dehydration and paraffin embedding
were performed using routine methods. Five consecutive sections
(4 µm-thick) were cut from paraffin blocks. One section was used for
H&E staining. Four FFPE tumour slides (4 µm)weremelted at 60 °C for
dehydration for 12 h. Paraffin sections were de-paraffinised in xylene
and re-hydrated in alcohol. Heat-induced antigen retrieval was per-
formed in ethylenediaminetetraacetic acid (EDTA) buffer, pH 9.0 (or
citrate buffer, pH 6.0, for FoxP3 staining) using amicrowave oven. The
sections were blocked with commercially available blocking buffer
(Dako, Santa Clara, CA; cat. X0909) for 10min. The primary antibodies
used for each staining are listed in Supplementary Table 26. The
concentration and staining order of the antibodies used in this study
were optimised in advance. The slides were serially incubated with
primary antibodies and horseradish peroxidase-conjugated secondary
antibodies (Biolynx, Hangzhou, China, cat. BX10001) and subjected to
tyramide signal amplification (TSA). After each round of TSA opera-
tion, the slides were heated for antigen retrieval and antibody strip-
ping. After all sequential staining steps, the cell nuclei were stained
with 4′,6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich, St. Louis,
MO; cat. D9542)36. Two specialist pathologists (blinded to the patient’s
information) evaluated all GC specimens.

Multi-spectral imaging
Images were acquired using the Mantra Quantitative Pathology Ima-
ging System (PerkinElmer, Waltham, MA). The multi-spectral images
were visualised in a Phenochart. Briefly, representative ROIs were
chosen by two specialist pathologists, and multiple fields of view were
acquired at 20× for further analysis. The ROIs were defined as follows:
normal tissue adjacent to the tumour (N), the areawithin the specimen

but not within the tumour; IM, the area at the interface of tumour and
normal tissues (approximately 1–1.5mm; depth defined by the size of
the microscopy field); TC, -the tumour centre ROIs were selected with
fixed-size stamps in a Phenochart (PerkinElmer), based on the pre-
viously acquired whole-slide scan images. A1 × 1 (930 × 700 µm; ×20
object lens) stampwasused. Asmany viable regions aspossible in each
specimenwere selected withminimal overlap. All processed data were
subjected to quality control (QC) by a pathologist, with the subsequent
exclusion of the inappropriate regions from the analysis as well as the
confirmation of outlier results.

Imaging data analysis
The multi-spectral images were analysed using the inForm image
analysis software 2.4 (PerkinElmer, Waltham, MA). The spectral library
was built based on the single-stained slides for each fluorophore, and
unstained sections were used to extract the auto-fluorescence spec-
trum of the tissues. The inForm software actively learned the pheno-
typing algorithm from all spectrally unmixed images. Each DAPI-
stained cell was individually identified according to its combination of
fluorophore characteristics and cell morphology features associated
with a segmented nucleus (DAPI signal).

The acquired images (n = 6488) were analysed with inForm for
tissue-component segmentation of tumour cell and stroma regions and
cell phenotyping. The density of cells in each ROI was calculated via the
normalisation of the total cell counts by the total area (cell/mm2). The
TC fields froma single patientwere used as a cluster. In eachpatient, we
calculated the density of cells in TC, IM and N by the cluster, including
all ROIs from the TC, IM, N of this patient, respectively.

Construction of the machine learning models
Supervised machine learning methods were used to train classifiers to
map the characteristics of a given training cohort to a learning target,
which in this research was the immunotherapy response. The perfor-
mance of the learned model was then evaluated on the validation
cohort. The supervised classifiers in this research were constructed
using scikit-learn (version 0.23.2), one of the most popular machine
learning programs in Python37. Four types of ensemble classifiers,
including ETC, GBC, ABC and MLP, were built. For each type of clas-
sifier, we selected the appropriate hyper-parameters through a grid-
search and adopted a 3-fold cross-validation to improve the robust-
ness of the model. The detailed information of the candidate para-
meters is presented in Supplementary Table 27. The classifiers
originating from the training cohort were applied to the validation
cohort, and the AUC of each classifier was calculated. To compare the
effect of the adjustment of thehyper-parameters onmodel efficacy, we
also tested models that used default parameters.

The sample was randomly divided into three groups in 3-fold
cross-validation. Some classifiers (such as ETC) had random starting
points or branches in the execution process. Therefore, we performed
5000 repetitions of the whole prediction process and presented the
average AUC of 5000 predictions to represent the model efficacy,
which might reduce the impact of sampling error on the evaluation of
the model.

One patient in the validation cohort had an absent ORR; we
excluded this patient in the evaluation of treatment response but
included this patient in survival analysis.

Statistics and reproducibility
The relationships between TIICs and clinico-pathologic features were
evaluated using the Mann–Whitney U test, the Kruskal–Wallis test, or
Pearson correlation analyses, as appropriate. For multiple compar-
isons of immune cell density and tumour location (TC, IM, N), we used
Dunn’s adjustment38. We also used the Kaplan–Meier method to esti-
mate survival functions and the log-rank test to compare survival
distributions. We conducted logistic regression analyses to examine
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the association of TIICs or molecular features of GC with treatment
response. The assumption of proportionality of hazards was assessed
using a time-varying covariate in the Cox models with a cross-product
term of survival time and each TIIC. The proportional hazard
assumptionsweregenerally satisfied for survival (P > 0.05). In addition,
to disclose the potential relationship between each TIIC and GC sur-
vival, multi-variable-adjusted Cox proportional hazards regression
analysis was used39. All statistical analyses were performed using SPSS
26.0 (IBM, Armonk, NY, USA), GraphPad Prism 7.0 (GraphPad Soft-
ware, San Diego, CA, USA), and software package R (version 4.1.2). All
P-values were two-sided.

To test reproducibility, we assessed the densities of four cell types
(CD4+T cells, CD8+T cells, B cells and macrophages; represented by
CD4, CD8, CD20 and CD68, respectively) in six samples (six sections
for each case) to test intra-patient variance. The overall densities of
these cells and the coefficient of variation among six sections were
generally similar (Supplementary Fig. 8). The coefficient of variation
suggests that the m-IHC staining and ROI selection were highly con-
sistent in our cohort.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All other data are available in the article and its Supplementary files or
from the corresponding author upon reasonable request. Source data
are provided with this paper.

Code availability
All R packages used in this study are available fromCRAN (https://cran.
r-project.org/web/packages/available_packages_by_name.html) or
Bioconductor (https://www.bioconductor.org/). Machine learning
models were constructed using the scikit-learn package, which is
available online (https://scikit-learn.org/stable/).
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